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THE USE OF THE GENERALIZED SINC-GAUSSIAN SAMPLING FOR
NUMERICALLY COMPUTING EIGENVALUES OF PERIODIC DIRAC SYSTEM∗

RASHAD M. ASHARABI† AND MOHAMMED M. THARWAT‡

Abstract. The generalized sinc-Gaussian sampling operator is established by Asharabi (2016) to approximate two
classes of analytic functions. In this paper, we use this operator to construct a new sampling method to approximate
the eigenvalues of the periodic (semi-periodic) Dirac system of differential equations problem. The convergence
rate of this method is of exponential type, i.e., e−αrN/

√
N , αr = ((r + 1)π − σh) /2. The sinc-Gaussian and

Hermite-Gauss methods are special cases of this method. We estimate the amplitude error associated to this operator,
which gives us the possibility to establish the error analysis of this method. Various illustrative examples are presented
and they show a good agreement with our theoretical analysis.
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1. Introduction. Let Bpσ, for σ > 0 and 1 ≤ p ≤ ∞, be the Bernstein space of all
entire functions f : C→ C that belong to L2(R), when restricted to the real axis, and are of
exponential type σ, so that they satisfy the inequality |f(z)| ≤ A exp (σ|=z|), with A > 0
and z ∈ C. The Bernstein spaces satisfies the following inclusions (cf. [16])

B1
σ ⊂ Bpσ ⊂ Bqσ ⊂ B∞σ , 1 < p < q <∞.

Asharabi defines in [4] the generalized sinc-Gaussian operator Gr,h,N : B∞σ → B∞σ as
follows:

(1.1) Gr,h,N [f ](z) :=∑
n∈ZN (z)

∑
i+j+k+l=r

f (i)(nh) Pr+k−j(z) sincr+1(πh−1z − nπ) e−
αr
N (h−1z−n)

2

,

where αr := ((r + 1)π − hσ)/2, ZN (z) :=
{
n ∈ Z : |bh−1<z + 1/2c − n| ≤ N

}
, r ∈ N◦,

z ∈ C, h ∈ (0, (r + 1)π/σ], and N ∈ Z+. The symbol bxc denotes the integer part of x. The
sinc function is defined by

sinc(t) :=


sin t

t
, t 6= 0,

1, t = 0.

Here Pr+k−j is a polynomial of degree r + k − j which is defined by

Pr+k−j(z) := βi,j,k,l
(
h−1z − n

)r−j
Hk

(√
αr (z − nh)√

Nh

)
,

where Hk(z) is the k-th degree Hermite polynomial

(1.2) Hk(z) := (−1)k exp(z2)
dk

dzk
exp(−z2) =

bk/2c∑
m=0

(−1)mk! (2z)k−2m

m!(k − 2m)!
,
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and the constant βi,j,k,l is given by

(1.3) βi,j,k,l :=
πr+1(−1)(r+1)n+k hi

i! k! l!

[
dl

dζl

(
ζ − n

sin (πζ)

)r+1
]
ζ=n

.

In fact, operator (1.1) was introduced for wider classes than Bernstein spaces, but in this study
we restrict this operator only to functions from the Bernstein space B∞σ . This operator is
produced from the modification of the generalized Hermite sampling with Gaussian function
e−x

2

. The modification of the classical sampling series using a Gaussian multiplier goes back
to Qian and his co-authors; cf. [11, 12]. The generalized Hermite sampling was introduced in
the literature; cf. [8, 14, 15]. We remark that a particular case of (1.1), when r = 0, has been
investigated by Schmeisser and Stenger in [13]. This case is called sinc-Gaussian sampling
and it has been extensively used for approximating eigenvalues of various boundary value
problems. By methods similar to those developed in [13], Asharabi and Prestin introduced
the Hermite-Gauss operator, which is a modification of Hermite sampling with a Gaussian
function; see [6] . This case is included in the operator (1.1) as a special case when r = 1,
and it has been used for approximating eigenvalues of boundary value problems; cf. [5]. The
history of the sampling methods, which approximate the eigenvalues of the boundary value
problems, has been introduced in [7].

In [4, Corollary 3.5], the author investigated a bound for approximating functions from the
Bernstein space B∞σ by the generalized sinc-Gaussian operator, and proved that if f ∈ B∞σ ,
then we have for all x ∈ R,

(1.4) |f(x)− Gr,h,N [f ](x)| ≤ 2r
∣∣sinr+1(h−1πx)

∣∣ ‖f‖∞ e−αrN

π
√
αrN

.

The convergence rate of this operator is of exponential type, i.e., e−αrN/
√
N , with αr defined

as above. It is clear that the precision increases when N and h are fixed and r increases, with
the additional cost that the samples f (i)(nh), i = 1, . . . , r, need to be calculated. Moreover,
the precision increases when N and r are fixed and h decreases, without any additional cost
except that the function is approximated on a smaller domain.

Our objective is to use the generalized sinc-Gaussian sampling operator Gr,h,N for ap-
proximating the eigenvalues of the Dirac system, which consists of the system of differential
equations

(1.5)
u′2(x, λ) + p1(x)u1(x, λ) = λu1(x, λ),

−u′1(x, λ) + p2(x)u2(x, λ) = λu2(x, λ),

with x ∈ [0, a] and boundary conditions

(1.6) u1(0, λ) = (−1)`−1u1(a, λ), u2(0, λ) = (−1)`−1u2(a, λ), ` = 1, 2,

where λ ∈ C and p1(·) and p2(·) are real-valued smooth periodic functions with period a. For
` = 1, the boundary value problem (1.5)–(1.6) is said to be periodic, while, when ` = 2, the
problem (1.5)–(1.6) is said to be semi-periodic. The spectral theory for the problem (1.5)–
(1.6) is established in [10]. The problem has a denumerable set of real eigenvalues (cf. [9,
10]), and its eigenvalues may repeat with multiplicity not exceeding two; cf. [10, pp. 202–
204]. Up to now, the generalized sinc-Gaussian sampling operator Gr,h,N , r ≥ 2, has not
been used for approximating the eigenvalues of boundary value problems. Moreover, to the
best of our knowledge, the approximating eigenvalues of various Dirac systems has been
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investigated using different sampling methods (cf. [2, 3]), except the periodic (semi-periodic)
Dirac system (1.5)–(1.6). The approximating eigenvalues of problem (1.5)–(1.6) were not
investigated before using any sampling methods.

The rest of the paper is organized as follows: the next section is devoted to establish the
method. The error analysis associated with our method is given in Section 3. Section 4 deals
with various illustrative examples, which show the efficiency and accuracy of this method.
Lastly, Section 5 concludes the paper.

2. The method. This section is devoted to the construction of our method. This method
approximates the eigenvalues of problem (1.5)–(1.6) using the generalized sampling opera-
tor (1.1). Let ϕ`(·, λ) = (ϕ`1(·, λ), ϕ`2(·, λ))> and ϑ`(·, λ) = (ϑ`1(·, λ), ϑ`2(·, λ))> be two
solutions of (1.5) satisfying the following initial conditions

(2.1) ϕ`1(0, λ) = ϑ`2(0, λ) = 0, ϕ`2(0, λ) = ϑ`1(0, λ) = (−1)`−1, ` = 1, 2,

where A> denotes the transpose of a matrix A. From now on, unless otherwise stated, ` = 1, 2.
The solutions ϕ`i(·, λ) and ϑ`i(·, λ), i, ` = 1, 2, are entire functions in λ; cf. [9, 10]. The
eigenvalues of the problem (1.5)–(1.6) are the zeros of the characteristic function (cf. [10, p.
203])

(2.2) ∆`(λ) = ϕ`2(a, λ) + ϑ`1(a, λ) + (−1)`2,

which is an entire function in λ. The function ∆1(λ) is the characteristic function of the
periodic problem, while ∆2(λ) is the characteristic function of the semi-periodic problem.
In [10, p. 204], the authors introduced a necessary and sufficient condition for the zero of (2.2)
to be multiple. They proved that a point λ∗ is a multiple zero of (2.2) if and only if

(2.3) ϕ`1(a, λ∗) = ϑ`2(a, λ∗) = 0.

We will use this condition in the examples of Section 4 to show whether a zero of ∆`(λ) is
double or not. The main idea of this method is to construct an entire function, which will be
denoted by ∆̃`,N (λ), using the generalized sampling operator (1.1). This function will be
very close to the characteristic function ∆`(λ). Therefore, the zeros of this function will be
accurate approximations to the zeros of the characteristic function ∆`(λ).

Applying similar methods to those developed by Levitan and Sargsjan in [9, p. 220],
ϕ`(·, λ) and ϑ`(·, λ) satisfy the system of integral equations

ϕ`1(x, λ) = (−1)` sinλx+ T1ϕ`1(x, λ) + T̃2ϕ`2(x, λ),(2.4)

ϕ`2(x, λ) = (−1)`−1 cosλx− T̃1ϕ`1(x, λ) + T2ϕ`2(x, λ),(2.5)

ϑ`1(x, λ) = (−1)`−1 cosλx+ T1ϑ`1(x, λ) + T̃2ϑ`2(x, λ),(2.6)

ϑ`2(x, λ) = (−1)`−1 sinλx− T̃1ϑ`1(x, λ) + T2ϑ`2(x, λ),(2.7)

where Ti and T̃i, i = 1, 2, are Volterra operators defined by

Tiu(x, λ) :=

∫ x

0

sinλ(x− t)pi(t)u(t, λ) dt, T̃iu(x, λ) :=

∫ x

0

cosλ(x− t)pi(t)u(t, λ) dt.

For the sake of convenience, we define f`i(·, λ), i = 1, . . . , 4, to be

f`1(x, λ) := T1ϕ`1(x, λ) + T̃2ϕ`2(x, λ), f`2(x, λ) := −T̃1ϕ`1(x, λ) + T2ϕ`2(x, λ),

f`3(x, λ) := T1ϑ`1(x, λ) + T̃2ϑ`2(x, λ), f`4(x, λ) := −T̃1ϑ`1(x, λ) + T2ϑ`2(x, λ).
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LEMMA 2.1. The functions f`i(x, λ), ` = 1, 2, i = 2, 3, are entire in λ for any fixed
x ∈ [0, a] and satisfy the growth condition

|f`i(x, λ)| ≤ η exp(η)e|=λ|x, λ ∈ C,

where

(2.8) η :=

∫ a

0

( |p1(t)|+ |p2(t)| ) dt.

Proof. Since f`1(x, λ) := T1ϕ`1(x, λ) + T̃2ϕ`2(x, λ), then from (2.4) and (2.5) we obtain

f`1(x, λ) = (−1)`T1 sinλx+ (−1)`−1T̃2 cosλx+ T1f`1(x, λ) + T̃2f`2(x, λ).

Using the inequalities

(2.9) | sin z| ≤ e|=z|, | cos z| ≤ e|=z|, z ∈ C,

leads for λ ∈ C to

|f`1(x, λ)| ≤ |T1 sinλx|+ |T̃2 cosλx|+ |T1f`1(x, λ)|+ |T̃2f`2(x, λ)|

≤ e|=λ|x
∫ x

0

[ |p1(t)|+ |p2(t)| ] dt

+e|=λ|x
∫ x

0

[ |p1(t)||f`1(t, λ)|+ |p2(t)||f`2(t, λ)| ] e−|=λ|t dt

≤ ηe|=λ|x + e|=λ|x
∫ x

0

[ |p1(t)||f`1(t, λ)|+ |p2(t)||f`2(t, λ)| ] e−|=λ|t dt.

The above inequality can be reduced to

(2.10) e−|=λ|x|f`1(x, λ)| ≤ η +

∫ x

0

[ |p1(t)||f`1(t, λ)|+ |p2(t)||f`2(t, λ)| ] e−|=λ|t dt.

Similarly, we can prove that

(2.11) e−|=λ|x|f`2(x, λ)| ≤ η +

∫ x

0

[ |p1(t)||f`1(t, λ)|+ |p2(t)||f`2(t, λ)| ] e−|=λ|t dt.

Then from (2.10), (2.11), and Lemma 3.1 of [10, pp. 204], we obtain

|f`2(x, λ)| ≤ η exp(η)e|=λ|x.

From (2.6), (2.7), (2.9), and by applying the same procedure as in the cases of |f`1(x, λ)| and
|f`2(x, λ)|, we can conclude

|f`3(x, λ)| ≤ η exp(η)e|=λ|x.

We split the characteristic function ∆`(λ) into two parts, one is known and the other is
not, but it belongs to the Bernstein space B∞a , i.e.,

(2.12) ∆`(λ) := K`(λ) + U`(λ),

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

GENERALIZED SINC-GAUSSIAN FOR EIGENVALUES OF THE DIRAC SYSTEM 377

where U`(λ) is the unknown part involving the integral operators

(2.13) U`(λ) := f`2(a, λ) + f`3(a, λ),

and K`(λ) is the known part

K`(λ) := 2
(
(−1)`−1 cos aλ+ (−1)`

)
.

LEMMA 2.2. The function U`(λ), ` = 1, 2, belongs to B∞a .
Proof. Using (2.13) and Lemma 2.1, the function U`(λ) is entire in λ and satisfies the

following estimate

|U`(λ)| ≤ 2η exp(η)e|=λ|a,

where η is defined in (2.8). Therefore U`(λ) ∈ B∞a .
Now, we can approximate U`(λ) using the generalized sinc-Gaussian sampling (1.1) to

get an approximation of ∆`(λ), which will be denoted by ∆`,N (λ), i.e.,

(2.14) ∆`(λ) ≈ ∆`,N (λ) := K`(λ) + Gr,h,N [U`](λ),

where h = (0, (r + 1)π/a] and αr = ((r + 1)π − ha)/2. In view of (2.12), the samples of
the operator Gr,h,N are given by

U (i)
` (nh) := ∆

(i)
` (nh)−K(i)

` (nh), i = 0, . . . , r,

where n ∈ ZN (λ), which is defined above. Unfortunately, those samples cannot be computed
explicitly in the general case. Then, we compute those samples numerically, and this makes
the amplitude error appear. Indeed, the amplitude error arises when the exact values U (i)

` (nh),
i = 0, . . . , r, of the operator Gr,h,N [U`] are replaced by approximations. Let Ũ`(nh) be the
approximation of the samples U`(nh) := U (0)

` (nh)

Ũ`(nh) = ϕ`2(a, nh) + ϑ`1(a, nh) + (−1)`2−K`(nh),

when the solutions ϕ`2(a, nh) and ϑ`1(a, nh) of the initial value problem (1.5)–(2.1) are
computed numerically at the nodes {nh}n∈ZN (λ). The reminder samples U (i)

` (nh), i =

1, . . . , r, will be approximated using the values Ũ`(nh) through the sinc-Gaussian operator,
i.e., U (i)

` (nh) ≈ Ũ (i)
` (nh), with

(2.15)

Ũ (i)
` (nh) =

∑
k∈ZN (λ)

Ũ`(kh)

{
sinc

(
πh−1λ− kπ

)
exp

(
−α0 (λ− kh)

2

Nh2

)}(i)

λ=nh

,

where i = 1, . . . , r and h ∈ (0, π/a]. We have restricted the parameter h to be in the interval
(0, π/a] because the sinc-Gaussian operator (G0,h,N ) is defined only in this interval. The
following interesting function, which is defined using the generalized sinc-Gauss operator,

(2.16) ∆̃`,N (λ)(λ) := K`(λ) + Gr,h,N [Ũ`](λ), h ∈ (0, π/a],

is determined explicitly and is very close to the characteristic function ∆`(λ), as we will see
in Theorem 3.2 below. Therefore, the zeros of ∆̃`,N (λ) are very close to the desired zeros of
∆`(λ).
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3. The error analysis. This section is devoted to investigate the error analysis associated
with our method. First, we need to estimate a bound for the amplitude error associated with
the generalized sinc-Gaussian operator Gr,h,N [U`]. We assume that the Ũ (i)

` (nh) are close to
U (i)
` (nh), i.e., there is ε > 0 sufficiently small such that

(3.1) sup
n∈ZN (z)

∣∣∣Ũ (i)
` (nh)− U (i)

` (nh)
∣∣∣ < ε, i = 0, . . . , r.

We define the amplitude error associated with the operator (1.1) as follows

(3.2) Ar,h,N [U`](λ) := Gr,h,N [U`](λ)− Gr,h,N [Ũ`](λ).

In the following theorem, we will estimate a bound for the amplitude error Ar,h,N in the
complex domain. Undoubtedly, in this paper we need the bound of the amplitude error on a
real domain only because the eigenvalues of problem (1.5)–(1.6) are real, but we expect that
this method will be used for boundary value problems that have complex eigenvalues.

THEOREM 3.1. Let σ > 0, h ∈ (0, (r + 1)π/σ] and αr = ((r + 1)π − hσ)/2. Assume
that (3.1) holds. Then we have for λ ∈ C, |=λ| < N ,

(3.3) |Ar,h,N [U`](λ)| ≤ εCr,h,N
(

1 +
√
N/αr

)
e−αr/4Ne((r+1)h+αr)h

−1|=λ|,

where Cr,h,N is defined by

Cr,h,N :=
2

πr+1

∑
i+j+k+l=r

hj+1|βi,j,k,l|
bk/2c∑
m=0

k!
(
2
√
αr
(
h−1 + 1

))k−2m
m!(k − 2m)!

N1/2(k−2m)−j−1,

and the coefficients βi,j,k,l are defined in (1.3).
Proof. From the definition of the amplitude error (3.2) and using the inequality | sin(λ)| ≤

e|=λ|, we obtain
(3.4)

|Ar,h,N [U`](λ)| ≤ εLr,h(λ)
∑

i+j+k+l=r

|βi,j,k,l|
∑

n∈ZN (λ)

∣∣∣∣∣∣
Hk

(√
αr(λ−nh)√

Nh

)
e−

αr
N (h−1λ−n)

2

(h−1λ− n)j+1

∣∣∣∣∣∣ ,
where we have used estimate (3.1) and Lr,h(λ) := e(r+1)πh−1|=λ|/πr+1. Furthermore, we
have used the fact that the coefficient |βi,j,k,l| is independent of the value n and the finite sums
are interchanged. The last summation of (3.4) can be bounded as

∑
n∈ZN (λ)

∣∣∣∣∣∣
Hk

(√
αr(λ−nh)√

Nh

)
e−

αr
N (h−1λ−n)

2

(h−1λ− n)j+1

∣∣∣∣∣∣≤ Sk,r,h
∑

n∈ZN (λ)

∣∣∣e−αrN (h−1λ−n)
2
∣∣∣ ,(3.5)

whereR is the following rectangle

R :=
{
λ ∈ C : |bh−1<λ+ 1/2c − n| ≤ N, |=λ| < N

}
and

Sk,r,h := sup
λ∈R

∣∣∣∣∣∣
Hk

(√
αr(λ−nh)√

Nh

)
(h−1λ− n)j+1

∣∣∣∣∣∣ .
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It is easy to see that

(3.6) sup
λ∈R
|λ− nh| ≤ (1 + h)N,

and

(3.7) sup
λ∈R

1

|h−1λ− n|j+1
≤ sup
λ∈R

1

|h−1<λ− n|j+1
≤ 1

(h−1N)j+1
.

In view of (3.6), (3.7), and (1.2), we obtain

(3.8) Sk,r,h ≤ hj+1

bk/2c∑
m=0

k!
(
2
√
αr
(
h−1 + 1

))k−2m
m!(k − 2m)!

N1/2(k−2m)−j−1.

The summation in the right-hand side of (3.5) is bounded in [1, pp. 297-298] as follows

(3.9)

 ∑
n∈ZN (λ)

∣∣∣e−αrN (h−1λ−n)
2
∣∣∣2
1/2

≤ 2
(

1 +
√
N/αr

)
e−αr/4Neαrh

−1|=λ|.

Combining (3.9), (3.8), (3.5), and (3.4), implies (3.3).
In the following theorem, we will prove that the function ∆̃`,N (λ), which is defined

in (2.16), is an accurate approximation to the characteristic function ∆`(λ).
THEOREM 3.2. Let N ∈ N, λ ∈ R and assume that condition (3.1) holds. Then we have

the following estimate

(3.10)
∣∣∣∆`(λ)− ∆̃`,N (λ)

∣∣∣ ≤ TN,k,h(λ) +Aε,h,N ,

where ∆` is the characteristic function of the problem (1.5)–(1.6) and ∆̃`,N is defined in
(2.16). The functions TN,k,h and Aε,h,N are defined by

TN,k,h(λ) := 2r
∣∣sinr+1(h−1πλ)

∣∣ ‖f‖∞ e−αrN

π
√
αrN

,(3.11)

Aε,h,N := εCr,h,N

(
1 +

√
N/αr

)
e−αr/4N ,(3.12)

where h ∈ (0, π/a], αr = ((r + 1)π − ha)/2. Moreover ∆̃`,N → ∆` uniformly on R when
ε→ 0 and N →∞.

Proof. According to (2.16) and (2.12), we have

(3.13)
∣∣∣∆`(λ)− ∆̃`,N (λ)

∣∣∣ ≤ |U`(λ)− Gr,h,N [U`](λ)|+
∣∣∣Gr,h,N [U`](λ)− Gr,h,N [Ũ`](λ)

∣∣∣ .
Since U` ∈ B∞a , we can approximate U` by the generalized sampling operator (1.1) and we
have (cf. (1.4))

(3.14) |U`(λ)− Gr,h,N [U`](λ)| ≤ TN,k,h(λ), λ ∈ R,

where TN,k,h is defined by (3.11). Since condition (3.1) holds, we have (cf. (3.3))

(3.15)
∣∣∣Gr,h,N [U`](λ)− Gr,h,N [Ũ`](λ)

∣∣∣ ≤ Aε,h,N ,
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where Aε,h,N is defined by (3.12). Combining (3.15), (3.14), and (3.13), implies (3.10). In
view of (3.11) and (3.12), the right-hand side of (3.10) goes to zero uniformly on R when
N →∞ and ε→ 0. Therefore, ∆̃`,N → ∆` uniformly on R when ε→ 0 and N →∞.

Now, we will use the bound in (3.10) to estimate the absolute error |λ∗` − λ`,N | when
λ∗` is the exact eigenvalue of the problem (1.5)–(1.6) and λ`,N is the zero of the function
∆̃`,N (λ).

THEOREM 3.3. Let λ∗` be an eigenvalue of (1.5)–(1.6) of multiplicity ν (ν = 1 or 2) and
denote by λ`,N the corresponding approximation. Then, for λ`,N ∈ R, we have the following
estimate

(3.16) |λ∗` − λ`,N | <

ν! (TN,k,h(λ`,N ) +Aε,h,N )

inf
ζ∈I`,N

∣∣∣∆(ν)
` (ζ)

∣∣∣


1/ν

,

where I`,N := [min{λ∗` , λ`,N},max{λ∗` , λ`,N}]. Moreover, |λ∗−λN,k| −→ 0 whenN →∞
and ε→ 0.

Proof. Replacing λ by λ`,N in (3.10), we obtain

(3.17) |∆`(λ`,N )−∆`(λ
∗
` )| < TN,k,h(λ`,N ) +Aε,h,N ,

where we have used ∆̃`,N (λ`,N ) = ∆`(λ
∗
` ) = 0. Since λ∗` is a zero of ∆`(λ) with multiplicity

of ν, we have from the reminder term of the Taylor expansion

(3.18) ∆`(λ
∗
` )−∆`(λ`,N ) =

(λ∗` − λ`,N )ν

ν!
∆

(ν)
` (ζ)

for some ζ ∈ I`,N . From (3.18) and (3.17), we get

|λ∗` − λ`,N |
ν
∣∣∣∆(ν)

` (ζ)
∣∣∣ < ν! (TN,k,h(λ`,N ) +Aε,h,N ) , ζ ∈ I`,N .

Since the eigenvalue λ∗` is of multiplicity ν, we have ∆
(ν)
` (ζ)(λ∗` ) 6= 0. Therefore, for

sufficiently large N , we have

(3.19) inf
ζ∈I`,N

∣∣∣∆(ν)
` (ζ)

∣∣∣ > 0,

and hence dividing by the left-hand side of (3.19), we obtain (3.16). The remaining part of the
proof follows from the fact that TN,k,h → 0 as N →∞, and Aε,h,N → 0 as ε→ 0.

4. Illustrative examples. This section includes four examples to illustrate the advantages
of the proposed method. The Dirac systems in Examples 4.1, 4.4 are semi-periodic, while
those in Examples 4.2, 4.3 are periodic. In Example 4.3, the eigenvalues in the interval [−1, 4]
are simple. The eigenvalues in the other examples are double except for Example 4.4, where
one eigenvalue of is simple. We will compute the eigenvalues using the operator Gr,h,N with
r = 0, 1, 2, 3. As predicted by the error estimates, the precision increases when N and h are
fixed and r increases, with the additional cost that the samples of the derivatives of functions
need to be calculated using the samples of the function itself; cf. (2.15). In all examples, it is a
simple task to compute the characteristic function, ∆`(λ) explicitly, except in Example 4.3
where it cannot be computed in closed form. Therefore, the amplitude error only appears in
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Example 4.3. In all examples, we denote the eigenvalues and their approximations by λk and
λk,N respectively.

EXAMPLE 4.1. Consider the semi-periodic Dirac system

u′2(x) + xu1(x) = λu1(x),

−u′1(x) + xu2(x) = λu2(x), x ∈ [0, 4],

u1(0) = −u1(4), u2(0) = −u2(4).

Here a = 4, ` = 2, and p1(x) = p2(x) = x. The characteristic function is

∆2(λ) = 2− 2 cos (2(4− 2λ)) ,

and the exact eigenvalues are λk = 4−πk
2 , k ∈ Z. Since all the eigenvalues of this problem

satisfy condition (2.3), they are all double eigenvalues. According to (2.14), after calculating
the function K2, we get

∆2,N (λ) = 2− 2 cos(4λ) + Gr,h,N [U2](λ).

In Table 4.1, we give the approximate eigenvalues obtained by the generalized sinc-Gaussian
sampling technique, with N = 7, h = 0.7, and different values of r. Table 4.2 reports the
absolute error |λk − λk,N | for r = 0, 1, 2, 3. Figures 4.1 and 4.2 illustrate the difference
between the function ∆2(λ) and its approximation ∆2,N (λ), with r = 0, 2, in the interval
[−2, 6].

TABLE 4.1
The eigenvalues with N = 7 and h = 0.7.

k G0,h,N G1,h,N G2,h,N G3,h,N
-2 5.11343254829677 5.14159196109544 5.141592653560071 5.141592653589792
-1 3.52587616111651 3.57079634599230 3.570796326799396 3.570796326794903
0 1.99268698750402 1.99999950376364 1.999999999992704 2.000000000000004
1 0.44747045787135 0.42920436334952 0.429203673230348 0.429203673205104
2 -1.16420081558931 -1.14159321960092 -1.141592653617637 -1.141592653589794

TABLE 4.2
The absolute error |λk − λk,N | with N = 7 and h = 0.7.

λk G0,h,N G1,h,N G2,h,N G3,h,N
λ−2 2.81601×10−2 6.92494×10−7 2.9722×10−11 8.88178×10−16

λ−1 4.49202×10−2 1.91974×10−8 4.49907×10−12 6.66134×10−15

λ0 7.31301×10−3 4.96236×10−7 7.29594×10−12 4.44089×10−15

λ1 1.82668×10−2 6.90144×10−7 2.52441×10−11 6.10623×10−16

λ2 2.26082×10−2 5.66011×10−7 2.78437×10−11 8.88178×10−16

EXAMPLE 4.2. The boundary value problem

u′2(x) + x2u1(x) = λu1(x),

−u′1(x) + x2u2(x) = λu2(x), x ∈ [0, π],

u1(0) = u1(π), u2(0) = u2(π),
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FIG. 4.1. ∆2(λ)−∆2,N (λ) for r = 0, N =
5, and h = 0.4.
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FIG. 4.2. ∆2(λ)−∆2,N (λ) for r = 2, N =
5, and h = 0.4.

is a periodic Dirac system with a = π, ` = 1, and p1(x) = p2(x) = x2. Here the characteristic
function is

∆1(λ) = 2 cos
(π

3

(
π2 − 3λ

))
− 2.

Hence the exact eigenvalues are λk = π2−6k
3 , k ∈ Z. Since λk, k ∈ Z, satisfy the condition

(2.3), all eigenvalues of this problem are double. The function ∆1,N (λ) is

∆1,N (λ) = 2 cos(πλ)− 2 + Gr,h,N [U1](λ).

Table 4.3 list the approximate eigenvalues of this problem with N = 7, h = 0.7, and
r = 0, 1, 2, 3. In Table 4.4, we display the absolute error for various choices of r. The plots of
∆1(λ) −∆1,N (λ) with N = 5, h = 0.5, r = 1, and N = 5, h = 0.5, r = 3, are shown in
Figures 4.3 and 4.4, respectively, for the interval [−2, 8].

TABLE 4.3
The eigenvalues with N = 7 and h = 0.8.

k G0,h,N G1,h,N G2,h,N G3,h,N
-2 7.29146784300787 7.28986836898996 7.28986813369914 7.2898681336964835
-1 5.29710113074795 5.28986849957303 5.28986813371427 5.2898681336964590
0 3.29047941860795 3.28986836862110 3.28986813369913 3.2898681336964680
1 1.29710113074795 1.28986849957303 1.28986813371426 1.2898681336964537
2 -0.70952058139205 -0.71013163137890 -0.71013186630088 -0.7101318663035477

TABLE 4.4
The absolute error |λk − λk,N | with N = 7 and h = 0.8.

λk G0,h,N G1,h,N G2,h,N G3,h,N
λ−2 1.59971×10−3 2.35294×10−7 2.68408×10−12 3.01981×10−14

λ−1 7.23300×10−3 3.65877×10−7 1.78124×10−11 6.21725×10−15

λ0 6.11285×10−4 2.34925×10−7 2.67564×10−12 1.55431×10−14

λ1 7.23300×10−3 3.65877×10−7 1.78098×10−11 1.33227×10−15

λ2 6.11285×10−4 2.34925×10−7 2.66343×10−12 2.22045×10−16
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FIG. 4.3. ∆1(λ)−∆1,N (λ) for r = 1, N =
5, and h = 0.5.
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FIG. 4.4. ∆1(λ)−∆1,N (λ) for r = 3, N =
5, and h = 0.5.

EXAMPLE 4.3. The boundary value problem

u′2(x) + u1(x) = λu1(x),

−u′1(x) + xu2(x) = λu2(x), x ∈ [0, 3],

u1(0) = u1(3), u2(0) = u2(3),

is a special case of the periodic problem when a = 3, ` = 1, p1(x) = 1, and p2(x) = x. The
characteristic function of this problem cannot be computed in a closed form and, thus, the
amplitude error appears. It is given as a combination of four varieties of Airy functions. The
eigenvalues of this problem are only simple. Here

∆̃1,N (λ) = 2 cos(3λ)− 2 + Gr,h,N [Ũ1](λ).

As in the previous examples, Tables 4.5, 4.6, and Figures 4.5, 4.6, illustrate the application of
our technique to this problem and the effect of the parameter r.

TABLE 4.5
The eigenvalues with N = 6 and h = 0.6.

k G0,h,N G1,h,N G2,h,N G3,h,N
-2 -0.989307528897929 -0.996849937695628 -0.996850335848082 -0.996850335861101
-1 -0.781316586278270 -0.774237301037988 -0.774236951398153 -0.774236951392367
0 1.002087607417726 1.000000023208921 0.999999999986544 0.999999999999996
1 1.447845400808394 1.449598042862364 1.449598100700345 1.449598100695762
2 3.260293987328006 3.254026906173752 3.254026412457459 3.254026412407036
3 3.538940501410063 3.540787891656990 3.540787887151272 3.540787887149195

EXAMPLE 4.4. The semi-periodic Dirac system

u′2(x) − u1(x) = λu1(x),

−u′1(x) + u2(x) = λu2(x), x ∈ [0, 4],

u1(0) = −u1(4), u2(0) = −u2(4),

has a = 4, ` = 2, p1(x) = −1, and p2(x) = 1. The characteristic function is

∆2(λ) = 2− 2 cos
(

4
√
λ2 − 1

)
.
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TABLE 4.6
The absolute error |λk − λk,N | with N = 6 and h = 0.6.

λk Exact λk G0,h,N G1,h,N G2,h,N G3,h,N
λ−2 -0.996850335861097 7.5428×10−3 3.9817×10−7 1.3015×10−11 4.3299×10−15

λ−1 -0.774236951392368 7.0796×10−3 3.4965×10−7 5.7858×10−12 2.2205×10−16

λ0 1.000000000000000 2.0876×10−3 2.3209×10−8 1.3456×10−11 4.1078×10−15

λ1 1.449598100695761 1.7527×10−3 5.7833×10−8 4.5841×10−12 8.8818×10−16

λ2 3.254026412407030 6.2676×10−3 4.9377×10−7 5.0429×10−11 6.6613×10−15

λ3 3.540787887149186 1.8474×10−3 4.5078×10−9 2.0854×10−12 9.3259×10−15

-2 -1 0 1 2 3 4
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-0.004
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0.000

0.002
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0.006

FIG. 4.5. ∆1(λ)− ∆̃1,N (λ) for r = 0, N =
5, and h = 0.4.
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FIG. 4.6. ∆1(λ)− ∆̃1,N (λ) for r = 2, N =
5, and h = 0.4.

The eigenvalues are exactly λ2k = (πk)2+4
4 , k ∈ Z. The only simple eigenvalue of this

problem is at k = 0. In this example,

∆2,N (λ) = 2− 2 cos(4λ) + +Gr,h,N [U2](λ).

We report the exact eigenvalues and their approximations in Tables 4.7 and 4.8. Here Fig-
ures 4.7 and 4.8 illustrate the behaviour of ∆2(λ) − ∆2,N (λ) when N = 5, h = 0.4, and
r = 1, 3, in the interval [0, 7].

TABLE 4.7
The eigenvalues with N = 6 and h = 0.7.

k G0,h,N G1,h,N G2,h,N G3,h,N
0 1.001632496378207 1.000000145431083 1.000000000010789 1.000000000000000
1 1.864138728327801 1.862096874886582 1.862095889331847 1.862095889118621
2 3.297725071148114 3.296909099124057 3.296908309514440 3.296908309475604
3 4.798608651402407 4.817323383723065 4.817323935771017 4.817323935802022
4 6.349446510761929 6.362265174718638 6.362265131586696 6.362265131567328

5. Conclusions. This work is devoted to constructing a new sampling method to approx-
imate the eigenvalues of the periodic (semi-periodic) Dirac system of differential equations
problem. This method is built by using the generalized sinc-Gaussian sampling operator
Gr,h,N , which was established by Asharabi in 2016. This operator has a convergence rate of
exponential type, i.e., e−αrN/

√
N , αr = (r+1)π−σh. The method is based on constructing
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TABLE 4.8
The absolute error |λk − λk,N | with N = 6 and h = 0.7.

λk G0,h,N G1,h,N G2,h,N G3,h,N
λ0 1.63250×10−3 1.45431×10−7 1.07894×10−11 2.22045×10−16

λ1 2.04284×10−3 9.85768×10−7 2.13261×10−10 3.44169×10−14

λ2 8.16762×10−4 7.89648×10−7 3.88245×10−11 1.15463×10−14

λ3 1.87153×10−2 5.52079×10−7 3.10019×10−11 2.66454×10−15

λ4 1.28186×10−2 4.31513×10−8 1.93685×10−11 8.88178×10−16
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FIG. 4.7. ∆2(λ)−∆2,N (λ) for r = 1, N =
5, and h = 0.4.
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FIG. 4.8. ∆2(λ)−∆2,N (λ) for r = 3, N =
5, and h = 0.4.

an entire function ∆̃`,N (λ), using the generalized sinc-Gaussian sampling operator, which is
very close to the characteristic function ∆`(λ). The zeros of ∆̃`,N (λ) closely approximate
the zeros of ∆`(λ). The method depends upon three parameters, r, h,N , that play a pivotal
role for the accuracy. The accuracy of the method increases when the parameters r,N are
fixed and h is decreasing, without additional cost except that the function is approximated
on a smaller domain. Furthermore, the precision improves when N and h are fixed and r
increases, with the additional cost that the samples of the derivatives of the function need to
be calculated using the samples of the function itself; cf. (2.15). This method generalizes the
well-known sampling methods (sinc-Gaussian and Hermite-Gauss methods). To investigate
the error analysis of this method, it is necessary to study the truncation error and the amplitude
error associated to the generalized sinc-Gaussian sampling operator. The numerical examples
show a strong compliance with our theoretical analysis.
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