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Abstract. In this paper, we consider the problem of image denoising by total variation regularization. We
combine the conditional gradient method with the total variation regularization in the dual formulation to derive a new
method for denoising images. The convergence of this method is proved. Some numerical examples are given to
illustrate the effectiveness of the proposed method.
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1. Introduction. Image denoising is a fundamental research field in image processing.
The purpose of image denoising is to recover an unknown true or original image @ (noise-free
image) from an observed image f that is contaminated by unknown noise 7. In general, 7 is
Gaussian white additive noise. The model equation of image denoising may be written as

fx) =ulx) +n(x), x=(z,y) €,

where (2 is the domain of the image. It is assumed to be a convex, connected, and bounded
Lipschitz open subset of R2. One of the most popular regularization methods is Tikhonov
regularization based on least-squares techniques with a parameter and a regularization operator.
Tikhonov regularization has been widely studied in the literature; see, e.g., [5, 6, 7] and
the references therein. The drawback of Tikhonov regularization is the fact that it does not
preserve sharp discontinuities in the image; see [11]. To overcome this difficulty one may use
a technique based on the minimization of the total variation norm subject to a noise constraint.
The total variation model is well known and was first introduced in image processing by Rudin,
Osher, and Fatemi in [19]. The model is referred to as the ROF model. We consider the
Banach space

BV(Q) = {ue L}(Q) : TV (u) < oo}
of functions of bounded variation endowed with the norm
lull v (@) = llullr + TV (u),

where
1v(w) =sw{ [ Vu-pas pecta®), lolo <1}
Q

represents the total variation of u; see [1]. The notation Vu stands for the gradient of w
defined in a distributional sense. The dot stands for the Euclidean scalar product in R?. If the
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gradient Vu of u belongs to the space L' (€2, R?), then the total variation of u is given by the
expression

TV (u) = /Q IVau(x)|dx,

where | - | stands for the Euclidean norm in R? and dx stands for the measure dzdy. The ROF
model eliminates noise from images and preserve edges by minimizing the functional

1.1 i T
(4.1 ucin ) TV ()

subject to the constraint
(1.2) If = ull3 = o |2,

where || - ||2 denotes the 2-norm in L?(§2), o is the standard derivation of the noise 7, and ||
is the measure of the domain 2. Applying a Lagrange multiplier to (1.1) and (1.2) leads to the
minimization problem

(1.3) min (TV(U) + gllu - f||§> :

u€BV ()

where A > 0 is a Lagrange multiplier. As in Tikhonov regularization, the parameter A may be
viewed as a regularization parameter. The functional in (1.3) has a unique minimizer in the
Banach space BV (€2).

A direct method for finding the minimizer of the functional (1.3) is to solve its associated
Euler-Lagrange equation. Due to the presence of a highly nonlinear and non-differentiable
term, an application of the direct method is not an easy task; see [11]. To avoid the difficulties
of solving the Euler-Lagrange equation, Chan, Golub, and Mulet (CGM) were the first to
propose in [11] a primal-dual method based on the duality principle and applied it to the
TV-regularization for image restoration.

In this paper, we propose to use the conditional gradient method based on the dual
formulation to derive a new method for solving the problem (1.3). The conditional gradient
algorithm, called the Frank-Wolfe method, is well known and was introduced in 1956; see [14,
20]. Such a technique was successfully applied in [4] in the case of Tikhonov regularization.
Many variants of the gradient algorithm were proposed for the total variation in image
reconstruction; see, for instance, [21, 22, 23]. To the best of our knowledge, the Frank-
Wolfe algorithm has not been used previously in the literature in the case of primal-dual total
variation-based image denoising. We will show how it is also possible to adopt the conditional
gradient method to a TV-denoising problem. We will prove the convergence of this method,
and we will give some numerical examples to illustrate the effectiveness of our proposed
method.

The paper is organized as follow: In Section 2, we recall the dual total variation formula-
tion and its discrete form. In Section 3, we introduce our proposed method applied to the dual
discrete formulation. The convergence of this method is established in Section 4. In Section 5,
we show how to select the Lagrange multiplier parameter automatically. Section 6 is devoted
to numerical tests illustrating the effectiveness of the proposed method. We also compare
our method to state-of-the-art algorithms, e.g., Chambolle’s projection algorithm, the split
Bregman method, and primal dual hybrid gradient algorithms.
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2. Dual total variation formulation. The dual formulation of the ROF model was first
introduced in image restoration by Chan, Golub, and Mulet [11]. In this section, we recall
briefly some well-known results in the dual formulation of the total variation problem (1.3);
for more details we refer the readers to [8, 11, 22] and the references therein. It is standard
in convex analysis (see for instance [1, 12]) that the TV (u) semi-norm in the minimization
problem (1.3) is given in the following form:

/ |[Vu(x)|dx = max / Vu(x) -w(x)dx = max / —u(x)V - w(x)dx.
Q wecl(@r2?) [o wecl(@.r2?) Jq
lofioo <1 leolioo <1

The function w : 2 — R? is the dual variable and v the primal one. The notation v - v stands
for the standard scalar product of two vectors u and v in R2. The space C} (€2, R?) denotes the
space of functions v :  — R? of class C! that are compactly supported on 2. The gradient of
w is denoted by Vu and V - w is the divergence of w. It is well known that the solution uv* of
the minimization problem (1.3) is given by the expression

1
2.1) u* =f+XV-w*,
where the dual variable w* may be regarded as the solution of the minimization problem

457,

2.2) w* = arg ur)rg}r}
with

K={weCQR : ||lw|le <1}
We recall that the norm || . || is given for w = (wy,ws) € C1(2,R?) by

[wlloe = sup [w(z)],
€N

where |w(z)| stands for the Euclidean norm of w(x) in R?. Solving the TV-regularization
problem (1.3) is equivalent to solving the dual problem (2.1)—(2.2). The main advantage of the
dual formulation (2.1)—(2.2) is that the objective function in (2.2) is quadratic.

From now on, we consider the discretized formulation. The domain of the images is
assumed to be a rectangle of size n x m. The space of the images is X = R™*™ of matrices
of size n x m. The space X is equipped with the classical inner product

(ulv)x = tr(u’v),

where u and v are two matrices in X, tr(Z) denotes the trace of the square matrix Z, and u” is
the transpose of the matrix u. The associated norm is the well-known Frobenius norm denoted
here by

lullx = v/ (ulu)x.

To define the discrete total variation, we recall some definitions and basic result from
[8]. The image u is represented as a matrix in X, where u;_;, the component of u, represents
the value of w at the point indexed by (4, 7). The discrete gradient operator, whose two
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components at each point (i, j) are two matrices Viu and Vau in X, is defined by their
components (Viu); ; and (Vau); ; as follows:

i1 — Ui if i<n, j=1,...,m
(vlu)i,j:{ 141,75 ,] y J 9 9 9

0 if i=n,
S U j+1 — Ui if j<m, 1=1,...,n,
(Veu)i; = { 0 if j=m.

We have Vu = (Viu, Vau), and the discrete gradient, also denoted by V, may be seen as an
operator V : X — Y, where Y = R"*™*2 = X x X. The space Y is endowed with the inner
product and its associated norm given by

play = @'la")x + @P*1d*)x ey = v (plp)y,

for all p = (p',p?) and ¢ = (¢*, ¢?) in Y. The discrete total variation of u € X is defined by

2.3) V() = 3 \I(Tru)igl? +1(Vou)i
5iEn

Therefore, the discrete total variation problem (1.3) is defined as
4) i [7V () + Sl 1]
where u and f are the discretizations of the related continuous variables. The discrete

divergence operator div : Y — X, also denoted by V-, is defined such that div = —V*-, that
is, forany w € Y and u € X,

(2.5) (—V - wlu)x = (w|Vu)y.
The discrete divergence is then (see [8])
(2.6)
wi{j — w,t-l_w if 1<i<n, w,ij _%‘2,]‘—1 if 1<j<m,
(V-w);= wil’j if =1, + sz,j if j=1,
_wilfl,j if = n, —w$’j71 if ] =m.

Hence, the discrete form of the problem (2.2) may be written as

]_ 2
@7 ur}rgir%’f+xv.w‘x,

where K is the discrete version of the closed convex subset K, denoted by the same symbol.
We have

28) K={w=(w"w’)eVY: /lw 2+ w?,[2<1,Vi=1,...,n, Vj=1,...,m}.

Thus, as in continuous total variation, the solution u, of the discrete total variation problem
(2.4) is given by the following expression

1
u*:f—i—XVwJ*,

where w, is the solution of the least-squares problem (2.7).
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3. The conditional gradient total variation method. In this section, we describe the
conditional gradient method for solving the convex constrained optimization problem (2.7),
and we give some results for this method related to our problem. We consider the function

F,: K - R
1 2
e =34,
w — F(w) f—l—)\VwX

Hence, the convex constrained minimization problem (2.7) may be rewritten as

(3.1 min Fj(w).

weK

Since K given by (2.8) is a compact set in X and F), is continuous on K, the problem (3.1)
has a solution w, in K, i.e.,

fféi;ré Fy(w) = Fx(ws).

We have the following result:
PROPOSITION 3.1. The function F : K — R is Gdteaux differentiable. Its Gateaux
derivative is

2 1
(32) F;(w):—xv(erXv-w),

and the Taylor expansion of F at w € K is given for all H € Y such that w + H € K by
(3.3) Fi(w+ H) = Fx(w) + (Fx(w)|[H)y + o(||H]v),

where

o([H|lv) < 3 I1H|F-

8
32!
Proof. 1t is straightforward that

F)\(W+H)FA(W)+i<f+}\V'w‘V'H> +
X

1
S HIE.

From the duality condition (2.5), we get

V-H>X = <—iv(f+ %un) H>Y.

Now, we can see that forallw € K, H € Y, and ¢t # 0, we have

2 1
)\<f+/\V-w

. FA(w—&—tH)—F)\(w)_ 2 1
i n = (Y +3Vw)|H L

which shows that the Gateaux derivative of F) is given by (3.2). According to (2.6) and the
fact that 2ab < a? + b2, we obtain

2

IV-HIE< Y (H - HL - HE - B ) <s|H|E. O
1<i<n

1<j<m
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The main idea of the conditional gradient method may be summarized as follows: Suppose
that the iterate matrix wy, € K at step k is given. Then the search direction dj, is obtained by
solving an appropriate linear programming problem. Let

Fy(w) = Fx(wk) + (F{(wk)|w — wr)y +o([| w — wg |ly)

be the first-order Taylor expansion of F) at wy. Then the problem (3.1) is approximated at
each step k by the following linear optimization problem:

(3.4) &1}1} gr(w),

where g (w) = F)(wk) + (F5(wk)|w — wi)y- Since wy, is fixed at this stage of the algorithm,
the minimization problem (3.4) is equivalent to

(3.5) min (£ (wi)|w)y

Let &y, be a solution of the problem (3.5). Since K is a convex set, the line segment [y, wg]
connecting &y and wy, lies entirely inside K, and (0 — wy) is a feasible direction. Thus,
we can perform a line-search over this line segment. That is, we solve the one-dimensional
problem

(3.6) OggglF,\(wk + @k, — wg)).

Let o}, be a solution to the line-search problem (3.6). We update
Wk.i,.l:(dk‘i’a]t(@k*u.)k), k:k+17

and repeat this process. The conditional gradient method is summarized by Algorithm 1.

Algorithm 1:

1 Choose a tolerance tol, an initial matrix wg € K, and set kK = 0;
2 Solve the minimization problem of a linear function over the feasible set K:

min (F3(wp)lw)y,  (+)

and let &y, be a solution to problem (x);
3 Compute the value: 1, = (F (wr)|@r — wi)ys
4 If |ni| < tol stop else continue;
5 Solve the one-dimensional minimization problem

Orgnérgll F,\(wk +Oé(wk —Wk))a (**)

and let o}, be a solution to problem (x:);
6 Update wiy1 = wy + af (W — wy), set k = k + 1 and go to Step 2.

Let Px denote the projection on the closed convex subset K of the Hilbert space Y. We
recall that the projection P is not linear. The following lemma may be seen in a general
context.

LEMMA 3.2. Let K be a closed convex and bounded subset of an Hilbert space Y such
that Oy € K. Then, for any y € Y with y # Oy and for all w € K, depending on the sign of
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(y|w)y, we have

(y| — Pk [9])y <0 < (ylw)v,

or

(y|Pr [-7])v < (ylw)y <0,

and « is an upper bound for K, i.e.,

where ij = al\yll Saforallw e K.

Proof. Forall y € Y, the projection Pk (y) on the closed convex subset K is characterized
by

(y — Px(y)lw — Px(y))y <0, YweK.

As Oy € K, it follows that (y — Pk (y)| — Pk (y))y < 0. Then (y|Px (v))y > || Pk (y)||?. In
the last inequality, replacing y by y implies that for all y € Y we have

(I Pk @)y > Mwn%@)?

Multiplying the last inequality by —1, we obtain that for all w € K,

(w1~ P < —alylhy (FZEOMN <y (12D

Now, if (y|w)y > 0, then using the Schwarz inequality, we obtain

(w1~ P < oty (MY g, (PRGN 1,

Contrary, if (y|w)y < 0, then

1 = Pre@he < el (PPN < gy (VDN
Replacing y by —y, we obtain
(WIP (- < (yle. O

Let us notice that in our context, the projection P on the convex set K in (2.8) is given
forally = (y',4%) € Y by

Pi(y) =w=(@"w?),  with

k
Who=— 2 p=12i=1,...n,j=1,..,m,
7 max(1, |y, 50)

where |y; ;| = /|y ;|? + |y7 ;2. Then, in this case Px(—y) = —Px(y). The following
proposition provides solutions of the problems (3.5) and (3.6).
PROPOSITION 3.3.
1. Atiteration k, a solution of the problem (3.5) is given by

V2nm FY (wg) .

Gn=P [_—
R TR ) Ty


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

CONDITIONAL GRADIENT TOTAL VARIATION METHOD 317

2. At iteration k, a solution of the problem (3.6) is given by

Cif 0<ap <1,
3.7) af =% 1 W
1 if ap>1,

where

02 (B (@)l Hiy

ST and  Hy = Qg — whe
B) ” VHk HX an k W WE

Proof. 1. The proof of item 1 is an immediate consequence of Lemma 3.2. Indeed, the
closed convex set K in (2.8) is bounded, and we have |lw||y < v/ 2n forall w € K. The
convex set K contains Oy. Let yp, = F}(wy) and 7, = v2nm For all w € K, by

Tyrlly H
Lemma 3.2, we have y

(Yrlw)y = <yk\PK[—§k]>Y-
2. According to (3.3) we have

F(wr + aHy) = FA(wk) + (FX(w)|cHy)y + o(|| aHy, [|v)
2
=a’ || V- Hy ||k +a (Fy(we) [Hr)y

’f‘f’ -V W

X
= ara® + bpa + C,

~ 2
where Hk = W —Wg, A = % H VHk ||§§,bk = <F)’\(wk)|Hk>Y,and Cr = ||f + %V . wkHX.
Then, it follows that the minimum of the quadratic one-dimensional problem,
. . b )\2 (F\(wi)lHr)y o~ .
ming F(wr + aHy), is given by o, = = —— =% Since Wy 1S a So-
( ). is given by a2 [V H G

lution at step k of the problem (3.5), n, = (F (wk)|Hr)y < 0and a > 0. It follows that the
solution of the problem (3.6) is given by (3.7). a

We describe the Conditional Gradient Total Variation (CGTV) method in Algorithm 2.
Algorithm 2: The Conditional Gradient Total Variation (CGTV) Algorithm.

1 Input: atolerance tol, an integer ky,.x, a value \ > 0 and e > tol;
2 initialization: choose an initial wy € K, and set wug = f, k =0;
3 while k < ko and e > tol do
4 Compute g, = —%Vuy and gy = v2nm HngY
5 Compute &, = P [—gk] and set Hy, = ©y, — wy;
2
6 Compute hy, = V - Hy, and oy, = — 3~ <g‘r}‘li"‘2>v;
ALD:e

7 if c;, > 1 then
8 | op=1;
9 else
10 | o = ous
11 end
12 Update wg41 = wi + CMZ[‘I}C diy1 =V - Wit1, Ukl = f+ %dk+1’ and

setk =k +1;
13 Compute e, = 7””’”‘ﬁkuzkﬂy,
14 end

Result: Return uy = uy.
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4. Convergence. We state some results on the convergence of the sequence generated
by Algorithm 2.

THEOREM 4.1. Let {n.} be the sequence given by my, = (F (wk)|@r — wk)y, where Wy,
is a solution at step k of the problem (3.5). Then

klingo e = 0.
Proof. For any « € [0, 1], we set i () = wy + (& — wk). According to (3.3), we get
Fx((@)) = Fa(wr) = a (Fy (W)@ — wi)y + ol || @k — wi v),

where

8a2(C?
A2

8a?

BYa | B — wr [IF<

lo(a || @ — wi [lv)| <
and C is the diameter of the compact set K, i.e., C = max, yex || 2 — w [|2< 2mn. Then

we get, for all a € [0, 1] and for all positive integers k, that

822
4.1 Fr(y(@)) — Fa(wy) < any + 0;72

As a* is a solution of the problem (3.6) and w1 = i (*), it is clear that, for all « € [0, 1]
and for all positive integers k,

4.2) Fy(wr+1) < Fa(y(@)).

In particular, for o = 0, we obtain for all positive integers k that
Fy(wr41) < Fa(7:(0)) = Fx(wg)-

We also have for all positive integers k that

F)\(wk) 2 522 F)\(w).

It follows that the sequence { F)(wy)} is monotonically decreasing and bounded from below,
hence the sequence { F(wy)} is convergent. Consequently,

7)) lim (F,\(wk.) - F)\(wk+1)) —0.

k—o00

From (4.1) and (4.2), we have, for all a € [0, 1] and for all positive integers k,

8a2C?
Fy(wr41) — Fa(wg) < an, + -
Since ), = (F3(wi)|@r — wi)y < 0, it holds that
8a2(C? 8a2(C?
Fy(wi) = Fx(wit1) = —amy — = aln| -

A2 A2

For all o € (0, 1] and for all positive integers k this gives

80402 + F,\(cuk) — F)\(wk_,_l)

4.4 0 <
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According to (4.3), if we take the limit in (4.4) for K — oo, we obtain

8aC?
0 < liminf |ng| < limsup || <L, Ve € (0,1].
k—o00 k— 00 A2
Now, we take the limit in the last inequality for o — 0 obtaining the desired result. a

THEOREM 4.2. The sequence {wy,} generated by Algorithm 2 is a minimizing sequence,
ie.,

lim F = min F .
B, ) = i ()

Proof. For any « € [0, 1], we set yx(a) = wy + a(Wy, — wy; ). From Algorithm 1, we have
We1 = wk + ap @k — wi) = k(ag),
where o, is a solution of the problem (3.6). From the convexity of the function F), we have
Fi(ws) = Fa(wr) 2 (Fy(wi)|we — ws)y
where w, € K is a solution of the problem (3.1). It follows that

0 < Fa(wr) — Fa(ws) < — (Fy(wi) ok — wa)y

<
< min (FX (W)l —wr)y < —np = nel-
Then, we have
0 < Fa(wr) = Falws) < |l
By Theorem 4.1, we deduce that kl;nolo Fy(wk) = F)(wy). This proves the theorem. d

5. Selection of the parameter A. In the case of Tikhonov regularization, there are
two well-known techniques for an optimal selection of the parameter )\, generalized cross-
validation [16] and the L-curve method [17]. Unfortunately, adopting these techniques to
total variation seems to be a difficult task. Nevertheless, we can adopt a method proposed
in [8] by constructing a sequence {\; } that in the limit satisfies the standard deviation noise
constraints (5.2). We assume that some statistical parameters of the additive Gaussian noise
(mean, variance, ...) are known or at least are estimated. As usual, we assume here that the

2 is estimated by the value o given by

variance o,

oo Ly g2 L )2
o=l A= 3 (= 7)
1<i<m

— 1
where f = — Z fi,; is the mean value of the observed noisy image f. The discrete

1<i<n
1<i<m

problem corresponding to (1.1)—(1.2) may be written as

(5.1 min TV (u),

subject to

(5.2) If — ul|% = mno?,
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where T'V (1) is now given in the discrete form (2.3). As in the continuous case, by introducing
the Lagrange multiplier, the problem (5.1)—(5.2) is equivalent to the problem (2.4). The task is
to find A > 0 such that || f — uy || = mno?, where u, is the solution of (2.4) corresponding
to A. According to [8], for A > 0, we consider the function ¢(\) = || Pxx f||x. The problem
is to find A* such that p(A\*) = o/mn. We recall that P,k f is the projection of f to the
convex set AK. We have uy« = f + /\—1*V -wy = f — Pk f. It follows that

e(\) = |Pxxflx = |If —un-llx = ovmn = || f = flx.

Let us now generate a sequence { ¢} such that

IS = uallx

If = flix

where the initial guess is chosen such that Ay > 0. The property that lim/;_, oo Ay = A* >0
was proved in [8], and consequently

Jm [f = [l = (1F — fllx = o/mn.
— 400

(5.3) WASES >0,

)

Based on the sequence (5.3), we may derive the following version of our proposed algorithm.

Algorithm 3: The Conditional Gradient Total Variation (CGTV) Algorithm.

1 Input: a tolerance toly, an integer £y, ,x;

2 Initialization: choose an initial value A\g > 0 and r, > tol; and set Ay = A\, and
! =0;

3 while ¢ < 4, and rp > toly do

4 Compute: u) by using Algorithm 2;

5 Update \py1 = If = w1 ;
If = fllx
6 Compute rp = |Ap41 — A¢| and set £ = £+ 1;

7 end
Result: Return u).

OriginalImage

Noisy Image by noise with SNR =25 and PSNR=19.1865 Denoised image by CGTV with PSNR=30.7139

S 100 150 200 250 300 30 400 450 500 100 150 200 250 30 40 450 50 5 100 150 200 250 30 30 400 450 500

FIG. 5.1. True image (left), the noisy image with SN R = 2.5 and PSN R = 19.186 (center) and the denoised
image (right) with PSN R = 30.714 with A = 0.034, Re(u) = 7.158 x 1072,
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FIG. 5.2. True image (left), the noisy image with SN R = 2.5 and PSN R = 15.905 (center) and the denoised
image (right) with PSN R = 26.265 with A = 0.026, R.(u) = 8.193 x 1072,

OriginalImage sy Image by noise with SNR =2.5 and PSNI Denoised image by CGTV with PSNR=25.0401
e "

FIG. 5.3. True image (left), the noisy image with SN R = 2.5 and PSN R = 11.602 (center) and the denoised
image (right) with PSN R = 25.040 with A = 0.014, Re(u) = 1.013 x 1071

Original Image
i

FIG. 5.4. True image (left), the noisy image with SN R = 2.5 and PSN R = 17.072 (center) and the denoised
image (right) with PSN R = 27.206 with A = 0.031, Re(u) = 9.164 X 102,

6. Numerical results. In this section, we present three numerical tests that illustrate the
effectiveness of our proposed method. We test our algorithm by taking known images as
matrices of size n x m with grayscale pixel values in the range [0, d], where d = 255 is the
maximum possible pixel value of the image. The true image is denoted by u. We generate a
noisy image f = u + 7, where 7 is a noise matrix whose entries are normally distributed and
Gaussian random with zero mean and a value of its variance such that the signal to noise ratio
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(SN R) has an appropriate (dB) value. We recall that the SN R is defined by

o2
SNR = 10log;, (4;)
g,
n
where 0727 and o2 are the variances of the noise and the original image, respectively. Therefore
in our tests, we generate an observed noisy image f by

6.1) f=a+m xogx 107750
where 79 is a random noise matrix with zero mean and variance equal to one. The performance
of the proposed method is evaluated by computing the PSN R (peak signal to noise ratio) of
the denoised (restored) image u = u (for an appropriate \), which is defined by

d’n x m

PSNR(u) =10 log,o( ————).
1°(||u—ull%>

To evaluate the precision of the estimates, the following relative error is also computed

[@ — ullr
Re(u) = ——=——
[allF
where || - || 7 is the Frobenius norm. All our computations were carried out using MATLAB 12

on an 1.7 GHZ Intel(R) core i7 with 8 GB of RAM.

6.1. Examples of image denoising. In this section, we illustrate the effectiveness of
our proposed algorithm by choosing four benchmark images: the “Lena”, “Boat”, “Man”
images of size 512 x 512 and the “Cat” image of size 500 x 750. Random Gaussian noise has
been added to each image to obtain a noisy image with a specific SN R. The additive noise was
constructed as in (6.1). The values of the SNR were SNR = 2.5, SNR =5,and SNR = 7.5.
Table 6.1 gives the SNR of the noise for each image as well as the PSNR of the corresponding
noisy image. We have applied our algorithm to each image to obtain a denoised image w) with
an appropriate value of A for each image. The criterion for stopping Algorithm 2 was that the
relative error between two successive iterates of approximated primal variable is less then the
tolerance tol = 10~° with the maximum number of iterations kmyax = 500. In Table 6.1 we
have reported the PSN R(uy) of the denoised image ) as well as the relative error Re(u) )
and the CPU-time. Figures 5.1-5.4 display the true, noisy, and denoised images for each
case, respectively. In Figure 6.1, we have plotted the curve A — PSN R(u) ), where A is
considered as a variable in the range [0, 0.5]. We observed that the curves have a maximum
PSNR value at an optimal value of A = oy located in the range [0, 0.5]. The optimal value
Aopt 18 the value of A for which the best result, both in terms of the maximum PSN R as well
as in terms of the relative error, was obtained. In this example, our proposed algorithm was run
for each image with the optimal value Ao The optimal value was obtained by hand. Indeed,
the parameter A\ needs to be tuned for each noised image to get an optimal value.

Based on the tests reported in Table 6.1 and many more unreported tests, we remark that
our proposed algorithm works very effectively for image denoising problems both in terms
of the PSNR as well as in terms of the relative error. It is very fast in terms of CPU-time.
However, the determination of an optimal value of the parameter ) is still a serious problem.
This is a general drawback for all total variation methods. In this example, we did not use any
criterion for choosing a good parameter A. We hand-tuned the optimal value of the parameter
A by choosing the value of A corresponding to the maximum PSN R. We notice that such
a technique is not exploitable in practice since the PSN R is computed from the true image,
which is unknown in general. In the following section, we use Algorithm 3 as a remedy. Using
the convergent sequence given by (5.3), we may obtain a good value of the parameter \.
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TABLE 6.1

The computational results for optimal parameter A with SNR = 2.5, SNR = 5, and SNR = 7.5.

Image | SNR A PSNR(f) || PSNR(uy) R.(uy) CPU-time
2.5 0.034 | 19.1865 30.714 7.158 %1072 1.74s
Lena 5 0.046 | 21.686 31.838 6.290x 102 1.25s
7.5 0.069 | 24.186 33.056 5.467x1072 0.86s
2.5 0.026 | 15.905 26.265 8.193x1072 1.47s
Boat 5 0.039 | 18.405 28.290 7.162x1072 1.04s
7.5 0.054 | 20.905 28.651 6.225x1072 0.63s
2.5 0.014 | 11.602 25.040 1.013x107! 4.17s
Cat 5 0.019 | 14.102 25.957 9.115x1072 2.83s
7.5 0.029 | 16.602 26.924 8.156x1072 2.47s
2.5 0.031 | 17.072 27.206 9.164x1072 1.13s
Man 5 0.044 | 19.572 28.290 8.089x1072 1.14s
7.5 0.064 | 22.072 29.492 7.044 %1072 0.73s

6.2. Image denoising with an automatic selection of the parameter \. In this section,
we show the efficiency of Algorithm 3 for selecting a good value of the parameter A. The
criterion for stopping Algorithm 2 consists of the tolerance tol = 10~* and the maximum
number of iterations kn,,x = 200 while the tolerance in Algorithm 3 is set to tol; = 5 X 1072
with the maximum number of iterations £,,,, = 100 and the initial value Ao = 100. We use
the same benchmark images as in the previous section. The results obtained with Algorithm 3
are summarized in Table 6.2. We observe that there are slight differences between the results
of the PSNR given in Table 6.1 and Table 6.2. The value of ) is here obtained as a limit of
the sequence given by Algorithm 3 while in the previous section the value of the parameter \
was hand-tuned to obtain a maximum PSNR. The determination of an algorithm for finding
an optimal value of the parameter ) is still a serious problem. Nevertheless, this proposed
selection method gives a procedure to find a parameter that provides a good PSNR value as
well as a small relative error.

6.3. Comparisons. In this section, we compare numerically, under the same conditions,
our algorithm referred to as the CGTV algorithm with three state-of-art algorithms developed
for TV regularization: Chambolle’s projection algorithm, referred to as the CPA algorithm, the
split Bregman algorithm, referred to as the SpB algorithm, and a primal-dual hybrid gradient
algorithm, referred to as the PDHG algorithm. The CPA algorithm was introduced in [8]

A-» PSNR(u,) with inital SNR=2.5 X-» PSNR(u,) with initial SNR=2.5 A-» PSNR(u, ) with iniial SNR=2.5

FIG. 6.1. The PSNR curves A — PSN R(uy) for the images from the left to the right: Lena, Boat, and Cat
with the SNR = 2.5.
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TABLE 6.2
The computational results for the automatic section of the parameter X by Algorithm 3.

Image | SNR| X | PSNR(f) || PSNR(uy) Re(uy) CPU-time

2.5 0.022 | 19.186 30.663 7.200x 1072 1.97s
Lena 5 0.020 | 21.689 31.771 6.338x1072 4.31s
7.5 0.017 | 24.186 32.425 5.878x1072 3.46s
2.5 0.015 | 15.905 26.313 8.148x1072 3.920s
Boat 5 0.014 | 18.405 27.169 7.384x1072 2.95s
7.5 0.012 | 20.904 27.620 7.009x 1072 3.77s
2.5 0.010 | 11.602 24.897 1.029x107* 3.13s
Cat 5 0.009 | 14.102 25.887 9.190x 1072 2.67s
7.5 0.008 | 16.602 26.757 8.786x 1072 1.97s
2.5 0.017 | 17.072 27.227 9.142x1072 3.56s
Man 5 0.016 | 19.572 28.044 8.321x1072 2.49s
7 0.014 | 22.072 28.442 7.949% 1072 4.45s

by Chambolle as a projection algorithm for solving the problem (1.3); see also [9, 10]. The
main idea behind CPA is based on a dual formulation and is related to the work in [11]. To
ensure convergence of CPA, it is shown in [8] that a parameter 7 must satisfy the condition
0<71< é. In [2], Aujol revisited CPA and showed that CPA is in fact a particular case of
an algorithm previously proposed by Bermuidez and Moreno in [3], which is an adaptation of
Uzawa’s algorithm to the problem (1.3). So, the range of convergence may be extended to
0<t< %, and the best convergence is obtained for 0.24 < 7 < 0.249. In our tests, the value
of the parameter was fixed at 7 = 0.245. The split Bregman (SpB) algorithm was introduced
by Goldstein and Osher in [15]; see also [18]. The main idea behind this method is the use of
the alternating direction method of multipliers adapted to L1-problems. The split Bregman
method is used to solve a variety of L1-regularized optimization problems and is particularly
effective for problems involving TV regularization. The primal-dual hybrid gradient algorithm
(PDHG) was proposed by Zhu and Chan in [23] for a broader variety of convex optimization
problems; see also [13]. PDHG is an example of a first-order method, since it requires only
functional and gradient evaluations. The PDHG method has been widely used in image
processing. For comparing the accuracy obtained by our proposed algorithm with those of the
three algorithms, we have used the three benchmark images “Lena”, “Boat”, and “Man” of
size 512 x 512 from the previous sections. We generated a noisy image from a true image
u by using an additive Gaussian noise with specific values of the SNR as in (6.1). We used
three different values of SNR =1, SNR = 3, and SNR = 7. In order to provide a fair and
unified framework for comparison, we have carefully tuned the value of the parameter A for
optimal performance of the PSNR of the denoised image corresponding to a maximum PSNR
obtained by one of these methods.

All these algorithms are endowed with the same convergence criterion, i.e., the iterations
for all algorithms were terminated when the relative error between two successive iterates of
approximated primal variable is less than the tolerance tol = 10~5 or when a maximum of
500 iterations has been performed. In Table 6.3, and for each algorithm, we report the number
of iterations (iter) reached, the relative error, the PSNR, as well as the CPU-time in seconds.
In Figure 6.2, we plot the curves of the relative error for each algorithm corresponding to
different images for the values of the SNR = 1, SNR = 3, and SNR = 7. We observe,
from Figure 6.2, that CGTYV is better in terms of rapid convergence than the CPA, SpB, and
PDHG algorithms. This may be also observed from Table 6.3 by comparing the number of
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Error convergence curves with SNR=7

Error convergence curves with SNR=1

. Error convergence curves with SNR=3

Relative Error
Relative Error
Relative Error

o 0 a2 W 4 % & M & 0 10 o 0 2 W & 5N o M & 0 10 o W 2 W @ 5N e M 8 0 1
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Error convergence curves ith SNR=1 Error convergence curves with SNR=3 . Ertor convergence curves with SNR<7

Relative Error
Relative Error
Relative Error

o 10 2 ® 4 s & M & 0 10 o 10 2 w4 s & M & 0 10 o 0 2 ® & 5 & W 8 0 1
Numberof erations k Number o terations k Number o terations k

Error convergence curves ith SNR=1 . Error convergence curves with SNR=3 . Ertor convergence curves with SNR=7

Relative Error
Relative Error
Relative Error
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FIG. 6.2. Relative error curves of CGTV, CPA, SpB and PDHG algorithms with SNR = 1 (left), SNR = 3
(center) and SN R = 7 (right) for “Lena” image (top), “Boat ” image (center) and “Man” image (bottom).

iterations reached for each algorithm and the CPU-time. From Table 6.3, it is apparent that
in most cases, our proposed algorithm restored the image with fewer iterations and in less
CPU-time than the other three above algorithms with a comparable visual quality confirmed
by the values of the obtained PSNR which is in most cases close to the PSNR obtained by
the three other algorithms. We notice that the PSNR reached by the CPA, SpB, and PDHG
algorithms is still slightly better than that obtained by CGTV. The slowest algorithm in our
reported tests was the CPA, which in most cases reached the maximum number of iterations.
The observations were confirmed in many others tests, not reported in this table, for different
values of the SNR and of the parameter A. There are some cases where our algorithm obtains
the best PSNR with rapid convergence. For instance, in the case of the Boat image with
SNR = 1, we observe that the relative error and the PSNR obtained by the CGTV were
Re(u§¢TV) =8.920 x 1072 and PSNR(u§{¢T") = 25.527 with CPU-time 4.70s, while
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Original Image

Noisy Image by noise with SNR =1 and P Denoised image by CGTV with P

S 0 150 20 20 a0 30 40 40 50 S 100 150 200 20 W0 w0 40 40 50 5 100 150 20 20 30 B 40 450 50
Denoised image by CPA with PN Denoised image by SpitB with PSNR=30.2728 Denoised image by PDHG with P
7 %

00 150 200 250 300 30 400 450 500 50 100 150 20 20 X0 30 400 450 500 100 150 200 250 300 30 400 450 500

FIG. 6.3. From left to right and from top to bottom: Original image, denoised image, restored image by CGTV,
CPA, SpB, and PDHG algorithms for Lena image with SNR = 1.

the results obtained by CPA, SpB, and PDHG were

Re(u§T4) = 9.071 x 1072, PSNR(u§T4) = 25.382,
Re(u3PP) = 9.068 x 1072, PSNR(u3PP) = 25.384,
R (ufPHSGY = 9.070 x 1072, PSNR(ulPHE) = 25.381,

where USGTV, ufp A ufp B, and uf DHG denote the denoised image obtained by the CGTY,
CPA, SpB, and PDHG algorithms, respectively. All the four algorithms are very sensitive to
the value of the parameter \. In Figure 6.3, we display the corresponding noisy and denoised
images by the four algorithms for the “Lena” image with SNR = 1.

7. Conclusion. In this paper we have introduced the conditional gradient method to
the primal-dual formulation of the total variation problem to derive a new algorithm that
is competitive both in precision and convergence. We have proved the convergence of our
algorithm, and we have tested it numerically showing its effectiveness as a method for
denoising images. The value of the Lagrange multiplier may be obtained as the limit of a
convergent sequence. We have compared our proposed method to three state-of-art algorithms
developed for TV regularization, namely Chambolle’s projection algorithm, the split Bregman
algorithm, and a primal-dual hybrid gradient algorithm. In terms of speed and convergence,
our algorithm is competitive yielding excellent quality of the restored image.
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