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APPROXIMATIONS FOR VON NEUMANN AND RENYI ENTROPIES OF
GRAPHS USING THE EULER-MACLAURIN FORMULA*
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Abstract. There have been many attempts of understanding graph structures by investigating graph entropies.
In this article we investigate approximations for von Neumann and Rényi-a entropies of paths and rings, using the
Euler-Maclaurin summation formula. For « an integer, the approximations become exact, and, in general, the obtained
estimates have a remarkable degree of accuracy.
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1. Introduction. The Euler-Maclaurin (E-M) formula is an important tool in numeri-
cal analysis and one of the most remarkable formulas in mathematics. It estimates a sum

> h_o9(k) through the integral fon g(t) dt with an error term involving Bernoulli num-
bers [13]. One form of the E-M formula states

" 1
(k)= [ g(t)dt ~ (gm) ~ 9(0))
. kz:%g /0 g 59 —g
+ 35 =g/ 0) =5 [ Balhihig )

where k is a nonnegative integer, By () = 2 — x + 1/6 is the second Bernoulli polynomial,

and {¢} denotes the fractional part of ¢. The condition imposed on the real function g is that
it should have a continuous second derivative for ¢ € (0,n). If g has a continuous second
derivative for ¢ € [0,n] and a continuous third derivative for ¢ € (0, n), then the following
form holds (see [8]):

n—1 n .
(1.2) ,;Jg(k) :/0 g(t)dt = 5 (9(n) = 9(0)
+ %(g’(n) - g'(O)) + %/0 33({t})g"’(t) dt,

where Bs(z) = 23 — 322 /2 + x/2 is the third Bernoulli polynomial.
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Under the weaker hypothesis that ¢’(0) or ¢’(n) do not exist, i.e., ¢’(t) exists only for
t € (0,n), instead of (1.1) the following holds:

n—1 n 1 n
43 o= [Cadi= 5o -o0)+ [ Bt @t

where By (z) = x — 1/2 is the first Bernoulli polynomial.

In this paper we discuss the application of the E-M formula in graph entropy. The
E-M formula is an important tool for numerical integration and numerical summation [14].
Mathematica also uses this famous formula [14, p. 917]. Interestingly, neither Euler nor
Maclaurin presented this formula with remainder. The first one to do so was Poisson in 1830.
Since then, it has been derived in different ways (see [1] and [8] for elementary derivations).

The notion of entropy is due to Rudolf Clausius (1850) and is connected with his famous
theorem which generalizes the equally famous Carnot Theorem on the efficiency of thermal
machines. The concept has gained many applications in several research areas such as statistical
mechanics, information theory, etc. Recently, there have been many attempts of understanding
graph structures by investigating graph entropies (see [3, 4, 12, 15] and references therein).

Let GG be an undirected graph with n vertices and at least one edge, and let L(G) be the
combinatorial Laplacian matrix of G, that is, L(G) = D(G) — A(G), where D(G) is the
diagonal matrix whose (4, 7)-th entry is the degree of the vertex ¢ and A(G) is the adjacency
matrix of G [6]. Note that each row (and column) sum of L(G) is 0, and so L(G) is singular.
Normalizing this matrix by its trace, we get

1

p(G) = mL(G%

called the density matrix of G. By the Gershgorin Theorem, all eigenvalues of p(G) are
nonnegative [7]. Thus, G can be seen as a quantum state since p(G) is a Hermitian positive
semidefinite matrix with unit trace. Therefore, it is natural to investigate the information

content of the graph as a quantum state [10].
Let A, ..., A\, be the eigenvalues of p(G). Note that

A+t A = 1

The von Neumann entropy of G is defined as

S(G) == \ilog, Ai.
i=1

From now on, we will use the natural logarithm in the definitions of the entropy. (The two

definitions, using log, or log, are equivalent up to a positive constant.) We make the convention

that 0log 0 = 0. We will use the following notations for a graph on n vertices: K ,,—1 denotes

the star graph, P,, denotes the path, C,, denotes the ring, and K,, denotes the complete graph.
It is well known that the Laplacian spectrum of the star graph is

o(L(Ky 1)) = {0,n,1,...,1},

where the eigenvalue 1 has multiplicity n — 2. Thus, we have

n

(1.4) S(Kypn—1) =log(2n —2) — T

log(n),
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and

l. S(Kl,n—l) _ 1
im ———= = —.
n—oo log(n —1) 2

In [3, Conjecture 1.3], it has been conjectured that
CONJECTURE 1.1. For all connected graphs G on n vertices,

S(Kin-1) <S(G).

The conjecture was proved for almost all graphs with n vertices [3, Theorem 2.3]. In the same
article the following conjecture was also formulated:
CONJECTURE 1.2. For any tree T on n vertices,

S(T) < S(P).

Let G be a graph with at least one edge. Consider the density matrix p(G). Fora € (0,1)U
(1, 00) fixed, the Rényi-a entropy of G [11] is defined as

1 “L .
Ho(G) = 1 log;&-
and is also denoted as H,(p(G)). For a fixed graph G, the Rényi-« entropy H,(G) is a
monotonically decreasing function of « [3],

H.(G) < Hy (G) for a > .

It was proved in [3, Proposition 3.1] that H, (), for « > 1 and n > 1, when viewed as a
function of a probability distribution, A = (A1, ..., \,)
1. is minimized by the distribution \g = (1,0, ..., 0), and this is the only probability
distribution (up to a permutation of the entries) that does so;
2. is maximized by the constant distribution A\, = (1/n,...,1/n).
We have

(1.5) Ho(Kino1) = (1—a) "log((n® +n—2)(2n—2)"%).

In [3, Conjecture 3.3], the following conjecture has been formulated.
CONJECTURE 1.3. For a > 1 and any connected graph G on n vertices,

Hoz(Kl,n—l) § Ha(G)
Note that, as

lim H,(G) = S(G),
a—1t

the veracity of Conjecture 1.3 implies that Conjecture 1.1 has a positive answer.

This article is organized as follows: In Section 2 some useful background is presented.
In Section 3, estimates of the Rényi-a entropy of paths and rings on n vertices are obtained
for o € (1, 00). The obtained approximations are shown to be exact in the case of o being an
integer. In Section 4, approximations for the von Neumann entropy are given. The key tool for
obtaining these estimates is the E-M formula. In Section 5, some final remarks are presented.
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2. Preliminary results. Given a path P,, up to a permutation similarity, L(P,,) is the
tridiagonal matrix

1 -1 0 0
-1 2 -1
2.1 LP)=|0 -1
: 2 -1
0 -1 1

The eigenvalues of L(P,) are well known in the literature and can be readily obtained [6].
LEMMA 2.1. Let P, be a path on n vertices. Then the eigenvalues of L(P,) are

Br = 2+ 2cos(km/n), k=1,...,n.
The Laplacian matrix of the ring C,, is the circulant matrix

2 -1 0 -1

LEMMA 2.2 ([4]). The eigenvalues of L(C,,) are
Br =2 — 2cos(2mk/n), k=1,2,...,n.
PROPOSITION 2.3. The Rényi-2 entropies of P,, and C,, are, respectively,
Hy(P,) = 2log(2n — 2) — log(6n — 8) and Hy(C),) = 2log(2n) — log(6n).

Proof. Observing that Tr P,, = 2n — 2, Tr C,, = 2n, by easy computations, we get

n

k2 - 2%\ 2
Z 24+2cos— | =6n-38, and Z 2—2cos— | =6n,
n n

k=1 k=1
and the result follows. a
3. On the Rényi-a entropy of paths and rings.

3.1. Estimates for paths. The main results in this section are Theorems 3.5 and 3.6. To
prove them, some auxiliary lemmas are needed. We start by presenting them. Throughout the
article, the following form of the E-M formula is used:

LEMMA 3.1. Let n be a positive integer, and let f be a real function of class C* in [0, 1].
Then

GO S =n [ f@)de+ S0 = FO) + (1) = F0) + R
k=1

with

32) Ry = 6% /O By({na}) " (z) da,

Bs(z) = 23 — 32%/2 + /2 the third Bernoulli polynomial, and {x} the fractional part of .
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Proof. By the E-M formula (1.2), we have
n—1
Zf k/n) = f(n/n) = f(0/n)+ Y f(k/n)
k=0

= f(n/n) = f(0/n) + /n f(t/n)dt - 1(f(n/n) — f(0/n))

1 /)| 1 / (en L g,

2 d |, "6 BT

- /0" f(t/n)dt + %(f(n/n) — f(0/n))

Ldf(t/m)|" | 1 3 (t/n)
50 t=0+6/ sy L) .

Changing variables © = t/n, the result follows. a
LEMMA 3.2. Let f : R — R

f(x) = (2+2cos(rx))”, aeR.
Then for R,, in (3.2) and o > 1

lim nR, =0.
n—oo
Proof. Notice that
am? o 9
f'(x) = —7(2 + 2cos(mz))” (1 — a + acos(mx)) sec”(mx/2),
am?

' (x) = 5 ——(2+2cos(mx))* (=1 + 3a — a? + a? cos(nx)) sec? (7 /2) tan (7 /2)

and that f"’(zo) = 0 for
1
xo = — arccos((1 — 3o+ a?)/a?),
™

where f”/(z) changes sign. By easy computations and having (1.2) in mind, we find for
a>1,

/0 P (@) dz = £7(0) + (1) — 21" (o)
a(—4°+ (4 +4(4+2/a% - 6/a)”) a) 7

- 2—1+1a) = da-
Having in mind that
Ba(a)] < — .
123
we get
da
Ral < T

and the result follows. O
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Throughout, we use the following formula as given in Mathematica:

! ] o 4°T(1/24a)
(3.3) /0 (2+ 2cos(27mz))" do = Jita) Cas

where a > —1/2 and T is the well-known Gamma function.
LEMMA 3.3. For o > 1, we have

. - o A°T(1/24+a) 4%\
nlirrgon <; (2 4+ 2cos(km/n))" — mn + 2) =0.

Proof. For f(x) = (2+ 2cos(rz))”, we have f(1) = 0, f(0) = 4%, f'(1) = 0,
f'(0) = 0. This function is of class C? in the interval [0, 1]. By Lemma 3.1, we get

> 2eosmk/n)” =n [ 2)dr 4 5(70) = FO) + 5 () = /0D + o

4°T(1/2+ ) 4“
= S — R
"M ta) 2
where nR,, — 0 as n — co, by Lemma 3.2. O
In Table 3.1 we compare, for n = 40, the sum ZZ:O By, where f31,..., 3, are the

eigenvalues of L(P,), its approximation c,n — 4% /2, and R,,. The vanishing values of R,
suggest that, for « a positive integer, R, = 0.

TABLE 3.1
Comparing Y 1_o B, can — 4% /2, and Ry, for n = 40.

a Y poBE can—4/2 R,

3/2 131.812 131.812 4.03876 x 10~
2 232 232 0

5/2  418.599 418.599  —1.1875 x 1078
3 768 768 0

7/2  1426.05 1426.05 7.7307 x 1011
4 2672 2672 0

9/2 5041.97 5041.97 9.09495 x 1013
5 9568 9568 0

It is interesting to consider the case when « is an integer. For « = m € ZT, we may write

4°T(1/2+ @) 4"T(1/2+m)  4™(m —1/2)(m —3/2)---1/2

Vil(l+a)  al(1+m) m!
_2m(2m — 1)
N m! ’

where (2m — )!l = (2m —1)(2m —3)--- 1.
LEMMA 3.4. Form,n € Z™,

Z (2 4 2cos(wl/n))™ = n2m 2= -
=1
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Proof. Fort € R and p, k € ZT, by the binomial theorem, the following identity holds:

m

(2 + 2cos(t))™ Zchosp <>, meZr.

Considering (e + e~%)/2 = cos(t), we easily find, again by the binomial theorem, that

et e 1 P\ 2ikt—itp 1 p
T _ = _ _
( ) = > (k)e = g 1 (k) cos(2kt — tp)

because (}) = (pf ,)- Hence,

cosP (t Zcos ((2k — p) )(k>

As the sum of the n roots of unity is zero,

Zemk‘zw/n =0, 0 # s e Z,

k=1

forr = 25,0 # s € Z, we have

Z cos(mrk/n) = 0.

k=1

Forr = 2s + 1, s € Z, it can be easily seen that
Zcos(wrk/n) =—
k=1

Thus,

n m/2] Gmax
; (2 + 2cos(wl/n))™ = n2 Z 22q —2q lqlg! Z <2q+1>

where ¢max = m/2 — 1 if mis even and gyax = (m — 1)/2 if m is odd.
The following identity holds (see [2]):

[m/2]

Z m! _ (2m—-1)!
= 224(m — 2q)!qlq! m!
We easily conclude that
iy m 4m
2 qz::o (2q+1) T2
and the result follows. a
THEOREM 3.5. For « an integer and c,, in (3.3), the E-M approximation

gl
20

NCq —
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to the sum
> (24 2cos(nl/n))
=1
is exact.
Proof. This is a simple consequence of Lemma 3.4. a
We recall that
1 =
(3.4) Ho(Pp) = T— <1og ; B — alog(2n — 2)) :

where the [, are the eigenvalues of L(FP,,) in (2.1). We use the notation

(35)  Hu(P,) = ﬁ <log (%n - 4;) — alog(2n — 2)> .

THEOREM 3.6. For a > 1 and H,(P,) in (3.5), we have
lim n(Ho(Py) = Ha(Pn)) = 0.

Further, it holds that

H, (P,
lim (Pn)

et .
n—oo log(n — 1)

Proof. Let 31, . . ., By, be the eigenvalues of L(P, ). We may write

(3.6) H,(P,) = a i ) <log2ﬂf‘ — alog(2n — 2))
i=1

! 4°T(1/2+a) 40

so that for ¢, in (3.3) we find
1 4« " 4o\"
T & (log <can iy + Rn> —log <can - 2) >

_L 1 1+L !
1o \® com — 4% /2 '
We have

R, " R, "
lim log (14+ ——" ) =log lim (14— ) =0
s 08 ( T = 4a/2) 08 i ( t lea = 4a/(2n))>

because lim,,_, oo cﬂ%"‘/(%) = 0. It follows that

n(Ha(Pp) — I:’a(Pn)) =

lim n(Hy(P,) — Ho(Py)) = 0.

n— o0
We may also write
log(ca + (ca —4%/2+ R,)/(n — 1)) — alog 2
l—«a

Ha(Pn) = 1Og(n - 1) +

so that
H,(P,) _ log (co + (ca —4%/24+ R,)/(n—1)) — alog 2

log(n — 1) (1—-a)log(n—1)

Then, the last statement follows. O
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n Hs)o(Py) Hs)o(Pn)  Hsjo(Kin-1) nR,
5 1.11171414 1.11204036 0.934611644 0.0105839
10 1.87183531 1.87185266 1.31230703 0.002 59912
20  2.59792755 2.59792856 1.558 84276 0.000646914
40 3.30736978 3.30736984 1.723602 20 0.000161 550
80 4.00861581 4.00861582 1.83477278 0.000040376 5
160 4.70579976 4.70579976  1.91029025 0.000010093 5

3.1.1. Numerical experiments. In Table 3.2 we compare the Rényi-3/2 entropy of the
path P,, with the approximate result in Theorem 3.6, denoted by H 3/2(Py), and with the
Rényi-3/2 entropy of K ,,_1 using equations (3.4), (3.5), and (1.5). The values of nR,, are
also presented, suggesting that nR,, behaves like 1/n? so that R,, behaves like 1/n3.

Notice that (3.5), which has been derived having (1.1) in mind, remains valid also if
a < 1. In this case, we use (1.3), the only difference is the so obtained R,, because in the
actual application of the formula it turns out that ¢’(n) = ¢’(0) = 0.

In Table 3.3 we compare the Rényi-1/2 entropy of the path P,, with H, /2(Pp) and with

the Rényi-1/2 entropy of K1 ,_1 using equations (3.4), (3.5), and (1.5). The values of nR,,
are also presented, suggesting that nR,, remains almost constant so that R,, behaves like 1/n.

_TABLE 3.3

Comparing Hy j2(Pn), Hy/2(Pn), Hy/2(K1,n-1), and nRn.

n Hyjp(Pn) Hyjp(P,)  Hypp(Kino) nk,
5 1.26115463 1.28079766 1.23170012 —0.262231
10 2.02986628 2.034 33596 1.93470830 —0.261907
20 2.75581329 2.756 88380 2.58696612 —0.261826
40 3.46425628 3.46451847  3.22636881 —0.261 806
80 4.16479032 4.16485521 3.86793969 —0.261801
160 4.86156740 4.86158355  4.51716754 —0.261 800
_ TaBLE3.4
Comparing Hy ;4(Pn), Hy/4(Pn), Hy/4(K1,n—-1), and \/nRy.
n H1/4(Pn) H1/4(Pn) H1/4(K1,n—1) \/ﬁRn
5 1.31866798 1.36641122 1.31091050 —0.368 592936
10 2.10176931 2.11727319 2.076 76080 —0.368 499 782
20 2.83308794 2.838363 06 2.78940862 —0.368476 500
40 3.54342184 3.54525341 3.48332238 —0.368470 680
80 4.24457358 4.24521550 417158073 —0.368 469 225
160 4.94153005 4.94175603 4.85912326 —0.368468 861

In Table 3.4 we compare the Rényi-1/4 entropy of the path P, with H; /4(P,) and with
the Rényi-1/4 entropy of K ,,_1 using (3.4), (3.5), and (1.5). The values of /nR,, are also
presented, suggesting that y/n R,, remains almost constant so that R,, behaves like 1/4/n.
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3.2. Estimates for rings. Next we state results for rings analogous to those previously
presented for paths. We omit the proofs since they are similar.
LEMMA 3.7. Let o > 1 and f : R — R be defined by f(z) := (2 — 2cos(2wz))”. Then

(3.8)

lim n <i f(ﬁ)

We use the notation

(3.9)

THEOREM 3.8. For o > 1,

1 4°T(1/2 4 a)
_ B 4°T(1/2 + @)
Ha(Cn) = 1—a (log (n V(1 4 «)

n' /a1 + a)

Proof. The proof is similar to the one of Lemma 3.3.
Notice that

4°T(1/2 + a))

lim n(Ha(Cy) — Ha(Cy)) =0,

n—oo

0

=0.

+ Rn> — alog(2n)) .

) - atogton)).

with H, (Cy,) and ﬁa(C’n) in (3.8) and (3.9), respectively. Moreover, the approximation for
integer values of o becomes exact, and

Proof. The proof is similar to those of Theorems 3.5 and 3.6.

lim

H, (Cy)
n—oo log(n — 1)

=1.

a

In Table 3.5 we compare, Hs/5(Cy), }~I3/2(C’n), and Hj /(K1 1) using (3.8), (3.9),
and (1.5). The last column suggests that nR,, behaves like 1/n? so that R,, behaves like 1/n3.

_TABLE 3.5
Comparing H3 /5(Cr), H3/2(Cn), Hg/2(K1,n—1), and nRy.

n H3/2(Cn) H3/2(Cn) H3/2(K1,n71) nR,
5 1.23979786 1.24409200 0.934611644 0.182445
10 1.93698982 1.93723918 1.31230703 0.0423355
20 2.63037105 2.63038636 1.55884276 0.010396 5
40 3.32353259 3.32353354 1.72360220 0.002 587 66
80 4.01668066 4.01668072 1.83477278 0.000 646 201
160 4.70982790 4.70982790 1.91029025 0.000 161 506

4. Estimating the von Neumann entropy of paths and rings. In this section we apply
the E-M formula to the evaluation of the von Neumann entropy of the path P,, for arbitrary n.
Let f: R = R,

f(x) = (24 2cos(mz))log(2 + 2 cos(mx)).

Then (3.1) and (3.2) hold. Since f(z) is not of class C? in [0, 1], the upper bound for R,,
in (1.2) is not useful. However, it holds that

lim R, =0.

n—oo
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Indeed, we clearly have

2.41988
//
Rl < 3 [ 17 2

since, numerically, we find

1
/ |7 (@)| da = 29.0386.
0
We estimate R,,. For this purpose, we consider the integral in (3.2)

1 e 2f(t/n)
= | Baltnapyr ) o - / (i TET gy

As f(z) is not of class C? in [0, 1], we consider the form (1.1) of the E-M formula. In order to
deal with a divergence which arises in the integral, we split the integral over ¢ into two parts:

[ B ae= [ e s [1 paen LU o

By the version (1.3) of the E-M formula, the sum ;' _ 0 i(k) can be estimated by the integral
fo t) dt. To evaluate this integral, we consider

o 2f(t/n)
/O By({ty) LLWM) e dt.

The fourth derivative of f(¢/n) is given by

4 4
% = Z ( 2+ 2cos( " ) (4 +log 2 + log <1 + COS(?))) —sec2(;:)> = g(t).
Thus,

k+1 n
i(k) ::/k Ba({t}) dt’;/ ) t—%g(kw...

a4

= W( — 24 2cos(mk/n) (4 + log 2 + log (1 + cos(nk/n)))

— sec2(7rk/(2n))) +O(1/n),

where O(1/n) approaches 0 as n — co.
By changing variables 2 = k/n in the integral we find that

n—1 (n—1)/n
/ i(k)dk = n/ i(nx)dx
0 0

1 1 1-1/n
= 3503 / 7 (=2 4 2 cos(mz) (4 + log 2 + log(1 + cos(rz))) — sec®(rz/2)) da
n= Jo

472
360n2’

if n is sufficiently large.
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Next we evaluate

/ Ba((t)) azf d(ttQ/n) a

using

a2 f 2, -2 -2 AN 2
= - 2 1 - — - 1
Uz = 6m°n"? 4 21°n"%log (77 - ) +n7°0(1/n),

which is valid for n large and & close to n. Hence, for n large

" d?f(t/n)
and
272 2 1172 3
R = g5om2 T Tz T O/) = 1ggp + O/

Thus lim,, ,,, nR, = 0, and so
li ; k 2 2logd | =0
nLH;OanE—n+ ogd | =0.
k=1
The entropy of the path P, is given by

4.1) S(P,) = log(2n —2) — i log B;,

where 1, ..., 3, are the eigenvalues of L(FP,) in (2.1). By the formula of Euler-Maclaurin,
we may write as in the Lemma 3.1

4.2) S(P,) =log(2n —2) — o — 2 (2n —4log2+ R,,).
We have
= 1
S(Pa) = S(Pa) = 35— R
where
S(P,) =log(2n —2) — T (2n —4log2)
Now,

and further, since

S(Py) 14
log(n — 1) log(n — 1)

1
<log(2) ~ 3 (2n —4log2 + Rn)> ,
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Comparing S(Pp), g(Pn), S(K1,n—1), and nRy.

n S<Pn) §<Pn) S(Kl,nfl) nR,
5 1.17298381 1.17601513 1.07354285 0.121253
10 1.93295873 1.93329335 1.61115782 0.0602328
20 2.65787788 2.65791744 2.06088496 0.0300676
40 3.36660899 3.36661381 2.46497577 0.0150277
80 4.06748424 4.06748484 2.84384737 0.00751311
160 4.76448083 4.76448091 3.20850481 0.003 75646
it follows that
P,
lim S (Fn) =1.

n—oo log(n — 1)

In Table 4.1 we compare the von Neumann entropy of the path P, with the approxi-
mate result denoted by S(P,) and with the von Neumann entropy of K ,,—1 using equa-
tions (4.1), (4.2), and (1.4). The values of n 12, are also presented, indicating that n12,, behaves
like 1/7 so that R,, behaves like 1/n%. We notice that S(P,,) approaches S(P,,) from above.

We next obtain similar results for the ring C,, with n vertices. Consider the function
f:R =R, f(z) = (2 —2cos(2rz))log(2 — 2 cos(2mz)), observe that f(1) — f(0) = 0,
/(1) = f'(0) = 0, and that

1
| @ og ) do =2
0
as given by Mathematica. By Lemma 3.1, we obtain

1
5 (2n + Ry).

n

4.3) S(Cy) = log(2n)

As lim,, ., nR,, = 0, we have

lim (S(Cy) — S(Cy)) = 0,

n—oo
where

(4.4) 5(C,) = log(2n) — 1.
Moreover,

lim 7S(Cn) =
n—oo log(n — 1)
_ InTable 4.2 we compare the von Neumann entropy of the ring C,, with the approximation
S(C},) and with the von Neumann entropy of K7 ,,_; using (4.3), (4.4), and (1.4). The last
column suggests that nR,, behaves like 1/n so that R,, behaves like 1/n2.

5. Final remarks. In this note we have illustrated applications of the Euler-Maclaurin
formula to the estimation of graph entropies of paths and rings. More generally, E-M formulas
are available and potentially can be used in the same way as it was done for entropies of other
graphs. From the previous Theorems 3.6 and 3.8 we conclude that, asymptotically, H,(P,,)
and H,(C,,) behave as log(n — 1).
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n S(Ch) S(Cy) S(Kypn1) nR,

5 1.28266167 1.30258509 1.07354285 0.996171
10 1.99330722 1.99573227 1.61115782 0.485011
20 2.68857829 2.68887945 2.06088496 0.240931
40 3.38198905 3.38202663 2.46497577 0.120271
80 4.07516912 4.07517382 2.84384737 0.0601109

160 4.76832041 4.76832100 3.20850481 0.0300524

In Figure 5.1 we present Ho (P,) — Ho(P,) on the left-hand side and R,, on the right-
hand side for 2 < n < 160 and for & = 1/2,3/2,5/2 and 7/2. It may be seen that R,, and
H,(P,) — ﬁa(Pn) decrease extremely fast in absolute value as n increases. Indeed, these
quantities are practically equal to 0 for n > 30.

x x
osFT————T————— T T— T 10 T
il

gluid L L L L L L L L L L L L L 6 L L Loy et Loy Lo L Loy et
2 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 2 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
n n

FIG. 5.1. The behavior of Ho(Pr) — I—~Ia (Pr) on the left-hand side and of the corresponding Ry, on the
right-hand side as n increases. The curve labeled Ry, in the figure refers to the error in the sum Y, B); 1og By,
where By, are the eigenvalues of (2.1).

In Figure 5.3, we present the von Neumann entropy S (P,) for the path P, and the

L 13 2. We can see from this figure that

Rényi-« entropies I;Ta(Pn) fora=7,3,5,

ﬁ1/4(Pn) > ﬁl/Q(Pn) > S(P,) > fI?)/Q(Pn) > Hy(P,)

as expected. These entropies increase with n for n > 2.
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