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PARAMETER-ROBUST STABILITY OF CLASSICAL THREE-FIELD
FORMULATION OF BIOT’S CONSOLIDATION MODEL∗
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Abstract. This paper is devoted to the stability analysis of a classical three-field formulation of Biot’s consol-
idation model where the unknown variables are the displacements, fluid flux (Darcy velocity), and pore pressure.
Specific parameter-dependent norms provide the key in establishing the full parameter-robust inf-sup stability of the
continuous problem. Therefore, the stability results presented here are uniform not only with respect to the Lamé
parameter λ, but also with respect to all the other model parameters. This allows for the construction of a uniform
block diagonal preconditioner within the framework of operator preconditioning. Stable discretizations that meet the
required conditions for full robustness and guarantee mass conservation strongly, i.e., pointwise, are discussed and
corresponding optimal error estimates proved.
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1. Introduction: Biot’s consolidation model. Poroelastic models describe mechanical
deformation and fluid flow in porous media. They have a wide range of applications in
medicine, biophysics, and geosciences such as the computation of intracranial pressure, trabec-
ular bone stiffness under different loading conditions, reservoir simulation, waste repository
performance, CO2 sequestration, consolidation of soil under surface loads, subsidence due to
fluid withdrawal, and many others; see, e.g., [15, 35, 36, 37].

A classical and widely used model has been introduced by Biot [7, 8] and is based on the
following assumptions:

(i) the porous medium is saturated by fluid and the temperature is constant,
(ii) the fluid in the porous medium is (nearly) incompressible,

(iii) the solid skeleton (matrix) is formed by an elastic material, and the deformations and
strains are relatively small, and

(iv) the fluid flow is driven by Darcy’s law (laminar flow).
For homogeneous isotropic linear elastic porous media, the Biot model in an open domain

Ω ⊂ IRd, d = 2, 3, comprises the following system of partial differential equations (PDEs):

−divσ + cup∇p = f in Ω× (0, T ),(1.1a)
v = −κ∇p in Ω× (0, T ),(1.1b)

−cpu div u̇− div v − cppṗ = g in Ω× (0, T ),(1.1c)

ε(u) =
1

2
(∇u+ (∇u)T ),(1.1d)

σ = 2µε(u) + λ div(u)I.(1.1e)

Here λ and µ denote the Lamé parameters which are defined by

λ :=
νE

(1 + ν)(1− 2ν)
, µ :=

E

2(1 + ν)
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in terms of the modulus of elasticity (Young’s modulus) E and the Poisson ratio ν ∈ [0, 1/2).
The constant cup = cpu = α that couples the pore pressure p and the displacement

variable u is the Biot-Willis constant, while κ is the hydraulic conductivity given by the
quotient between the permeability of the porous medium and the viscosity of the fluid. All
constants are global constants here, i.e., parameters are assumed to be constant over the
entire domain Ω in this paper. I denotes the identity tensor, and σ and ε are the effective
stress and strain tensors, respectively, which are related to each other via the constitutive
equation (1.1e). The strain tensor ε(u) is given by the symmetric part of the gradient of the
displacement field as defined in the compatibility condition (1.1d). The time derivatives of u
and p in the continuity equation (1.1c) are denoted by u̇ and ṗ. Finally, v denotes the fluid flux,
sometimes also called percolation velocity of the fluid, which is assumed to be proportional to
the (negative) pressure gradient as expressed by Darcy’s law (1.1b). The right-hand side f
in the equilibrium equation (1.1a) represents the density of the applied body forces, and the
source term g in (1.1c) represents a forced fluid extraction or injection.

The system (1.1) is completed by proper boundary and initial conditions, e.g.,

(1.2)

p(x, t) = pD(x, t) for x ∈ Γp,D, t > 0,

v(x, t) · n(x) = qN (x, t) for x ∈ Γp,N , t > 0,

u(x, t) = uD(x, t) for x ∈ Γu,D, t > 0,

(σ(x, t)− cuppI)n(x) = gN (x, t) for x ∈ Γu,N , t > 0,

where Γp,D ∩ Γp,N = ∅, Γp,D ∪ Γp,N = Γ = ∂Ω and Γu,D ∩ Γu,N = ∅, Γu,D ∪ Γu,N = Γ.
To complement the boundary conditions (1.2), the initial conditions at time t = 0 have to
satisfy (1.1a) and are given by

p(x, 0) = p0(x) x ∈ Ω,

u(x, 0) = u0(x) x ∈ Ω.

Making use of the constitutive equation (1.1e) to eliminate the stress variable from the system
results in the classical three-field formulation of the Biot model.

A common way to solve the time-dependent problem numerically is to discretize it in
time and then solve a static problem in each time stamp. Using the backward Euler method for
time discretization, one obtains a three-by-three block system of time-step equations

(1.3) A

ukvk
pk

 =

fk0
g̃k

 ,
where

(1.4) A :=

−2µdiv ε− λ∇div 0 cup∇
0 τκ−1I τ∇

−cpu div −τ div −cppI


for the unknown time-step functions

uk = u(x, tk) ∈ U := {u ∈ H1(Ω)d : u = uD on Γu,D},
vk = v(x, tk) ∈ V := {v ∈ H(div,Ω) : v · n = qN on Γp,N},
pk = p(x, tk) ∈ P := L2(Ω),

and the right-hand side time-step functions

fk = f(x, tk) and g̃k = τg(x, tk)− cpu div(uk−1)− cpppk−1
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at any given time t = tk = tk−1 + τ . As in the remainder of this paper we will consider
the static problem (1.3)–(1.4); for convenience, we will drop the superscript for the time-step
functions: we replace uk, vk, and pk with u, v, and p, respectively.

Following the standard notation, L2(Ω) denotes the space of square Lebesgue integrable
functions equipped with the standard L2-norm ‖ · ‖ and H1(Ω)d the space of vector-valued
H1-functions equipped with the norm ‖ · ‖1 defined by ‖u‖21 := ‖u‖2 + ‖∇u‖2. Moreover,
we define H(div; Ω) := {v ∈ L2(Ω)d : div v ∈ L2(Ω)} where the standard Sobolev norm
‖ · ‖div is ‖v‖2div := ‖v‖2 + ‖ div v‖2.

We will often consider the case that Γu,D = Γp,N = Γ and uD = 0, qN = 0, and we
will thus write U = H1

0 (Ω)d and V = H0(div,Ω). In this setting, in order to determine the
solution for the pressure variable p uniquely, one can set

P = L2
0(Ω) :=

{
p ∈ L2(Ω) :

∫
Ω

p dx = 0

}
.

In many applications the variations of the model parameters are quite large. In geophysical
applications, for example, the permeability typically varies in the range from 10−9 to 10−21m2,
whereas Young’s modulus is typically in the order of GPa and the Poisson ratio in the range
0.1–0.3; see [14, 27, 37]. The soft tissue of the central nervous system, on the other hand, has
a permeability of about 10−14 to 10−16m2, whereas Young’s modulus is typically in the order
of kPa and the Poisson ratio in the range 0.3 to almost 0.5; see [35, 36]. For this reason it is
important that both the formulation of the problem and the numerical methods for its solution
are stable over the whole range of values of the parameters in the model.

The stability of the time discretization and space discretization by finite difference or
finite volume methods have been studied in [4, 18, 19, 30] and will not be addressed here.
Instead, we will focus on the issue of inf-sup stable finite element discretizations of the static
problem (1.3)–(1.4). It is a well known fact that the LBB condition (see [5, 11]) plays a crucial
role in the well-posedness analysis of the continuous problem and its discrete counterparts
arising from mixed finite element discretizations. It is also the key tool in deriving a priori
error estimates. The inf-sup stability for the Darcy problem, as well as for the Stokes and linear
elasticity problems, is well understood, and various stable mixed discretizations of either of
these systems of PDEs have been proposed over the years; see, e.g., [9] and references therein.

Biot’s model of poroelasticity combines these equations, and, as we will see in the next
sections, the parameter-robust stability of its three-field formulation becomes more delicate.
Alternative formulations that can be proven to be stable independently of the model parameters
(in certain norms) include a two-field formulation for the displacements and pore pressure
(see [1]) and a new three-field formulation that—besides the displacements—introduces two
pressure unknowns, one for the fluid pressure and one for the total pressure, defined as a
weighted sum of fluid and solid pressure [27].

Another formulation has recently been proposed and analyzed in [6]. The authors there
use mixed methods based on the Hellinger-Reissner variational principle for the elasticity part
of the system and impose weakly the symmetry of the stress tensor resulting in a saddle point
problem for σ, u, p and a Lagrange multiplier, for which they prove the parameter-robust
stability of the resulting four-field formulation.

Compared to the new three-field formulation presented in [27, 31], the classic three-field
formulation of Biot’s consolidation model retains Darcy’s law in order to guarantee fluid
mass conservation. A four-field formulation in which the stress tensor is kept as an additional
variable in the system has been proposed in [26], and the error analysis there is robust with
respect to λ but not uniform with respect to other parameters such as τ and κ.

Error estimates were obtained in [32, 33] coupling continuous or discontinuous Galerkin
approximations of the solid displacement with a mixed method for the pressure but under
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the restrictive assumption cpp > 0. Nonconforming finite elements have been shown to
be beneficial with regard to reducing pressure oscillations in computations based on the
classical three-field formulation; see [24]. The lowest approximation order, consisting of
Crouzeix-Raviart finite elements for the displacements, lowest-order Raviart-Thomas elements
for the Darcy velocity, and a piecewise constant approximation of the pressure unknown in
combination with a mass-lumping technique for the Raviart-Thomas elements results in a
computationally efficient method. However, the norms defined in the latter work and in many
others do not allow to establish the full parameter-robust stability we aim for.

In the present paper, we establish full parameter-robust stability for the classic three-
field formulation of Biot’s consolidation model. Crucial in our analysis is the definition of
proper norms for which we prove that the constants in the related boundedness and inf-sup
conditions do not depend on any of the model parameters. We also want to emphasize that our
stability results cover both the case of an incompressible Newtonian fluid (cpp = 0) and the
case of the constrained specific storage coefficient cpp being positive. Further, we propose a
discretization that fulfills mass conservation strongly at a discrete level. We also prove the full
parameter-robust stability of the discretized problem and the related optimal error estimates.
The remainder of the paper is organized as follows.

In Section 2, we briefly revisit non-uniform stability results and make some useful
observations which motivate the subsequent analysis. In Section 3 we introduce the parameter-
dependent norms based on which we establish the parameter-robust stability of the weak
formulation of the continuous problem (1.3)–(1.4). In Section 4 we analyze mixed finite
element discretizations that provide discrete parameter-robust inf-sup stability and strong
mass conservation. Applying the theory of operator preconditioning, see [29], the results
from Sections 3 and 4 imply the uniformity (parameter-robustness) of the (canonical) norm-
equivalent block-diagonal preconditioners. In Section 5 we use our findings to derive robust
optimal a priori error estimates. Finally, Section 6 gives some concluding remarks.

Throughout this paper, the hidden constants in ., & and h are independent of the
parameters µ, λ, cup, τ, κ, cpu, cpp and the mesh size h.

2. A revisit of non-uniform stability results. We begin our stability analysis recasting
equations (1.3)–(1.4). We first eliminate the parameter µ from the model (1.3)–(1.4) by
dividing all the parameters by 2µ, that is, we make the substitutions

2µ→ 1, λ/2µ→ λ, cup/2µ→ cup, f/2µ→ f , τ/2µ→ τ, cpp/2µ→ cpp, g/2µ→ g.

Herewith, the system (1.3) becomes

(2.1)

−div ε(u)− λ∇divu+ cup∇p = f ,

τκ−1v + τ∇p = 0,

−cpu divu− τ div v − cppp = g.

Now let ũ = cpuu, ṽ = τv, p̃ = c2pup, f̃ = cpuf and divide the second equation in (2.1) by
τ to get

−div ε(ũ)− λ∇ div ũ+∇p̃ = f̃ ,

α2τ−1κ−1ṽ +∇p̃ = 0,

−div ũ− div ṽ − cppα−2p̃ = g,

where we have also used that cup = cpu = α. For convenience we denote

R−1
p = α2τ−1κ−1, αp = cpp α

−2,
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and further assume that the ranges of the parameters are

λ ≥ 1, R−1
p > 0, αp ≥ 0.

These assumptions are very general and reasonable. In particular, they cover the case when
the Lamé parameter λ tends to infinity, the case when the permeability of the porous medium
and/or the time step are arbitrarily small, the case of incompressible Newtonian fluids (cpp = 0)
as well as the case when the constrained specific storage coefficient cpp is positive.

In the following, in order to simplify the notation, we omit the “tilde” symbol, i.e., we
write ũ→ u, ṽ → v, f̃ → f , p̃→ p. Therefore, without loss of generality, we can write the
system in the form

(2.2)

−div ε(u)− λ∇ divu+∇p = f ,

R−1
p v +∇p = 0,

−divu− div v − αpp = g,

or, in short notation,

A

uv
p

 =

f0
g


where

(2.3) A :=

−div ε− λ∇ div 0 ∇
0 R−1

p I ∇
−div −div −αpI

 .
REMARK 2.1. In general, we assume that

∫
Ω
g dx = 0. When αp = 0 this assumption is

sometimes referred to as consistency condition. If αp > 0 and
∫

Ω
gdx 6= 0, then we can decom-

pose g as g = g0 +gc, where g0 = g− 1
|Ω|
∫

Ω
g dx and gc = 1

|Ω|
∫

Ω
g dx, so that

∫
Ω
g0 dx = 0.

It follows that the solution (u,v, p) can be decomposed as (u,v, p) = (u,v, p0) + (0,0, pc),
where p0 ∈ L2

0(Ω) and pc = α−1
p

1
|Ω|
∫

Ω
g dx. Hence, we still need to consider only the case

when
∫

Ω
g dx = 0.

The weak formulation of (2.2) requires to find (u,v, p) ∈ U × V × P such that, for any
(w, z, q) ∈ U × V × P ,

(2.4)

(ε(u), ε(w)) + λ(divu,divw)− (p,divw) = (f ,w),

R−1
p (v, z)− (p,div z) = 0,

−(divu, q)− (div v, q)− αp(p, q) = (g, q).

Motivated by the work [28], let us first consider the Hilbert spaces U = H1
0 (Ω)d,

V = H0(div,Ω), and P = L2
0(Ω) with the (weighted) norms defined by

(2.5)

(u,w)U = (ε(u), ε(w)) + λ(divu,divw),

(v, z)V = R−1
p (v, z) +R−1

p (div v,div z),

(p, q)P = (p, q).

Before we study Biot’s equations, we recall the following well known results; see, e.g., [9, 11].
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LEMMA 2.2. There exists a positive constant βd > 0 such that

inf
q∈P

sup
v∈V

(div v, q)

‖v‖div‖q‖
≥ βd.

LEMMA 2.3. There exists a positive constant βs > 0 such that

inf
q∈P

sup
u∈U

(divu, q)

‖u‖1‖q‖
≥ βs.

Let us now investigate the stability of the formulation (2.4). The conditions for the
well-posedness of saddle-point problems of this type are well known; see, e.g., [9, 16]. In
the following we want to comment on some issues related to the robustness of the inf-sup
condition in the Banach-Necas-Babuska theorem (cf. [16]) under the norms induced by (2.5).

To illustrate these, let us consider two different cases, namely,
• Case (i): λ� 1, R−1

p h 1, and 0 ≤ αp . 1 and
• Case (ii): λ h 1, α h 1, cpp h α/λ, and κ or τ tending to zero.

In Case (i), for some nearly incompressible materials, we have that the Lamé parameter λ
tends to infinity. If we assume that λ� 1, R−1

p h 1 and 0 ≤ αp . 1 then, defining the norms
according to (2.5), the boundedness of both (ε(u), ε(w)) + λ(divu,divw) +R−1

p (v, z)
and (divu, q) + (div v, q) is obvious. Further, for 0 ≤ αp . 1, we obtain the bounded-
ness of αp(p, q). Moreover, defining the norms by (2.5), using Lemma 2.2, and choosing
(u,v) = (0,v) ∈ U × V , we obtain the inf-sup condition

inf
q∈P

sup
(u,v)∈U×V

(divu, q) + (div v, q)

(‖u‖U + ‖v‖V )‖q‖P
≥ βdv > 0.

Finally, the coercivity of (ε(u), ε(u)) + λ(divu,divu) +R−1
p (v,v) on the kernel set

(2.6) Z = {(u,v) ∈ U × V : (divu, q) + (div v, q) = 0,∀q ∈ P}

can also be verified. Indeed, since (u,v) ∈ Z means div v = −divu, it follows that

(ε(u), ε(u)) + λ(divu,divu) +R−1
p (v,v)

≥ (ε(u), ε(u)) +
λ

2
(divu,divu) +R−1

p (v,v) +
λ

2
(divu,divu)

= (ε(u), ε(u)) +
λ

2
(divu,divu) +R−1

p (v,v) +
λ

2
(div v,div v)

&
1

2

(
(ε(u), ε(u)) + λ(divu,divu) +R−1

p (v,v) +R−1
p (div v,div v)

)
,

where the last inequality comes from the assumption λ� 1, R−1
p h 1.

On the other hand, in many practical applications one is confronted with Case (ii). Then,
since in this case we haveR−1

p � 1 and 0 ≤ αp . 1, defining the norms according to (2.5), the
boundedness of both (ε(u), ε(w)) +λ(divu,divw) +R−1

p (v, z) and (divu, q) + (div v, q)
are obvious again. Further, the assumption 0 ≤ αp . 1 implies the boundedness of αp(p, q).
Next, using Lemma 2.3 and choosing (u,v) = (u,0) ∈ U × V , we obtain the inf-sup
condition

inf
q∈P

sup
(u,v)∈U×V

(divu, q) + (div v, q)

(‖u‖U + ‖v‖V )‖q‖P
≥ βsu > 0
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under the norms induced by (2.5) since λ h 1. We see, however, that in this case the coercivity
of (ε(u), ε(u)) + λ(divu,divu) + R−1

p (v,v) on the kernel set Z defined at (2.6) cannot
be valid any more. Indeed, since (u,v) ∈ Z means div v = −divu, it follows that for any
M > 0, there exits (u,v), where, e.g., div v 6= 0 and R−1

p is large enough such that

(ε(u), ε(u)) + ( divu,divu) +R−1
p (v,v) +R−1

p (div v,div v)

≥M
(

(ε(u), ε(u)) + (divu,divu) +R−1
p (v,v)

)
&M

(
(ε(u), ε(u)) + λ(divu,divu) +R−1

p (v,v)
)
,

(2.7)

where the second inequality comes from λ . 1. Hence, in this case the estimate (2.7) implies
that for any M > 0, there exists (u,v) ∈ Z (and R−1

p large enough) such that

‖u‖2U + ‖v‖2V ≥M
(

(ε(u), ε(u)) + (divu,divu) +R−1
p (v,v)

)
.

Therefore, the system (2.4) is not uniformly stable with respect to the parameter R−1
p under

the norms induced by (2.5).
From this observation we conclude that we have to define proper norms (as we do below

in (3.2)) in order to establish the coercivity of (ε(u), ε(u)) + λ(divu,divu) + R−1
p (v,v)

on Z in both the above cases.

3. Parameter-robust stability of the model. In this section, we first define proper
parameter-dependent norms for the spacesU ,V , and P based on which we will then establish
the parameter-robust stability of the Biot problem (2.4) for parameters in the ranges

(3.1) λ ≥ 1, R−1
p > 0, αp ≥ 0.

The ultimate goal and subject of ongoing and future research is parameter-robust stability
of the problem (2.4) for nonsmooth coefficients, e.g., for piecewise (layerwise or even only
elementwise) constant coefficients. In this work, however, we consider only the case of
globally constant coefficients. We want to remark in this context that even for the Darcy
problem, which is in some sense part of the considered three-field formulation of Biot’s
consolidation model, robust stability for the most general case of heterogeneous coefficients is
an issue that is not fully resolved yet; see the discussion in [25] and the references therein.

Let us denote

ρ = min{λ,R−1
p } and γ = max{ρ−1, αp},

and let us consider the Hilbert spaces U = H1
0 (Ω)d,V = H0(div,Ω), P = L2

0(Ω) with
parameter-dependent norms ‖ · ‖U , ‖ · ‖V , ‖ · ‖P induced by the inner products

(3.2)

(u,w)U = (ε(u), ε(w)) + λ(divu,divw),

(v, z)V = R−1
p (v, z) + γ−1(div v,div z),

(p, q)P = γ(p, q).

As we will show in this section, the above norms are the key for establishing the parameter-
robust stability of the model.
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REMARK 3.1. The Stokes-type inf-sup condition, namely Lemma 2.3, still holds and the
norms can still be defined by (3.2) when both the measures of Γu,D and Γu,N are nonzero
and the Hilbert spaces are given by U = H1

D(Ω)d = {u : u ∈ H1(Ω)d,u|Γu,D
= 0},

V = H(div,Ω), and P = L2(Ω). However, if Γu,D = Γ and the Hilbert spaces are given
by U = H1

0 (Ω)d,V = H(div,Ω), and P = L2(Ω), then we have to modify the norms. In
this case, we need to set ρ = min{R−1

p , λ}, γm = max{ρ−1, αp}, γ0 = max{Rp, αp} and
define the norms by

(3.3)

(u,w)U = (ε(u), ε(w)) + λ(divu,divw),

(v, z)V = R−1
p (v, z) + γ−1

m (Qmdivv, Qmdivz) + γ−1
0 (Q0divv, Q0divz),

(p, q)P = γm(Qmp,Qmq) + γ0(Q0p,Q0q),

where Qm : L2(Ω) → L2
0(Ω) denotes the L2-projection, and Q0 is the L2-projection from

L2(Ω) to the space of globally constant functions. The proof of parameter robust stability then
becomes more technical, and we will not present it here.

We introduce the bilinear form

A((u,v, p), (w, z, q))

= (ε(u), ε(w)) + λ(divu,divw)− (p,divw)

+R−1
p (v, z)− (p, div z)− (divu, q)− (div v, q)− αp(p, q),

(3.4)

which is directly related to problem (2.4). The boundedness of the bilinear form (3.4) is
obvious in view of the definition of the norms via (3.2) and is described in the following
theorem.

THEOREM 3.2. There exists a constant Cb independent of the parameters λ, R−1
p , αp

such that for any (u,v, p) ∈ U × V × P , (w, z, q) ∈ U × V × P ,

|A((u,v, p), (w, z, q))| ≤ Cb(‖u‖U + ‖v‖V + ‖p‖P )(‖w‖U + ‖z‖V + ‖q‖P ).

The definiteness of the bilinear form, which can be expressed as

sup
(u,v,p)∈U×V ×P

|A((u,v, p), (w, z, q))| > 0 for all
(u,v, p) ∈ U × V × P,
(w, z, q) 6= (0,0, 0),

is also easy to verify. Hence, according to the Banach-Necas-Babuska theorem (cf. [16]),
problem (2.4) is well-posed if the bilinear form (3.4) satisfies the inf-sup condition (3.5)
described in the following Theorem 3.3, which is our first main result.

THEOREM 3.3. There exists a constant β > 0 independent of the parameters λ, R−1
p , αp,

such that
(3.5)

inf
(u,v,p)∈U×V ×P

sup
(w,z,q)∈U×V ×P

A((u,v, p), (w, z, q))

(‖u‖U + ‖v‖V + ‖p‖P )(‖w‖U + ‖z‖V + ‖q‖P )
≥ β.

Proof. Case I:

ρ = min{λ,R−1
p } = λ, hence λ ≤ R−1

p , γ−1 ≤ ρ = λ.

For any (u,v, p) ∈ U ×V ×P , in view of the surjectivity of the divergence operator mapping
U onto P , using Lemma 2.3, one finds that (cf. [9]) there exists

(3.6) u0 ∈ U such that divu0 =
1√
λ
p, ‖u0‖1 ≤ β−1

s

1√
λ
‖p‖.
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We choose

(3.7) w = δu− 1√
λ
u0, z = δv, q = −δp− γ−1 div v,

where δ is a positive constant that will be determined later.
First we verify the boundedness of (w, z, q) by (u,v, p). By (3.6) and noting that

γ−1 ≤ ρ = λ, we have

(
1√
λ
u0,

1√
λ
u0)U = (ε(

1√
λ
u0), ε(

1√
λ
u0)) + λ(div

1√
λ
u0,div

1√
λ
u0)

= (
1

λ
ε(u0), ε(u0)) + (divu0,divu0) ≤ 1

λ
β−2
s

1

λ
‖p‖2 +

1

λ
(p, p)

≤ (
1

λ
β−2
s + 1)

1

λ
‖p‖2 ≤ (

1

λ
β−2
s + 1)γ‖p‖2 = (

1

λ
β−2
s + 1)(p, p)P .

Next, since 1 ≤ λ, we get the boundedness of w, i.e.,

‖w‖U ≤ δ‖u‖U +

√
λ−1β−2

s + 1‖p‖P ≤ δ‖u‖U +

√
β−2
s + 1‖p‖P .

It is obvious that ‖z‖V = δ‖v‖V . We still need to bound q. Using (3.7) and

(γ−1 div v, γ−1 div v)P = γ(γ−1 div v, γ−1 div v) = γ−1(div v,div v) ≤ (v,v)V ,

we obtain

(3.8) ‖q‖P ≤ δ‖p‖P + ‖v‖V .

Putting the above estimates together we get

‖w‖U + ‖z‖V + ‖q‖P ≤
(
δ +

√
β−2
s + 1

)
(‖u‖U + ‖v‖V + ‖p‖P )

and thus the boundedness of (w, z, q) by (u,v, p).
Next we show the coercivity of A((u,v, p), (w, z, q)). Using (3.7) and (3.6), we find

A((u,v, p), (w, z, q))

= (ε(u), ε(w)) + λ(divu,divw)− (p, divw) +R−1
p (v, z)− (p,div z)

− (divu, q)− (div v, q)− αp(p, q)

= (ε(u), δε(u)− 1√
λ
ε(u0)) + λ(divu, δ divu− 1√

λ
divu0) +R−1

p (v, δv)

− (p, δ divu− 1√
λ

divu0)− (p, δ div v)− (divu,−δp− γ−1 div v)

− (div v,−δp− γ−1 div v)− αp(p,−δp− γ−1 div v)

= δ(ε(u), ε(u))− 1√
λ

(ε(u), ε(u0)) + δλ(divu,divu)−
√
λ(divu,divu0)

− δ(p, divu) +
1√
λ

(p, divu0) + δR−1
p (v,v)− δ(p,div v)

+ δ(divu, p) + γ−1(divu,div v) + δ(div v, p)

+ γ−1(div v,div v) + δαp(p, p) + αp(p, γ
−1 div v)
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=by(3.6) δ(ε(u), ε(u))− 1√
λ

(ε(u), ε(u0)) + δλ(divu,divu)− (divu, p)

+
1

λ
(p, p) + δR−1

p (v,v) + γ−1(divu,div v)

+ γ−1(div v,div v) + δαp(p, p) + αp(p, γ
−1 div v).

Applying Young’s inequality and using (3.6), we therefore obtain

A((u,v, p), (w, z, q))

= δ(ε(u), ε(u))− 1√
λ

(ε(u), ε(u0)) + δλ(divu,divu)− (divu, p) +
1

λ
(p, p)

+ δR−1
p (v,v) + γ−1(divu,div v) + γ−1(div v,div v)

+ δαp(p, p) + αp(p, γ
−1 div v)

≥ δ(ε(u), ε(u))− 1

2

1√
λ
ε−1
1 (ε(u), ε(u))− 1

2

1√
λ
ε1(ε(u0), ε(u0)) + δλ(divu,divu)

− 1

2
ε−1
2 λ(divu,divu)− 1

2
ε2

1

λ
(p, p) +

1

λ
(p, p) + δR−1

p (v,v)

− 1

2
ε−1
3 γ−1(divu,divu)− 1

2
ε3γ
−1(div v,div v) + γ−1(div v,div v)

+ δαp(p, p)−
1

2
ε4γ
−1(div v,div v)− 1

2
ε−1
4 α2

pγ
−1(p, p)

≥by(3.6) (δ − 1

2

1√
λ
ε−1
1 )(ε(u), ε(u)) + (δ − 1

2
ε−1
2 )λ(divu,divu)

− 1

2
ε−1
3 γ−1(divu,divu) + δR−1

p (v,v) + (1− 1

2
ε3 −

1

2
ε4)γ−1(div v,div v)

+ (1− 1

2

1√
λ
ε1β
−2
s −

1

2
ε2)

1

λ
(p, p) + (δ − 1

2
ε−1
4 αpγ

−1)αp(p, p).

Now, letting ε1 =
β2
s

2 , ε2 = ε3 = ε4 = 1
2 and noting that ρ−1 ≤ γ, λ ≥ γ−1 > 0, and λ ≥ 1,

we further conclude that

A((u,v, p), (w, z, q))

≥ (δ − 1√
λ
β−2
s )(ε(u), ε(u)) + (δ − 2)λ(divu,divu) + δR−1

p (v,v)

+
1

2
γ−1(div v,div v) +

1

2

1

λ
(p, p) + (δ − αpγ−1)αp(p, p).

Next, letting δ := max{β−2
s + 1

2 , 2 + 1
2} and noting that αp ≤ γ, λ ≥ 1, we arrive at the

following coercivity estimate

A((u,v, p), (w, z, q)) ≥ 1

2
(ε(u), ε(u)) +

1

2
λ(divu,divu) +

1

2
R−1
p (v,v)

+
1

2
γ−1(div v,div v) +

1

2

1

λ
(p, p) + αp(p, p)

≥ 1

2

(
‖u‖2U + ‖v‖2V + ‖p‖2P

)
.

Case II:

ρ = min{λ,R−1
p } = R−1

p , hence λ ≥ R−1
p , γ−1 ≤ ρ = R−1

p .
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For any (u,v, p) ∈ U × V × P , in view of the surjectivity of the divergence operator
mapping V onto P , using Lemma 2.2, one finds that (cf. [9]) there exists

(3.9) v0 ∈ V such that div v0 =
√
Rpp, ‖v0‖div ≤ β−1

d

√
Rp‖p‖.

We choose

(3.10) w = δu, z = δv −
√
Rpv0, q = −δp− γ−1 div v,

where δ is a constant which we will specify later.
Again we verify the boundedness of (w, z, q) by (u,v, p) first. It is obvious that

‖w‖U = δ‖u‖U . Moreover, by (3.10) and noting that γ−1 ≤ ρ = R−1
p , we have

(
√
Rpv0,

√
Rpv0)V = R−1

p (
√
Rpv0,

√
Rpv0) + γ−1(div(

√
Rpv0),div(

√
Rpv0))

≤ (v0,v0) + (div v0,div v0) ≤ β−2
d Rp‖p‖2 ≤ β−2

d γ‖p‖2 ≤ β−2
d (p, p)P .

Hence, we get the boundedness of z, i.e.,

‖z‖V ≤ δ‖v‖V + β−1
d ‖p‖P .

The boundedness of q follows as in (3.8).
Next we verify the coercivity of A((u,v, p), (w, z, q)) in Case II. Using the definition of

(w, z, q) and (3.9), we find

A((u,v, p), (w, z, q))

= (ε(u), ε(w)) + λ(divu,divw)− (p,divw) +R−1
p (v, z)− (p, div z)

− (divu, q)− (div v, q)− αp(p, q)
= (ε(u), δε(u)) + λ(divu, δ divu)− (p, δ divu) +R−1

p (v, δv −
√
Rpv0)

− (p, δ div v −
√
Rp div v0)− (divu,−δp− γ−1 div v)

− (div v,−δp− γ−1 div v)− αp(p,−δp− γ−1 div v)

= δ(ε(u), ε(u)) + δλ(divu,divu)− δ(p,divu) + δR−1
p (v,v)− (R−1/2

p v,v0)

− δ(p,div v) + (p,
√
Rp div v0) + δ(divu, p) + γ−1(divu,div v)

+ δ(div v, p) + γ−1(div v,div v) + δαp(p, p) + αp(p, γ
−1 div v)

= δ(ε(u), ε(u)) + δλ(divu,divu) + δR−1
p (v,v)− (R−1/2

p v,v0)

+ (p,
√
Rp div v0) + γ−1(divu,div v)

+ γ−1(div v,div v) + δαp(p, p) + αp(p, γ
−1 div v).

Applying Young’s inequality and using (3.9), we get

A((u,v, p), (w, z, q))

= δ(ε(u), ε(u)) + δλ(divu,divu) + δR−1
p (v,v)− (R−1/2

p v,v0)

+ (p,
√
Rp div v0) + γ−1(divu,div v) + γ−1(div v,div v)

+ δαp(p, p) + αp(p, γ
−1 div v)
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≥ δ(ε(u), ε(u)) + δλ(divu,divu) + δR−1
p (v,v)− 1

2
ε−1
1 R−1

p (v,v)− 1

2
ε1(v0,v0)

+Rp(p, p)−
1

2
ε−1
2 γ−1(divu,divu)− 1

2
ε2γ
−1(div v,div v)

+ γ−1(div v,div v) + δαp(p, p)−
1

2
ε4γ
−1(div v,div v)− 1

2
ε−1
4 α2

pγ
−1(p, p)

≥ δ(ε(u), ε(u)) + δλ(divu,divu)− 1

2
ε−1
2 γ−1(divu,divu)

+ (δ − 1

2
ε−1
1 )R−1

p (v,v) + (1− 1

2
ε2 −

1

2
ε4)γ−1(div v,div v)

+ (1− 1

2
ε1β
−2
d )Rp(p, p) + (δ − 1

2
ε−1
4 αpγ

−1)αp(p, p).

Now, letting ε1 = β2
d , ε2 = ε4 =

1

2
and noting that ρ−1 ≤ γ, λ ≥ ρ ≥ γ−1 > 0 it follows that

A((u,v, p), (w, z, q)) ≥ δ(ε(u), ε(u)) + (δ − 1)λ(divu,divu) + (δ − 1

2
β−2
d )R−1

p (v,v)

+
1

2
γ−1(div v,div v) +

1

2
Rp(p, p) + (δ − αpγ−1)αp(p, p).

Next, we set δ = max

{
1
2β
−2
d +

1

2
, 1 +

1

2

}
, observe that αp ≤ γ, and finally obtain the

coercivity estimate

A((u,v, p), (w, z, q)) ≥ 1

2
(ε(u), ε(u)) +

1

2
λ(divu,divu) +

1

2
R−1
p (v,v)

+
1

2
γ−1(div v,div v) +

1

2
Rp(p, p) +

1

2
αp(p, p)

≥ 1

2

(
‖u‖2U + ‖v‖2V + ‖p‖2P

)
,

which completes the proof.
REMARK 3.4. The distinction of the two cases in the proof of Theorem 3.3 (and later on

in the proof of Theorem 4.4) is due to the specific choice of the combined parameter-dependent
norm induced by the inner products (3.2). In order to obtain a parameter-robust inf-sup
condition in a norm providing also uniform boundedness of the bilinear formA((·, ·, ·), (·, ·, ·))
it would be sufficient to consider Case I, i.e., to use the combined norm(

ε(u), ε(u)) + λ(divu,divu) +R−1
p (v,v)

+ min{λ, α−1
p }(div v,div v) + max{λ−1, αp}(p, p)

)1/2

h
(
ε(u), ε(u)) + λ(divu,divu) +R−1

p (v,v)

+ (
1

λ
+ αp)

−1(div v,div v) + (
1

λ
+ αp)(p, p)

)1/2

for all (u,v, p) ∈ U × V × P . The reason for introducing the norm in the more general
setting, which results in the two cases, i.e., two different definitions of the combined norm
depending on which parameter defines ρ and which one γ, is to obtain a norm on the product
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space that results in a tighter and physically sound stability estimate as given by the following
Corollary 3.5 and an error estimate, see Theorem 5.2, over the whole parameter ranges.

The above theorem implies the following stability estimate.
COROLLARY 3.5. Let (u,v, p) ∈ U × V × P be the solution of (2.4). Then there holds

the estimate

‖u‖U + ‖v‖V + ‖p‖P ≤ C1(‖f‖U∗ + ‖g‖P∗),

where C1 is a constant independent of λ,R−1
p , αp, and

‖f‖U∗ = sup
w∈U

(f ,w)

‖w‖U
, ‖g‖P∗ = sup

q∈P

(g, q)

‖q‖P
= γ−1‖g‖.

REMARK 3.6. We want to emphasize that the parameter ranges as specified in (3.1)
are indeed relevant since the variations of the model parameters are quite large in many
applications. For that reason, Theorem 3.2 and Theorem 3.3 are very important and basic
results that provide the parameter-robust stability of the model (2.4).

REMARK 3.7. Define

(3.11) B :=

 (−div ε− λ∇ div)−1 0 0
0 (R−1

p I + γ−1∇div)−1 0
0 0 (γI)−1

 .
Due to the theory presented in [29], Theorems 3.2 and 3.3 imply that the operator B in (3.11)
defines a norm-equivalent (canonical) block-diagonal preconditioner for the operatorA in (2.3)
which is robust in all model parameters.

REMARK 3.8. Note that if λ� R−1
p and 0 ≤ αp ≤ 1

λ , then ρ = min{λ,R−1
p } = λ and

the norms defined in (3.2) are given by

(u,w)U = (ε(u), ε(w)) + λ(divu,divw),

(v, z)V = R−1
p (v, z) + λ(div v,div z),

(p, q)P = λ−1(p, q).

Then the coercivity of (ε(u), ε(u)) + λ(divu,divu) +R−1
p (v,v) on the kernel set

Z = {(u,v) ∈ U × V : (divu, q) + (div v, q) = 0,∀q ∈ P}

can be verified by direct computation. However, in this case the H(div) inf-sup condition

inf
q∈P

sup
v∈V

(div v, q)

‖v‖V ‖q‖P
≥ βv > 0

fails if R−1
p � λ, for instance, λ h 1 and R−1

p � 1.
Hence, in order to obtain the inf-sup condition for (divu, q) + (div v, q), namely,

(3.12) inf
q∈P

sup
(u,v)∈U×V

(divu, q) + (div v, q)

(‖u‖U + ‖v‖V )‖q‖P
≥ βsu > 0,

the Stokes-type inf-sup condition from Lemma 2.3 has to be satisfied at the discrete level as
we can see by choosing (u,v) = (u, 0) ∈ U × V in (3.12).

From the above observation, we conclude that we need to choose a proper space for the
approximation of the displacement field u, even if λ is small, in order to satisfy the Stokes-type
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inf-sup condition stated in Lemma 2.3 at the discrete level. This shows that the discretization
of (2.4) based on the spaces P1 × RT0 × P0 cannot be uniformly stable with respect to all
model parameters.

Therefore, in this work, we use the proper H(div) conforming spaces to approximate the
displacement field as well as the Darcy velocity. In the right combination and with matching
approximation orders, the corresponding mixed finite element methods then allow to satisfy
the divergence condition pointwise, resulting in strong mass conservation. Details will be
presented in the following Section 4.

4. Uniformly stable and strongly mass conservative discretizations. There are vari-
ous discretizations that meet the requirements for the proof of the full parameter-robust stability
that will be presented in this section. They include conforming as well as nonconforming
methods. In general, whenever Uh/Ph is a Stokes-stable pair and Vh/Ph satisfies the H(div)
inf-sup condition similar to (4.7), the norm that we have proposed in Section 3 allows to prove
the full parameter-robust stability using similar arguments as in the proof of Theorem 4.4.
To give a few examples, the triplets CRl/RTl−1/Pl−1(l = 1, 2) together with stabilization
[17, 20] does result in a parameter-robust stable discretization of the Biot model if the norms
are defined as in Section 3. The same is true for the conforming discretizations based on
the spaces P2/RT0/P0 (in 2D), P stab2 /RT0/P0 (in 3D), or P2/RT1/P1. However, these
finite element methods do not have the property of strong mass conservation in the sense of
Proposition 4.2 although they result in parameter-robust inf-sup stability under the norms we
proposed in Section 3.

In recent years, discontinuous Galerkin methods have been developed to solve various
problems [2, 3, 12, 13, 21]. In this section, motivated by the works [22, 23, 34], we pro-
pose discretizations of the Biot’s model problem (2.4). These discretizations preserve the
divergence condition (namely, the last equation in (2.2)) pointwise, which results in a strong
conservation of mass; see Proposition 4.2. Furthermore, they are also locking-free when the
Lamé parameter λ tends to infinity. First we introduce some notation.

4.1. Preliminaries and notation. By Th we denote a shape-regular triangulation of
mesh-size h of the domain Ω into triangles {K}. We further denote by EIh the set of all interior
edges (or faces) of Th and by EBh the set of all boundary edges (or faces); we set Eh = EIh∪EBh .

For s ≥ 1, we define

Hs(Th) = {φ ∈ L2(Ω), such that φ|K ∈ Hs(K) for all K ∈ Th}.

The vector functions are represented column-wise.
As we consider discontinuous Galerkin (DG) discretizations, we define some trace op-

erators next. Let e = ∂K1 ∩ ∂K2 be the common boundary (interface) of two subdomains
K1 and K2 in Th , and n1 and n2 be unit normal vectors to e pointing to the exterior of
K1 and K2, respectively. For any edge (or face) e ∈ EIh and a scalar q ∈ H1(Th), a vector
v ∈ H1(Th)d, and a tensor τ ∈ H1(Th)d×d, we define the averages

{v} =
1

2
(v|∂K1∩e · n1 − v|∂K2∩e · n2), {τ} =

1

2
(τ |∂K1∩en1 − τ |∂K2∩en2)

and jumps

[q] = q|∂K1∩e−q|∂K2∩e, [v] = v|∂K1∩e−v|∂K2∩e, [[v]] = v|∂K1∩e�n1+v|∂K2∩e�n2,

where v � n = 1
2 (vnT + nvT ) is the symmetric part of the tensor product of v and n.

When e ∈ EBh , then the above quantities are defined as

{v} = v|e · n, {τ} = τ |en, [q] = q|e, [v] = v|e, [[v]] = v|e � n.
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If nK is the outward unit normal to ∂K, then it is easy to verify that∑
K∈Th

∫
∂K

v ·nKq ds =
∑
e∈Eh

∫
e

{v}[q] ds, for all v ∈ H(div; Ω), for all q ∈ H1(Th).

Also, for τ ∈ H1(Ω)d×d and for all v ∈ H1(Th)d, we have∑
K∈Th

∫
∂K

(τnK) · v ds =
∑
e∈Eh

∫
e

{τ} · [v] ds.

The finite element spaces are denoted by

Uh = {u ∈ H(div; Ω) : u|K ∈ U(K), K ∈ Th; u · n = 0 on ∂Ω},

Vh = {v ∈ H(div; Ω) : v|K ∈ V (K), K ∈ Th; v · n = 0 on ∂Ω},

Ph = {q ∈ L2(Ω) : q|K ∈ Q(K), K ∈ Th;

∫
Ω

q dx = 0}.

The discretizations that we consider here define the local spaces U(K)/V (K)/Q(K) via the
triplets BDMl(K)/ RTl−1(K)/Pl−1(K), or BDFMl(K)/RTl−1(K)/Pl−1(K) for l ≥ 1.
Note that for all these choices the important condition divU(K) = divV (K) = Q(K) is
satisfied.

We recall the basic approximation properties of these spaces: for all K ∈ Th and for all
u ∈ Hs(K)d, there exists uI ∈ U(K) such that

‖u− uI‖0,K + hK |u− uI |1,K + h2
K |u− uI |2,K ≤ ChsK |u|s,K , 2 ≤ s ≤ l + 1.

4.2. DG discretization. We note that according to the definition of Uh, the normal
component of any u ∈ Uh is continuous on the internal edges and vanishes on the boundary
edges. Therefore, by splitting a vector u ∈ Uh into its normal and tangential components
un := (u · n)n and ut := u− un, we have

for all e ∈ Eh :

∫
e

[un] · τ ds = 0, for all τ ∈ H1(Th)d,u ∈ Uh,

implying that

for all e ∈ Eh :

∫
e

[u] · τ ds =

∫
e

[ut] · τ ds, for all τ ∈ H1(Th)d,u ∈ Uh.

A direct computation shows that

[[ut]] : [[wt]] =
1

2
[ut] · [wt].

Therefore, the discretization of the variational problem in equation (2.4) is given as follows:
find (uh,vh, ph) ∈ Uh × V h × Ph such that for any (wh, zh, qh) ∈ Uh × V h × Ph

(4.1)

ah(uh,wh) + λ(divuh,divwh)− (ph,divwh) = (f ,wh),

R−1
p (vh, zh)− (ph,div zh) = 0,

−(divuh, qh)− (div vh, qh)− αp(ph, qh) = (g, qh),
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where

ah(u,w) =
∑
K∈Th

∫
K

ε(u) : ε(w) dx−
∑
e∈Eh

∫
e

{ε(u)} · [wt] ds(4.2)

−
∑
e∈Eh

∫
e

{ε(w)} · [ut] ds+
∑
e∈Eh

∫
e

ηh−1
e [ut] · [wt] ds

and η is a stabilization parameter which is independent of h, λ,R−1
p , αp.

REMARK 4.1. Consider the general rescaled boundary conditions

(4.3)

p = pD on Γp,D,

v · n = qN on Γp,N ,

u = uD on Γu,D,

(σ − pI)n = gN on Γu,N .

Usually, it is assumed that the measure of Γu,D is nonzero to guarantee the discrete Korn’s
inequality [10]. The standard way to incorporate the boundary conditions (4.3) is to modify
the trial spaces according to the boundary conditions, i.e., to seek the solution in the spaces

UD
h = {u ∈ H(div; Ω) : u|K ∈ U(K), K ∈ Th; u · n = uD · n on Γu,D},

V D
h = {v ∈ H(div; Ω) : v|K ∈ V (K), K ∈ Th; v · n = qN on Γp,N},

Ph =

{
{q ∈ L2(Ω) : q|K ∈ Q(K), K ∈ Th, if |Γp,D| 6= 0},
{q ∈ L2

0(Ω) : q|K ∈ Q(K), K ∈ Th, if Γp,N = Γ},

and use the test spaces given by

U0
h= {u ∈ H(div; Ω) : u|K ∈ U(K), K ∈ Th; u · n = 0 on Γu,D},

V 0
h = {v ∈ H(div; Ω) : v|K ∈ V (K), K ∈ Th; v · n = 0 on Γp,N}.

Hence, problem (4.1) has the more general formulation: find (uh,vh, ph) ∈ UD
h ×V

D
h ×Ph

such that for any (wh, zh, qh) ∈ U0
h × V

0
h × Ph

(4.4)

ah(uh,wh) + λ(divuh,divwh)− (ph,divwh) = F (wh),

(R−1
p vh, zh)− (ph,div zh) = −(pD, zh · n)Γp,D

,

−(divuh, qh)− (div vh, qh)− αp(ph, qh) = (g, qh),

where

ah(u,w) =
∑
K∈Th

∫
K

ε(u) : ε(w)dx−
∑

e∈EIh∪E
u,D
h

∫
e

{ε(u)} · [wt] ds

−
∑

e∈EIh∪E
u,D
h

∫
e

{ε(w)} · [ut] ds+
∑

e∈EIh∪E
u,D
h

∫
e

ηh−1
e [ut] · [wt] ds,

F (w) = (f ,w) + (gN ,w)Γu,N
− (uD,t, ε(w)n)Γu,D

+
∑

e∈Eu,D
h

∫
e

ηh−1
e uD,t ·wt ds,

and uD,t = uD − (uD · n)n, Eu,Dh = EBh ∩ Γu,D, and η is again a stabilization parameter
which is independent of h, λ, R−1

p , and αp. If Γu,D = Γp,N = Γ and uD = 0, qN = 0, then
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(4.4) reduces to (4.1) which will be analyzed in the remainder of this paper. If the measure of
Γu,N is nonzero, then the analysis is similar. If Γu,D = Γ and the measure of Γp,D is nonzero,
then one has to introduce the modified norms according to (3.3). This part of the analysis is
left as future work.

PROPOSITION 4.2. Let (uh,vh, ph) ∈ Uh × V h × Ph be the solution of (4.1), then
(uh,vh, ph) satisfy the pointwise mass conservation equation

(4.5) − divuh − div vh − αpph = Qhg, ∀x ∈ K,∀K ∈ Th,

where Qh denotes the L2-projection on Ph. Further, if g = 0, then

−divuh − div vh − αpph = 0.

Proof. Since the choice of the spaces satisfying ∇ ·Uh = Ph and ∇ · V h = Ph implies

−divuh − div vh − αpph ∈ Ph,

equation (4.5) follows directly from the last equation of (4.1).
For any u ∈ Uh, we introduce the mesh dependent norms:

‖u‖2h =
∑
K∈Th

‖ε(u)‖20,K +
∑
e∈Eh

h−1
e ‖[ut]‖20,e,

‖u‖21,h =
∑
K∈Th

‖∇u‖20,K +
∑
e∈Eh

h−1
e ‖[ut]‖20,e.

Next, for u ∈ Uh, we define the “DG”-norm

‖u‖2DG =
∑
K∈Th

‖∇u‖20,K +
∑
e∈Eh

h−1
e ‖[ut]‖20,e +

∑
K∈Th

h2
K |u|22,K

and, finally, the mesh-dependent norm ‖ · ‖Uh
by

‖u‖2Uh
= ‖u‖2DG + λ‖ divu‖2.

We now summarize several results on well-posedness and approximation properties of the DG
formulation; see, e.g., [23, 22].

• From the discrete version of Korn’s inequality we have that the norms ‖ · ‖DG, ‖ · ‖h,
and ‖ · ‖1,h are equivalent on Uh, namely,

(4.6) ‖u‖DG h ‖u‖h h ‖u‖1,h, for all u ∈ Uh.

• The bilinear form ah(·, ·), introduced in (4.2) is continuous and we have

|ah(u,w)| . ‖u‖DG‖w‖DG, for all u, w ∈ H2(Th)d.

• For our choice of the finite element spaces Vh and Ph we have the following inf-sup
conditions; see, e.g., [34].

(4.7)
inf

qh∈Ph

sup
uh∈Uh

(divuh, qh)

‖uh‖1,h‖qh‖
≥ βsd > 0,

inf
qh∈Ph

sup
vh∈Vh

(div vh, qh)

‖vh‖div‖qh‖
≥ βdd > 0,

where βsd and βdd are constants independent of the parameters λ,R−1
p , αp and the

mesh size h.
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• We also have that ah(·, ·) is coercive:

(4.8) ah(uh,uh) ≥ αa‖uh‖2h, for all uh ∈ Uh,

where αa is a positive constant independent of the parameters λ,R−1
p , αp, and the

mesh size h.
Related to the discrete problem (4.1) we introduce the bilinear form

Ah((uh,vh, ph), (wh, zh, qh)) = ah(uh,vh) + λ(divuh,divwh)

− (ph,divwh) +R−1
p (vh, zh)− (ph,div zh)

− (divuh, qh)− (div vh, qh)− αp(ph, qh).

(4.9)

In view of the definitions of the norms ‖ · ‖Uh
, ‖ · ‖V , and ‖ · ‖P , the boundedness of

Ah((uh,vh, ph), (wh, zh, qh)) is obvious, i.e., the following theorem holds.
THEOREM 4.3. There exists a constant Cbd independent of the parameters λ, R−1

p , αp,
and the mesh size h such that for any (uh,vh, ph) ∈ Uh × Vh × Ph and (wh, zh, qh) ∈
Uh × Vh × Ph it holds that

|Ah((uh,vh, ph), (wh, zh, qh))|
≤ Cbd(‖uh‖Uh

+ ‖vh‖V + ‖ph‖P )(‖wh‖Uh
+ ‖zh‖V + ‖qh‖P ).

We come to our second main result.
THEOREM 4.4. There exits a constant β0 > 0 independent of the parameters λ, R−1

p , αp,
and the mesh size h such that

inf
(uh,vh, ph)

∈ Uh×V h×Ph

sup
(wh, zh, qh)

∈ Uh×V h×Ph

Ah((uh,vh, ph), (wh, zh, qh))

(‖uh‖Uh
+‖vh‖V +‖ph‖P )(‖wh‖Uh

+‖zh‖V +‖qh‖P )
≥ β0.

(4.10)

Proof. Case I:

ρ = min{λ,R−1
p } = λ, hence λ ≤ R−1

p , γ−1 ≤ ρ = λ.

For any (uh,vh, ph) ∈ Uh × V h × Ph, by the first inf-sup condition in (4.7), there exists

(4.11) uh,0 ∈ Uh such that divuh,0 =
1√
λ
ph, ‖uh,0‖1,h ≤ β−1

sd

1√
λ
‖ph‖.

We choose

wh = δuh −
1√
λ
uh,0, zh = δvh, qh = −δph − γ−1 div vh,

where the constant δ will be determined later.
We verify first the boundedness of (wh, zh, qh) by (uh,vh, ph). By (4.11), the equiva-

lence between the norms ‖ · ‖DG and ‖ · ‖1,h, namely (4.6), and noting that γ−1 ≤ ρ = λ, we
have

‖ 1√
λ
uh,0‖2Uh

= ‖ 1√
λ
uh,0‖2DG + λ(div

1√
λ
uh,0,div

1√
λ
uh,0)

≤by(4.6) C
2
0‖

1√
λ
uh,0‖21,h + (divuh,0,divuh,0)

≤ 1

λ
C2

0β
−2
sd

1

λ
‖p‖2 +

1

λ
(p, p) ≤ (

1

λ
C2

0β
−2
sd + 1)

1

λ
‖ph‖2

≤ (
1

λ
C2

0β
−2
sd + 1)γ‖ph‖2 = (

1

λ
C2

0β
−2
sd + 1)(ph, ph)P .
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Therefore, by taking into account that 1 ≤ λ we get for wh the estimate

‖wh‖Uh
≤ δ‖uh‖Uh

+
√
λ−1C2

0β
−2
sd + 1‖ph‖P ≤ δ‖uh‖Uh

+
√
C2

0β
−2
sd + 1‖ph‖P .

Obviously we have ‖zh‖V = δ‖vh‖V and it remains to bound qh. From the fact that

(γ−1 div vh, γ
−1 div vh)P = γ(γ−1 div vh, γ

−1 div vh)

= γ−1(div vh,div vh) ≤ (vh,vh)V

it follows that

(4.12) ‖qh‖P ≤ δ‖ph‖P + ‖vh‖V .

Using the definition of (wh, zh, qh) and equation (4.11), we establish the coercivity of
Ah((uh,vh, ph), (wh, zh, qh)):

Ah((uh,vh, ph), (wh, zh, qh))

= ah(uh,wh) + λ(divuh,divwh)− (ph,divwh) +R−1
p (vh, zh)− (ph,div zh)

− (divuh, qh)− (div vh, qh)− αp(ph, qh)

= ah(uh, δuh −
1√
λ
uh,0) + λ(divuh, δ divuh −

1√
λ

divuh,0)

− (ph, δ divuh −
1√
λ

divuh,0) +R−1
p (vh, δvh)− (ph, δ div vh)

− (divuh,−δph − γ−1 div vh)− (div vh,−δph − γ−1 div vh)

− αp(ph,−δph − γ−1 div vh)

= δah(uh,uh)− 1√
λ
ah(uh,uh,0) + δλ(divuh,divuh)−

√
λ(divuh,divuh,0)

− δ(ph,divuh) +
1√
λ

(ph,divuh,0) + δR−1
p (vh,vh)

− δ(ph,div vh) + δ(divuh, ph) + γ−1(divuh,div vh) + δ(div vh, ph)

+ γ−1(div vh,div vh) + δαp(ph, ph) + αp(ph, γ
−1 div vh)

=by(4.11) δah(uh,uh)− 1√
λ
ah(uh,uh,0) + δλ(divuh,divuh)− (divuh, ph)

+
1

λ
(ph, ph) + δR−1

p (vh,vh) + γ−1(divuh,div vh) + γ−1(div vh,div vh)

+ δαp(ph, ph) + αp(ph, γ
−1 div vh).

Next we apply Young’s inequality, use the coercivity and the continuity of ah(·, ·), the
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equivalence of the norms ‖ · ‖DG and ‖ · ‖1,h, and (4.11) to get

Ah((uh,vh, ph), (wh, zh, ph))

= δah(uh,uh)− 1√
λ
ah(uh,uh,0) + δλ(divuh,divuh)− (divuh, ph) +

1

λ
(ph, ph)

+ δR−1
p (vh,vh) + γ−1(divuh,div vh) + γ−1(div vh,div vh)

+ δαp(ph, ph) + αp(ph, γ
−1 div vh)

≥ δah(uh,uh)− 1

2

1√
λ
ε−1
1 ah(uh,uh)− 1

2

1√
λ
ε1ah(uh,0,uh,0) + δλ(divuh,divuh)

− 1

2
ε−1
2 λ(divuh,divuh)− 1

2
ε2

1

λ
(ph, ph) +

1

λ
(ph, ph) + δR−1

p (vh,vh)

− 1

2
ε−1
3 γ−1(divuh,divuh)− 1

2
ε3γ
−1(div vh,div vh) + γ−1(div vh,div vh)

+ δαp(ph, ph)− 1

2
ε4γ
−1(div vh,div vh)− 1

2
ε−1
4 α2

pγ
−1(ph, ph)

≥by(4.11),(4.8),(4.6) (δ − 1

2

1√
λ
ε−1
1 )αa‖uh‖2DG + (δ − 1

2
ε−1
2 )λ(divuh,divuh)

− 1

2
ε−1
3 γ−1(divuh,divuh) + δR−1

p (vh,vh)

+ (1− 1

2
ε3 −

1

2
ε4)γ−1(div vh,div vh) + (1− 1

2

1√
λ
ε1C

2
1C

2
0β
−2
sd −

1

2
ε2)

1

λ
(ph, ph)

+ (δ− 1

2
ε−1
4 αpγ

−1)αp(ph, ph).

Now letting ε1 = 1
2C
−2
1 C−2

0 β2
sd, ε2 = ε3 = ε4 = 1

2 and noting that ρ−1 ≤ γ, λ ≥ γ−1 > 0,
we obtain

A((uh,vh, ph), (wh, zh, ph))

≥ (δ − 1√
λ
C2

1C
2
0β
−2
sd )αa‖uh‖2DG + (δ − 2)λ(divuh,divuh) + δR−1

p (vh,vh)

+
1

2
γ−1(div vh,div vh) +

1

2

1

λ
(ph, ph) + (δ − αpγ−1)αp(ph, ph).

Next, setting δ := max{C2
1C

2
0β
−2
sd + 1

2α
−1
a , 2 + 1

2} and noting that αp ≤ γ, λ ≥ 1, we derive
the coercivity estimate

A((uh,vh, ph), (wh, zh, ph))

≥ 1

2
‖uh‖2DG +

1

2
λ(divuh,divuh) +

1

2
R−1
p (vh,vh)

+
1

2
γ−1(div vh,div vh) +

1

2

1

λ
(ph, ph) +

1

2
αp(ph, ph)

≥ 1

2

(
‖uh‖2Uh

+ ‖vh‖2V + ‖ph‖2P
)
.

Case II:

ρ = min{λ,R−1
p } = R−1

p , hence λ ≥ R−1
p , γ−1 ≤ ρ = R−1

p .

For any (uh,vh, ph) ∈ Uh × V h × Ph, by the second inequality in (4.7), there exists

(4.13) vh,0 ∈ V h, such that div vh,0 =
√
Rpph, ‖vh,0‖div ≤ β−1

dd

√
Rp‖ph‖.
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We choose

wh = δuh, zh = δvh −
√
Rpvh,0, qh = −δph − γ−1 div vh,

where δ is a constant which will be specified later.
Again we verify first the boundedness of (wh, zh, qh) by (uh,vh, ph). We note that

‖wh‖Uh
= δ‖uh‖Uh

.
From (4.13) and with γ−1 ≤ ρ = R−1

p we have

(
√
Rpvh,0,

√
Rpvh,0)V = R−1

p (
√
Rpvh,0,

√
Rpvh,0) + γ−1(div

√
Rpvh,0,div

√
Rpvh,0)

≤ (vh,0,vh,0) + (div vh,0,div vh,0)

≤ β−2
dd Rp‖ph‖

2 ≤ β−2
dd γ‖ph‖

2 ≤ β−2
dd (ph, ph)P .

Hence, we get the boundedness of zh, that is,

‖zh‖V ≤ δ‖vh‖V + β−1
dd ‖ph‖P .

Again we have the boundedness for qh according to (4.12).
In what follows we show the coercivity of Ah((uh,vh, ph), (wh, zh, qh)) in Case II.

Using the definition of (wh, zh, qh) and (4.13), we find

Ah((uh,vh, ph), (wh, zh, qh))

= ah(uh,wh) + λ(divuh,divwh)− (ph,divwh) +R−1
p (vh, zh)− (ph,div zh)

− (divuh, qh)− (div vh, qh)− αp(ph, qh)

= ah(uh, δuh) + λ(divuh, δ divuh)− (ph, δ divuh) +R−1
p (vh, δvh −

√
Rpvh,0)

− (ph, δ div vh −
√
Rp div vh,0)− (divuh,−δph − γ−1 div vh)

− (div vh,−δph − γ−1 div vh)− αp(ph,−δph − γ−1 div vh)

= δah(uh,uh) + δλ(divuh,divuh)− δ(ph,divuh)

+ δR−1
p (vh,vh)− (R−1/2

p vh,vh,0)− δ(ph,div vh) + (ph,
√
Rp div vh,0)

+ δ(divuh, ph) + γ−1(divuh,div vh) + δ(div vh, ph) + γ−1(div vh,div vh)

+ δαp(ph, ph) + αp(ph, γ
−1 div vh)

=by (4.13) δah(uh,uh) + δλ(divuh,divuh) + δR−1
p (vh,vh)− (R−1/2

p vh,vh,0)

+ (ph, Rpph) + γ−1(divuh,div vh) + γ−1(div vh,div vh)

+ δαp(ph, ph) + αp(ph, γ
−1 div vh).

Next, we apply Young’s inequality, use (4.13), and the coercivity of ah(·, ·), to get

Ah((uh,vh, ph), (wh, zh, qh))

= δah(uh,uh) + δλ(divuh,divuh) + δR−1
p (vh,vh)− (R−1/2

p vh,vh,0)

+ (ph, Rpph) + γ−1(divuh,div vh) + γ−1(div vh,div vh)

+ δαp(ph, ph) + αp(ph, γ
−1 div vh)
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≥ δah(uh,uh) + δλ(divuh,divuh) + δR−1
p (vh,vh)− 1

2
ε−1
1 R−1

p (vh,vh)

− 1

2
ε1(vh,0,vh,0) +Rp(ph, ph)− 1

2
ε−1
2 γ−1(divuh,divuh)

− 1

2
ε2γ
−1(div vh,div vh) + γ−1(div vh,div vh) + δαp(ph, ph)

− 1

2
ε3γ
−1(div vh,div vh)− 1

2
ε−1
3 α2

pγ
−1(ph, ph)

≥by(4.8),(4.13) δαa‖uh‖2DG + δλ(divuh,divuh)− 1

2
ε−1
2 γ−1(divuh,divuh)

+ (δ − 1

2
ε−1
1 )R−1

p (vh,vh) + (1− 1

2
ε2 −

1

2
ε3)γ−1(div vh,div vh)

+ (1− 1

2
ε1β
−2
dd )Rp(ph, ph) + (δ − 1

2
ε−1
3 αpγ

−1)αp(ph, ph).

Now, letting ε1 = β2
dd, ε2 = ε3 = 1

2 and noting that ρ−1 ≤ γ, λ ≥ ρ ≥ γ−1 > 0, we obtain

Ah((uh,vh, ph), (wh, zh, qh))

≥ δαa‖uh‖2DG + (δ − 1)λ(divuh,divuh) + (δ − 1

2
β−2
d )R−1

p (vh,vh)

+
1

2
γ−1(div vh,div vh) +

1

2
Rp(ph, ph) + (δ − αpγ−1)αp(ph, ph).

Finally, we choose δ := max{ 1
2α
−1
a , 1

2β
−2
dd + 1

2 , 1 + 1
2}, note that αp ≤ γ, and conclude the

coercivity of the bilinear form, i.e.,

Ah((uh,vh, ph), (wh, zh, qh))

≥ 1

2
‖uh‖2DG +

1

2
λ(divuh,divuh) +

1

2
R−1
p (vh,vh)

+
1

2
γ−1(div vh,div vh) +

1

2
Rp(ph, ph) +

1

2
αp(ph, ph)

≥ 1

2

(
‖uh‖2Uh

+ ‖vh‖2V + ‖ph‖2P
)
.

This completes the proof.
From the above theorem, we get the following stability estimate.
COROLLARY 4.5. Let (uh,vh, ph) ∈ Uh × V h × Ph be the solution of (4.1), then we

have the estimate

‖uh‖Uh
+ ‖vh‖V + ‖ph‖P ≤ C2(‖f‖U∗

h
+ ‖g‖P∗),

where ‖f‖U∗
h

= sup
wh∈Uh

(f ,wh)
‖wh‖Uh

, ‖g‖P∗ = sup
qh∈Ph

(g,qh)
‖qh‖P , and C2 is a constant independent

of λ,R−1
p , αp and the mesh size h.

REMARK 4.6. Denote by Ah the operator induced by the bilinear form (4.9), namely

Ah :=

−divh εh − λ∇h divh 0 ∇h
0 R−1

p Ih ∇h
−divh −divh −αpIh

 ,
and define

Bh :=

 (−divh εh − λ∇h divh)−1 0 0
0 (R−1

p Ih + γ−1∇h divh)−1 0
0 0 (γIh)−1

 .
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Then due to the theory presented in [29], Theorems 4.3 and 4.4 imply that the norm-equivalent
(canonical) block-diagonal preconditioner Bh forAh is parameter-robust, which means that the
condition number K(BhAh) is uniformly bounded with respect to the parameters λ, R−1

p , αp
in the ranges specified in (3.1) and with respect to the mesh size h. To apply the preconditioner
Bh, one has to solve an elasticity system discretized by an H(div)-conforming discontinuous
Galerkin method and an elliptic H(div) problem discretized by RT elements. In the lowest
order case, optimal solvers for these tasks have been proposed in [23, 25].

5. Error estimates. In this section, we derive error estimates that follow from the results
presented in Section 4. Let Πdiv

B : H1(Ω)d 7→ Uh be the canonical interpolation operator. We
also denote the L2-projection on Ph by Qh. The following Lemma summarizes some of the
properties of Πdiv

B and Qh needed for our proof; see [23].
LEMMA 5.1. For all w ∈ H1(K)d we have

div Πdiv
B = Qh div , |Πdiv

B w|1,K . |w|1,K , ‖w −Πdiv
B w‖20,∂K . hK |w|21,K .

THEOREM 5.2. Let (u,v, p) be the solution of (2.4) and (uh,vh, ph) be the solution of
(4.1). Then the error estimates

‖u− uh‖Uh
+ ‖v − vh‖V ≤ Ce,u inf

wh∈Uh,zh∈Vh

(
‖u−wh‖Uh

+ ‖v − zh‖V
)

and

‖p− ph‖P ≤ Ce,p inf
wh∈Uh,zh∈Vh,qh∈Ph

(
‖u−wh‖Uh

+ ‖v − zh‖V + ‖p− qh‖P
)

hold, where Ce,u, Ce,p are constants independent of λ,R−1
p , αp and the mesh size h.

Proof. Subtracting (4.1) from (2.4) and noting the consistency of ah(·, ·), we have that
for any (wh, zh, qh) ∈ Uh × V h × Ph

(5.1)

ah(u− uh,wh) + λ(div(u− uh),divwh)− ((p− ph),divwh) = 0,

R−1
p (v − vh, zh)− (p− ph,div zh) = 0,

−(div(u− uh), qh)− (div(v − vh), qh)− αp(p− ph, qh) = 0.

Let uI = Πdiv
B u ∈ Uh, pI = Qhp ∈ Ph. Now for arbitrary vI ∈ Vh, from (5.1), noting

that div Πdiv
B = Qh div and divUh = divV h = Ph, we conclude

ah(uI − uh,wh) + λ(div(uI − uh),divwh)− (pI − ph,divwh) = ah(uI − u,wh),

R−1
p (vI − vh, zh)− (pI − ph,div zh) = R−1

p (vI − v, zh),

−(div(uI − uh), qh)− (div(vI − vh), qh)− αp(pI − ph, qh) = −(div(vI − v), qh).

Next, since (uI − uh) ∈ Uh, (vI − vh) ∈ Vh, (pI − ph) ∈ Ph, by the stability result (4.10)
for the discrete problem (4.1), we obtain

‖uI − uh‖Uh
+ ‖vI − vh‖V

≤ Ce
(

sup
wh∈Uh

ah(uI − u,wh)

‖wh‖Uh

+ sup
zh∈V h

R−1
p (vI − v, zh)

‖zh‖V
+ sup
qh∈Ph

(div(v − vI), qh)

‖qh‖P

)
,

‖pI − ph‖P

≤ Ce
(

sup
wh∈Uh

ah(uI − u,wh)

‖wh‖Uh

+ sup
zh∈V h

R−1
p (vI − v, zh)

‖zh‖V
+ sup
qh∈Ph

(div(v − vI), qh)

‖qh‖P

)
.
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Using the boundedness of ah(·, ·), the second inequality in Lemma 5.1, the triangle inequality,
the fact that vI is arbitrary, and (div(v − vI), qh) ≤ ‖v − vI‖V ‖qh‖P , we arrive at

‖u− uh‖Uh
+ ‖v − vh‖V ≤ Ce,u inf

wh∈Uh,zh∈Vh

(
‖u−wh‖Uh

+ ‖v − zh‖V
)
,

and

‖p− ph‖P ≤ Ce,p inf
wh∈Uh,zh∈Vh,qh∈Ph

(
‖u−wh‖Uh

+ ‖v − zh‖V + ‖p− qh‖P
)
.

REMARK 5.3. From the above theorem, we can see that the discretizations are locking-
free.

6. Conclusions. This paper presents the stability analysis of a classical three-field formu-
lation of Biot’s consolidation model where the unknown variables are the displacements, the
fluid flux (Darcy velocity), and the pore pressure. Specific parameter-dependent norms provide
the key to establish the parameter-robust stability of the continuous problem. This allows
for the construction of a parameter-robust block diagonal preconditioner in the framework of
operator preconditioning. Discretizations that provide strong mass conservation are designed.
Further, both discrete parameter-robust stability and locking-free error estimates are proved.
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