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QUADRATIC SPLINE WAVELETS WITH SHORT SUPPORT SATISFYING
HOMOGENEOUS BOUNDARY CONDITIONS∗

DANA ČERNÁ† AND VÁCLAV FINĚK†

Abstract. In this paper, we construct a new quadratic spline-wavelet basis on the interval and on the unit square
satisfying homogeneous Dirichlet boundary conditions of the first order. The wavelets have one vanishing moment
and the shortest support among quadratic spline wavelets with at least one vanishing moment adapted to the same type
of boundary conditions. The stiffness matrices arising from the discretization of the second-order elliptic problems
using the constructed wavelet basis have uniformly bounded condition numbers, and the condition numbers are small.
We present some quantitative properties of the constructed basis. We provide numerical examples to show that the
Galerkin method and the adaptive wavelet method using our wavelet basis require fewer iterations than methods with
other quadratic spline wavelet bases. Moreover, due to the small support of the wavelets, when using these methods
with the new wavelet basis, the system matrix is sparser, and thus one iteration requires a smaller number of floating
point operations than for other quadratic spline wavelet bases.
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1. Introduction. Wavelets are powerful tools in signal analysis, image processing, and
engineering applications. They are also used for the numerical solution of various types
of equations. Wavelet methods are used especially for preconditioning systems of linear
algebraic equations arising from the discretization of elliptic problems [9], adaptive solution
of operator equations [6, 7], solution of certain types of partial differential equations with a
dimension-independent convergence rate [12], and sparse representation of operators [2].

The quantitative properties of any wavelet method strongly depends on the used wavelet
basis, namely on its condition number, the length of the support of the wavelets, the number
of vanishing wavelet moments, and the smoothness of the basis functions. Therefore, the
construction of appropriate wavelet bases is an important issue.

In this paper, we construct a quadratic spline wavelet basis on the interval and on the unit
square that is well-conditioned and adapted to homogeneous Dirichlet boundary conditions
of the first order. The wavelets have one vanishing moment, and we show that the support is
the shortest among all quadratic spline wavelets with one vanishing moment. The condition
numbers of the stiffness matrices arising from the discretization of elliptic problems using the
constructed basis are uniformly bounded and small. Let Ωd = (0, 1)

d, d = 1, 2. The wavelet
basis of the space H1

0 (Ω2) is then obtained by an isotropic tensor product. More precisely, our
aim is to propose a wavelet basis on Ωd that satisfies the following properties:

– Riesz basis property. We construct Riesz bases for the space H1
0 (Ωd).

– Locality. The primal basis functions are local in the sense of Definition 2.1.
– Vanishing moments. The wavelets have one vanishing moment.
– Polynomial exactness. Since the scaling basis functions are quadratic B-splines, the

primal multiresolution analysis has polynomial exactness of order three.
– Short support. The wavelets have the shortest possible support among quadratic

spline wavelets with one vanishing moment.
– Closed form. The primal scaling functions and wavelets have an explicit expression.

∗Received June 25, 2015. Accepted January 19, 2018. Published online on February 16, 2018. Recommended by
G. Teschke. This work was supported by the SGS project “Wavelets” financed by the Technical University of Liberec.
†Department of Mathematics and Didactics of Mathematics, Technical University in Liberec, Studentská 2, 461

17 Liberec, Czech Republic ({dana.cerna,vaclav.finek}@tul.cz).

15

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)
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– Homogeneous Dirichlet boundary conditions. The wavelet basis satisfies homoge-
neous Dirichlet boundary conditions of the first order.

– Well-conditioned basis. The wavelet basis is well-conditioned with respect to the
H1(Ωd)-seminorm.

In [8, 10], a construction of a biorthogonal spline-wavelet basis on the interval was
proposed. Both the primal and dual wavelets are local. A disadvantage of these bases is their
relatively large condition number. Therefore many modifications of this construction were
proposed [1, 3, 4, 15]. The construction in [20] outperforms the previous constructions for the
linear and quadratic spline-wavelet bases with respect to the conditioning of the wavelet bases.
In [11, 22, 23] the construction was significantly improved also for cubic spline wavelet bases.

Spline wavelet bases with nonlocal duals were also constructed and adapted to various
types of boundary conditions [5, 13, 17, 18, 19, 25, 26, 27]. The main advantage of these
types of bases in comparison to bases with local duals are usually the shorter support of the
wavelets, the lower condition number of the basis and the corresponding stiffness matrices,
and the simplicity of the construction. The cubic spline multiwavelet basis from [13] has the
additional advantage that the discretization of the second-order elliptic equations with constant
coefficients leads to truly sparse matrices, i.e., the number of all nonzero entries in any row
is bounded by some constant c independent of the matrix size, whereas the discretization
matrices for other wavelet bases have typically O (N logN) nonzero entries, where N ×N is
the matrix size. This allows a simplification and improvement of adaptive wavelet methods
because a routine called APPLY for the multiplication of the discretization matrix with a
vector can be avoided.

The constructed basis can be used in many applications, e.g., the wavelet Galerkin
method and an adaptive wavelet method for solving second-order elliptic equations, parabolic
equations, and partial integro-differential equations on tensor product domains and domains
that are images of tensor product domains under continuous mappings. These problems arise,
for example, in financial mathematics for the valuation of options under the Black–Scholes
model, stochastic volatility models, and the Lévy model; see [16]. Wavelet methods seem
to be superior to classical methods especially for the solution of partial integro-differential
equations because they make it possible to represent the integral term by sparse or almost-
sparse matrices while the classical methods typically lead to full matrices. Due to the short
support and the small condition number, the constructed basis can lead to improved efficiency
of these methods.

Wavelet bases of the same type as in this paper are those from [11, 20, 22]. The con-
structions in [11, 20, 22] are based on the constructions of boundary dual scaling functions
that are linear combinations of restrictions of dual functions on the real line to [0, 1] such
that the boundary dual scaling functions preserve the polynomial exactness. Then boundary
wavelets are constructed by the method of stable completion. In this paper the construction
is much simpler because we construct boundary wavelets directly without using dual scaling
functions. The constructions from [22] and [20] lead to the same basis in the case of quadratic
spline wavelet bases adapted to homogeneous Dirichlet boundary conditions of the first order.
Therefore in Section 5 we compare our basis with bases from [11, 20]. Furthermore, we adapt
bases from [3, 5] to homogeneous boundary conditions and compare the resulting bases with
ours.

2. Construction of quadratic-spline wavelets. In this section we propose a construc-
tion of a new quadratic spline wavelet basis on the unit interval and on the unit square. The
proposed wavelets have one vanishing moment, and we show that their support is the smallest
possible. First, we briefly review a definition of a wavelet basis; for more details about wavelet
bases see [21]. Let H be a real Hilbert space with the inner product 〈·, ·〉H and the norm ‖·‖H .
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Let 〈·, ·〉 and ‖·‖ denote the L2-inner product and the L2-norm, respectively. Let J be some
index set, and let each index λ ∈ J take the form λ = (j, k), where |λ| := j ∈ Z is a scale.
We define

‖v‖2 :=

√∑
λ∈J

v2
λ, for v = {vλ}λ∈J , vλ ∈ R

and

l2 (J ) :=
{
v : v = {vλ}λ∈J , vλ ∈ R, ‖v‖2 <∞

}
.

Our aim is to construct a wavelet basis for H in the sense of the following definition.
DEFINITION 2.1. A family Ψ := {ψλ, λ ∈ J } is called a wavelet basis for H , if
(i) Ψ is a Riesz basis for H , i.e., the closure of the span of Ψ is H and there exist

constants c, C ∈ (0,∞) such that

(2.1) c ‖b‖2 ≤

∥∥∥∥∥∑
λ∈J

bλψλ

∥∥∥∥∥
H

≤ C ‖b‖2 ,

for all b := {bλ}λ∈J ∈ l2 (J ).
(ii) The functions are local in the sense that diam suppψλ ≤ C2−|λ| for all λ ∈ J , and

at a given level j, the supports of only finitely many wavelets overlap at any point x.
For the two countable sets of functions Γ,Θ ⊂ H , the symbol 〈Γ,Θ〉H denotes the matrix

〈Γ,Θ〉H := {〈γ, θ〉H}γ∈Γ,θ∈Θ
.

REMARK 2.2. The constants

cΨ := sup {c : c satisfies (2.1)} and CΨ := inf {C : C satisfies (2.1)}

are called Riesz bounds, and the number cond Ψ = CΨ/cΨ is called the condition number
of Ψ. It is known that the constants cΨ and CΨ satisfy:

cΨ =
√
λmin (〈Ψ,Ψ〉H), CΨ =

√
λmax (〈Ψ,Ψ〉H),

where λmin (〈Ψ,Ψ〉H) and λmax (〈Ψ,Ψ〉H) are the smallest and the largest eigenvalues of the
matrix 〈Ψ,Ψ〉H , respectively.

We define a scaling basis as a basis for quadratic B-splines in the same way as in [5, 20, 22].
Let φ be a quadratic B-spline defined on the knots [0, 1, 2, 3]. It can be written explicitly as

(2.2) φ(x) =


x2

2 , x ∈ [0, 1],

−x2 + 3x− 3
2 , x ∈ [1, 2],

x2

2 − 3x+ 9
2 , x ∈ [2, 3],

0, otherwise.

The function φ satisfies the scaling equation [5]

(2.3) φ (x) =
φ (2x)

4
+

3φ (2x− 1)

4
+

3φ (2x− 2)

4
+
φ (2x− 3)

4
.
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Let φb be a multiple of the quadratic B-spline defined on the knots [0, 0, 1, 2] such that
‖φb‖L1 = ‖φ‖L1 , i.e.,

(2.4) φb(x) =


− 9x2

4 + 3x, x ∈ [0, 1],
3x2

4 − 3x+ 3, x ∈ [1, 2],

0, otherwise.

The function φb satisfies the scaling equation [5]

(2.5) φb (x) =
φb (2x)

2
+

9φ (2x)

8
+

3φ (2x− 1)

8
.

The graphs of the functions φb and φ are displayed in Figure 2.1.
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FIG. 2.1. The scaling functions φ and φb and the wavelets ψ and ψb.

For j ≥ 2 and x ∈ [0, 1] we set

φj,k(x) = 2j/2φ(2jx− k + 2), k = 2, . . . , 2j − 1,(2.6)

φj,1(x) = 2j/2φb(2
jx), φj,2j (x) = 2j/2φb(2

j(1− x)).

We define a wavelet ψ and a boundary wavelet ψb as

(2.7) ψ(x) = −1

2
φ(2x− 1) +

1

2
φ(2x− 2) and ψb(x) =

−φb(2x)

2
+
φ(2x)

2
.

Due to the normalization of φb, the coefficients in these two equations are the same which
will simplify the proofs in the next section. Then suppψ = [0.5, 2.5], suppψb = [0, 1.5], and
both wavelets have one vanishing moment, i.e.,

(2.8)
∫ ∞
−∞

ψ(x)dx = 0 and
∫ ∞
−∞

ψb(x)dx = 0.

The graphs of the wavelet ψ and the boundary wavelet ψb are displayed in Figure 2.1. In the
following lemma we show that the support of the wavelet ψ is the shortest among all quadratic
spline wavelets with one vanishing moment.

LEMMA 2.3. Let φ be defined by (2.2). If ψ ∈ span {φ (2 · −k) , k ∈ Z} and ψ satis-
fies (2.8), then the length of the support of ψ is at least 2.

Proof. Since ψ ∈ span {φ (2 · −k) , k ∈ Z} we have

ψ (x) =
∑
k∈Z

akφ (2x− k) ,
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for some coefficients ak ∈ R. Let us suppose that the length of the support of ψ is at
most 2. Then suppψ ⊂ [j/2, (j + 4)/2] for some j ∈ Z. Since ψ (x) = 0 for all
x ∈ [k/2, (k + 1)/2], where k ∈ Z\ {j, j + 1, j + 2, j + 3}, the coefficients satisfy ak = 0
for all k ∈ Z\ {j, j + 1}. Due to (2.8) we have aj + aj+1 = 0. Thus up to a multiplication by
a constant and shifting by k/2, k ∈ Z, there is only one wavelet that has the length of support
at most 2 and this wavelet is a wavelet defined by (2.7).

Using a similar argument as in the proof of Lemma 2.3 it is easy to see that also the
boundary wavelet ψb has the shortest possible support among all boundary wavelets with one
vanishing moment corresponding to scaling functions defined by (2.6).

For j ≥ 2 and x ∈ [0, 1] we define

ψj,k(x) = 2j/2ψ(2jx− k + 2), k = 2, . . . , 2j − 1,(2.9)

ψj,1(x) = 2j/2ψb(2
jx), ψj,2j (x) = −2j/2ψb(2

j(1− x)).

We denote the index sets by

Ij =
{
k ∈ Z : 1 ≤ k ≤ 2j

}
.

We define

Φj = {φj,k, k ∈ Ij} , Ψj = {ψj,k, k ∈ Ij} ,

and

(2.10) Ψ = Φ2 ∪
∞⋃
j=2

Ψj , Ψs = Φj0 ∪
j0+s−1⋃
j=j0

Ψj , j0 = 2.

In Section 4 we prove that Ψ, when normalized with respect to the H1-seminorm, forms a
wavelet basis for the Sobolev space H1

0 (0, 1).
A basis on Ωd = (0, 1)

d is built from the univariate wavelet basis by a tensor product [21].
Let j ≥ 2, k = (k1, . . . , kd), k ∈ Idj := Ij × · · · × Ij , and x = (x1, . . . , xd) ∈ Ωd. We
define the multivariate scaling functions by

φdj,k (x) =

d∏
l=1

φj,kl (xl) ,

and for any e = (e1, . . . , ed) ∈ Ed := {0, 1}d\ (0, . . . , 0), we define the multivariate wavelet

ψdj,e,k (x) =

d∏
l=1

ψj,el,kl (xl) ,

where

ψj,el,kl =

{
φj,kl , el = 1,

ψj,kl , el = 0.

The basis on the unit cube Ωd is then given by

ΨdD =
{
φd2,k,k ∈ Idj

}
∪
{
ψdj,e,k, e ∈ Ed,k ∈ Idj , j ≥ 2

}
.

This approach is called an isotropic approach. It preserves the regularity and polynomial
exactness. Another approach is an anisotropic approach. The anisotropic basis on the unit
square is Ψ⊗Ψ.
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3. Refinement matrices. In this section we present refinement matrices Mj,0 and
Mj,1 corresponding to primal scaling functions and wavelets. We show that the matrix
Mj = (Mj,0,Mj,1) is invertible, and thus there exist matrices M̃j,0 and M̃j,1 of the same
sizes as Mj,0 and Mj,1, respectively, such that

(3.1) (M̃j,0, M̃j,1) = M−1
j .

We derive an explicit form of the matrix M̃j,0 and an estimate for the norm of the product
M̃T

m,0M̃
T
m+1,0 . . . M̃

T
n,0 because this estimate is crucial for the proof of the Riesz basis

property that will be presented in Section 4.
By (2.3), (2.5), (2.6), (2.7), and (2.9), there exist refinement matrices Mj,0 and Mj,1 such

that

(3.2) Φj = MT
j,0Φj+1, Ψj = MT

j,1Φj+1.

In these formulas we view the sets Φj and Ψj as column vectors with entries φj,k and ψj,k,
k ∈ Ij , respectively.

By the Riesz representation theorem there exist dual functions φ̃j,k and ψ̃j,k such that

〈φj,k, φ̃j,m〉 = δk,m, 〈φj,k, ψ̃l,m〉 = 0, 〈ψl,m, φ̃j,k〉 = 0, 〈ψj,k, ψ̃l,m〉 = δj,kδk,m,

for all j, l ≥ 2, l ≥ j, k ∈ Ij , m ∈ Il. Let us denote

Φ̃j = {φ̃j,k, k ∈ Ij} , Ψ̃j = {ψ̃j,k, k ∈ Ij} ,

and view these sets as column vectors. Then Φ̃j , Ψ̃j ⊂ span Φ̃j+1, and the matrices M̃j,0 and
M̃j,1 defined by (3.1) are the refinement matrices for the dual system, i.e.,

Φ̃j = M̃j,0Φ̃j+1, Ψ̃j = M̃j,1Φ̃j+1.

Due to Remark 2.2, the Riesz bounds for the multiscale systems are related to the spectral
norms of refinement matrices and products of these matrices.

Due to (2.3) and (2.5), the refinement matrix Mj,0 has the following structure:

Mj,0 =


ML

MI
j,0

MR

 ,

where MI
j,0 is a 2j+1 × 2j matrix given by

(
MI

j,0

)
m,n

=

{
hm+2−2n√

2
, n = 1, . . . , 2j , 1 ≤ m+ 2− 2n ≤ 4,

0, otherwise,

where

h = [h1, h2, h3, h4] =

[
1

4
,

3

4
,

3

4
,

1

4

]
is a vector of coefficients from the scaling equation (2.3). The matrix ML is given by

ML =
1√
2
hTb , where hb =

[
hb1, h

b
2, h

b
3

]
=

[
1

2
,

9

8
,

3

8

]
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is a vector of coefficients from the scaling equation (2.5). The matrix MR is obtained from a
matrix ML by reversing the ordering of the rows.

It follows from (2.7) that the matrix Mj,1 is of the size 2j+1 × 2j and has the structure

(3.3) Mj,1 =
1√
2



− 1
2

1
2 0 0 0 0 0 · · · 0 0

0 0 − 1
2

1
2 0 0 0 · · · 0 0

0 0 0 0 − 1
2

1
2 0 0

...
...

...
0 0 · · · 0 0 0 − 1

2
1
2 0 0

0 0 · · · 0 0 0 0 0 − 1
2

1
2



T

.

The following lemmas are crucial for the proof of a Riesz basis property.
LEMMA 3.1. Let j ≥ 2 and the entries M̃ j,0

k,l , k ∈ Ij+1, l ∈ Ij , of the matrix M̃j,0 be
given by:

M̃ j,0
2,l = M̃ j,0

1,l =
dj1

a|1−l|
+

djn
a|n−l|

,

M̃ j,0
2j+1,l = M̃ j,0

2j+1−1,l =
dj1

a|n−l|
+

djn
a|1−l|

,

where n = 2j , a = −3− 2
√

2,

dj1 =
6αn

3 +
√

2
, djn =

−36b αn a
2−n

11 + 6
√

2
,(3.4)

αn =

(
1− 36 b2 a4−2n

11 + 6
√

2

)−1

, b =
13− 9

√
2

6
,

and for k = 2, . . . , n− 1 and l ∈ Ij , let

M̃ j,0
2k,l = M̃ j,0

2k−1,l =
1

a|k−l|
+

djk
a|1−l|

+
djn+1−k
a|n−l|

,

where

(3.5) djk =
−6b αn a

2−k

3 +
√

2
− 36b αn a

k+3−2n

11 + 6
√

2
.

Then

(3.6) MT
j,0M̃j,0 = Ij , and MT

j,1M̃j,0 = 0j ,

where Ij denotes the identity matrix and 0j denotes the zero matrix of the appropriate size.
Proof. By a similar approach as in [25, 26] we derive the explicit form of the entries M̃ j,0

k,l ,
k ∈ Ij+1, l ∈ Ij , of the matrix M̃j,0 such that (3.6) is satisfied. From (3.3) we obtain

(3.7) M̃2k−1,l = M̃2k,l, for k = 1, . . . , 2j .

We substitute (3.7) into (3.6), and we obtain a new system AjBj = Ij , where

Aj =
1√
2



13
8

3
8 0 · · · 0

1
4

3
2

1
4

...
0 1

4
3
2

1
4 0

...
. . . . . . . . .

0 1
4

3
2

1
4

0 · · · 0 3
8

13
8


=

Hj√
2



13
12

1
4 0 · · · 0

1
4

3
2

1
4

...
0 1

4
3
2

1
4 0

...
. . . . . . . . .

0 1
4

3
2

1
4

0 · · · 0 1
4

13
12


,
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with

(Hj)k,l =


3
2 , (k, l) = (1, 1) , (k, l) =

(
2j , 2j

)
,

1, k = l, k 6= 1, k 6= 2j ,

0, otherwise,

and Bj is the 2j × 2j matrix with entries Bjk,l = M̃ j,0
2k,l, k, l ∈ Ij . We factorize the matrix

Aj as Aj = HjCjDj , where

Cj =
1√
2



3+2
√

2
4

1
4 0 0 · · · 0

1
4

3
2

1
4

...
0 1

4
3
2

1
4 0

...
. . . . . . . . .

0 1
4

3
2

1
4

0 · · · 0 0 1
4

3+2
√

2
4


and

Dj =



3+
√

2
6 0 0 · · · 0 0 b

an−2

b 1 0 0 0 b
an−3

b
a 0 1 0 0 b

an−4

...
...

. . .
...

...
b

an−4 0 0 1 0 b
a

b
an−3 0 0 0 1 b
b

an−2 0 0 · · · 0 0 3+
√

2
6


.

More precisely, the entries Dj
k,l of the matrix Dj are given by

Dj
1,1 = Dj

n,n =
3 +
√

2

6
,

Dj
k,1 = Dj

n+1−k,n =
b

ak−2
, for k = 2, . . . , n,

Dj
k,k = 1, for k = 2, . . . , n− 1,

Dj
k,l = 0, otherwise.

It is easy to verify that C̃j = C−1
j has entries C̃jk,l = a−|k−l|, and the matrix D−1

j has the
structure

D−1
j =


dj1 0 · · · 0 djn
dj2 1 0 djn−1
...

. . .
...

djn−1 0 1 dj2
djn 0 · · · 0 dj1


with djk given by (3.4) and (3.5). Since the matrices Cj , Dj and Hj are invertible, we can
define

(3.8) Bj = A−1
j = D−1

j C−1
j H−1

j .
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By substituting (3.8) into (3.7), the lemma is proved.
LEMMA 3.2. There exist unique matrices M̃j,1, j ≥ 2, such that

(3.9) MT
j,0M̃j,1 = 0j and MT

j,1M̃j,1 = Ij .

Proof. For l ∈ Ij+1 and k ∈ Ij the entries M̃ j,1
k,l of the matrix M̃j,1 satisfy

M̃ j,1
2k−1,l = 2δ2k−1,2l−1 + M̃ j,1

2k,l.

Using these relations we obtain a system of equations with the matrix Aj defined in the proof
of Lemma 3.4. Since the matrix Aj is invertible, the matrix M̃j,1 exists and is unique.

LEMMA 3.3. We have Φj+1 = M̃j,0Φj + M̃j,1Ψj for all j ≥ 2.
Proof. Due to (3.2) we have[

Φj
Ψj

]
=

[
MT

j,0

MT
j,1

]
Φj+1, j ≥ 2.

By multiplying this equation by the matrix [M̃j,0, M̃j,1] from the left-hand side and using (3.6)
and (3.9), the lemma is proved.

For any matrix M of the size m× n we set

‖M‖2 = sup
v∈Rn,v 6=0

‖Mv‖2
‖v‖2

and

‖M‖1 = max
l=1,...,n

m∑
k=1

|Mk,l| , ‖M‖∞ = max
k=1,...,m

n∑
l=1

|Mk,l| .

It is well-known that

(3.10) ‖M‖2 ≤
√
‖M‖1 ‖M‖∞.

LEMMA 3.4. The matrices M̃j,0, j ≥ 2, have uniformly bounded norms, i.e., there exists
C ∈ R independent of j such that ‖M̃j,0‖2 ≤ C for all j ≥ 2.

Proof. Since the matrices M̃j,0 are known in the explicit form, they have a regular
structure, and the entries in each column and row are exponentially decreasing, we compute
upper bounds for the 1-norm and∞-norm by computing several of the largest entries in each
row and column and estimating the sum of the remaining entries. We obtain

‖M̃j,0‖1 ≤ 1.42, ‖M̃j,0‖∞ ≤ 2.91,

and due to (3.10) we have ‖M̃j,0‖2 ≤ 2.04.
For comparison we computed the norms of the matrices M̃j,0 numerically and found that

‖M̃j,0‖2 ≤ 2 for j = 3, . . . , 12, and ‖M̃12,0‖2 = 1.9999997.
LEMMA 3.5. Let Sj = M̃T

j,0M̃
T
j+1,0, j ≥ 3, and S̃j be the matrix given by

(S̃j)k,l = (Sj)2k−1,l + (Sj)2k,l, k ∈ Ij−1, l ∈ Ij+2.

Then there exists a constant C independent of j such that ‖S̃j‖2 < C < 2
√

2.
Proof. Let Kj be a 2j × 2j+1 matrix with entries

(3.11) (Kj)k,2l−1 = (Kj)k,2l = a−|k−l|, k, l ∈ Ij , a = −3− 2
√

2,
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and let Lj = M̃T
j,0 −Kj . We know the explicit expression of the matrix Lj because they are

know for both M̃j,0 and Kj . We have

Sj = M̃T
j,0M̃

T
j+1,0 = KjKj+1 + KjLj+1 + LjKj+1 + LjLj+1.

Let us denote

Nj = KjKj+1, Oj = KjLj+1, Pj = LjKj+1, Qj = LjLj+1,

and let Ñj , Õj , P̃j , and Q̃j be derived from Nj , Oj , Pj , and Qj in a similar way as S̃j from
Sj . Then S̃j = Ñj + Õj + P̃j + Q̃j . From (3.11) we have for k ∈ Ij , l ∈ Ij+1

(Nj)k,2l−1 = (Nj)k,2l = uTk vl,

where

uk =

[
1

ak−1
,

1

ak−1
,

1

ak−2
, . . . ,

1

a
,

1

a
, 1, 1,

1

a
,

1

a
, . . . ,

1

an−k
,

1

an−k

]T
,

vl =

[
1

al−1
,

1

al−2
, . . . ,

1

a
, 1,

1

a
, . . . ,

1

a2n−l

]T
,

n = 2j . Due to the structure of the vector uk we can write

(Nj)k,l =
a+ 1

a
ũTk ṽl,

where

ũk =

[
1

ak−1
,

1

ak−2
, . . . ,

1

a
, 1,

1

a
, . . . ,

1

an−k

]T
,

ṽl =

{[
1

al−2 ,
1

al−4 , . . . ,
1
a2 , 1,

1
a ,

1
a3 . . . ,

1
a2n−l−1

]T
, l even,[

1
al−2 ,

1
al−4 , . . . ,

1
a , 1,

1
a2 ,

1
a4 . . . ,

1
a2n−l−1

]T
, l odd.

For k > l
2 , l ∈ Ij+1, l even, we have

(Nj)k,2l =
a+ 1

a

 l
2∑

m=1

a3m−k−l +
k∑

m= l
2 +1

al+1−k−m +
n∑

m=k+1

al+k+1−3m


=
a+ 1

a

a l
2−k

1−
(

1
a3

) l
2

1− 1
a3

+ a
l
2−k

1−
(

1
a

)k− l
2

1− 1
a

+ al−2−2k 1−
(

1
a3

)n−k
1− 1

a3

 .

Similarly for k > l−1
2 , l ∈ Ij+1, l odd, we obtain

(Nj)k,2l =
a+ 1

a

 l−1
2∑

m=1

a3m−k−l +

k∑
m= l+1

2

al+1−k−m +

n∑
m=k+1

al+k+1−3m


=
a+ 1

a

a l
2−k−

3
2

1−
(

1
a3

) l−1
2

1− 1
a3

+ a
l+1
2 −k

1−
(

1
a3

)k− l−1
2

1− 1
a

+ al−2−2k 1−
(

1
a3

)n−k
1− 1

a3

 .
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If k ≤ l
2 , l ∈ Ij+1, l even, then we have

(Nj)k,2l =
a+ 1

a

 k∑
m=1

a3m−k−l +

l
2∑

k+1

am+k−l +

n∑
m= l

2 +1

al+k+1−3m


=
a+ 1

a

a2k−l 1−
(

1
a3

)k
1− 1

a3

+ ak−
l
2

1−
(

1
a

) l
2−k

1− 1
a

+ ak−
l
2−2 1−

(
1
a3

)n− l
2

1− 1
a3

 .

If k ≤ l−1
2 , l ∈ Ij+1, l odd, then we have

(Nj)k,2l =
a+ 1

a

 k∑
m=1

a3m−k−l +

l−1
2∑

k+1

am+k+2−l +

n∑
m= l+1

2 +1

al+k+1−3m


=
a+ 1

a

a2k−l 1−
(

1
a3

)k
1− 1

a3

+ ak−
l
2−

1
2

1−
(

1
a

) l−1
2 −k

1− 1
a

+ ak−
l
2−

1
2

1−
(

1
a3

)n− l−1
2

1− 1
a3

 .

To compute an upper bound for the norm of the matrix S̃j , we compute bounds for the sums
of the absolute values of the entries in the rows and columns for the matrices Ñj , Õj , P̃j , and
Q̃j . Since the entries in the columns of the matrix Ñj are exponentially decreasing, we can
compute several of the largest entries in each column and estimate the sum of the absolute
values of the remaining entries. We define

Īj+2 =
{

1, 2, 3, 4, 2j+2 − 3, 2j+2 − 2, 2j+2 − 1, 2j+2
}
, Ǐj+2 = Ij+2\Īj+2,

and we set

(Ñj)k,l = 0, for k /∈ Ij−1.

For l such that l mod 8 ∈ {0, 1, 6, 7} and l ∈ Ǐj+2, we obtain

2j−1∑
k=1

∣∣∣(Ñj)k,l

∣∣∣ ≤ ∣∣∣(Ñj)b l
8c−1,l

∣∣∣+
∣∣∣(Ñj)b l

8c,l
∣∣∣+
∣∣∣(Ñj)b l

8c+1,l

∣∣∣
+

b l
8c−2∑
k=1

∣∣∣(Ñj)k,l

∣∣∣+

2j−1∑
k=b l

8c+2

∣∣∣(Ñj)k,l

∣∣∣
≤ 0.018 + 0.727 + 0.239 + 0.007 + 0.001 ≤ 1.

For l such that l mod 8 ∈ {2, 3, 4, 5} and l ∈ Ǐj+2, we obtain

2j−1∑
k=1

∣∣∣(Ñj)k,l

∣∣∣ ≤ ∣∣∣(Ñj)b l
8c−1,l

∣∣∣+
∣∣∣(Ñj)b l

8c,l
∣∣∣+
∣∣∣(Ñj)b l

8c+1,l

∣∣∣
+

b l
8c−2∑
k=1

∣∣∣(Ñj)k,l

∣∣∣+

2j−1∑
k=b l

8c+2

∣∣∣(Ñj)k,l

∣∣∣
≤ 0.101 + 0.566 + 0.037 + 0.002 + 0.004 ≤ 1.
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For l ∈ Īj+2 we have

2j−1∑
k=1

∣∣∣(Ñj)k,l

∣∣∣ ≤ 0.5.

We use a similar approach for computing the sums of absolute values of the entries in the
rows. We obtain

2j−1∑
k=1

∣∣∣(Ñj)k,l

∣∣∣ ≤ {0.73, l ∈ Īj+2,

1.00, l ∈ Ǐj+2,

2j+2∑
l=1

∣∣∣(Ñj)k,l

∣∣∣ ≤ {5.95, k = 1, 2j−1,

6.80, otherwise.

Similarly, we obtain

2j−1∑
k=1

∣∣∣(Õj)k,l

∣∣∣ ≤ {0.13, l ∈ Īj+2,

0.04, l ∈ Ǐj+2,

2j+2∑
l=1

∣∣∣(Õj)k,l

∣∣∣ ≤ {0.30, k = 1, 2j−1,

0.02, otherwise,

2j−1∑
k=1

∣∣∣(P̃j)k,l∣∣∣ ≤
{

0.15, l ∈ Īj+2,

0.05, l ∈ Ǐj+2,

2j+2∑
l=1

∣∣∣(P̃j)k,l∣∣∣ ≤
{

0.68, k = 1, 2j−1,

0.04, otherwise,

2j−1∑
k=1

∣∣∣(Q̃j)k,l

∣∣∣ ≤ {0.03, l ∈ Īj+2,

0.01, l ∈ Ǐj+2,

2j+2∑
l=1

∣∣∣(Q̃j)k,l

∣∣∣ ≤ {0.06, k = 1, 2j−1,

0.01, otherwise.

Therefore using (3.10) we have

‖S̃j‖2 ≤
√

1.1 · 7 < 2
√

2.

For comparison we computed the norms of the matrices S̃j numerically, and we found
that ‖S̃j‖2 ≤ 2.27 for j = 1, . . . , 12, ‖S̃12‖2 ≈ 2.2623, and it seems that this value does not
further increase with increasing j.

LEMMA 3.6. Let m,n ≥ 2, m < n. Then there exists a constant C < 2 such that∥∥M̃T
m,0M̃

T
m+1,0 . . . M̃

T
n,0M̃

T
n+1,0

∥∥
2
≤ C

∥∥M̃T
m,0M̃

T
m+1,0 . . . M̃

T
n−1,0

∥∥
2
.

Proof. For m and n fixed such that m,n ≥ 2, m < n, we use the notation:

R = M̃T
m,0M̃

T
m+1,0 . . . M̃

T
n−1,0, S = M̃T

n,0M̃
T
n+1,0.

Due to the structure of the matrices M̃j,0 given in Lemma 3.4 we have

Rk,2l = Rk,2l−1, k ∈ Im, l ∈ In−1.

Therefore, we can write RS = R̃S̃, where the matrix R̃ is a 2m × 2n−1 matrix containing
the even columns of the matrix R, i.e., R̃k,l = Rk,2l, and the matrix S̃ is given by

S̃k,l = S2k−1,l + S2k,l, k ∈ In−1, l ∈ In+2.

We have

‖R̃‖2 = sup
x∈R,x6=0

‖R̃x‖2
‖x‖2

= sup
x∈R,x6=0

 ∑
k∈Im

( ∑
l∈In−1

R̃k,lxl

)2
1/2

‖x‖2
.
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Let x̃ be a vector of length q = 2n such that x̃2j−1 = x̃2j = xj , and let

X̃ = {x̃ ∈ Rq : x̃2j−1 = x̃2j , x̃ 6= 0} .

Then ‖x̃‖2 =
√

2 ‖x‖2, and we have

‖R̃‖2 = sup
x̃∈X̃

 ∑
k∈Im

( ∑
l∈In

2−1Rk,lx̃l

)2
1/2

2−1/2 ‖x̃‖2

≤ sup
x̃∈Rq,x̃ 6=0

2−1

 ∑
k∈Im

( ∑
l∈In

Rk,lx̃l

)2
1/2

2−1/2 ‖x̃‖2
=
‖R‖2√

2
.

Using Lemma 3.5 we obtain

‖RS‖2 = ‖R̃S̃‖2 ≤ ‖R̃‖2 ‖S̃‖2 ≤ C ‖R‖2

with C < 2.
LEMMA 3.7. There exist constants C ∈ R and p < 0.5 such that for all m,n ≥ 2,

m < n, we have

(3.12)
∥∥M̃T

m,0M̃
T
m+1,0 . . . M̃

T
n−1,0

∥∥
2
≤ C 2p(n−m).

Proof. The assertion of the lemma is a direct consequence of Lemma 3.4 and Lemma 3.6.

4. Riesz basis on Sobolev spaces. In this section, we prove that Ψ is a Riesz basis for
H1

0 (Ω1) and Ψ2D is a Riesz basis for H1
0 (Ω2). The proof is based on the lemmas from

Section 3 and on the theory developed in [19] that is summarized in the following theorem.
THEOREM 4.1. LetH be a Hilbert space and let Vj , j ≥ J , be closed subspaces of L2 (Ω)

such that Vj ⊂ Vj+1 and
⋃∞
j=J Vj is dense in H . Let Hq for fixed q > 0 be a linear subspace

of H that is itself a normed linear space and assume that there exist positive constants A1 and
A2 such that

(a) If f ∈ Hq has decomposition f =
∑
j≥J fj , fj ∈ Vj , then

(4.1) ‖f‖2Hq
≤ A1

∑
j≥J

2qj ‖fj‖2H .

(b) For each f ∈ Hq there exists a decomposition f =
∑
j≥J fj , fj ∈ Vj , such that

(4.2)
∑
j≥J

2qj ‖fj‖2H ≤ A2 ‖f‖2Hq
.

Furthermore, suppose that Pj is a linear projection from Vj+1 onto Vj , Wj is the kernel space
of Pj , Φj = {φj,k, k ∈ Ij} are Riesz bases of Vj with respect to the L2-norm with uniformly
bounded condition numbers, and Ψj = {ψj,k, k ∈ Ij} are Riesz bases of Wj with uniformly
bounded condition numbers. If there exist constants C and p such that 0 < p < q and

(4.3) ‖PmPm+1 . . . Pn−1‖ ≤ C 2p (n−m),
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then

(4.4)
{

2−JqφJ,k, k ∈ IJ
}
∪
{

2−jqψj,k, j ≥ J, k ∈ Ij
}

is a Riesz basis for Hq .
Now we define suitable projections Pj from Vj+1 onto Vj and show that these projections

satisfy (4.3). Then we show that Ψ—which differs from (4.4) only by scaling—is also a Riesz
basis for H1

0 (0, 1). For j ≥ 2 we define

Γj = {φj,k}k∈Ij ∪ {ψj,k}k∈Ij and Fj = 〈Γj ,Γj〉 .

Let a set

(4.5) Γ̂j = {φ̂j,k}k∈Ij ∪ {ψ̂j,k}k∈Jj

be given by

(4.6) Γ̂j = F−1
j Γj .

Since obviously 〈Γj , Γ̂j〉 = Ij , functions from Γ̂j are duals to functions from Γj in the space
Vj+1. Since F−1

j is not a sparse matrix, these duals are not local. We define a projection Pj
from Vj+1 onto Vj by

Pjf =
∑
k∈Ij

〈f, φ̂j,k〉φj,k.

LEMMA 4.2. There exist p < 0.5 such that a projection Pj satisfies

(4.7) ‖PmPm+1 . . . Pn−1‖ ≤ C 2p (n−m)

for all 2 ≤ m < n and a constant C independent of m and n.
Proof. Let f ∈ Vj+1, ajk = 〈f, φ̂j,k〉, aj =

{
ajk
}
k∈Ij

, j ≥ 2, and Sj : aj+1 7→ aj . Then

Pjf =
∑
k∈Ij

ajkφj,k =
∑
k∈Ij

〈f, φ̂j,k〉φj,k =
∑
k∈Ij

∑
l∈Ij+1

aj+1
l 〈φj+1,l, φ̂j,k〉φj,k.

Therefore

ajk =
∑
l∈Ij+1

aj+1
l 〈φj+1,l, φ̂j,k〉 .

Let us denote

Sjl,k = 〈φ̂j,k, φj+1,l〉 , Sj =
{
Sjl,k

}
l∈Ij+1,k∈Ij

.

Then we can write aj = Sjaj+1, and due to Lemma 3.3 we have

Sj = 〈Φ̂j ,Φj+1〉 = 〈Φ̂j , M̃j,0Φj + M̃j,1Ψj〉 = M̃j,0.

Now, let us consider fn ∈ Vn and fm = PmPm+1 . . . Pn−1fn. Then fj can be repre-
sented by fj =

∑
k∈Ij a

j
kφj for j = m,n, and we set aj =

{
ajk
}
k∈Ij

. Since Φj is a Riesz
basis for Vj , see [22], there exist constants C1 and C2 independent of j such that

C1 ‖aj‖2 ≤

∥∥∥∥∥ ∑
k∈Ij

ajkφj,k

∥∥∥∥∥ ≤ C2 ‖aj‖2 .
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Due to Lemma 3.7 we have

‖fm‖ ≤ C2 ‖am‖2 ≤ C2 ‖Sm Sm+1 . . .Sn−1‖2 ‖an‖2
= C2

∥∥M̃T
m,0 M̃

T
m+1,0 . . . M̃

T
n−1,0

∥∥
2
‖an‖2

≤ C2 2p(n−m) ‖an‖2 ≤ C
−1
1 C2 2p(n−m) ‖fn‖ .

Thus (4.7) is proved.
THEOREM 4.3. The sets Ψj are Riesz bases of the spaces Wj = span Ψj , j ≥ 2, with

the condition numbers bounded independently of j, namely cond Ψj ≤ 2.
Proof. The matrix Uj = 〈Ψj ,Ψj〉 is tridiagonal with entries

(Uj)1,1 = (Uj)2j ,2j =
27

320
,

(Uj)2,1 = (Uj)1,2 = (Uj)2j−1,2j = (Uj)2j ,2j−1 =
47

1920
,

(Uj)k,k =
1

12
, k = 2, . . . , 2j − 1,

(Uj)k,k+1 = (Uj)k+1,k = − 1

40
, k = 2, . . . , 2j − 2,

(Uj)k,l = 0, otherwise.

Thus, Uj is strictly diagonally dominant, and using the Gershgorin circle theorem we obtain
λmin (Uj) ≥ 1

30 ≈ 0.0333, λmax (Uj) ≤ 2
15 ≈ 0.1333, and cond Ψj ≤ 2.

We also computed the eigenvalues of the matrix Uj numerically and the numerical values
λmin ≈ 0.0333 and λmax ≈ 0.1333 correspond to the values from Gershgorin’s theorem.
Thus the inequality in Theorem 4.3 seems to be sharp.

THEOREM 4.4. The set{
2−2φ2,k, k ∈ I2

}
∪
{

2−jψj,k, j ≥ 2, k ∈ Ij
}

is a Riesz basis for H1
0 (0, 1).

Proof. Using the same argument as in [19], we conclude that (4.1) and (4.2) follows from
the polynomial exactness of the scaling basis and the smoothness of the basis functions, and
these inequalities are satisfied for H = L2(0, 1) and Hq = Hq

0 (0, 1), 0 < q < 1.5. Due
to Lemma 4.2 the condition (4.3) is fulfilled. Therefore by Theorem 4.1 the assertion of
Theorem 4.4 is proved.

THEOREM 4.5. The set{
φ2,k/ |φ2,k|H1

0 (0,1) , k ∈ I2

}
∪
{
ψj,k/ |ψj,k|H1

0 (0,1) , j ≥ 2, k ∈ Ij
}
,

where |·|H1
0 (0,1) denotes the H1

0 (0, 1)-seminorm, is a Riesz basis for H1
0 (0, 1).

Proof. We follow the proof of Lemma 2 in [25]. From (2.9), there exist constants C1 and
C2 such that

(4.8) C12j ≤ |ψj,k|H1
0 (Ω) ≤ C22j , for j ≥ 2, k ∈ Ij ,

and

(4.9) C122 ≤ |φ2,k|H1
0 (Ω) ≤ C222, for k ∈ I2.
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Theorem 4.4 implies that there exist constants C3 and C4 such that

(4.10) C3 ‖b‖2 ≤

∥∥∥∥∥ ∑
k∈I2

a2,k2−2φ2,k +
∑

k∈Ij ,j≥2

bj,k2−jψj,k

∥∥∥∥∥
H1

0 (0,1)

≤ C4 ‖b‖2 ,

for any b = {a2,k, k ∈ I2} ∪ {bj,k, j ≥ 2, k ∈ Jj}. Using (4.8), (4.9), and (4.10) we obtain

‖b‖2 ≤
C2

C3

∥∥∥∥∥ ∑
k∈I2

a2,k
φ2,k

|φ2,k|H1
0 (Ω)

+
∑

k∈Jj ,j≥2

bj,k
ψj,k

|ψj,k|H1
0 (Ω)

∥∥∥∥∥
H1

0 (0,1)

and

‖b‖2 ≥
C1

C4

∥∥∥∥∥ ∑
k∈I2

a2,k
φ2,k

|φ2,k|H1
0 (Ω)

+
∑

k∈Jj ,j≥2

bj,k
ψj,k

|ψj,k|H1
0 (Ω)

∥∥∥∥∥
H1

0 (0,1)

.

REMARK 4.6. By Theorem 4.1 and the proof of Lemma 4.2, if p satisfies (3.12), then
the norm equivalence (2.1) for Ψ from Section 2 normalized with respect to the Hs-norm
is satisfied for H = Hs, where s ∈ (p, 1.5). Since we proved in Section 3 that there exists
p satisfying (3.12) such that p < 0.5, we proved the norm equivalence (2.1) for Hs with
s ∈ (0.5, 1.5). We computed the norms in (3.12) also numerically, and we found that this
theoretical estimate of p is not sharp. It seems that (3.12) holds also for any p > 0.

THEOREM 4.7. The set Ψ2D normalized with respect to the H1-seminorm is a Riesz
basis for H1

0

(
(0, 1)

2).
Proof. Recall that φ̂j,k are defined by (4.5) and (4.6). For k = (k1, k2) let us define

φ̂2
j,k = φ̂j,k1 ⊗ φ̂j,k2 . Then for k = (k1, k2) and l = (l1, l2) we have〈

φ2
j,k, φ̂

2
j,l

〉
= δk1,l1δk2,l2 ,

and P 2D
j defined by

P 2D
j f =

∑
k∈Ij×Ij

〈
f, φ̂2

j,k

〉
φ2
j,k

is a projection from V 2
j+1 onto V 2

j , where V 2
j = Vj ⊗ Vj for j ≥ 2. We define the matrix

S2D
j = M̃T

j,0 ⊗ M̃T
j,0. It is well-known that for any matrix B we have ‖B⊗B‖2 = ‖B‖22.

Using this relation and the same arguments as in the proof of Lemma 4.2, we obtain for
fn ∈ V 2

n and fm = P 2D
m P 2D

m+1 . . . P
2D
n−1fn the estimate

‖fm‖ ≤ C1 ‖am‖2 ≤ C2

∥∥S2D
m S2D

m+1 . . .S
2D
n−1

∥∥
2
‖an‖2

= C2

∥∥(M̃T
m,0 . . . M̃

T
n−1,0

)
⊗
(
M̃T

m,0 . . . M̃
T
n−1,0

)∥∥
2
‖an‖2

≤ C3 22p(n−m) ‖an‖2 ≤ C4 22p(n−m) ‖fn‖

with 2p < 1. Hence by Theorem 4.1 the assertion of the theorem is proved.

5. Quantitative properties of the constructed bases. In this section, we present the
condition numbers of the stiffness matrices for the Helmholtz equation

(5.1) −ε∆u+ au = fon Ωd, u = 0 on ∂Ωd,
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where ∆ is the Laplace operator and ε and a are positive constants. We also study the case
ε = 1 and a = 0, i.e., the Poisson equation, and the case ε = 0 and a = 1.

The variational formulation is

(5.2) Au = f ,

where

A = ε 〈∇Ψ,∇Ψ〉+ a 〈Ψ,Ψ〉 , u = (u)
T

Ψ, f = 〈f,Ψ〉 .

An advantage of discretizing the elliptic equation (5.1) using a wavelet basis is that the
system (5.2) can be simply preconditioned by a diagonal preconditioner [9]. Let D be the
matrix of the diagonal elements of the matrix A, i.e., Dλ,µ = Aλ,µδλ,µ, where δλ,µ denotes
the Kronecker delta. Setting

Ã = (D)
−1/2

A(D)
−1/2

, ũ = (D)
1/2

u, f̃ = (D)
−1/2

f ,

we obtain the preconditioned system

(5.3) Ãũ = f̃ .

It is known [9] that there exists a constant C such that cond Ã ≤ C <∞.
Let Ψs be defined by (2.10) for d = 1 and similarly for d > 1. We define

As = ε 〈∇Ψs,∇Ψs〉+ a 〈Ψs,Ψs〉 , us = (us)
T

Ψs, fs = 〈f,Ψs〉 .

Let Ds be the matrix of the diagonal elements of the matrix As, i.e., (Ds)λ,µ = (As)λ,µδλ,µ.
We set

Ãs = (Ds)
−1/2

As(Ds)
−1/2

, ũs = (Ds)
1/2

us, f̃s = (Ds)
−1/2

fs,

and we obtain the preconditioned finite-dimensional system

(5.4) Ãsũs = f̃s.

Since Ãs is a part of the matrix Ã that is symmetric and positive definite, we also have

cond Ãs ≤ C.

The condition numbers of the stiffness matrices Ãs for ε = 1, a = 0, and d = 1, 2, are shown
in Table 5.1. By Remark 2.2 these numbers correspond to the squares of the condition numbers
of Ψs with respect to the H1-seminorm. We also computed the condition numbers of Ψs with
respect to the H1-norm. The values were very close to the values presented in Table 5.1 (the
difference was less than 1%).

For comparison, we also provide the condition numbers for other wavelet bases and
display them in Figure 5.1 and Figure 5.2. The bases CF2 and CF3 refer to the wavelet bases
from this paper with the coarsest level 2 and 3, respectively. Dj0 and Pj0 refer to the quadratic
spline wavelet basis with 3 vanishing moments and the coarsest level j0 from [11] and [20],
respectively. We modify the construction from [3] to homogeneous boundary conditions.
The resulting quadratic spline wavelet basis with three vanishing wavelet moments with the
coarsest level j0 is denoted as Bj0 . We found that the bases Dj0 , Pj0 , and Bj0 lead to the
same results and realized that they contain the same wavelets up to a multiplication by a
constant factor. Semi-orthogonal quadratic spline wavelets with three vanishing moments
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TABLE 5.1
The condition numbers of the stiffness matrices Ãs of the size N ×N corresponding to multiscale wavelet

bases with s levels of wavelets for the one- (left), two- (right), and three-dimensional (bottom) Poisson equation.

s N λmin λmax cond Ãs

1 8 0.50 1.38 2.77
2 16 0.50 1.41 2.83
3 32 0.50 1.42 2.83
4 64 0.50 1.42 2.84
5 128 0.50 1.42 2.84
6 256 0.50 1.42 2.84
7 512 0.50 1.42 2.84
8 1024 0.50 1.42 2.84

s N λmin λmax cond Ãs

1 64 0.25 1.88 7.5
2 256 0.19 2.08 11.1
3 1 024 0.16 2.17 13.7
4 4 096 0.14 2.20 15.4
5 16 384 0.13 2.22 16.6
6 65 536 0.13 2.23 17.4
7 262 144 0.12 2.23 17.9
8 1 048 576 0.12 2.23 18.3

s N λmin λmax cond Ãs

1 512 0.15 3.23 47.4
2 4 096 0.04 3.69 85.0
3 32 768 0.03 3.83 113.8
4 262 144 0.03 3.87 132.9
5 2 097 152 0.03 3.89 145.3

on the interval were constructed in [5]. In Appendix A we show that the semi-orthogonal
quadratic spline wavelet basis corresponding to scaling functions that are B-splines on the
Schoenberg sequence of knots such that wavelets have three vanishing moments and the
basis is adapted to homogeneous boundary conditions do not exist. Therefore, we adapt
this basis such that semi-orthogonality is preserved and 2j − 2 wavelets on the level j have
three vanishing moments and 2 wavelets on the level j are without vanishing moments. We
denote the resulting basis by CQ. We also tested wavelet bases from [11, 20] with 5 vanishing
moments, but the condition numbers were larger than for bases with 3 vanishing moments.
All wavelets used in the numerical experiments are presented in Appendix A.

Although it was not proved in this paper that by appropriate tensorising the 1D wavelet
basis we obtain the wavelet basis in 3D, we list the condition numbers of the stiffness matrices
Ãs for the 3D case in Table 5.1. The condition numbers for several constructions of quadratic
spline wavelet bases and various values of parameters ε and a are compared in Table 5.2.

TABLE 5.2
The condition numbers of the stiffness matrices Ãs of the size 65536× 65536 for several choices of ε and a

for our bases and the bases from [11, 20].

ε a CF2 CF3 CF ort2 CF ort3 CQ D2 D3

1000 1 17.4 16.3 17.1 16.4 62.0 116.3 98.4
1 0 17.4 16.7 17.1 16.4 62.0 116.3 98.4
1 1 17.4 16.7 17.1 16.4 62.0 116.6 98.5

10−3 1 72.1 35.9 35.6 22.5 61.1 328.1 139.2
10−6 1 746.0 577.0 425.7 287.6 46.3 1878.0 1115.4

0 1 872.6 687.4 511.0 351.5 46.4 2034.6 1251.4

We also provide the condition numbers for the discretization matrices Ãs corresponding
to ε = 0, a = 1, and d = 1. By Remark 4.6 these condition numbers represent the squares
of the L2 condition numbers of Ψs normalized with respect to the L2-norm. The results
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FIG. 5.1. The condition numbers of the matrices Ãs, s = J − j0 + 1, for the one-dimensional problem (5.1)
with parameters ε = 1, a = 0, and ε = 0, a = 1. The parameter J denotes the finest level, and j0 denotes the
coarsest level.
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FIG. 5.2. The condition numbers of the matrices Ãs, s = J − j0 + 1, for ε = 1, a = 0 and two-dimensional
wavelet bases constructed using an isotropic approach and an anisotropic approach. The parameter J denotes the
finest level, and j0 denotes the coarsest level.

are displayed in Figure 5.1. In this paper, we have proved that the constructed basis is a
Riesz basis for H1

0 (0, 1). The condition numbers of matrices Ãs corresponding to ε = 0 and
a = 1 for the new basis seem to be unbounded, and thus it seems that the new basis is not a
Riesz basis in L2 (0, 1); see also Remark 4.6. Since the condition numbers of the matrices
Ãs for ε = 1 and a = 0 corresponding to the anisotropic basis Ψ ⊗ Ψ with respect to the
H1-seminorm depend on the condition numbers of Ψs both with respect to the L2-norm and
the H1-seminorm, they are also increasing; see Figure 5.2. Thus in our case an isotropic
wavelet basis from Section 2 has bounded and significantly smaller condition number than
an anisotropic basis. We performed numerical experiments with both types of bases, but
since the isotropic system lead to significantly better results we present in Section 6 only the
experiments with the isotropic wavelet bases.

6. Numerical examples. In this section we use the constructed wavelet basis in the
wavelet-Galerkin method and the adaptive wavelet method.

6.1. Multilevel Galerkin method. We consider the problem (5.1) with Ω2, ε = 1, and
a = 0. The right-hand side f is such that the solution u is given by

u (x, y) = v (x) v (y) , v (x) = x
(
1− e50x−50

)
.
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We discretize the equation using the Galerkin method with the wavelet basis constructed in this
paper, and we obtain the discrete problem Ãsũs = f̃s. We solve it by the conjugate gradient
method using a simple multilevel approach similarly to [19, 27]:

1. Compute Ãs and f̃s, choose v0 of length 42.
2. For j = 0, . . . , s find the solution ũj of the system Ãjũj = f̃j by the conjugate

gradient method with initial vector vj defined for j ≥ 1 by

(vj) =

{
ũj−1, i = 1, . . . , kj ,

0, i = kj , . . . , kj+1,

where kj = 22(j+1).
Let u be the exact solution of (5.1) and

u∗s = (ũ∗s)
T

(Ds)
−1/2

Ψs,

where ũ∗s is the exact solution of the discrete problem (5.4). It is known [21] that due to the
polynomial exactness of the spaces span Ψs, there exists a constant C independent of s such
that

(6.1) ‖u− u∗s‖ ≤ C2−3s, ‖u− u∗s‖H1(Ωd) ≤ C2−2s,

for u ∈ H3(Ωd). Let us be an approximate solution obtained by the multilevel Galerkin
method with s levels of wavelets. It was shown in [27] that if we use as criterion for termi-
nating iterations ‖rs‖2 ≤ C2−2s, where rs := Ãsũs − f̃s, then we achieve for us the same
convergence rate as for u∗s . In our example, for the given number of levels s we use the
criterion ‖rj‖2 ≤ 10−42−2s, j = 0, . . . , s, for terminating the iterations in each level.

We denote the number of iterations on the level j by Mj . It is known [21] that employing
the discrete wavelet transform, one CG iteration can be performed with a complexity of order
O (N), where N ×N is the size of the matrix. Therefore the number of operations needed to
compute one CG iteration on level j requires about one quarter of the operations needed to
compute one CG iteration on level j+ 1. We compute the total number of equivalent iterations
by

M =

s∑
j=0

Mj

4s−j
.

The results are listed in Table 6.1. It can be seen that the number of conjugate gradient
iterations is quite small and that

‖us − u‖∞
‖us+1 − u‖∞

≈ ‖us − u‖
‖us+1 − u‖

≈ 1

8
,

i.e., that the order of convergence is 3. It corresponds to (6.1). The parameters r2 and r∞ in
Table 6.1 are the experimental rates of convergence, i.e.

(r2)s =
log (‖us−1 − u‖ / ‖us − u‖)

log 2
, (r∞)s =

log (‖us−1 − u‖∞ / ‖us − u‖∞)

log 2
.

We present also the wall clock time in Table 6.1. It includes the computation of the right-hand
side, the system matrix, iterations, and evaluation of the solution on the grid with the step size
2−j0−s, where j0 is the coarsest level.
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TABLE 6.1
Number of iterations and error estimates for the multilevel conjugate gradient method.

CF2

s N M ‖us − u‖∞ r∞ ‖us − u‖ r2 time [s]

1 64 18.50 3.19e-1 4.54e-2 0.04
2 256 21.63 1.32e-1 1.27 1.26e-3 5.17 0.05
3 1 024 23.66 2.60e-2 2.34 2.02e-3 2.64 0.06
4 4 096 23.00 2.91e-3 3.16 2.45e-4 3.04 0.09
5 16 384 20.89 4.06e-4 2.84 2.89e-5 3.08 0.16
6 65 536 18.37 5.35e-5 2.92 3.41e-6 3.08 0.30
7 262 144 15.68 6.82e-6 2.97 4.23e-7 3.01 0.99
8 1 048 576 13.02 8.63e-7 2.98 5.28e-8 3.00 3.89
9 4 194 304 10.35 1.08e-7 3.00 6.59e-9 3.00 14.87

10 16 777 216 8.85 1.41e-8 2.94 8.25e-10 3.00 58.12

D2, P2, B2

s N M ‖us − u‖∞ r∞ ‖us − u‖ r2 time [s]

1 64 27.50 3.19e-1 4.54e-2 0.04
2 256 48.88 1.32e-1 1.27 1.26e-3 5.17 0.07
3 1 024 59.22 2.60e-2 2.34 2.02e-3 2.64 0.11
4 4 096 59.38 2.91e-3 3.16 2.45e-4 3.04 0.19
5 16 384 50.76 4.06e-4 2.84 2.89e-5 3.08 0.33
6 65 536 39.44 5.35e-5 2.92 3.41e-6 3.08 0.68
7 262 144 29.92 6.84e-6 2.97 4.23e-7 3.01 2.20
8 1 048 576 21.50 8.64e-7 2.98 5.29e-8 3.00 9.53
9 4 194 304 17.66 1.09e-7 2.99 6.73e-9 2.97 47.39

10 16 777 216 15.79 1.38e-8 2.98 9.43e-10 2.84 248.41

CQ
s N M ‖us − u‖∞ r∞ ‖us − u‖ r2 time [s]

0 64 13.00 3.19e-1 4.54e-2 0.03
1 256 30.25 1.32e-1 1.27 1.26e-3 5.17 0.05
3 1 024 35.06 2.60e-2 2.34 2.02e-3 2.64 0.07
4 4 096 33.82 2.91e-3 3.16 2.45e-4 3.04 0.14
5 16 384 30.30 4.06e-4 2.84 2.89e-5 3.08 0.21
6 65 536 25.32 5.35e-5 2.92 3.41e-6 3.08 0.41
7 262 144 20.74 6.84e-6 2.97 4.23e-7 3.01 1.39
8 1 048 576 17.87 8.64e-7 2.98 5.29e-8 3.00 5.55
9 4 194 304 14.82 1.08e-7 3.00 6.73e-9 2.97 21.62

10 16 777 216 12.36 1.36e-8 2.99 8.56e-10 2.97 83.54

6.2. Adaptive wavelet method. We compare the quantitative behavior of the adaptive
wavelet method with our wavelet basis, the wavelet basis from [11], and the wavelet basis that
is a modification of the basis from [5]; see Appendix A. We consider the equation (5.1) with
d = 1, ε = 1, a = 0, and the solution

u (x) = e−|
x
4−

1
8 | − e− 1

8 + sin 3πx, x ∈ [0, 1] .
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Note that u is the sum of an infinitely differentiable function and the function

g (x) = e−|
x
4−

1
8 |

which does not have a derivative at the point 0.5. Let ĝ be the Fourier transform of g, i.e.,

ĝ (ξ) =

∫
R

g (x) e−ixξdx.

Since

∫
R

|ξ|2µ |ĝ (ξ)|2 dξ =

∫
R

64 |ξ|2µ

(16ξ2 + 1)
2 dξ

is finite for µ < 3/2 and it is not finite for µ ≥ 3/2, the solution u belongs to the Sobolev
space u ∈ Hs(0, 1) only for s < 3/2. Therefore it is not guaranteed that (6.1) holds and that
the Galerkin method converges with the optimal rate. Since u is continuous and piecewise
smooth, it can be shown that u belongs to the Besov space Bsτ,τ (0, 1) for any s > 0 and
τ = (s+ 1/2)

−1. It is therefore convenient to solve this problem with the adaptive wavelet
method proposed in [6, 7] because it is proved that this method converges with the optimal
rate for functions from such spaces. More precisely, let uj be the approximate solution in the
jth step, and let ρj denote the error in the energy norm which is in this example the same as
the H1-seminorm, i.e., ρj = |u− uj |H1 . Let uj be the vector of coefficients corresponding
to uj , and let Nj be the number of nonzero entries of uj . It follows from the theory developed
in [7] that if the used basis is a quadratic spline wavelet basis, then there exists a constant C
independent of j such that

(6.2) ρj ≤ CN−rj for any r < 2.

The method consists in solving the infinite preconditioned system (5.3) with Richardson
iterations. The algorithm contains the routine COARSE that is based on thresholding the
coefficients and the routine RHS that approximates the infinite right-hand side vector by a
finite vector with a prescribed accuracy. For details about these two routines we refer to [7].
It is possible to modify the algorithm such that the routine COARSE is avoided; see [14].
Furthermore, it is necessary to have a routine that allows multiplication of the bi-infinite
matrix Ã with a finitely supported vector. This routine called APPLY was proposed in [7] and
modified in [12, 24]. We use the version from [24]. We use a similar version of the method and
notations that is presented as CDD02SOLVE in [14]. We compute the relaxation parameter ω
and the error reduction factor ρ by

ω =
2

λmax

(
Ã
)

+ λmin

(
Ã
) , ρ =

cond Ã− 1

cond Ã + 1
,

and we set θ = 0.3 and K ∈ N such that 2ρK/θ < 0.6.
We use the following version of the method:
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FIG. 6.1. The convergence history for adaptive wavelet scheme with various wavelet bases.

ALGORITHM 6.1. SOLVE [Ã, f , ε]→ uε

Set j := 0, u0 := 0, and ε0 ≥ ‖ũ‖2;
while εj > ε do

z0 := uj;
for l = 1, . . . ,K do

zl := zl−1 + ω
(

RHS[f ,
εjρ

l

2ωK ]− APPLY[Ã, zl−1,
εjρ

l

2ωK ]
)

;

end
j := j + 1;

εj :=
2ρKεj−1

θ ;
uj := COARSE[zK , (1− θ) εj ];

end
uε := uj;

We use the following parameters in the numerical experiments:
CF2: ω = 1.04, ρ = 0.48, K = 4,
D2: ω = 0.89, ρ = 0.70, K = 7,

CQ3: ω = 0.95, ρ = 0.87, K = 18.
The convergence history is shown in Figure 6.1. Since the entries of the matrix Ã, the estimates
of eigenvalues of Ã, and the parameters ω, ρ, and K were precomputed for every basis, the
wall clock time includes the computation of the right-hand side and the computation of the
iterations. The experimental convergence rate, i.e., the parameter r from (6.2) estimated for
the observed values (Nj , ρj) by the least-squares method, for the bases CF2, D2, and CQ
was r ≈ 1.87, r ≈ 1.95, and r ≈ 1.77, respectively. It can be seen that the number of
iterations and the computational time needed to solve the problem with the desired accuracy is
significantly smaller for the new wavelet basis. Moreover, due to the shorter support of the
wavelets, the stiffness matrix is sparser, and thus, one iteration requires a smaller number of
operations.

Appendix A. Quadratic spline wavelet bases.
In this section we present inner and boundary scaling functions and wavelets that were

used in the numerical experiments in Section 6. The wavelet bases are generated from these
functions in a way similar to (2.6) and (2.9). Let φ be given by (2.2) and φ̌b = 2φb/3, where
φb is given by (2.4). Since diagonal preconditioning (5.4) is similar to the normalization of the
basis with respect to the energy norm, the multiplication of φb with a constant has no effect on
the resulting condition numbers presented in Section 5 and the numerical results in Section 6.
The wavelets are given by

ψ̌ (x) =

7∑
k=0

gkφ (2x− k) , ψ̌i = gi−1φ̌
b (2x) +

5∑
k=0

gikφ (2x− k) ,
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for i = 1, 2. The values of the parameters gk and gik are presented for several constructions
below.

A.1. The Primbs wavelet basis. The parameters for the construction from [20] are given
by

[g0, . . . , g7] = [−3,−9, 7, 45,−45,−7, 9, 3] /64,[
g1
−1, . . . , g

1
6

]
=

[
−10,

65

6
,− 9

14
,−31

7
,−11

21
,

15

14
,

5

14

]
/64,

[
g2
−1, . . . , g

2
6

]
=

[
−10

3
,−5

6
,

65

6
,−25

3
,−13

9
,

3

2
,

1

2

]
/64.

More precisely, in [20] the parameters are multiples of these parameters, but as we already
mentioned, different normalizations do not play a role because we use diagonal precondition-
ing (5.4) in our experiments.

A.2. The Dijkema wavelet basis. There are several constructions in [11]. We used
the parameters that are listed in the file mats.zip attached to [11], but we found that in the
case of quadratic spline wavelets with three vanishing moments and homogeneous boundary
conditions, these parameters are multiples of the parameters from [20] and thus lead to the
same results.

A.3. Modification of the Chui-Quak wavelet basis. In [5] the semi-orthogonal quadratic
spline wavelets with three vanishing moments were adapted to the interval. We adapt these
wavelets to homogeneous boundary conditions. Since wavelets on the level j are linear combi-
nations of scaling functions on the level j + 1, they are given by 2j+1 parameters. We want to
preserve semi-orthogonality, therefore we have 2j conditions of orthogonality for the scaling
functions on the level j. Furthermore, we want to preserve three vanishing moments. We
obtain a homogeneous system with 2j + 2 independent equations with 2j+1 variables that
has only 2j − 2 independent solutions. Therefore there exist only 2j − 2 wavelets with three
vanishing moments that are semi-orthogonal. We add two wavelets on each level that are
semi-orthogonal but without vanishing moments. We obtain wavelets with the parameters

[g0, . . . , g7] = [−1, 29,−147, 303,−303, 147,−29, 1] /480,[
g1
−1, . . . , g

1
6

]
= [450,−332, 148,−29, 1, 0, 0] /480,[

g2
−1, . . . , g

2
6

]
=

[
780

11
,−1949

11
,

3481

11
,−3362

11
,

1618

11
,−29, 1

]
/480.

A.4. Modification of the Bittner wavelet basis. In [3] spline wavelet bases on the
interval were constructed. We use a similar approach as in [3], but for quadratic spline
wavelets with three vanishing moments satisfying homogeneous boundary conditions. The
inner wavelet is the third derivative of the sixth-order B-spline on the knots [0, 1, 2, 5/2, 3, 4, 5].
The boundary wavelets are the third derivatives of the sixth-order B-splines on the knots
[0, 0, 1/2, 1, 2, 3, 4] and [0, 0, 1, 3/2, 2, 3, 4], respectively. We found that by this approach we
again obtain the same wavelets up to a constant factor as in [11, 20].
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