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CONVERGENCE ANALYSIS OF AN EXPLICIT SPLITTING METHOD FOR
LASER PLASMA INTERACTION SIMULATIONS∗

GEORG JANSING† AND ACHIM SCHÄDLE†

Abstract. The convergence of a triple splitting method originally proposed by Tückmantel, Pukhov, Liljo, and
Hochbruck for the solution of a simple model that describes laser plasma interactions with overdense plasmas is
analyzed. For classical explicit integrators it is the large density parameter that imposes a restriction on the time
step size to make the integration stable. The triple splitting method contains an exponential integrator in its central
component and was specifically designed for systems that describe laser plasma interactions and overcomes this
restriction. We rigorously analyze a slightly generalized version of the original method. This analysis enables us to
identify modifications of the original scheme such that a second-order convergent scheme is obtained.
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1. Introduction. We consider the numerical solution of a system of equations describing
laser plasma interactions with an overdense plasma that is a simplified version of the models
considered in [14, 16]. Essentially as in [17], the laser is described by Maxwell’s equations,
and the plasma is modeled as a fluid only, in contrast to [14, 16]. After discretizing in space
with a fixed spatial grid size h, a system of ordinary differential equations is obtained. This
highly oscillatory system of ordinary differential equations is discretized in time by a triple
splitting method with filter functions. The introduction of filter functions is a widely-used
method to avoid resonance effects in splitting methods applied to oscillatory differential
equations; see, e.g., [4, 6, 7, 11] and [8].

The situation to consider now is slightly unusual as it is the localized overdense plasma
and not the spatial discretization that gives rise to fast oscillations in the solution. The plasma
frequency is several orders of magnitude larger than the laser frequency, which has to be
resolved by the spatial grid. Hence, it is the plasma density ρ that imposes a step size restriction
in explicit Runge-Kutta or multistep methods. To overcome the restriction on the time step
size due to the plasma density, a triple splitting method with filter functions was introduced
in [13, 17] for this model problem. An astute choice of filter functions results in a method
that shows excellent behavior in numerical experiments. The numerical experiments in [17]
indicate convergence of second order in the time step size τ independent of ρ. A more detailed
experiment, which is reported in Section 8.1, reveals that the method from [17] is not of second
order in τ independent of the plasma density but is merely stable.

By our convergence analysis of the triple splitting we are able to formulate conditions on
the filter functions to obtain second-order convergence in τ independent of the plasma density ρ.
These conditions can be fulfilled by slightly modifying the choice of the filter functions
originally proposed in [13, 17]. The modification comes at no additional computational cost.

As the triple splitting is an explicit integrator, the method certainly can not be expected to
be convergent uniformly as h→ 0, where h is the spatial discretization parameter. In regions
without plasma, our method reduces to the leapfrog method such that the usual CFL condition,
depending on the spatial discretization, is certainly necessary for stability. Our aim here is to
prove convergence independent of the large plasma density ρ but not independent of h.
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In a nutshell, the idea for the convergence proof is as follows: The triple splitting for the
impulse of the plasma p, the electric field e, and the magnetic flux b will be reformulated as a
two-step method for e only with some sort of “natural” filters. Perturbing the initial values, this
reformulation allows us to estimate the error in e using [8, Theorem XIII.4.1]. We then show
that the perturbation in the initial values is small enough such that by a stability argument,
convergence for e is obtained. The estimates for the magnetic flux b and the impulse p are
obtained by a judicious combination of ideas borrowed from [6] with trigonometric identities.
The present paper is based on the first part of [12].

2. The physical problem and its spatial discretization. Consider the propagation of a
short laser pulse in vacuum targeted at a plasma around a thin foil. The electric field e and
the magnetic flux b describing the laser are governed by Maxwell’s equations. In this simple
model the plasma is modeled as a fluid by the electron number density ρ (number of electrons
per volume) and the probability density function p such that ρp is the impulse of the electrons.
We will use a somewhat sloppy notation and let p denote an impulse in what follows. The laser
plasma interactions with an overdense plasma (ρ� 1) and a linear response of the plasma to
the laser are modeled by

∂tp = e, x ∈ B, t > 0,(2.1a)

∂te = ∇× b− f2ρp, x ∈ B, t > 0,(2.1b)
∂tb = −∇× e, x ∈ B, t > 0.(2.1c)

Here f = 2πe, where e, the electron charge, is a constant. B is the computational domain,
a box containing the plasma and the support of the initial values. The vacuum permittivity
(electric constant) and permeability (magnetic constant) are set to 1. In our simplified model,
plasma only oscillates locally, thus its impulse p also oscillates, but the density ρ remains
constant. There are two further essential assumptions. We assume that the electrons move
slowly such that relativistic effects can be neglected, i.e., the velocity field of the plasma v is
proportional to the impulse p. Secondly, we neglect the magnetic Lorentz force v × b. These
rather restrictive assumptions make the model (2.1) linear. A more detailed derivation of the
model may be found in [15, 17].

Equation (2.1) has to be supplemented with boundary conditions and initial values. The
theory developed below applies to the case of a perfect magnetic conductor (PMC), a perfect
electric conductor (PEC), or periodic boundary conditions, which guarantee that the “curl curl”
operator is self-adjoint; see [10].

As we only discuss the convergence of the semi-discrete problem in the following, the
solution of the spatially discretized equations will again be denoted by p, e, and b. Discretizing
in space with the Yee scheme or curl-conforming finite elements, we denote by CE and CB

the discrete versions of the “curl” applied to e and b, respectively. The electric field e can
conveniently be interpreted as a differential 1-form, and then CE is a discrete version of
“curl”. Whereas in this context, b has to be interpreted as differential 2-form such that CB

is as discrete version of “*curl*”, where * is the Hodge operator; see [9]. Hence, the two
∇×-operators acting on either e or b are different.

The multiplication with f2ρ is discretized by a matrix Ω2. In case of the Yee scheme,
Ω2 is a diagonal matrix. In case one uses curl-conforming finite elements, Ω2 is a positive
semi-definite matrix, and mass matrices arise on the right-hand side of (2.1). In what follows
we assume that Ω2 is a diagonal matrix with only one positive eigenvalue. Generalizations to
a non-diagonal but symmetric positive semi-definite discretization Ω2 of the multiplication
operator will be discussed in Section 7.
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If space is scaled with respect to the wave number and time with respect to the laser
frequency, then the spatially discretized equations are

∂tp = e, t > 0,(2.2a)

∂te = CBb−Ω2p, t > 0,(2.2b)
∂tb = −CEe, t > 0.(2.2c)

Assuming for the moment that ρ vanishes, a right traveling pulse with width-parameter σ0 and
wavelength 1 solving (2.1) is given by

(2.3)
ey = bz = a0 exp

(
− (2π[(x− x̄)− t])2

2σ2
0

)
cos(2π[(x− x̄)− t]),

ex ≡ ez ≡ bx ≡ by ≡ 0.

In Figure 2.1, snapshots of the solution at different times from an exemplary simulation
are shown to illustrate the interaction of the pulse with an overdense plasma, i.e., ρ > 1. There,
the spatially one-dimensional case with B = [0, 30] is considered. Setting t = 0, x̄ = 10,
σ0 = 10, and a0 = 1 in (2.3), the initial values for the fields and the impulse were chosen
leading to a pulse centered at 10 with amplitude 1 traveling in positive x-direction. The plasma
is situated away from the initial location of the pulse by taking ρ = 108 for x ∈ [20, 21]
and ρ = 0 elsewhere. This leads to a total reflection of the laser pulse on the edge of the
plasma. It looks odd that parts of p remain around x̄. However, as the density ρ is zero there,
so is the impulse ρp such that this is not a nonphysical behavior. The spatial derivatives are
approximated via second-order central finite differences on a staggered grid, where we use
N + 1 = 241 grid points for e, b, and p each. These spatial discretization parameters are also
used in the numerical experiments in Section 8.1.
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FIG. 2.1. Solution of (2.1) with the laser pulse from (2.3) as initial value computed using the matrix exponential
of the discretized operators. Impulse py (green), electric field ey (red), magnetic flux bz (blue), and electron density
ρ (magenta) scaled to one. First plot (t = 0): initial data; second (t = 5): propagation of the pulse in vacuum; third
(t = 10): total reflection at the foil; fourth (t = 20): back propagation.
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3. Numerical scheme and filter functions. To solve the spatially discretized equa-
tions (2.2), we use the triple splitting method proposed in [13, 17]. To this end the right-hand
side is split into three terms

∂t

 p
e
b

 =

 0
0

−CEe

+

 0
CBb

0

+

 0 1 0
−Ω2 0 0

0 0 0

 p
e
b

 := f1 + f2 + f3.

The fully discrete scheme is a symmetric triple splitting obtained by taking the exact flows
of the split equations (i.e., with only one fi as right-hand side) as propagators. As already
observed in [13, 17], due to resonances, this is not sufficient for convergence independent
of ρ. We follow [13, 17], introduce filter functions symmetrically and obtain the following
numerical scheme:

bn+ 1
2

= bn − τ
2ψB( τ2Ω)CEφE( τ2Ω)en,(3.1a)

e+
n = en + τ

2ψE( τ2Ω)CBφB( τ2Ω)bn+ 1
2
,(3.1b) [

pn+1

e−n+1

]
=

[
cos(τΩ) τ sinc(τΩ)
−Ω sin(τΩ) cos(τΩ)

] [
pn
e+
n

]
,(3.1c)

en+1 = e−n+1 + τ
2ψE( τ2Ω)CBφB( τ2Ω)bn+ 1

2
,(3.1d)

bn+1 = bn+ 1
2
− τ

2ψB( τ2Ω)CEφE( τ2Ω)en+1.(3.1e)

For i ∈ {E,B}, we require ψi, φi to be even, analytic functions such that ψi(z), φi(z)→ 1
for z → 0.

In the following section we state assumptions on the physical data and the spatial dis-
cretization that are necessary for the convergence proof.

4. Assumptions. The following assumptions are not too restrictive from a theoretical
physics point of view. They are fulfilled for example in the situation considered in [13, 17]
simulating the reflection of a laser pulse by a plasma.

ASSUMPTION 4.1. We assume that
(i) the product CBCE =: −G = −GT is symmetric, positive semi-definite,

(ii) Ω is a diagonal matrix given by

(4.1) Ω =

[
0 0
0 ω̃ Id

]
, ω̃ � 1, and

(iii) (4.2) ‖CE‖ ≤ Cc and ‖CB‖ ≤ Cc such that ‖G‖ ≤ Cg := C2
c ,

with a constant Cc independent of ω̃.
The symmetry and negative semi-definiteness of G comes quite natural provided that

the continuous “curl curl” operator is self-adjoint and positive semi-definite, which is the
case for appropriate boundary conditions such as a perfect electric conductor (PEC), a perfect
magnetic conductor (PMC), or periodic boundary conditions [10]. Condition (4.1) implies
that the matrix Ω has only one (large) non-zero eigenvalue ω̃ > 0. In our case it is given by
the density parameter, i.e., ω̃ = f

√
ρ. This is an essential restriction, which is only needed in

the proof of Theorem 6.5. A modification of our proof that only requires Ω to be symmetric
positive semi-definite is given in [2] and is discussed in Section 7. Here Ω is a diagonal matrix
and the filter functions are evaluated once on the diagonal elements in the beginning, and the
application of the filter function reduces to an elementwise product of two vectors. If Ω is not
a diagonal matrix, then the evaluation of the action of the filter functions applied to a vector
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can become prohibitively expensive. The estimates (4.2) imply that we do not obtain error
bounds uniformly in the spatial discretization parameter, e.g., the mesh width. As mentioned
already in the introduction, this would indeed be impossible for our integration scheme since
it reduces to the Störmer-Verlet method in case of no material (ρ ≡ 0), which is known to
be conditionally stable only. Assumption 4.1 is for example satisfied if the curl operators
with periodic boundary conditions are discretized using a Yee-scheme and a step function ρ is
evaluated pointwise.

Additionally we need some bounds on the initial data e0,b0, and p0 to obtain stable
solutions as discussed in Section 6.1:

ASSUMPTION 4.2. We assume that

‖Ωe0‖2 ≤ 2
3H0, ‖CBb0‖2 ≤ 1

3 min{1, 4
C2

4
}H0, ‖Ω2p0‖2 ≤ 1

3H0,(4.3)

−〈e0,Ge0〉 = ‖CEe0‖2 ≤ 2H0, ‖e0‖2 ≤ H0,(4.4)

‖b0‖2 ≤ H0 and ‖Ω2CBb0‖2 ≤ H0,(4.5)

with constants H0 and C4 independent of ω̃. C4 is the constant given in (5.2d) below.
A bound with respect to multiplication with Ω implies that the initial data are sufficiently

far away from the plasma such that the product of the field strength and the density is bounded
independent of the density. Bounds with respect to multiplications with CB or CE may be
seen as smoothness conditions for the initial data.

5. Main theorem. For our convergence result we need conditions on the filter functions,
which we collect below. As in [17] we require

φB ≡ ψB ≡ 1.(5.1)

The following bounds for the filter functions, which hold, for example, for ψE(z) = sinc(z)
and φE(z) = sinc2(z), are required for second-order convergence of the scheme (3.1):

|(cos(z) + 1)ψE( 1
2z)| ≤ C1 sinc2( 1

2z),(5.2a)

|φE( 1
2z)| ≤ C2| sinc( 1

2z)|,(5.2b)

|(cos(z) + 1)ψE( 1
2z)φE( 1

2z)| ≤ C3| sinc(z)|,(5.2c)

|(cos(z) + 1)ψE( 1
2z)| ≤ C4| sinc(z)|,(5.2d) ∣∣sinc(z)− 1

2 (cos(z) + 1)ψE( 1
2z)
∣∣ ≤ C5z

2| sinc(z)|,(5.2e)

| sinc(z)− φE( 1
2z)| ≤ C6|z sin( 1

2z)|,(5.2f)
|ψE(z)| ≤ C7, and(5.2g)

| sinc2( 1
2z)− sinc(z)φE( 1

2z)| ≤ C8 sin2( 1
2z).(5.2h)

With these conditions we obtain our main result
THEOREM 5.1. Let CB ,CE , and Ω be such that Assumption 4.1 is fulfilled. Consider

the numerical solution of the system (2.2) by the splitting method (3.1) with a time step size τ
satisfying τ ≤ τ0 for sufficiently small τ0 independent of ω̃ such that τ ω̃ ≥ c0 > 0 for some
constant c0. If the initial values satisfy conditions (4.3)–(4.5) with a constant H0 independent
of ω̃ and the filter functions satisfy (5.2a)–(5.2h), then for tn := t0 + nτ ≤ T , we obtain the
following second-order estimates for the errors

‖pn − p(tn)‖ ≤ Cτ2, ‖en − e(tn)‖ ≤ Cτ2, ‖bn − b(tn)‖ ≤ Cτ2.

The constant C is independent of ω̃, τ , n, and the derivatives of the solution, but it depends
on (T − t0), the constants c0, C1, . . . , C8 in (5.2), Cc in (4.2), and H0.
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The assumption τ ω̃ ≥ c0 > 0 comprise the interesting case and is no restriction as
otherwise we are in the case of the classical convergence analysis. The proof is given in
Section 6.

Choice of the filter functions. In [17] the authors propose the choice

(5.3) φE = ψE = z 7→ sinc(z), φB ≡ ψB ≡ 1,

which satisfies the conditions (5.2b)–(5.2h). It does not obey condition (5.2a) but only the
weaker estimate |(cos(z)+1)ψE( 1

2z)| ≤ C0 sinc( 1
2z). Detailed numerical tests in Section 8.1

for this choice reveal sharp resonances at even multiples of π/ω̃, which where not observed
in [17], presumably due to an underresolved numerical experiment.

We propose the new choice

(5.4) φE = z 7→ sinc(z), ψE = z 7→ sinc2(z), φB ≡ ψB ≡ 1,

which also satisfies the first filter condition (5.2a) and thus by Theorem 5.1 results in second-
order error bounds. The detailed proof that the filter functions (5.4) meet all the conditions (5.2)
can be found in [12, Section 4.12].

These two choices of filter functions are used in the numerical experiment in Section 8.1.
Figure 8.1 there displays the error for the scheme (3.1) without filter (“No Filter”), with the
filter choice (5.4) (“New”), which yields a second-order scheme uniformly in ω̃, and with the
filter choice (5.3) (“Orig”), which violates (5.2a) and shows sharp resonances and a breakdown
of the method if τ ω̃ is close to even multiples of π.

REMARK 5.2. Theorem 4.19 in [12] claims that for the filter choice (5.3) one obtains
convergence of order one in τ independent of ω. The numerical experiment in Section 8.1 is a
counterexample to this claim.

Theorem 4.19 of [12] is based on the first-order convergence result for the two-step
method (6.7) given in [8, Theorem XIII.4.1] for the weakened filter assumption
|(cos(z) + 1)ψE( 1

2z)| ≤ C0 sinc( 1
2z) replacing (5.2a). In Section 8.2 we give a counterex-

ample to this first-order convergence result; see also Remark 6.2.

6. Proof of Theorem 5.1. The proof is divided into four steps. First we reformulate the
scheme (3.1) as a two-step method for the electric field e only. With this reformulation we can
apply an already known error estimate to control the error in the electric field after modifying
the initial values. Based on the error bound for e, error bounds for b and p are obtained. A
more detailed proof can be found in [12, Chapter 4].

6.1. Reformulation. From equation (2.2) one obtains an equation for the electric field{
∂tte(t) = −Ω2e(t) + Ge(t),(6.1a)
e(t0) = e0, ∂te(t0) = CBb(t0)−Ω2p(t0) := ė0(6.1b)

with the Hamiltonian

H(e, f) = 1
2‖f‖

2 + 1
2‖Ωe‖2 − 1

2 〈e,Ge〉 = 1
2‖f‖

2 + 1
2‖Ωe‖2 + 1

2‖CEe‖2,

where f = ∂te. From Assumption 4.2 we deduce the stability estimates

H(e(t), ∂te(t)) ≤ 2H0,(6.2)

‖e(t)‖ ≤ (1 + 2(T − t0))
√
H0,(6.3)

‖b(t)‖ ≤ (1 + 2(T − t0))
√
H0,(6.4)

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

TRIPLE SPLITTING FOR LASER PLASMA INTERACTIONS—CONVERGENCE ANALYSIS 249

for t0 ≤ t ≤ T . The latter two can be obtained by expressing e(t) and b(t) through the
fundamental theorem of calculus and exploiting that the integrands ∂te and −CEe are both
bounded by the Hamiltonian. The formula for the variation of constants gives the following
representation of the solution e of (6.1) starting from t′ with initial data e(t′) and ∂te(t′):

e(t) = cos((t− t′)Ω)e(t′) + (t− t′) sinc ((t− t′)Ω) ∂te(t′)

+ (t− t′)
∫ 1

0

(t− t′)(1− ξ) sinc ((t− t′)(1− ξ)Ω) Ge(t′(1− ξ) + tξ) dξ
(6.5)

and similarly for ∂te

∂te(t) = −Ω sin ((t− t′)Ω) e(t′) + cos ((t− t′)Ω) ∂te(t′)

+ (t− t′)
∫ 1

0

cos ((t− t′)(1− ξ)Ω) Ge(t′(1− ξ) + tξ) dξ.
(6.6)

For an e-only formulation for the numerical scheme, we insert (3.1a) into (3.1b). Inserting the
resulting expression for e+

n into (3.1c), a formula for e−n+1 is obtained. Finally, we substitute
e−n+1 in (3.1d) and use (3.1a) once more to obtain

en+1 = −Ω sin(τΩ)pn + cos(τΩ)en + τ 1
2 (cos(τΩ) + Id)ψE( τ2Ω)CBφB( τ2Ω)bn

+ τ2 1
4 (cos(τΩ) + Id)ψE( τ2Ω)CBφB( τ2Ω)ψB( τ2Ω)CEφE( τ2Ω)en.

The filter functions ψi, φi, i ∈ {E,B}, are even, and hence the matrix functions that are
applied to pn and bn are uneven as functions of τ , whereas the matrix functions that are
applied to en are even in τ . This observation results in the two-step formulation

en+1 − 2 cos(τΩ)en + en−1

= τ2 1
2 (cos(τΩ) + Id)ψE( τ2Ω)CBφB( τ2Ω)ψB( τ2Ω)CEφE( τ2Ω)en.

To obtain a formulation close to the two-step form of [8, Chapter XIII], we use (5.1) and get
rid of the filter functions “between” the two curl operators

en+1 − 2 cos(τΩ)en + en−1 = τ2 1
2 (cos(τΩ) + Id)ψE( τ2Ω)GφE( τ2Ω)en.(6.7)

Again with (5.1) the equations for p and b of the numerical scheme finally read

pn+1 = cos(τΩ)pn + τ sinc(τΩ)en + τ2 1
2 sinc(τΩ)ψE( τ2Ω)CBbn

− τ3 1
4 sinc(τΩ)ψE( τ2Ω)GφE( τ2Ω)en,

(6.8)

and

bn+1 = bn − τ 1
2CEφE( τ2Ω) (en + en+1).(6.9)

6.2. Error in the electric field. We want to apply [8, Theorem XIII.4.1] to estimate the
error in the electric field. Unfortunately, this requires a distinct first time step, which our
scheme (3.1) does not fulfill. To circumvent this problem we perturb the initial value for
the derivative of the e-field, which then yields the correct scheme. For an estimate with the
original initial values, we use a stability estimate for the exact solution.

The following theorem restates [8, Theorem XIII.4.1] adapted to the situation at hand.
THEOREM 6.1. Let Ω and G be as in Assumption 4.1. Consider the solution of equa-

tion (6.1a) for the electric field by the method (6.7) with a step size τ ≤ τ0 for a sufficiently
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small τ0 independent of ω̃ with τ ω̃ ≥ c0 > 0, where c0 is independent of τ and ω̃. We denote
the exact solution by e′(t) and the numerical solution by en

′. The first time step is computed
via

(6.10) e1
′ = cos(τΩ)e0

′ + τ sinc(τΩ)ė0
′ + τ2 1

4 (cos(τΩ) + Id)ψE( τ2Ω)GφE( τ2Ω)e0
′,

where

(6.11) e0
′ := e0 and ė0

′ := χ(τΩ)CBb0 −Ω2p0

with

(6.12) χ(z) := 1
2

cos(z) + 1

sinc(z)
ψE( 1

2z)

and e0, b0, and p0 are such that the conditions (4.3) hold true.
If the conditions (5.2a), (5.2b), (5.2c), and (5.2d) are satisfied with constants independent

of ω̃ for the even entire filter functions ψE , φE : R≥0 → R with ψE(0) = φE(0) = 1, then
we obtain

‖en′ − e′(tn)‖ ≤ Cτ2 for tn := t0 + nτ ≤ T,

with a constant C independent of n, τ , and ω̃ but depending on (T − t0) and the constants
H0, Cg , c0, and C1, . . . , C3.

Proof. The filter functions of [8, Theorem XIII.4.1] are

(6.13) ψ(z) := 1
2 (cos(z) + 1)ψE( 1

2z), φ(z) := φE( 1
2z), ∀ z ∈ C.

As G is symmetric we can write Ge = ∇U(e) with U = 1
2eTGe. From condition (5.2d) we

obtain that χ is bounded by C4. The factor 4/C2
4 in the estimate for CBb0 in (4.3) guarantees

the estimate for the initial oscillatory energy for the perturbed initial values. Hence, all
assumptions of [8, Theorem XIII.4.1] are fulfilled, and its application completes the proof.

REMARK 6.2. We carefully analyzed the proof of the second-order convergence result [8,
Theorem XIII.4.1] using the strong filter assumptions. With the help of Ernst Hairer we could
close a gap in the proof of [8, Theorem XIII.4.1]. It is the second-order convergence result
that we have reformulated in Theorem 6.1. In the supplement of Theorem XIII.4.1 in [8], it is
claimed that one would obtain

‖en′ − e′(tn)‖ ≤ Cτ,

if only the weaker estimate |ψ(z)| ≤ C0| sinc( 1
2z)| instead of |ψ(z)| ≤ C1 sinc( 1

2z)
2 holds.

In [8, Theorem XIII.4.1], a general nonlinearity g is considered. Numerical experiments with
a linear g, i.e., g(e) = Ge, as the one shown in Section 8.2 are a counterexample to this claim.
It is the above weaker estimate that is fulfilled by the filter choice (5.3).

REMARK 6.3. By perturbing ė0 of (6.1b) to ė0
′ of (6.11), we have

en = en
′, ∀n ≥ 0,

when computing en with the original scheme (3.1) and en
′ with the method described in

Theorem 6.1, thus we can replace the numerical solution there by the scheme (3.1).
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To control the perturbation we apply the stability estimate of Lemma 6.4 to the exact
solution and obtain ‖e(t)− e′(t)‖ ≤ Cτ2 again with C independent of n, τ , and ω̃.

LEMMA 6.4. Consider the exact solution ∆e(t) of (6.1a) with initial values ∆e(t0) = 0
and ∂t∆e(t0) = (Id−χ(τΩ))CBb0 for a given b0 and χ from (6.12) such that Assump-
tion 4.1 holds.

If the filter functions ψE , φE : R≥0 → R are entire functions with ψE(0) = φE(0) = 1
satisfying (5.1) and (5.2e) with a constant C5 independent of ω̃, then

‖∆e(t)‖ ≤ Cτ2

with a constant C independent of n, τ , and ω but depending on (T − t0), C5, and H0.
Proof. By Assumption 4.1 the matrices (−G) and Ω2 are both symmetric positive semi-

definite and so are their sum, and we can define the symmetric positive semi-definite matrix
B :=

√
Ω2 −G. Using the matrix sinc function, the exact solution is

∆e(t) = cos((t− t0)B)∆e(t0) + (t− t0) sinc((t− t0)B)∂t∆e(t0)

= (t− t0) sinc((t− t0)B)(Id−χ(τΩ))CBb0.

Since |z sinc(z)| ≤ 1, z ≥ 0, we only have to control the real part. Condition (5.2e) yields

|1− χ(z)| ≤ C5z
2 ⇒ ‖(Id−χ(τΩ))CBb0‖ ≤ C5τ

2‖Ω2CBb0‖.

This gives the desired bound for C = (T − t0)C5

√
H0.

By combining Theorem 6.1 and Lemma 6.4, the error estimate for the electric field is
obtained:

THEOREM 6.5. Let G, Ω and the initial values p0, e0, and b0 be as in Assumptions 4.1
and 4.2. Consider the numerical solution of (2.2) with the scheme (3.1) with step size τ
satisfying τ ≤ τ0 for sufficiently small τ0 independent of ω̃ and τ ω̃ ≥ c0 > 0 with c0
independent of τ and ω̃. Denote the exact solution for the electric field by e(t) and the
numerical one by en.

If the filter functions satisfy (5.1) and the assumptions (5.2a)–(5.2e) with constants inde-
pendent of ω̃, then

‖en − e(tn)‖ ≤ Cτ2 for tn := t0 + nτ ≤ T

with a constant C independent of n, τ , and ω but depending on (T − t0) and the constants
H0, Cg , c0, and C1, . . . , C5.

Proof. By Remark 6.3 the scheme (3.1) with the adjusted initial value (6.11) with (6.12)
is the same as the two-step scheme with the first step (6.10) from Theorem 6.1. We again
denote the perturbed exact solution by e′(t). Since e(t0) − e′(t0) = 0 = ∆e(t0) and
∂te(t0)− ∂te′(t0) = ∂t∆e(t0) from Lemma 6.4, we have ‖∆e(tn)‖ ≤ Cτ2. From this and
with Theorem 6.1 we then obtain

‖en − e(tn)‖ ≤ ‖e′n − e′(tn)‖+ ‖∆e(tn)‖ ≤ Cτ2.

The constant C has the stated dependencies.

6.3. Error in the magnetic flux. To get an estimate for the error in the magnetic flux b,
the filter assumption (5.2f) is needed.

THEOREM 6.6. Suppose the assumptions of Theorem 6.5 hold and additionally assume
that (5.2f) holds with C6 independent of ω̃. Then for tn := t0 + nτ ≤ T we obtain

‖bn − b(tn)‖ ≤ Cτ2
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with a constant C independent of n, τ , and ω but depending on (T − t0) and the constants
H0, Cg , c0, and C1, . . . , C6.

Proof. From equations (2.2c) and (6.9), we obtain the recursion for the error in b

b(tn+1)− bn+1 = b(tn)− bn −
τ

2
CE

(
2

∫ 1

0

e(tn + τs) ds− φE( τ2Ω)(en + en+1)

)
.

Applying the variation of constants formula (6.5) to (6.1a) for the argument
tn + τs = tn+1 − (1− τ)s to expand around tn and at the same time around tn+1, we obtain
for the term in parentheses

2

∫ 1

0

e(tn + τs) ds− φE( τ2Ω)(en + en+1)

=

(∫ 1

0

cos(τsΩ) ds− φE( τ2Ω)

)
e(tn)+

(∫ 1

0

cos(τ(s− 1)Ω) ds− φE( τ2Ω)

)
e(tn+1)

+ τ

(∫ 1

0

s sinc(τsΩ) ds ∂te(tn) +

∫ 1

0

(s− 1) sinc(τ(s− 1)Ω) ds ∂te(tn+1)

)
+ τ2

(∫ 1

0

s2I+n (τ, s) ds+

∫ 1

0

(1− s)2I−n+1(τ, s) ds

)
+ φE( τ2Ω) ((e(tn)− en) + (e(tn+1)− en+1)) ,

where I+n and I−n+1 are bounded independently of ω̃ containing the convolution terms of the
variation of constants formula. Here we use the boundedness of sinc and the bounds for e(t)
from (6.3).

Computing the integrals and adding up the errors of all time steps yields

b(tn)− bn =

− τ

2
CE

n−1∑
l=0

[(
sinc(τΩ)− φE( τ2Ω)

)
e(tl) +

(
sinc(τΩ)− φE( τ2Ω)

)
e(tl+1)

]
(6.14a)

− τ2

2
CE

n−1∑
l=0

[cosc(τΩ)∂te(tl)− cosc(τΩ)∂te(tl+1)](6.14b)

− τ3

2
CE

n−1∑
l=0

[∫ 1

0

s2I+l (τ, s) ds+

∫ 1

0

(1− s)2I−l+1(τ, s) ds

]
(6.14c)

− τ

2
CE

n−1∑
l=0

φE( τ2Ω) [(e(tl)− el) + (e(tl+1)− el+1)] ,(6.14d)

with the even entire function cosc := z 7→
∫ 1

0
cos((1 − ξ)z)ξ dξ satisfying the identity

z2 cosc(z) = 1− cos(z) and the bound | cosc(z)| ≤ 1
2 , z ∈ R.

We use the bound (5.2b) for φE , the bound for CE , and the O(τ2)-estimate of Theo-
rem 6.5 to bound (6.14d) by Cτ2, where we lose one factor τ due to summing up. The bound
for (6.14c) follows from the boundedness of I±l . (6.14b) is a telescopic sum, so we do not lose
a τ by summation. The boundedness of the Hamiltonian in (6.2) yields a bound for ∂te(t).
The boundedness of cosc then yields the second-order estimate for (6.14b).
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To control (6.14a) we apply the variation of constants formula (6.5) with t′ = t0 to
obtain e(tl):

(6.14a) =
τ

2
CE

n−1∑
l=0

[
sinc(τΩ)− φE( τ2Ω)

]
(e(tl) + e(tl+1))

=
τ

2
CE

n−1∑
l=0

[
sinc(τΩ)− φE( τ2Ω)

]
[cos(lτΩ) + cos((l + 1)τΩ)] e0(6.15a)

+
τ

2
CE

n−1∑
l=0

[
sinc(τΩ)− φE( τ2Ω)

]
×

[lτ sinc(lτΩ) + (l + 1)τ sinc((l + 1)τΩ)] ė0

(6.15b)

+ τCE

n∑′

l=0

[
sinc(τΩ)− φE( τ2Ω)

]
×[

l2τ2
∫ 1

0

(1− ξ) sinc(lτ(1− ξ)Ω)Ge(t0 + τ lξ)

]
,

(6.15c)

where the prime in the summation indicates that the first and last terms are weighted by 1
2 . At

first sight the norm of each of the three terms (6.15a,b,c) seems to be of order O(1).
To show that they are actually of order O(τ2), we use the identities

cos(lz) =
sin((l + 1

2 )z)− sin((l − 1
2 )z)

2 sin( 1
2z)

, l sinc(lz) = −
cos((l + 1

2 )z)− cos((l − 1
2 )z)

2z sin( 1
2z)

.

These allow us to simplify the sum of cosines and sincs in (6.15a) and (6.15b), respectively,
by using

(
sinc(z)− φE( 1

2z)
)(n−1∑

l=0

cos(lz) +

n∑
l=1

cos(lz)

)

= sin(nz) cos( 1
2z)z

sinc(z)− φE( 1
2z)

z sin( 1
2z)

,

(
sinc(z)− φE( 1

2z)
)(n−1∑

l=0

l sinc(lz) +

n∑
l=1

l sinc(lz)

)

= −(cos(nz)− 1) cos( 1
2z)

sinc(z)− φE( 1
2z)

z sin( 1
2z)

.

The factor of the trigonometric functions in front of the fractions on the right-hand sides above
are bounded such that it suffices to control the expression

χ0(z) :=
sinc(z)− φE( 1

2z)

z sin( 1
2z)

.

This is the place where we finally use the new filter assumption (5.2f) to obtain

|χ0(z)| ≤ C6

such that potential new singularities are controlled. We obtain

‖(6.15a)‖ ≤ τ
2Cc‖ sin(nτΩ) cos( 1

2τΩ)‖‖χ0(τΩ)τΩe0‖ ≤ τ
2CcC6τ

√
2
3H0,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

254 G. JANSING AND A. SCHÄDLE

since sin and cos are bounded by one, χ0 by C6, and ||Ωe0|| by 2
3H0; cf. (4.3). Likewise we

have

‖(6.15b)‖ ≤ 1
2τ

2Cc‖(cos(nτΩ)− Id) cos( 1
2τΩ)‖‖χ0(τΩ)ė0‖ ≤ 1

2τ
2Cc2C6

√
2H0,

where ė0 is bounded by the Hamiltonian in (6.2).
This way we used the filter function φE to filter periodic singularities. This is the reason

why we need sinc terms on the right-hand side of the filter assumptions. For the remainder we
use it to filter out higher-order singularities in a neighborhood of zero that leads to factors of z
on the right-hand side in the filter assumptions.

It remains to bound the integral term of the summand (6.15c), that is, we need an O(1)-
bound for

Jl := τ 7→ l2ϑ0(τΩ)

∫ 1

0

(1− ξ) sinc(lτ(1− ξ)Ω)f(ξ) dξ

with

(6.16) f := ξ 7→ Ge(t0 + τ lξ),

and the auxiliary functions

ϑi(z) :=
sinc(z)− φE( 1

2z)

zi
, i ∈ {0, 1, 2}.

These functions ϑi satisfy the relations

(6.17) zϑi(z) = ϑi−1(z), i ∈ {1, 2},

where the first one in turn yields

lϑ0(z)(1− ξ) sinc(l(1− ξ)z) = ϑ1(z) sin(l(1− ξ)z).

Applying the filter assumption (5.2f) directly gives an O(1)-bound for ϑ1, which in turn leads
to a O(n)-bound for Jl, for l = 1, . . . , n, and thus to a first-order estimate for the magnetic
flux.

To improve this estimate we make use of the identity z sinc(z) = sin(z), which gives an
even sharper estimate for the filtering abilities of φE by

| sinc(z)− φE( 1
2z)| ≤ C6| 12z

2 sinc( 1
2z)| ≤

1
2C6z

2

and thus an O(1)-bound for ϑ2 since the sinc-function is bounded by one.
To make use of this estimate we employ

ϑ1(z)l sin(l(1− ξ)z) (6.17)
= ϑ2(z)lz sin(l(1− ξ)z) =

∂

∂ξ
ϑ2(z) cos(l(1− ξ)z).

Integration by parts of Jl yields∫ 1

0

ϑ1(z)l sin(l(1− ξ)z)f(t0 + lτξ) dξ =
[
ϑ2(z) cos(l(1− ξ)z)f(t0 + lτξ)

∣∣ξ=1

ξ=0

−
∫ 1

0

ϑ2(z) cos(l(1− ξ)z)∂f
∂ξ

(t0 + lτξ)lτ dξ.
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Since by definition of f in (6.16), the derivative d
dξf is given by

d
dξf : ξ 7→ lτG∂te(t0 + τ lξ),

and this applies to Jl by

Jl(τ) = ϑ2(τΩ)Ge(t0 + lτ)− ϑ2(τΩ) cos(lτΩ)Ge0

−
∫ 1

0

ϑ2(τΩ) cos(lτ(1− ξ)Ω)lτG∂te(t0 + lτξ) dξ.

The boundedness of G in Assumption 4.1 and the stability estimates in (6.2) and (6.3) allow
us to control Ge and G∂te. All the matrix functions are bounded, and lτ ≤ T − t0 such that
Jl(τ) is of the order O(1) with a constant independent of ω̃. This concludes the proof for the
error in the magnetic flux.

REMARK 6.7. By choosing φE(z) = sinc(2z), the left-hand side of (5.2f) and the
term (6.14a) vanish, thus one may set C6 = 0 and the above proof is simplified drastically. It
is shown in [12] that the choice φE(z) = sinc(2z) is indeed a valid choice and respects the
filter conditions (5.2b), (5.2c), (5.2f) and (5.2h).

6.4. Error in the impulse. To conclude the proof of the main result, Theorem 5.1, we
have to verify the corresponding estimate for the error in the impulse. This is where the last
two assumptions on the filter functions (5.2g) and (5.2h) enter.

THEOREM 6.8. Suppose that the assumptions of Theorem 6.6 hold. If (5.2g) and (5.2h)
hold with C7 and C8 independent of ω̃, then

‖pn − p(tn)‖ ≤ Cτ2 for tn := t0 + nτ ≤ T,

with a constant C independent of n, τ , and ω but depending on (T − t0) and the constants
H0, Cg , c0, and C1, . . . , C8.

Proof. We start by expressing the impulse with the fundamental theorem of calculus
applied to the differential equation for the impulse (2.2a). Applying (6.5) gives a formula for
the exact solution of the electric field. The numerical solution is expressed by (6.8). Then the
error in the (n+ 1)st step reads

p(tn+1)− pn+1 = p(tn) + τ

(∫ 1

0

cos(τsΩ) ds e(tn)− sinc(τΩ)en

)
+ τ

∫ 1

0

τs sinc(τsΩ) ds∂te(tn)− cos(τΩ)pn

− τ2

2 sinc(τΩ)ψE( τ2Ω)CBbn + τ3In(τ)

= p(tn) + τ sinc(τΩ)(e(tn)− en) + τ3In(τ)

+ τ2
(
cosc(τΩ)CBb(tn)− 1

2 sinc(τΩ)ψE( τ2Ω)CBbn
)

(6.18a)

− τ2Ω2 cosc(τΩ)p(tn)− cos(τΩ)pn,(6.18b)

where

In(τ) :=

∫ 1

0

s2
∫ 1

0

(1− ξ) sinc(τs(1− ξ)Ω)Ge(tn + τsξ) dξ ds

− 1
4 sinc(τΩ)ψE( τ2Ω)GφE( τ2Ω)en.
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The cosc-function was already used in (6.14b) for the estimate for b and can also be written as
an integral over ξ sinc(ξz). The filter estimate (5.2g) yields the boundedness of ψE . With the
estimate for e in Theorem 6.5, ‖en‖ ≤ ‖e(tn)‖+ ‖en − e(tn)‖, and the stability estimate for
the electric field (6.3), we obtain

‖In(τ)‖ ≤ CI

with a constant CI independent of ω̃ since τ ≤ τ0. For (6.18b) we use z2 cosc(z) = 1−cos(z)
to retrieve

−τ2Ω2 cosc(τΩ)p(tn)− cos(τΩ)pn = cos(τΩ)(p(tn)− pn)− p(tn).

For (6.18a), we get analogously with cosc(2z) = 1
2 sinc2(z)

τ2
(
cosc(τΩ)CBb(tn)− 1

2 sinc(τΩ)ψE( τ2Ω)CBbn
)

=
τ2

2

(
(sinc2( τ2Ω)− sinc(τΩ)ψE( τ2Ω))CBb(tn)

+ sinc(τΩ)ψE( τ2Ω)CB(b(tn)− bn)
)
.

We next define the auxiliary function

Jn(τ) := τ
(
sinc(τΩ)(e(tn)− en) + τ sinc(τΩ)ψE( τ2Ω)CB(b(tn)− bn) + τ2In(τ)

)
.

This, the boundedness of sinc, ψE , and CB , and the error estimates for e and b from
Theorems 6.5 and 6.6 yield the second-order estimate

(6.19) ‖Jn(τ)‖ ≤ CEτ2 + τC7CcCBτ
2 + CIτ

2 =: CJτ
2

for Jn(τ). Resolving the recursion in (6.18) we obtain the summed error

p(tn)− pn = τ

n∑
l=0

cosl(τΩ)Jn−l−1(τ)

+ τ2

2

n∑
l=0

cosl(τΩ)(sinc2( τ2Ω)− sinc(τΩ)ψE( τ2Ω))CBb(tn−l−1).(6.20)

The first summand with Jn(τ) and the leading factor of τ is of the proper order due to (6.19).
The second summand seems to be of a too low order to succeed with a global error proof of a
second-order convergence. We have to use the trigonometric identity

cosn(z) =
cosn+1(z)− cosn(z)

−2 sin2( 1
2z)

and the filtering abilities of ψE to avoid a summation of errors. With the help of partial
summation

n−1∑
l=0

(fl+1 − fl)gl =

n−1∑
l=0

fl(gl−1 − gl) + fngn−1 − f0g−1,
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with fl := cosl(z)

−2 sin2(
1
2 z)

and gl := CBb(tn−l−1), the trigonometric identity yields

(sinc2( 1
2z)− sinc(z)ψE( 1

2z))

n−1∑
l=0

cosl(z)CBb(tn−l−1)

=
sinc2( 1

2z)− sinc(z)ψE( 1
2z)

−2 sin2( 1
2z)

×

(
n∑
l=1

cosl(z)CB(b(tn−l)− b(tn−l−1)) + cosn(z)CBb0 −CBb(tn)

)
.

(6.21)

The filter assumption (5.2h) gives us the estimate∣∣∣∣∣ sinc2( 1
2z)− sinc(z)ψE( 1

2z)

−2 sin2( 1
2z)

∣∣∣∣∣ ≤ 1
2C8

for the singularities that appear in (6.21), and thus

‖r.h.s. of (6.21)‖ ≤ 1
2C8

(
n−1∑
l=0

‖CB(b(tn−l)− b(tn−l−1))‖+ C̃

)

using the boundedness of the magnetic flux (6.4) to estimate the boundary terms CBb0 and
CBb(tn) with a constant C̃ independent of ω̃. Since the boundary terms appear only once, it
is sufficient that they are of order O(1).

To generate the last factor of τ we once more need to apply the fundamental theorem of
calculus, this time to the exact solution of the magnetic flux and substitute the right-hand side
of the differential equation for b (2.2c) into the time derivative:

‖CB(b(tn−l)− b(tn−l−1))‖

=

∥∥∥∥CB

(
b(tn−l−1)− τ

∫ 1

0

CEe(tn−l−1 + τξ) dξ − b(tn−l−1)

)∥∥∥∥ ≤ τĈ,
with another constant Ĉ independent of ω̃ using the boundedness of e(t). The τ2-factor in
front of the second sum in the error formula (6.20) is thus sufficient for the global second-order
estimate.

7. Multiple high frequencies. Consider now the case of multiple frequencies, i.e., let us
assume that Ω is a positive semi-definite matrix and that ω is a bound for its largest eigenvalue.
Modifying the results and the proof of [6], a proof for the second-order error estimate for the
triple splitting method was obtained by [2], thus generalizing the results here using a different
technique.

To extend our arguments to this case, the only ingredient that is required in the convergence
proof is a replacement for Theorem 6.1. We can use [6, Theorem 1] without modifications by
writing their scheme as a two-step formulation for the solution, getting rid of its derivative.
Again we have to perturb the initial values to adjust to the situation at hand.

We use the multistep form (6.7) with the distinct first step (6.10) for the perturbed ini-
tial values (6.11). As already stated in Remark 6.3 this is equivalent to our triple splitting
method (3.1) with ψB ≡ φB ≡ 1. The two-step formulation with the distinct first step is equiv-
alent to [6, Scheme (3)] with the filter functions φ and ψ as in (6.13), ψ(z) = sinc(z)ψ1(z),
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and ψ0(z) = cos(z)ψ(z). For a second-order error estimate for the scheme (3.1) with
ψB ≡ φB ≡ 1, we then require (5.2d)–(5.2h) as before but replace the first three assumptions
(5.2a)–(5.2c) by

|1− φE( 1
2z)| ≤ C9|z|(7.1a)

| sinc2( 1
2z)−

1
2 (cos(z) + 1)ψE( 1

2z))| ≤ C10| sin( 1
2z)|(7.1b)

| sinc(z)− φE( 1
2z)| ≤ C11|z sin( 1

2z)|(7.1c)

| sinc2(z)− 1
2 (cos(z) + 1)ψE( 1

2z)| ≤ C12| sin(z) sin( 1
2z)|(7.1d)

| sinc2(z)− 1
2 (cos(z) + 1)ψE( 1

2z) cos(z)| ≤ C13| sin(z) sin( 1
2z)|.(7.1e)

Assumptions (5.2d) and (5.2g) yield

|η(z)| ≤ max{2C4, C7}

for η ∈ {φ, ψ, ψ0, ψ1}, which is [6, Condition (11)]. The new assumption (7.1a) yields

|(φ(z)− 1)| ≤ C9|z|,

which is [6, Condition (12)]. (7.1b) yields

|(sinc2( 1
2z)− ψ(z))| ≤ C10| sin( 1

2z)|,

which is [6, Condition (13)]. The filter assumptions (7.1c), (7.1d), and (7.1e) yield

|(sinc(z)− χ(z))| ≤ C13|z sin( 1
2z)|

for χ = φ, ψ0, ψ1, which is [6, Condition (14)]. The conditions [6, Condition (11)–(14)] are
sufficient for a second-order estimate of the solution (without the derivative), cf. [6, Theorem 1],
which is all we need.

Our proposed filter choice (5.4) in addition to the filter conditions (5.2) also fulfills the
new filter conditions (7.1); (7.1d) holds true with C12 = 0. This implies that scheme (3.1)
with ψB ≡ φB ≡ 1 and (5.4) is of second order also for multiple high frequencies in Ω.

8. Numerical experiments.

8.1. Laser plasma interaction—triple splitting. To illustrate the convergence, we carry
out an experiment similar to the one presented in [17].

The setting is taken from the thin foil experiment in Section 2. We use the laser pulse
from (2.3) as initial value for the fields and a zero initial impulse. In vacuum, this models a
laser pulse propagating in positive x-direction. We assume that the domain is homogeneous in
y- and z-directions such that the continuous equations (2.1) decouple, and it is sufficient to
consider the simplified equations

∂tpy = ey,

∂tey = −∂xbz − f2ρpy,
∂tbz = −∂xey,

where only the y- and z-components of the fields are taken into account. Note that these are
functions of t and x only. For simplicity, periodic boundary conditions in x are used. The
density profile is chosen as

ρ(x) =

{
ρF , if x ∈ F,
0, otherwise,
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where F = [20, 21] is the area covered by the foil. Except for ρF , which will be varied, all
other physical parameters are chosen as in Section 2, i.e., material parameters, wavelength,
etc. The spatial discretization of the computational domain B = [0, 24] is done with central
finite differences for the spatial derivative of the magnetic flux b and the electric field e on
a staggered grid with 241 equispaced grid points. This corresponds to the staggered Yee
grid translated to the one-dimensional situation. The conditions from Assumption 4.1 on the
discretization are thus satisfied. The bounds for the initial data from Assumption 4.2 are also
satisfied, exploiting that |e| and |b| are smaller than machine precision in the region of the
foil F , and thus the error from setting them to zero is not larger then the round-off error when
evaluating the exponential function numerically.

In Figure 8.1 we present the error in e, p, and b. The error in e dominates the error in
b by almost one magnitude. The error in the impulse p almost coincides with the error in
the electric field e if no filters are used, and it is thus not visible in the plots. If the filter
choice (5.3) is employed, then the error in e and p coincide away from even multiples of π. In
the inset of the second panel in the second row, one can see that the error in p does not “peak”.
Thus the peaks in this case are in the error of e only. The left column in Figure 8.1 displays
the error of the method for ρF = 64 · 108, ω = 8 · 104, and the right column corresponds to a
plasma with ρF = 9 · 106, ω = 3 · 103. We display the Euclidean norm of the absolute error at
T = 20 versus the step size τ for the numerical solution of (3.1) measured against the spatially
discrete reference solution (2.2) calculated with the expmv routine from [1]. In the upper row,
no filter functions were used resulting in large broad error peaks. In the middle row, the filter
choice (5.3) results in very sharp error peaks around even multiples of 2π/ω. As predicted
by our theory, the bottom row shows a second-order convergence independent of ω. For the
zoom, the range of step sizes is τ ∈ [0.923 · 2π/ω, 1.075 · 2π/ω] if no filter function is used,
and it is much smaller if a filter function is chosen, i.e, τ ∈ [0.997 · 2π/ω, 1.003 · 2π/ω].

8.2. Klein-Gordon-type equation—two-step method. To illustrate the results and re-
marks from Section 6.2 we consider a one-dimensional Klein-Gordon-type equation for one
component of the electric field with periodic boundary conditions on the interval [−10, 14],
where the plasma occupies the region (10, 11). This equation is obtained by eliminating b and
p from (2.1). Discretization in space is achieved by symmetric second-order finite differences
on the equidistant grid x with grid points xj = −10 + jh, j = 0, . . . , N , with N = 240 and a
spacing of h = 24/N . The initial value e0 is given by (2.3) (x̄ = 0, σ0 = 10) evaluated on the
grid and the initial velocity by (ė0)j = (( 2π

σ0
)2xj cos(2πxj) + 2π sin(2πxj))exp

(
− 2π2

σ2
0
x2j
)
.

The equation that we solve for e(t) is

(8.2)
∂tte(t) = Ge(t)−Ωe(t), for t ∈ [0, 20],

e(0) = e0, ∂te(0) = ė0,

with, using Matlab notation, the matrices

G = spdiags([e,−2 ∗ e, e],−1 : 1, N,N)/h2, G(1, N) = 1/h2, G(N, 1) = 1/h2,

for a vector e with all ones and Ω = diag(ω ∗ f), where the diagonal f is represented by a
step function, i.e., f = zeros(size(x)); f(x < 11 & x > 10) = 1 for a given ω.

We have implemented the two-step method from [8, XIII.2.2] with even real-valued filter
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functions ψ and φ, with ψ(0) = φ(0) = 1.

(A) ψ(z) = sinc2( 1
2z) φ(z) = 1 [5]

(B) ψ(z) = sinc(z) φ(z) = 1 [3]

(C) ψ(z) = sinc(1
2z)φ(z) φ(z) = sinc(z) [4]

(D) ψ(z) = sinc2( 1
2z) φ(z) from (8.3) below [11]

(E) ψ(z) = sinc2(z) φ(z) = 1 [7]

(F) ψ(z) = η(z) sinc( 1
2z)

2 φ(z) = sinc(1
2z) (5.4)

(G) ψ(z) = η(z) sinc( 1
2z) φ(z) = sinc(1

2z) (5.3) [17]

(H) ψ(z) = sinc(1
2z) φ(z) = sinc(z)

(I) ψ(z) = sinc(z) φ(z) = sinc(1
2z),

where

(8.3) φ(z) = sinc(z)(1 + 1
3 sin2( 1

2z))

in the method (D). The alphabetic labels for the methods (A)–(E) follow the convention of [8].
Method (F) corresponds to our choice, (5.4), with the “natural filter” η(z) := 1

2 (1 + cos(z))
coming for free from the triple splitting. Method (G) corresponds to the choice (5.3) considered
in [13, 17].

Figure 8.2 displays the absolute error in the Euclidean norm versus the time step size.
For this linear test problem, method (E) shows the same behavior as (A), the behavior of
(D) is similar to (C), and (H) is similar to (I). Therefore the results for (E), (D), and (H)
are not displayed. The inset is a zoom to step sizes around 2π/ω giving the error for τ in
the interval τ ∈ [(2π − 5 · 10−3)/ω, (2π + 5 · 10−3)/ω]. For this linear test problem one
observes a second-order convergence as soon as there is a double zero of ψ at even multiples of
π. The condition on φ seems to be less important. However comparing (I) and the method (B),
it can be observed that the resonance peak is much sharper for (I), reflecting the influence
of φ in this test problem. Though the filter functions of the methods (G), (H), and (I) satisfy
the assumptions for first-order convergence uniformly in hω as predicted by [8, Theorem
XIII.4.1], cf. Remark 6.2, sharp resonance peaks are observed. Hence, this experiment is a
counterexample to the claim made there. The second-order convergence result with the more
restrictive assumptions on the filter functions remains valid.
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FIG. 8.1. Euclidean norm of the absolute error of e, p, and b at T = 20 versus the step size for the numerical
solution (3.1) measured against the spatially discrete reference solution of (2.2). Left: ω = 8·104; right: ω = 3·103;
top: no filter; middle: filter of [17] (Orig); bottom: new filter choice (5.4) (New).
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FIG. 8.2. Euclidean norm of the absolute error at T = 3 versus the step size for the Klein-Gordon-type
equation (8.2). Results are shown for the filter choices (A), (B), (C), (G), (I), and (F). The inset shows a zoom to step
sizes in the interval [(2π − 5 · 10−3)/ω, (2π + 5 · 10−3)/ω].
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