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HIGH-ORDER LEGENDRE COLLOCATION METHOD FOR
FRACTIONAL-ORDER LINEAR SEMI-EXPLICIT

DIFFERENTIAL ALGEBRAIC EQUATIONS∗
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Abstract. This paper is devoted to a high-order Legendre collocation approximation for solving fractional-order
linear semi-explicit differential algebraic equations numerically. We discuss existence, uniqueness, and regularity
results and conclude that the solutions typically suffer from a singularity at the origin. Moreover, we show that the
representation of the approximate solutions by a linear combination of Legendre polynomials leads to unsatisfactory
convergence results. To overcome this difficulty, we develop a new regularization approach that removes the singularity
of the input data and produces approximate solutions of higher accuracy. Illustrative numerical examples are presented
to support the obtained theoretical results.
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1. Introduction. This work investigates a high-order Legendre collocation approach for
approximating the solutions of the following fractional-order linear semi-explicit differential
algebraic equation

(1.1)


Dαx(t) = p1(t)x(t) + p2(t)y(t) + q1(t),

0 = p3(t)x(t) + p4(t)y(t) + q2(t),

x(0) = d0, y(0) = d1, t ∈ I = [0, 1],

where α = p
q ∈ Q ∩ (0, 1) with two relatively prime integers p ≥ 1 and q ≥ 2. Q is the set

of rational numbers, and the constants d0 and d1 are given. The known coefficient functions
pi(t), qj(t), i = 1, . . . , 4, j = 1, 2, are continuous on I , and Dα is the Caputo-type fractional
derivative operator of order α defined as (cf. [4, 12])

Dαx(t) = I1−α(x′),

where

Iαx(t) =
1

Γ(α)

t∫
0

(t− s)α−1x(s)ds,

is the Riemann-Liouville-type fractional integral operator of order α and Γ(α) denotes the
Gamma function. Some of the properties of these operators are given in [4],

(1.2) Iα(Dαx(t)) = x(t)− x(0), Dαtk =

{
k!

Γ(k−α+1) t
k−α k ∈ N,

0 k = 0,

where N is the set of natural numbers.
Recently, equations of this type came up in many important mathematical models such as

electrochemical processes, non-integer-order optimal controller design and complex biochemi-
cal processes [3, 16], and circuit models containing super-conducting components [17, 18].
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Sometimes one can convert fractional differential algebraic equations (FDAEs) into an equiva-
lent fractional differential equations, and this can be useful in investigating theoretical aspects
of the solution such as existence, uniqueness, and asymptotic performance of the solution.
However, the numerical solution of the equivalent fractional differential equations instead
of the original one may cause some crucial drawbacks. For example, since FDAEs exhibit a
collection of relationships between variables of interest and usually some of these variables
and their fractional-order derivatives have a physical significance, changing the model may
generate less meaningful variables. Also, the numerical solution of the equivalent system
no longer satisfies the original constraints exactly, and by the fact that the constraints reflect
important physical properties, this could be a serious problem. In addition, from the numerical
point of view, transforming FDAEs into fractional differential equations can increase the com-
putational costs and destroy sparsity and prevent the exploitation of the structure of the system.
Furthermore, by studying FDAEs directly, researchers can analyze more easily the effect
of modeling variations, and linking the modeling software to the design software becomes
simpler. Thus, in this paper we focus on obtaining a numerical solution by considering FDAEs
directly [1].

In recent years, a few methods have been used to solve FDAEs numerically such as the
generalized triangular function operational matrices method [3], the waveform relaxation
method (WRM) [5], the fractional differential transform method (FDTM) [7], the variational
iteration method (VIM), the Adomian decomposition method (ADM) [6], the Laplace homo-
topy analysis method (LHAM) [8], and the homotopy analysis method (HAM) [19]. But most
of the techniques do not involve any convergence analysis and the reported numerical results
indicate approximations of low accuracy even when the exact solution is sufficiently smooth.
Thus, introducing and analyzing an approximate method which provides high accuracy for the
numerical solution of (1.1) could be very important and new in the literature.

In this paper, we pursue the development of a suitable numerical approach for approximat-
ing the solutions of (1.1). To this end, we present a technique mainly consisting of three stages.
First, we give an existence and uniqueness theorem along with a regularity result for (1.1)
and prove that some derivatives of x(t) and y(t) have a singularity at the origin and behave
like tα−1. Second, we adopt the Legendre collocation method for approximating (1.1). The
obtained numerical results and theoretical predictions indicate that, due to the singularities
of the derivatives of the exact solutions, this strategy yields numerical solutions with low
accuracy. In the third step, for obtaining high-order approximate solutions, we proceed with
a regularization approach using the asymptotic performance of the unknown solutions that
allows us to improve the smoothness of the input functions and to approximate the solutions
by means of a Legendre collocation method of higher accuracy.

The organization of this article is as follows: The existence and uniqueness theorem
along with a regularity result for (1.1) are given in Section 2. In Section 3, we introduce and
analyze the Legendre collocation scheme to approximate the solution of (1.1). In Section 4,
we first change (1.1) into a new equation with higher regularity by means of a suitable
smoothing procedure, and then the Legendre collocation solutions of the transformed equation
are obtained. Moreover, the effects of the proposed regularization approach in producing high-
order approximate solutions are justified. Some numerical examples are provided to confirm
the obtained theoretical predictions in Section 5. The final section contains a conclusion.

2. Existence and uniqueness theorem. The main goal of this section is to demonstrate
the existence and uniqueness of solutions of (1.1) and their regularity properties. To this end,
it is necessary to recall the following theorem regarding the existence and uniqueness result
for the solutions of fractional-order differential equations.
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THEOREM 2.1 (Theorems 6.5, 6.32, and Corollary 6.34 in [4]). Let α = p
q ∈ (0, 1)

with two relatively prime integers p ≥ 1 and q ≥ 2, and assume that the continuous function
f : I ×R→ R (R denotes the set of real numbers) satisfies a Lipschitz condition with respect
to the second variable, i.e.,

|f(t, x1(t))− f(t, x2(t))| ≤ C|x1(t)− x2(t)|,

with some constant C > 0 independent of t, x1, x2. Then, the fractional differential equation{
Dαx(t) = f(t, x(t)),

x(0) = d0, t ∈ I,

has a unique continuous solution x(t) on I . Moreover, if the function f can be written as
f(t, x(t)) = f̄(t

1
q , x(t)) with an analytic function f̄ in a neighborhood of (0, d0), then there

exists a unique analytic function x̄(t) : (−r, r)→ R with some r > 0 such that

x(t) = x̄(t
1
q ) = d0 +

∞∑
i=p

x̄it
i
q , with |x′(t)| ≤ Cαtα−1,

with certain coefficients x̄i and a generic constant Cα depending on α.
In the next theorem, we state and justify the existence and uniqueness theorem for (1.1)

along with a smoothness result.
THEOREM 2.2. Let α = p

q ∈ (0, 1) with two relatively prime integers p ≥ 1 and q ≥ 2,
and assume that the following conditions are satisfied:

(a) pi(t), qj(t) ∈ C(I), for i = 1, . . . , 4, j = 1, 2,
(b) p4(t) 6= 0 on I .
Then the fractional-order differential algebraic equation (1.1) has unique continuous

solutions x(t) and y(t). Furthermore, if pi, qj are of the form

(2.1) pi(t) = p̄i(t
1
q ), qj(t) = q̄j(t

1
q ),

where p̄i(t
1
q ) and q̄j(t

1
q ) are analytic functions in a neighborhood of the origin, then the

following regularity result for the unique solutions of (1.1) hold:

|x′(t)| ≤ Cαtα−1,(2.2)

|y(ṽ+1)(t)| ≤ C̃αtα−1,(2.3)

where Cα, C̃α are generic constants and ṽ ≥ 0 depends on the regularity of the input functions.
Proof. According to assumption (b), the algebraic constraint of (1.1) can be written as

(2.4) y(t) = − 1

p4(t)

(
p3(t)x(t) + q2(t)

)
.

Replacing (2.4) in (1.1) gives

Dαx(t) = p1(t)x(t)− p2(t)

p4(t)

(
p3(t)x(t) + q2(t)

)
+ q1(t)

=
(p1(t)p4(t)− p2(t)p3(t)

p4(t)

)
x(t) +

(q1(t)p4(t)− q2(t)p2(t)

p4(t)

)
=: f(t, x(t)).(2.5)
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Trivially, the linear and continuous function f(t, x(t)) defined in (2.5) satisfies the Lipschitz
condition with respect to its second variable, and it can be written as f(t, x(t)) = f̄(t

1
q , x(t)),

where f̄ is an analytic function in a neighborhood of (0, d0) in view of (2.1). Thus, Theorem 2.1
implies a unique continuous solution x(t) with the regularity property (2.2) for the function
in (2.5). Furthermore, relation (2.4) indicates that y(t) has at least the same smoothness
degree as x(t) depending on the regularity properties of the input functions, which verifies the
bound (2.3).

Indeed, from Theorems 2.1 and 2.2 we conclude that the exact solutions x(t) and y(t)
of (1.1) are represented by

x(t) = d0 +

∞∑
i=p

x̃it
i
q = d0 + x̃pt

α + . . . /∈ C1(I),

y(t) = − 1

p4(t)

(
p3(t)

[
d0 + x̃pt

α + . . .
]

+ q2(t)
)
/∈ C ṽ+1(I), ṽ ≥ 0,(2.6)

where Cm(I), m ≥ 0, is the space of all m-times continuously differentiable functions on I .
This implies that some derivatives of the exact solutions of (1.1) have a singularity near the
end point t = 0+ with the asymptotic behavior (2.2), (2.3), and thereby a direct application of
the Legendre collocation method for the numerical solution of (1.1) may lead to results with
low accuracy.

In this paper, we propose a strategy to overcome this difficulty and provide more accurate
approximate solutions for (1.1). To this end, we first implement the Legendre collocation
method to solve (1.1) numerically and investigate its convergence properties. Here we prove
that a direct implementation of this approach leads to approximate solutions with low accuracy.
To overcome this weakness, we pursue a regularization strategy using (2.6) so that the resulting
equation has a higher degree of regularity. We justify that this regularization process leads to a
substantial improvement in the accuracy of the obtained approximate solutions.

3. The Legendre collocation approach. In this section, we investigate the numerical
performance of the Legendre collocation method for approximating the solutions of (1.1).

3.1. Numerical approach. Assume that the approximate solutions of (1.1) are given by

xN (t) =

N∑
i=0

xiLi(t) = XL = XLVt,(3.1)

yN (t) =

N∑
i=0

yiLi(t) = Y L = Y LVt,(3.2)

where Li(t), i = 0, 1, . . . , N , are the shifted Legendre polynomials on I and

L = [L0(t), L1(t), . . . , LN (t)]T = LVt,

where L is a nonsingular lower triangular coefficient matrix given by

L :=



1
−1 2
1 −6 6
−1 12 −30 20
1 −20 90 −140 70
...

...
...

...
...

. . .


,
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and where Vt = [1, t, t2, . . . , tN ]T is the standard basis and X = [x0, x1, . . . , xN ],
Y = [y0, y1, . . . , yN ] are unknown vectors.

Substituting (3.1), (3.2) into (1.1) yields

XLDαVt = XLV p1t + Y LV p2t + q1(t),

0 = XLV p3t + Y LV p4t + q2(t),
(3.3)

where V pit = pi(t)Vt, i = 1, . . . , 4. The second relation of (1.2) gives

DαVt =
[
Dα(1), Dα(t), . . . , Dα(tN )

]T
=
[
0,

1

Γ(2− α)
t1−α, . . . ,

N !

Γ(N − α+ 1)
tN−α

]T
= t−α

[
0,

1

Γ(2− α)
t, . . . ,

N !

Γ(N − α+ 1)
tN
]T

= ΩtVt,(3.4)

where Ωt is the following (N + 1)× (N + 1) diagonal matrix

Ωt =



0 0 0 . . . 0

0 t−α

Γ(2−α) 0 . . . 0

0 0 2t−α

Γ(3−α) . . . 0
...

...
...

. . . 0

0 0 0 . . . t−αN !
Γ(N+1−α)


.

Inserting (3.4) into (3.3) yields

XLΩtVt = XLV p1t + Y LV p2t + q1(t),

0 = XLV p3t + Y LV p4t + q2(t).
(3.5)

In the collocation method, the unknown vectors X and Y are obtained by imposing
the condition that equation (3.5) is satisfied at a set of suitable nodal points. Here we
choose the Legendre-Gauss nodal points {tj}Nj=0 as collocation points, which are the zeros
of the polynomial LN+1(t) [15]. Inserting the collocation points into (3.5), the following
(2N + 2)× (2N + 2) system of linear algebraic equations for the unknown vectors X and Y
is obtained:

XLΩtjVtj = XLV p1tj + Y LV p2tj + q1(tj),

0 = XLV p3tj + Y LV p4tj + q2(tj),
j = 0, 1, . . . , N.(3.6)

Finally, the unknown vectorsX,Y and thereby the approximate solutions xN (t), yN (t) defined
by (3.1) and (3.2) can be defined by requiring the initial conditions

xN (0) = X[Li(0)]Ni=0 = X[(−1)i]Ni=0 = d0,

yN (0) = Y [Li(0)]Ni=0 = Y [(−1)i]Ni=0 = d1,

additionally to the linear system (3.6).

3.2. Convergence analysis. In this section, we investigate the convergence properties of
the proposed Legendre collocation method for the numerical solution of (1.1). For simplicity
we consider (1.1) when its coefficients pi, i = 1, . . . , 4, are constants. Throughout this paper,
C and Ci are generic positive constants independent of N . In the following, we recall some
useful preliminaries and lemmas which will be used in the sequel.
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• L2
δ,γ is the space of all functions u for which ‖u‖δ,γ <∞ with

‖u‖2δ,γ =

∫
I

|u(t)|2ωδ,γ(t)dt,

where ωδ,γ(t) = 2δ+γtγ(1 − t)δ is the shifted Jacobi weight function on I for
the parameters δ, γ > −1. For simplicity, we use the symbol (L2(I), ‖.‖) when
δ = γ = 0 (see [15]).

• Bm(I) is the non-uniform Sobolev space of all function u(t) on I with ‖u‖m <∞,
where

‖u‖2m =

m∑
k=0

‖u(k)‖2k,k.

The semi-norm |u|m = ‖u(m)‖m,m can also be defined in this space (see [15]).
• ω(u; ν) is the modulus of continuity of the function u(t) on I defined for x1, x2 ∈ I

and ν > 0 by (see [13])

ω(u; ν) = sup
|x1−x2|≤ν

|u(x1)− u(x2)|.

We need the following property of the modulus of continuity:
LEMMA 3.1 ([13]). u(t) is uniformly continuous on I if and only if

lim
ν→0

ω(u; ν) = 0.

• The Lagrange interpolating polynomial IN (u(t)) for any continuous function u(t)
on I is defined by

IN (u(t)) =

N∑
i=0

u(ti)ϕi(t),

where {ϕi(t)}Ni=0 are the Lagrange polynomials associated with the Legendre-Gauss
points {ti}Ni=0.

In our analysis we shall apply the following lemmas:
LEMMA 3.2 (Theorem 3.41 and Remark 4.14 in [15]). For any u ∈ Bm(I) with a fixed

m ≥ 1, we have

‖u− IN (u)‖ ≤ CN−m|u|m.

LEMMA 3.3 (Corollary 1.4.1 and Theorem 4.8 in [13]). For any continuous function u(t)
on I we have

‖u− IN (u)‖ ≤ L ω(u;
1

2N
),

where L is a known constant independent of N .
LEMMA 3.4 ([12, Lemma 2.1(a)]). The Riemann-Liouville-type fractional integral

operator Iα is bounded on L2(I), i.e.,

‖Iαu‖ ≤ C‖u‖, u ∈ L2(I).
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LEMMA 3.5 ([10] (Gronwall’s inequality)). Let the non-negative and locally integrable
function u(t) satisfy the inequality

u(t) ≤ b(t) + d

t∫
0

(t− s)mu(s)ds, s ∈ I, m > −1, d ≥ 0, b(t) ≥ 0.

Then there exists a constant C such that

u(t) ≤ b(t) + C

t∫
0

(t− s)mb(s)ds, s ∈ I.

The next theorem gives suitable bounds for the error functions of the Legendre collocation
approximations for (1.1) with constant coefficients.

THEOREM 3.6. Let the requirements of Theorem 2.2 hold. Moreover, assume that xN (t),
yN (t) are the Legendre collocation approximations (3.1) and (3.2) to the exact solutions x(t)
and y(t) of the fractional differential algebraic equation (1.1) with constant coefficients. If
qi(t) ∈ Bki(I), for i = 1, 2, then for sufficiently large N we have

‖eN‖ ≤ C
(
N−k1 |q1|k1 +

∣∣∣p2

p4

∣∣∣N−k2 |q2|k2 +N−1|Dαx|1
)
,

‖εN‖ ≤ C
(∣∣∣p3

p4

∣∣∣‖eN‖+N−k2 |q2|k2
)
,(3.7)

where eN (t) = x(t)− xN (t) and εN (t) = y(t)− yN (t).
Proof. Considering (1.1) with constant coefficients, by the described strategy in the

previous section, we obtain

IN

(
DαxN (t)

)
= p1xN (t) + p2yN (t) + IN (q1),

0 = p3xN (t) + p4yN (t) + IN (q2).
(3.8)

Subtracting (1.1) from (3.8) and some simple computations give

DαeN (t) = p1eN (t) + p2εN (t)− eIN (DαxN (t)) + eIN (q1),

0 = p3eN (t) + p4εN (t) + eIN (q2),
(3.9)

where eIN (u) = u − IN (u) is the interpolating error function. Since p4 6= 0, the algebraic
constraint in (3.9) has the form

(3.10) εN (t) = − 1

p4

(
eIN (q2) + p3eN (t)

)
.

Replacing (3.10) in (3.9) yields

(3.11) DαeN (t) =
(
p1 −

p3p2

p4

)
eN (t)− p2

p4
eIN (q2) + eIN (q1)− eIN (DαxN ) .

By applying the fractional integral operator Iα on both sides of (3.11) and using the first
relation in (1.2), we conclude that

eN (t) =
(
p1 −

p3p2

p4

)
IαeN (t)− p2

p4
Iα(eIN (q2)) + Iα(eIN (q1))− Iα (eIN (DαxN )) ,
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which can be written as

(3.12) |eN | ≤ d
t∫

0

(t− s)α−1|eN (s)|ds+ b(t),

where

b(t) =
∣∣∣p2

p4

∣∣∣Iα(|eIN (q2)|) + Iα(|eIN (q1)|) + Iα (|eIN (DαxN )|) ,

d =
∣∣∣(p1 −

p3p2

p4

) 1

Γ(α)

∣∣∣.
By applying Gronwall’s inequality, i.e., Lemma 3.5, to (3.12), we have

|eN | ≤ b(t) + C

t∫
0

(t− s)α−1b(s)ds = b(t) + C Γ(α)Iα(b(t)),

and thereby

‖eN‖ ≤ ‖b(t)‖+ |C Γ(α)|‖Iα(b(t))‖,

where C is a constant. Using the boundedness of Iα, i.e., Lemma 3.4, in the inequality above,
we obtain

‖eN‖ ≤ C1

(∣∣∣p2

p4

∣∣∣‖Iα(eIN (q2))‖+ ‖Iα(eIN (q1))‖+ ‖Iα (eIN (DαxN ))‖
)

‖eN‖ ≤ C2

(∣∣∣p2

p4

∣∣∣‖eIN (q2)‖+ ‖eIN (q1)‖+ ‖eIN (DαxN )‖
)

≤ C2

(∣∣∣p2

p4

∣∣∣‖eIN (q2)‖+ ‖eIN (q1)‖+ ‖eIN (Dαx)‖+ ‖eIN (DαeN )‖
)
.(3.13)

Now, we find suitable bounds for each term on the right-hand side of (3.13). To this end, using
(3.1) and (1.2), we may write

DαxN (t) = Dα
( N∑
i=0

xiLi(t)
)

= Dα
( N∑
i=0

x̂it
i
)

=

N∑
i=0

x̂iD
αti =

N∑
i=1

i!x̂i
Γ(i− α+ 1)

ti−α,

which implies continuity of DαxN for 0 < α < 1. On the other hand, from relation (2.6), we
have

Dαx(t) = Dα
(
d0 +

∞∑
i=p

x̄it
i
q

)
=

∞∑
i=p

x̄iD
α(t

i
q ) =

∞∑
i=p

Γ( iq + 1)x̄i

Γ( i−pq + 1)
t
i−p
q

= Γ(α+ 1)xp +
Γ(α+ 1

q + 1)x̄p+1

Γ( 1
q + 1)

t
1
q + . . . ,(3.14)

which indicates thatDαx(t) and consequentlyDαeN (t) = Dαx(t)−DαxN (t) are continuous
functions on I . Therefore using Lemma 3.3 we obtain

(3.15) ‖eIN (DαeN )‖ ≤ Lω(DαeN ;
1

2N
).
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Substituting (3.15) into (3.13) yields

(3.16) ‖eN‖ ≤ C3

(∣∣∣p2

p4

∣∣∣‖eIN (q2)‖+ ‖eIN (q1)‖+ ‖eIN (Dαx)‖+ ω(DαeN ;
1

2N
)

)
.

Since any continuous function on a compact set is uniformly continuous (by the Heine-Cantor
theorem [14]), DαeN (t) is a uniformly continuous function on the closed interval I . Then
Lemma 3.1 yields

ω(DαeN ;
1

2N
)→ 0 as N →∞,

and equivalently, for any ε > 0, there exists a positive number Nε such that for N ≥ Nε, we
have ∣∣ω(DαeN ;

1

2N
)
∣∣ ≤ ε.

Thus, for sufficiently small values of ε we can ignore ω(DαeN ,
1

2N ) in (3.16) for sufficiently
large N , and so it can be estimated by

(3.17) ‖eN‖ ≤ C3

(∣∣∣p2

p4

∣∣∣‖eIN (q2)‖+ ‖eIN (q1)‖+ ‖eIN (Dαx)‖

)
.

The first inequality in (3.7) can be obtained by applying Lemma 3.2 to (3.17) and using

|Dαx|1 =
∥∥∥ d
dt

(Dαx)
∥∥∥

1,1
<∞,

in view of (3.14).
Finally, the second inequality in (3.7) can be obtained by applying the L2-norm on both

sides of (3.10) and using Lemma 3.2.
From Theorem 3.6, we can deduce that a singularity of the exact solutions of (1.1) near

t = 0+ yields a loss in the order of convergence of the Legendre collocation method. In
the next section, for recovering the high order of convergence, we introduce a regularization
approach which enables us to retrieve the regularity of the exact solutions and produce
approximate solutions for (1.1) of higher accuracy.

4. Establishing convergence of higher order. In this section, we introduce a regular-
ization approach that enables us to improve the differentiability of the input functions and then
to define approximate solutions with a high rate of convergence for (1.1). To this end, under
the assumptions of Theorem 2.2, we use the coordinate transformations

(4.1) t = uq, u = t
1
q , s = wq, w = s

1
q ,

and transform equation (1.1) into the following equivalent one:

(4.2)


D
α
x(u) = p1(u)x(u) + p2(u)y(u) + q1(u),

0 = p3(u)x(u) + p4(u)y(u) + q2(u),

x(0) = d0, y(0) = d1, u ∈ I,

where

pi(u) = pi(u
q), i = 1, 2, . . . , 4, qj(u) = qj(u

q), j = 1, 2,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

396 F. GHANBARI, K. GHANBARI, AND P. MOKHTARY

are analytic functions and

D
α
x(u) =

1

Γ(1− α)

∫ u

0

(uq − wq)−α(x(w))′dw.

Following (2.6), the exact solutions x̄(u) and ȳ(u) of the transformed equation (4.2) can be
represented as

x(u) = x(uq) = d0 +

∞∑
i=p

x̃iu
i = d0 + x̃pu

p + x̃p+1u
p+1 . . . ,

y(u) = y(uq) = − 1

p̄4(u)

(
p̄3(u)

[
d0 +

∞∑
i=p

x̃iu
i
]

+ q̄2(u)
)
,

which are infinitely smooth functions. Thus, the smoothing transformation (4.1) removes the
singularity of x(t) and y(t) in (2.6). This enables us to provide highly accurate approximate
solutions for (1.1) by solving the equivalent equation (4.2) with the Legendre collocation
method.

4.1. Numerical approach. Let the Legendre collocation solutions of (4.2) be given by

xN (u) =

N∑
i=0

xiLi(u) = X L = XLVu,(4.3)

yN (u) =

N∑
i=0

yiLi(u) = Y L = Y LVu,(4.4)

where X = [x0, x1, . . . , xN ], Y = [y0, y1, . . . , yN ] are unknown vectors. Since the unknown
solutions of (1.1) can be written as x(t) = x(u), y(t) = y(u), we consider

(4.5) x̃N (t) = xN (t
1
q ) = xN (u), ỹN (t) = yN (t

1
q ) = yN (u),

as approximate solutions for the main equation (1.1).
Inserting (4.3) and (4.4) into (4.2) we find

XLD
α
Vu = XLV p1u + Y LV p2u + q1(u),

0 = XLV p3u + Y LV p4u + q2(u),
(4.6)

where V piu = pi(u)Vu, i = 1, . . . , 4. To obtain the matrix representation of D
α
Vu we can

write

D
α
Vu =

1

Γ(1− α)

∫ u

0

(uq − wq)−α(Vw)′dw.

From (Vw)′ = ηVw (see [11]), where η is the (N + 1)× (N + 1) matrix

η =



0 0 0 . . . 0
1 0 0 . . . 0
0 2 0 . . . 0
0 0 3 . . . 0
...

...
...

. . .
...

0 0 0 . . . N


,
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we get

(4.7) D
α
Vu =

η

Γ(1− α)

[∫ u

0

(uq − wq)−αwjdw

]N
j=0

.

Using the variable transformation wq = uqv, we have∫ u

0

(uq − wq)−αwjdw = uj−p+1
B( j+1

q , 1− α)

q
, j = 0, 1, . . . , N,

where B(a, b) =
1∫
0

ta−1(1− t)b−1dt is the Beta function. Thus, by ignoring the first p − 1

terms in (4.7), we can write

(4.8) D
α
Vu = ηΩVu,

where Ω is the (N + 1)× (N + 1) matrix with the only nonzero entries

Ωj,j−p+1 =
B(1− α, j+1

q )

q
, j = p− 1, p, . . . , N.

Substituting (4.8) into (4.6) yields

XLηΩVu = XLV p1u + Y LV p2u + q1(u),

0 = XLV p3u + Y LV p4u + q2(u).
(4.9)

Inserting the Legendre-Gauss points {tj}Nj=0 into equations (4.9) yields the following
(2N + 2)× (2N + 2) system of linear algebraic equations for the unknown vectors X and Y :

XLηΩVtj = XLV
p1
tj + Y LV

p2
tj + q1(tj),

0 = XLV
p3
tj + Y LV

p4
tj + q2(tj),

j = 0, 1, . . . , N.(4.10)

Finally, the unknown vectors X and Y and thereby the approximate solutions xN (t), yN (t)
defined by (4.3) and (4.4) can be obtained by imposing the initial conditions

xN (0) = X[Li(0)]Ni=0 = X[(−1)i]Ni=0 = d0,

yN (0) = Y [Li(0)]Ni=0 = Y [(−1)i]Ni=0 = d1,

additionally to the linear system (4.10). The proposed scheme is summarized in Algorithm 1.

4.2. Convergence analysis. The main objective of this section is to investigate the
effect of the proposed regularization procedure for increasing the rate of convergence of the
approximate solutions (4.5).

THEOREM 4.1. Let x̄N (u), ȳN (u), defined by (4.3) and (4.4), respectively, be the
Legendre collocation approximations of (4.2) with constant coefficients. Moreover, assume
that x̃N (t), ỹN (t) given by (4.5) are the approximate solutions to the fractional differential
algebraic equation (1.1) with constant coefficients. If q̄i(u) ∈ Bki(I), for i = 1, 2 and ki > 0,
then for sufficiently large N , we obtain

‖ẽN‖0,q−1 ≤ C
(
N−k1 |q1|k1 +

∣∣∣p2

p4

∣∣∣N−k2 |q2|k2
)
,

‖ε̃N‖0,q−1 ≤ C
(∣∣∣p3

p4

∣∣∣‖ẽN‖0,q−1 +N−k2 |q2|k2
)
,

(4.11)

where ẽN (t) = x(t)− x̃N (t) and ε̃N (t) = y(t)− ỹN (t) are the error functions.
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Algorithm 1 The construction of Legendre collocation approximation system (4.10).
Step 1. ChooseN and compute the coefficient matrix L from {Li(u)}Ni=0 = LVu withO(n2)

flops and Vu = [1, u, . . . , uN ]T .
Step 2. Compute the (N + 1)× (N + 1) matrices η and Ω̄ with the only nonzero entries

ηi+1,i = i, i = 0, 1, . . . , N,

Ω̄j,j−p+1 =
B(1− α, j+1

q )

q
, j = p− 1, . . . , N,

with O(N) flops.
Step 3. Set the Legendre-Gauss points {tj}Nj=0 as the zeros of the Legendre polynomials

LN+1(t).
Step 4. Compute the unknown vectors X and Y from solving the (2N + 2) × (2N + 2)

linear system of equations (4.10) after imposing the initial conditions and set
xN (u) = XLVu, yN (u) = Y LVu, as the Legendre collocation solutions of the
transformed equation (4.2).

Step 5. Set x̃N (t) = xN (t
1
q ), ỹN (t) = yN (t

1
q ) as the approximate solutions of the main

equation (1.1).

Proof. From (4.8) it can be seen that D̄α(x̄N (u)) is a polynomial of degree at most N .
Thus, we can write IN (D̄α(x̄N (u))) = D̄α(x̄N (u)), and thereby, applying the Legendre
collocation scheme to the equation (4.2) with constant coefficients yields

D̄αx̄N (u) = p1x̄N (u) + p2ȳN (u) + IN (q̄1(u)),

0 = p3x̄N (u) + p4ȳN (u) + IN (q̄2(u)).
(4.12)

Subtracting (4.2) from (4.12), we find

D̄αēN (u) = p1ēN (u) + p2ε̄N (u) + eIN (q̄1(u)),

0 = p3ēN (u) + p4ε̄N (u) + eIN (q̄2(u)).
(4.13)

Since p4 6= 0, the algebraic constraint of (4.13) has the form

(4.14) ε̄N (u) = − 1

p4

(
p3ēN (u) + eIN (q̄2)

)
.

Replacing (4.14) in (4.13), we have

(4.15) D̄αēN (u) =
(
p1 −

p2p3

p4

)
ēN (u)− p2

p4
eIN (q̄2) + eIN (q̄1).

Applying the transformation (4.1) to the fractional integral operator Iα, we get

Īα(x̄) =
1

Γ(α)

u∫
0

(uq − wq)α−1x̄(w)qwq−1dw.

From the first relation of (1.2) it is easy to see that

(4.16) Īα(D̄α(ēN (u))) = ēN (u)− ēN (0) = ēN (u).
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Applying the operator Īα on both sides of (4.15) and using (4.16), we can conclude that

(4.17) ēN (u) =
(
p1 −

p2p3

p4

)
Īα(ēN (u))− p2

p4
Īα(eIN (q̄2)) + Īα((eIN (q̄1)).

From (4.1) and (4.5) we can write

(4.18) eN (u) = x(u)− xN (u) = x(uq)− x̃N (t) = x(t)− x̃N (t) = ẽN (t),

which implies that (4.17) can be expressed as

(4.19) ẽN (t) =
(
p1 −

p2p3

p4

)
I
α

(eN (u))− p2

p4
I
α

(eIN (q2)) + I
α

((eIN (q1)).

Applying the variable transformation (4.1) in I
α

(eN (u)) and using (4.18), it is easy to see that
I
α

(eN (u)) = Iα(ẽN (t)), and then equation (4.19) can be written as

(4.20) |ẽN (t)| ≤
∣∣∣p1 −

p2p3

p4

∣∣∣Iα(|ẽN (t)|) +
∣∣∣p2

p4

∣∣∣ Iα(|eIN (q2)|) + I
α

(|eIN (q1)|).

Proceeding in the same manner for (3.12)–(3.13), inequality (4.20) can be expressed as

(4.21) ‖ẽN‖0,q−1 ≤ C1

(∣∣∣p2

p4

∣∣∣ ‖Iα(eIN (q2))‖0,q−1 + ‖Iα(eIN (q1))‖0,q−1

)
.

Using the Cauchy-Schwarz inequality and by some simple computations, we obtain

‖Īα(v)‖20,q−1 =

1∫
0

( u∫
0

qwq−1

Γ(α)(uq − wq)1−α v(w)dw

)2

(2u)q−1du

≤
1∫

0

([ u∫
0

qwq−1

Γ(α)(uq − wq)1−α dw

][ u∫
0

qwq−1

Γ(α)(uq − wq)1−α v
2(w)dw

])
(2u)q−1du

≤ q2q−1

Γ(α)

( 1∫
0

u∫
0

qwq−1

Γ(α)(uq − wq)1−α v
2(w)uq−1dwdu

)

≤ q2q−1

Γ2(α)

[ 1∫
0

v2(w)

( 1∫
w

quq−1

(uq − wq)1−α du

)
dw

]
≤ q22q−1

Γ2(α)
‖v‖.

(4.22)

Inserting (4.22) into (4.21) yields

(4.23) ‖ẽN‖0,q−1 ≤ C2

(∣∣∣p2

p4

∣∣∣ ‖eIN (q2)‖+ ‖eIN (q1)‖
)
.

Obviously, the first estimate in (4.11) can be obtained by using Lemma 3.2 in the esti-
mate (4.23). In addition, the second estimate in (4.11) can be derived using (4.14), (4.18),
Lemma 3.2, and by some simple manipulations.

Using Theorem 4.1 and applying the proposed regularization process, we can approximate
the fractional differential algebraic equation (1.1) by a highly accurate numerical solution
because the rate of convergence depends on the smoothness of the input functions q̄1(u) and
q̄2(u), which have better regularity compared to q1(t) and q2(t).
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5. Numerical examples. In this section, we illustrate by some examples the efficiency
of the proposed approach for solving (1.1) numerically. All the computations were done by
the Mathematica software. In the tables, the numerical errors are calculated using the norms

‖eN‖2 =

∫
I

|x(t)− xN (t)|2dt, ‖ẽN‖2 =

∫
I

|x(t)− x̃N (t)|2dt,

‖εN‖2 =

∫
I

|y(t)− yN (t)|2dt, ‖ε̃N‖2 =

∫
I

|y(t)− ỹN (t)|2dt,

if the exact solution is available, and in case we do not know the exact solutions x(t) and y(t),
the errors are estimated by

‖eesN ‖2 =

∫
I

|xN (t)− x2N (t)|2dt, ‖ẽesN ‖2 =

∫
I

|x̃N (t)− x̃2N (t)|2dt,

‖εesN ‖2 =

∫
I

|yN (t)− y2N (t)|2dt, ‖ε̃esN ‖2 =

∫
I

|ỹN (t)− ỹ2N (t)|2dt.

The orders of convergence are calculated by

ordere(N) '

∣∣∣∣∣ log2

‖e2N‖
‖eN‖

∣∣∣∣∣, orderε(N) '

∣∣∣∣∣ log2

‖ε2N‖
‖εN‖

∣∣∣∣∣,

orderẽ(N) '

∣∣∣∣∣ log2

‖ẽ2N‖
‖ẽN‖

∣∣∣∣∣, orderε̃(N) '

∣∣∣∣∣ log2

‖ε̃2N‖
‖ε̃N‖

∣∣∣∣∣,
EXAMPLE 5.1. Consider the fractional-order differential algebraic equation

(5.1)


D

1
2x(t) = −x(t) + y(t) + q1(t),

0 = x(t) + y(t) + q2(t),

x(0) = y(0) = 0, t ∈ I,

where q1(t), q2(t) are determined by the condition that the exact solutions are given by

x(t) = e−
√
t − 1, y(t) = sin(

√
t).

The regularity of the exact solutions coincides with (2.2) with ṽ = 0. Here, we illustrate the
effect of the proposed regularization process for obtaining the highly accurate approximation
to this non-smooth problem and confirm the obtained theoretical results of Theorems 3.6
and 4.1. The asymptotic behavior of the functions q1(t) and q2(t) is given by

q1(t) = −
√
π

2
+ (−2 +

1√
π

)
√
t+O(t),

q2(t) = − t
2

+
t
√
t

3
+O(t2),

so we have q1(t) ∈ B1(I) and q2(t) ∈ B3(I). Therefore, by Theorem 3.6 we can expect that
xN (t) and yN (t) approximate the solutions of (5.1) with a linear rate of convergence (k1 = 1,
k2 = 3).
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TABLE 5.1
The obtained errors for Example 5.1 before regularization.

N ‖eN‖ ‖εN‖ ordere(N) orderε(N)

2 2.1462×10−1 2.2174×10−1 0.5421 0.5762
4 1.4743×10−1 1.4873×10−1 0.5985 0.6082
8 9.7353×10−2 9.7572×10−2 0.6022 0.6776

16 6.4130×10−2 6.1023×10−2 0.6734 0.7171
32 4.0213×10−2 3.7124×10−2 0.8900 0.8778

TABLE 5.2
The obtained errors for Example 5.1 after regularization.

N ‖ẽN‖ ‖ε̃N‖ orderẽ(N) orderε̃(N)

2 9.085×10−3 6.436×10−3 10.8 6.73
4 5.11×10−5 6.067×10−5 15.32 18.72
8 1.253×10−10 1.403×10−10 19.22 20.26
16 2.05×10−16 1.118×10−16 1.18 1.79
32 4.66×10−16 3.88×10−16 0.801 0.536

Now, we solve (5.1) using the proposed Legendre collocation method in Section 3 and
report the values of ‖eN‖ and ‖εN‖ along with its estimated convergence orders versus the
approximation degree N in Table 5.1. As can be seen, the estimated orders ordere(N) and
orderε(N) tend to 1 as the approximation degree N tends to infinity, and this confirms the
linear order of convergence that is predicted by Theorem 3.6.

To calculate a high-order approximate solution, following the method described in Sec-
tion 4, we employ the coordinate transformation

t = u2, u =
√
t, s = w2, w =

√
s,

and obtain the regularized equation

D̄αx̄(u) = −x̄(u) + ȳ(u) + q̄1(u),

0 = x̄(u) + ȳ(u) + q̄2(u),
(5.2)

with x̄(0) = ȳ(0) = 0 and x̄(u) = e−u−1, ȳ(u) = sin(u) as infinitely smooth exact solutions.
Trivially, the functions q̄i(u) = qi(t

2), i = 1, 2, are infinitely smooth (k1 = k2 = ∞ in
Theorem 4.1), and thereby an exponential rate of convergence can be expected by implementing
the Legendre collocation method to approximate the solutions of (5.2).

The obtained numerical results from the Legendre collocation method for (5.2) are given
in Table 5.2. Comparing the results listed in Tables 5.1 and 5.2, we can observe a significant
growth in accuracy after utilizing the smoothing procedure. It is noticed that the order reduction
for N = 16 and N = 32 in Table 5.2 is due to the fact that the obtained numerical errors
are very close to machine precision when 16 ≤ N ≤ 64 such that in this case we have
‖ẽN‖ ' ce×10−16 with 1 ≤ ce ≤ 5 and ‖ε̃N‖ ' cε×10−16 with 1 ≤ cε ≤ 6.

Also, we plot the obtained numerical errors in terms of the number N , the degree of
approximation, before and after applying the regularization process in Figure 5.1. Indeed, this
figure indicates that after applying the smoothing procedure, the predicted exponential rate
of convergence in Theorem 4.1 is obtained because in this semi-log diagram, the error varies
almost linear versus the degree of approximation, while before regularization, we have very
poor convergence results.
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FIG. 5.1. Comparison of the rate of convergence for Example 5.1 before (dashed lines) and after (solid lines)
regularization.

EXAMPLE 5.2. Consider the following fractional-order differential algebraic equation

(5.3)


D

1
4x(t) = etx(t) + ty(t) + q1(t),

0 = t2x(t) + y(t) + q2(t),

x(0) = y(0) = 0, t ∈ I

with the solutions

x(t) = sinh
√
t, y(t) = tan

√
t.

In this problem, the asymptotic behavior of q1(t), q2(t) is given by

q1(t) =

√
π

2Γ( 5
4 )
x

1
4 −
√
t+O(t

5
4 ),

q2(t) = −
√
t− t

√
t

3
+O(t

5
4 ),

so we have q1(t), q2(t) ∈ B1(I) (i.e., k1 = k2 = 1 in Theorem 3.6), and the Legendre
collocation approximation of (5.3) has a linear rate of convergence. Approximation results for
an implementation of the proposed scheme in Section 3 for approximating (5.3) are presented
in Table 5.3. They confirm the linear order of convergence predicted by Theorem 3.6.

Now, to discover the desired exponential rate of convergence, we proceed with the strategy
proposed in Section 4 by applying the variable transformation

t = u4, u =
4
√
t, s = w4, w = 4

√
s,

to obtain the regularized problem with infinitely smooth given functions q̄1(u), q̄2(u) and
exact solutions x̄(u) = sinh(u2), ȳ(u) = tan(u2). Thus, we expect an exponential rate of
convergence for the Legendre collocation solutions of (5.3) (k1 = k2 =∞ in Theorem 4.1).

Now, we apply the Legendre collocation scheme described in Section 4 and report the
obtained numerical results in Table 5.4. As we can see, the rate of convergence increases after
regularization in comparison with the given results before regularization in Table 5.3. Again,
the order reduction for N = 16, 32 is due to a closeness of the errors to machine precision.
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TABLE 5.3
The obtained errors for Example 5.2 before regularization.

N ‖eN‖ ‖εN‖ ordere(N) orderε(N)

2 1.0659×10−1 2.3267×10−1 0.4968 0.5924
4 7.5538×10−2 1.5273×10−1 0.8675 1.1483
8 1.3781×10−1 6.8905×10−2 1.0898 0.6789

16 6.4749×10−2 4.3042×10−2 0.7977 0.7834
32 3.7247×10−2 2.5007×10−2 0.8799 0.8875

TABLE 5.4
The obtained errors for Example 5.2 after regularization.

N ‖ẽN‖ ‖ε̃N‖ orderẽ(N) orderε̃(N)

2 1.11×10−2 5.694×10−2 1.28 2.095
4 4.576×10−3 1.333×10−2 9.68 5.347
8 5.629×10−6 3.276×10−4 24.72 10.5
16 2.044×10−13 2.263×10−7 9.98 21.63
32 2.029×10−16 6.988×10−14 0.1601 8.28

Also, in Figure 5.2, we compare the corresponding semi-log errors of the approximate
solutions versus N before and after applying the regularization process to monitor the conver-
gence behavior of the solutions. The predicted exponential rate of convergence is confirmed
by Figure 5.2 because in this semi-log diagram, the errors varies almost linearly versus N
after applying the regularization process.

EXAMPLE 5.3 ([6]). Consider the fractional-order differential algebraic equation
Dαx(t) = −x(t) + y(t)− sin t,

0 = x(t) + y(t)− e−t − sin t,

x(0) = 1, y(0) = 0, t ∈ I,

where 0 < α ≤ 1 and the exact solutions are given by x(t) = e−t, y(t) = sin t when α = 1.
The numerical errors obtained from an implementation of the described scheme with and

without applying the regularization process are reported in Tables 5.5 and 5.6. Indeed, these
results confirm the effectiveness of the regularization procedure by an increase in the accuracy
of the approximate solutions when we do not have access to the exact solutions.

In addition, Figure 5.3 displays the approximate solutions of Example 5.3 obtained for
different values of α and N = 16 using the proposed method with the regularization strategy.
The results indicate that as α tends to 1, the approximate solutions converge to the solutions
obtained for α = 1.

TABLE 5.5
The obtained errors for Example 5.3 with different values of α before regularization.

‖eesN ‖ ‖εesN ‖
N α = 0.2 α = 0.6 α = 0.8 α = 0.2 α = 0.6 α = 0.8

4 3.8×10−2 1.84×10−2 9.31×10−3 3.79×10−2 1.83×10−2 9.3×10−3

8 2.07×10−2 6.77×10−3 2.81×10−3 2.06×10−2 6.76×10−3 2.8×10−3

16 1.07×10−2 2.15×10−3 8.15×10−4 1.06×10−2 2.14×10−3 8.1×10−4

32 2.08×10−3 2.95×10−4 1.06×10−4 2.07×10−3 2.85×10−4 1.05×10−4
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FIG. 5.2. Comparison of the rate of convergence for Example 5.2 before (dashed lines) and after (solid lines)
regularization.

TABLE 5.6
The obtained errors for Example 5.3 with different values of α after regularization.

‖ẽesN ‖ ‖ε̃esN ‖
N α = 0.2 α = 0.6 α = 0.8 α = 0.2 α = 0.6 α = 0.8

4 9.49×10−4 2.43×10−3 5.84×10−3 3.15×10−3 4.38×10−3 5.59×10−3

8 1.55×10−5 6.65×10−5 7.85×10−5 9.78×10−5 8.66×10−5 1.53×10−4

16 2.09×10−10 1.13×10−9 1.91×10−8 1.05×10−9 1.78×10−9 1.94×10−8

32 4.14×10−16 4.01×10−16 9.66×10−16 8.89×10−16 4.84×10−16 9.61×10−16

EXAMPLE 5.4. Consider the fractional-order differential algebraic equation


Dαx(t) = x(t) + 2y(t) + q1(t),

0 = 2x(t) + y(t) + q2(t),

x(0) = y(0) = 0, t ∈ [0, 2π],

where q1(t) and q2(t) are chosen such that the exact solutions are x(t) =
√
t sin (t2) and

y(t) =
√
t cos (t2).

The numerical results for applying the proposed scheme to Example 5.4 with and without
the regularization procedure are reported in Table 5.7 and Figure 5.4. Due to the oscillatory
behavior of the exact solution and the long time integration domain, the approximate solutions
are in a good agreement with the exact ones only for large values of N after applying the
regularization process.

6. Conclusion. In this paper, we investigate the numerical behavior of the Legendre
collocation technique to obtain an approximation solution for the linear semi-explicit fractional
differential algebraic equation (1.1). We proved that the derivatives of the exact solution behave
like tα−1 near the origin, and this degrades the accuracy of the approximate solution. To resolve
this problem, we change the underlying equation into a new equation with improved regularity
properties employing a variable transformation according to the asymptotic performance of
the unknown solution. Theoretical predictions along with the numerical examples indicate a
meaningful improvement in the accuracy after applying the smoothing procedure.
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FIG. 5.3. The approximated solutions of Example 5.3 for various values of α and N = 16.

TABLE 5.7
The obtained errors of Example 5.4 with different values of α before and after regularization.

Before regularization After regularization
N ‖eN‖ ‖εN‖ ‖ẽN‖ ‖ε̃N‖
30 2.63×10−1 5.17×10−1 8.04×10−1 9.58×10−1

40 2.52×10−1 5.03×10−1 8.98×10−2 1.45×10−1

50 1.99×10−1 3.72×10−1 1.09×10−3 1.94×10−3

60 1.81×10−1 3.6×10−1 1.99×10−6 3.84×10−6

70 1.79×10−1 3.51×10−1 4.64×10−9 7.82×10−9
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[6] B. İBIS AND M. BAYRAM, Numerical comparison of methods for solving fractional differential-algebraic

equations (FDAEs), Comput. Math. Appl., 62 (2011), pp. 3270–3278.
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