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CONVERGENCE OF THE MULTIPLICATIVE SCHWARZ METHOD FOR
SINGULARLY PERTURBED CONVECTION-DIFFUSION PROBLEMS

DISCRETIZED ON A SHISHKIN MESH∗

CARLOS ECHEVERRÍA§, JÖRG LIESEN§, DANIEL B. SZYLD‡, AND PETR TICHÝ†

Abstract. We analyze the convergence of the multiplicative Schwarz method applied to nonsymmetric linear al-
gebraic systems obtained from discretizations of one-dimensional singularly perturbed convection-diffusion equations
by upwind and central finite differences on a Shishkin mesh. Using the algebraic structure of the Schwarz iteration
matrices we derive bounds on the infinity norm of the error that are valid from the first step of the iteration. Our
bounds for the upwind scheme prove rapid convergence of the multiplicative Schwarz method for all relevant choices
of parameters in the problem. The analysis for the central difference is more complicated, since the submatrices that
occur are nonsymmetric and sometimes even fail to be M -matrices. Our bounds still prove the convergence of the
method for certain parameter choices.
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1. Introduction. It is well known that, due to the presence of boundary layers in the
analytic solution, singularly perturbed convection-diffusion problems require special discretiza-
tion techniques in order to guarantee the stability of a numerical method. A general overview
can be found, e.g., in the survey article [22]. One widely accepted discretization technique
in this context is given by upwind or central finite difference schemes on a Shishkin mesh
as described, e.g., in [22, Section 5] or [6, 12, 14, 19]. In short, Shishkin meshes are formed
by an overlapping union of piecewise uniform meshes, with their respective sizes and mesh
transition (or interface) points adapted to the expected width of the layers in the solution.

The matrix in a linear algebraic system obtained from a Shishkin mesh discretization
of a singularly perturbed convection-diffusion equation is nonsymmetric and often highly
nonnormal and ill-conditioned. Standard iterative solvers like the (unpreconditioned) GMRES
method converge very slowly when applied to such a system; see Figures 2.2–2.4 in this
paper for examples. On the other hand, the Shishkin mesh discretization naturally leads
to a decomposition of the domain, which suggests to solve the discretized problem by the
multiplicative Schwarz method. This is the approach we explore in this paper for one-
dimensional model problems.

We consider both upwind and central difference schemes on the Shishkin mesh. Using the
algebraic structure of the iteration matrices, we derive bounds on the infinity norm of the error
that are valid from the first step of the corresponding multiplicative Schwarz iteration. Thus,
unlike asymptotic convergence results based on bounding the spectral radius of the iteration
matrix, our results apply to the transient rather than the asymptotic behavior. For the upwind
scheme we prove rapid convergence of the multiplicative Schwarz iteration for all relevant
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parameters in the problem. The analysis of the central difference scheme is more complicated,
since some of the submatrices that occur in this case are not only nonsymmetric but also fail
to be M -matrices. This reminds of the analysis in [1], which showed that in this case the
difference scheme itself does not satisfy a discrete maximum principle. Nevertheless, we
can prove the convergence of the multiplicative Schwarz method for problems discretized by
central differences on a Shishkin mesh under the assumption that the number of discretization
points in each of the local subdomains is even. If this assumption is not satisfied, then the
method may diverge, which we also explain in our analysis.

The multiplicative Schwarz method as a solution technique, which we analyze here and
which is often called the alternating Schwarz method (see [8] for a historical survey), is for the
most part used as a preconditioner for Krylov subspace methods such as CG or GMRES. Many
of the convergence results for multiplicative Schwarz have been presented in that context;
see, e.g., the treatment in the books [5, 24] and many references therein. When the method
is considered from an algebraic point of view, as we do here, it is commonly treated as a
solution method; see, e.g., [2]. One of our goals in this paper is to bring an understanding
on why this solution technique is so effective for solving problems arising from the Shishkin
mesh discretizations. Moreover, the convergence bounds provided in this paper shed light
on an apparent contradiction: if the continuous problem becomes more difficult (a smaller
diffusion coefficient is chosen), then the convergence of the multiplicative Schwarz method
for the discretized problem becomes faster.

Several authors have previously applied the alternating (or multiplicative) Schwarz method
to the continuous problem based on the partitioning of the domain into overlapping subdo-
mains and subsequently discretized by introducing uniform meshes on each subdomain; see,
e.g., [6, 7, 15, 16, 17, 18, 19]. However, as clearly explained in [18], significant numerical
problems including very slow convergence and accumulation of errors (up to the point of
non-convergence of the numerical solution) can occur when layer-resolving mesh transition
points are used in this setup. These problems are avoided in our approach since we first
discretize and then apply the multiplicative Schwarz method to the linear algebraic system. To
the best of our knowledge, this approach has not been studied in the literature so far.

The paper is organized as follows. Section 2 specifies the model problem and its Shishkin
mesh discretization. In Section 3 we describe the multiplicative Schwarz method for the
discretized problem. In Section 4 we present the convergence analysis of the multiplicative
Schwarz method, first for the upwind scheme and then for the central difference scheme.
Numerical examples are shown in Section 5, and a concluding discussion, which also puts our
results into a broader context, is given in Section 6.

2. Model problem and its Shishkin mesh discretization. We consider a one-dimen-
sional convection-diffusion model problem with constant coefficients and Dirichlet boundary
conditions

(2.1) −εu′′(x) + αu′(x) + βu(x) = f(x) in (0, 1), u(0) = u0, u(1) = u1,

where α � ε > 0 and β ≥ 0. We assume that the parameters of the problem, i.e., ε, α, β,
f(x), u0, u1, are chosen so that the solution u(x) has one boundary layer at x = 1.

A common approach for discretizing such a problem is to resolve the boundary layer
using a finer mesh close to x = 1. Here we will focus on the Shishkin mesh discretization.
This technique has been described in detail, for example, in the book [19] or in the survey
article [22, Section 5]. We therefore only state the facts that are relevant for our analysis.
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Suppose that an even integer N ≥ 4 defining the number of intervals constituting the
Shishkin mesh is given and suppose that

(2.2) τ ≡ 2

α
ε lnN ≤ 1

2
·

The inequality in (2.2) means that

(2.3) ε ≤ α

4 lnN
,

which is a natural assumption since α � ε and the number of mesh points usually is not
exponentially large relative to ε. The mesh transition point 1− τ then will be close to x = 1
and the boundary layer will be contained in the (small) interval [1− τ, 1].

The idea of the Shishkin mesh discretization of the interval [0, 1] is to use the same number
of equidistantly distributed mesh points in each of the subintervals [0, 1− τ ] and [1− τ, 1].
Thus, if we denote

n ≡ N

2
, H ≡ 1− τ

n
, h ≡ τ

n
,

then the N + 1 mesh points of the Shishkin mesh are given by

xi ≡ iH, i = 0, . . . , n, xi ≡ 1− (N − i)h, i = n+ 1, . . . , N.

Here x0 = 0 and xN = 1, so that the mesh consists of N − 1 interior mesh points, where the
mesh point xn is exactly at the transition point 1− τ . The ratio between the mesh sizes in the
two subdomains is

h

H
=

τ

1− τ
= τ +O(τ2),

which is usually much less than 1.
An illustration of a Shishkin mesh and a plot of the (explicitly known) analytic solution

of the problem (2.1) with ε = 0.01, α = 1, β = 0, f(x) ≡ 1, and u0 = u1 = 0 are shown in
Figure 2.1; cf. [22, Example 3.1]. Choosing, for example, N = 48 gives the mesh transition
point 1− τ = 0.9226.

We consider two different finite difference schemes on the Shishkin mesh: upwind and
central differences. Using the standard difference operators (see, e.g., [22, Section 4]), both
schemes yield a linear algebraic system AuN = fN with the tridiagonal and nonsymmetric
matrix

(2.4) A =



aH bH

cH
. . . . . .
. . . . . . bH

cH aH bH
c a b

ch ah bh

ch
. . . . . .
. . . . . . bh

ch ah


∈ R(N−1)×(N−1).
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FIG. 2.1. Illustration of a Shishkin mesh (top) and plot of the analytic solution of the problem (2.1) with
ε = 0.01, α = 1, β = 0, f(x) ≡ 1, and u0 = u1 = 0 (bottom). For N = 48 the mesh transition point is
1− τ = 0.9226.

For the upwind scheme, the entries of A are given by

cH = − ε

H2
− α

H
, aH =

2ε

H2
+
α

H
+ β, bH = − ε

H2
,

c = − 2ε

H(H + h)
− α

H
, a =

2ε

hH
+
α

H
+ β, b = − 2ε

h(H + h)
,(2.5)

ch = − ε

h2
− α

h
, ah =

2ε

h2
+
α

h
+ β, bh = − ε

h2
,

and for the central difference scheme by

cH = − ε

H2
− α

2H
, aH =

2ε

H2
+ β, bH = − ε

H2
+

α

2H
,

c = − 2ε

H(H + h)
− α

h+H
, a =

2ε

hH
+ β, b = − 2ε

h(H + h)
+

α

h+H
,(2.6)

ch = − ε

h2
− α

2h
, ah =

2ε

h2
+ β, bh = − ε

h2
+

α

2h
.

If uN = A−1fN = [uN1 , . . . , u
N
N−1]

T is the exact algebraic solution and u(x) is the
solution of (2.1), then there exist constants c1, c2 > 0 such that

max
1≤i≤N−1

|u(xi)− uNi | ≤ c1
lnN

N

for the upwind scheme and

max
1≤i≤N−1

|u(xi)− uNi | ≤ c2
(
lnN

N

)2

for the central difference scheme. Thus, the convergence of both schemes is ε-uniform, and
the central difference scheme is more accurate than the upwind scheme. As pointed out
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FIG. 2.2. GMRES convergence for ε = 10−4.
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FIG. 2.3. GMRES convergence for ε = 10−6.

by Stynes [22, p. 470], the convergence proof for the central differences (originally due
to Andreyev and Kopteva [1]) is complicated since the scheme does not satisfy a discrete
maximum principle. We meet similar complications in our analysis in Section 4.2 below.

Both schemes lead to highly ill-conditioned matrices A. The main reason is the large
difference between the mesh sizes H and h, which implies large differences between the
moduli of the nonzero entries of A corresponding to each subdomain. Thus, A is poorly scaled.
As shown by Roos [21], a simple diagonal scaling reduces the order of the condition number
for the matrix from the upwind scheme from O(ε−1(N/ lnN)2) to O(N2/ lnN). Although
not shown by Roos, an analogous diagonal scaling appears to work well also for the central
difference scheme; see Section 4.3 for the exact form of the scaling matrices. The first row in
the following table provides a numerical illustration for ε = 10−8, α = 1, β = 0 in (2.1), and
N = 198.

upwind upwind scaled central central scaled
matrix cond. 4.0500× 1010 2.9569× 103 6.2323× 1010 2.9514× 103

eigenvector cond. 1.5143× 1017 1.2297× 1019 4.1070× 103 1.8682× 102

The second row of the table displays the condition numbers of the eigenvector matrices
from the decomposition A = V DV −1 computed by [V,D]=eig(A) in MATLAB. We
observe that the upwind scheme yields matrices with very ill-conditioned eigenvectors, i.e.,
highly nonnormal matrices. Apparently, the eigenvector conditioning is not much affected by
the diagonal scaling.

As mentioned in the introduction, linear algebraic systems resulting from discretizations of
convection-dominated convection-diffusion problems represent a challenge for iterative solvers.
Figures 2.2–2.4 illustrate that this also holds for the Shishkin mesh discretization of the model
problem (2.1). These figures show the relative true residual norms of the (unpreconditioned)
GMRES method with zero initial vector applied to AuN = fN from the Shishkin mesh
discretization of (2.1) with α = 1, β = 0, f(x) ≡ 1, u0 = u1 = 0, N = 198, and different
values of ε. The GMRES convergence is virtually the same for both discretizations (upwind
and central differences). Neither the scaling nor the eigenvector conditioning appears to have
a significant effect on the performance of the iterative solver.

3. The multiplicative Schwarz method. Any Shishkin mesh discretization naturally
leads to a decomposition of the given domain into overlapping subdomains. In our model
problem the domain is the interval [0, 1], and the overlapping subdomains are the intervals
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FIG. 2.4. GMRES convergence for ε = 10−8.

[0, 1− τ + h] and [1− τ −H, 1]. The width of the overlap is H + h = 2/N , and the mesh
transition point xn = 1− τ is the only mesh point in the overlap. We will now describe the
multiplicative Schwarz method for solving the linear algebraic system AuN = fN .

In short, the method uses restriction operators for constructing a multiplicative iteration
matrix in which each factor corresponds to a local solve in one of the subdomains. In the
notation established above, the restriction operators can be written as

R1 ≡ [In 0] and R2 ≡ [0 In] ,

both of size n× (N − 1). The restrictions of the matrix A in (2.4) to the two subdomains are
given by the two n× n matrices

A1 ≡ R1AR
T
1 ≡

[
AH bHem
ceTm a

]
and A2 ≡ R2AR

T
2 ≡

[
a beT1
che1 Ah

]
,

where m ≡ n − 1 and e1, em ∈ Rm. In the following, the unit basis vectors ej are always
considered to be of appropriate length, which for simplicity is sometimes not explicitly stated.
Note that AH , Ah ∈ Rm×m are tridiagonal Toeplitz matrices. The matrices corresponding to
the solves on the two domains then are given by

(3.1) Pi ≡ RTi A−1i RiA, i = 1, 2.

It is easy to see that P 2
i = Pi, i.e., that these matrices are projections. Note also that since Pi

is not symmetric, we have for the 2-norm, that ‖I − Pi‖2 = ‖Pi‖2 > 1; see, e.g., [23].
The multiplicative Schwarz method starting with the initial vector x(0) ∈ RN−1 is

defined by

(3.2) x(k+1) = Tx(k) + v, k = 0, 1, 2, . . . ,

where T = (I − P2)(I − P1) or T = (I − P1)(I − P2), and the vector v ∈ RN−1 is defined
to make the method consistent. For example, for the iteration matrix T = (I − P2)(I − P1)
the consistency condition uN = TuN + v yields

v = (I − T )uN = (P1 + P2 − P2P1)u
N ,

which is (easily) computable since

Piu
N = RTi A

−1
i RiAu

N = RTi A
−1
i Rif

N , i = 1, 2.
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The error of the multiplicative Schwarz iteration (3.2) is given by

e(k+1) = uN − x(k+1) = (TuN + v)− (Tx(k) + v) = Te(k), k = 0, 1, 2, . . . ,

and hence e(k+1) = T k+1e(0) by induction. For any consistent norm ‖ · ‖, we therefore have

(3.3) ‖e(k+1)‖ ≤ ‖T k+1‖ ‖e(0)‖ ≤ ‖T‖k+1 ‖e(0)‖.

Our main goal in the following is the derivation of quantitative convergence bounds, where we
consider both T = (I − P2)(I − P1) and T = (I − P1)(I − P2).

We point out that the analysis of the multiplicative Schwarz method in the following
sections uses the unscaled linear algebraic system with A as in (2.4) having the entries (2.5)
or (2.6). In Section 4.3 we explain why this analysis also applies to suitably scaled linear
algebraic systems and in particular to the scaling suggested by Roos in [21].

4. Convergence bounds for the multiplicative Schwarz method. We start with a
closer look at the structure of the iteration matrix T . Note that the matrices Pi from (3.1)
satisfy

P1 = RT1 A
−1
1 R1A =

[
In
0

]
A−11

[
A1 ben 0

]
=

[
In bA−11 en 0
0 0 0

]
,

and

P2 = RT2 A
−1
2 R2A =

[
0
In

]
A−12

[
0 ce1 A2

]
=

[
0 0 0

0 cA−12 e1 In

]
,

where e1, en ∈ Rn. We now denote

(4.1)
[
p(1)

π(1)

]
≡ bA−11 en and

[
π(2)

p(2)

]
≡ cA−12 e1,

where p(i) = [p(i)

1 , . . . , p
(i)
m ]T ∈ Rm for i = 1, 2, and π(1) and π(2) are scalars. Then

I − P2 =


Im−1 0 0
0 1 0

0 −
[
π(2)

p(2)

]
0

 , I − P1 =

 0 −
[
p(1)

π(1)

]
0

0 1 0
0 0 Im−1

 ,
which gives

(4.2) (I − P2)(I − P1) =

 0 −p(1) 0
0 p(1)

m π
(2) 0

0 p(1)
m p

(2) 0

 =

 −p(1)

p(1)
m π

(2)

p(1)
m p

(2)

 eTn+1

and

(4.3) (I − P1)(I − P2) =

 p(2)

1 p(1)

p(2)

1 π(1)

−p(2)

 eTn−1,
where en+1, en−1 ∈ RN−1. Thus, both iteration matrices have rank one, and we can apply
the following observation.

PROPOSITION 4.1. Let T be a square matrix of rank one, i.e., T = uvT for some vectors
u, v. Then T 2 = ρT , with ρ = vTu, and consequently T k+1 = ρkT for k ≥ 0.
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Proof. The proof follows by direct computation.
COROLLARY 4.2. In the notation established above, let T = (I − P2)(I − P1) or

T = (I − P1)(I − P2). Then for any k ≥ 0 we have

(4.4) T k+1 = ρkT, where ρ ≡ p(1)

m p
(2)

1 .

Proof. Applying Proposition 4.1 to either (4.2) or (4.3) produces the desired result.
Equation (4.4) shows, in particular, that ‖T k+1‖ = |ρ|k‖T‖ holds for any matrix norm

‖ · ‖. In order to obtain a convergence bound for the multiplicative Schwarz method we will
bound |ρ| and ‖T‖∞. The following lemma will be essential in our derivations.

LEMMA 4.3. In the notation established above,[
p(1)

π(1)

]
= π(1)

[
−bHA−1H em

1

]
, π(1) =

b

a− cbH
(
A−1H

)
m,m

,

[
π(2)

p(2)

]
= π(2)

[
1

−chA−1h e1

]
, π(2) =

c

a− bch
(
A−1h

)
1,1

.

Proof. From (4.1) we know that p(1), p(2), π(1), and π(2) solve the systems[
AH bHem
ceTm a

] [
p(1)

π(1)

]
= ben,

[
a beT1
che1 Ah

] [
π(2)

p(2)

]
= ce1.

Hence the expressions for p(1), p(2), π(1), and π(2) can be obtained using Schur complements.
Combining (4.4) and Lemma 4.3 gives

(4.5) ρ =
b bH

(
A−1H

)
m,m

a− c bH
(
A−1H

)
m,m

·
c ch

(
A−1h

)
1,1

a− b ch
(
A−1h

)
1,1

·

In order to bound |ρ| we thus need to bound certain entries of inverses of the tridiagonal
Toeplitz matrices AH and Ah. In the following lemma we show that this is straightforward in
the case of an M -matrix. As we will see later in Lemma 4.5 and Lemma 4.8, the matrix Ah is
an M -matrix for both the upwind and the central difference scheme. However, while AH is an
M -matrix for the upwind scheme, it is not an M -matrix in the most common situation for the
central difference scheme. We then have to use a different technique for bounding the entry
(A−1H )1,1; see Section 4.2.

Recall that a nonsingular matrix B = [bi,j ] is called an M -matrix when bi,i > 0 for all i,
bi,j ≤ 0 for all i 6= j, and B−1 ≥ 0 (elementwise).

LEMMA 4.4. Let B be an `× ` tridiagonal Toeplitz matrix,

B =


â b̂

ĉ
. . .

. . .
. . .

. . . b̂
ĉ â

 ,

with â > 0 and b̂, ĉ < 0. Moreover, let B be diagonally dominant, i.e., â ≥ |b̂|+ |ĉ|. Then B
is an M -matrix with B−1 > 0 (elementwise),

(4.6)
(
B−1

)
`,`

=
(
B−1

)
1,1
≤ min

{
1

|b̂|
,
1

|ĉ|

}
,
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and the entries of B−1 decay along the columns away from the diagonal. In particular,(
B−1

)
1,1

>
(
B−1

)
i,1

for 1 < i ≤ `,(
B−1

)
`,`
>
(
B−1

)
i,`

for 1 ≤ i < `.

Proof. The matrix B is an M -matrix since its entries satisfy the sign condition and
B is irreducibly diagonally dominant; see, e.g., [4, Theorem 6.2.3, Condition M35] or [10,
Criterion 4.3.10]. The elementwise nonnegativity of the inverse, B−1 > 0, follows since the
M -matrix B is irreducible; see, e.g., [4, Theorem 6.2.7] or [10, Theorem 4.3.11].

Since B is a tridiagonal Toeplitz matrix, its (1, 1) and (`, `) minors are equal. There-
fore, the classical formula B−1 = (det(B))−1adj(B) implies that

(
B−1

)
1,1

=
(
B−1

)
`,`

.

Moreover, since â ≥ |b̂|+ |ĉ|, we can apply [20, Lemma 2.1, equation (2.8)] to obtain(
B−1

)
1,1
≤ 1

â− |b̂|
≤ 1

|ĉ|
,
(
B−1

)
`,`
≤ 1

â− |ĉ|
≤ 1

|b̂|
·

Finally, the bounds on the entries of B−1 are special cases of [20, Theorem 3.11], where it
was shown that(

B−1
)
i,j
≤ ωi−j

(
B−1

)
j,j

for i ≥ j and
(
B−1

)
i,j
≤ τ j−i

(
B−1

)
j,j

for i ≤ j,

with some τ, ω ∈ (0, 1). (They can be expressed explicitly using the entries of B.)
In the next two subsections we separately treat the upwind and the central difference schemes.

4.1. Bounds for the upwind scheme. Using Lemma 4.4 we can prove the following
result for the upwind scheme.

LEMMA 4.5. For the upwind scheme both matrices AH and Ah satisfy the assumptions of
Lemma 4.4, and the related quantities from Lemma 4.3 satisfy

|π(1)| ≤ 1, ‖p(1)‖∞ = |p(1)

m | ≤
ε

ε+ αH
, |π(2)| ≤ 1, ‖p(2)‖∞ = |p(2)

1 | ≤ 1.

Proof. It is easy to see from (2.5) that both matrices AH and Ah resulting from the upwind
scheme satisfy the assumptions of Lemma 4.4. Thus, from (4.6) we have

|bH |
(
A−1H

)
m,m
≤ 1 and |ch|

(
A−1h

)
1,1
≤ 1.

Moreover, a > 0 and b, c < 0 as well as a+ b+ c = β ≥ 0, so that

|π(1)| = |b|
a+ c|bH |

(
A−1H

)
m,m

≤ |b|
a+ c

≤ 1,

|π(2)| = |c|
a+ b|ch|

(
A−1h

)
1,1

≤ |c|
a+ b

≤ 1.

Using these inequalities and the fact that the entries of A−1h decay along a column away from
the diagonal yields

‖p(2)‖∞ = |p(2)

1 | = |π(2)| |ch|
(
A−1h

)
1,1
≤ 1.

Using the decay of the entries of A−1H and

|bH |
(
A−1H

)
m,m
≤
∣∣∣∣bHcH

∣∣∣∣ ,
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which follows from (4.6), as well as the definitions of the entries in (2.5), we obtain

‖p(1)‖∞ = |p(1)

m | = |π(1)| |bH |
(
A−1H

)
m,m
≤
∣∣∣∣bHcH

∣∣∣∣ = ε

ε+ αH
.

We can now state our main result of this subsection.
THEOREM 4.6. For the upwind scheme we have

(4.7) |ρ| ≤ ε

ε+ αH

and

‖(I − P2)(I − P1)‖∞ ≤
ε

ε+ αH
, ‖(I − P1)(I − P2)‖∞ ≤ 1.

Thus, the error of the multiplicative Schwarz method (3.2) satisfies

‖e(k+1)‖∞
‖e(0)‖∞

≤


(

ε
ε+αH

)k+1

, if T = (I − P2)(I − P1),(
ε

ε+αH

)k
, if T = (I − P1)(I − P2).

Proof. For the bound on |ρ| we apply Lemma 4.5 to the expression ρ = p(1)
m p

(2)

1 from (4.4).
From (4.2) and (4.3) we respectively see that

‖(I − P2)(I − P1)‖∞ =

∥∥∥∥∥∥
 −p(1)

p(1)
m π

(2)

p(1)
m p

(2)

∥∥∥∥∥∥
∞

and

‖(I − P1)(I − P2)‖∞ =

∥∥∥∥∥∥
 p(2)

1 p(1)

p(2)

1 π(1)

−p(2)

∥∥∥∥∥∥
∞

.

Thus, using Lemma 4.5,

‖(I − P2)(I − P1)‖∞ = max
{
|p(1)

m |, |p(1)

m π
(2)|, |p(1)

m p
(2)

1 |
}
≤ |p(1)

m | ≤
ε

ε+ αH
,

‖(I − P1)(I − P2)‖∞ = max
{
|p(2)

1 p(1)

m |, |p
(2)

1 π(1)|, |p(2)

1 |
}
≤ |p(2)

1 | ≤ 1.

Using these bounds and (4.4) in the first inequality in (3.3) yields the convergence bound for
the multiplicative Schwarz method.

Suppose that ε < αH , which is a reasonable assumption in our context. Then

|ρ| ≤ ε

ε+ αH
=

ε

αH
+O

(( ε

αH

)2)
.

This expression shows that the convergence of the multiplicative Schwarz method will be very
rapid in case of the upwind scheme and a strong convection-dominance. Numerical examples
are shown in Section 5.

Note that since 2
N = H + h ≤ 2H , we have 1

N ≤ H and hence

(4.8) |ρ| ≤ ε

ε+ αH
≤ ε

ε+ α
N

.

Using the expression on the right-hand of (4.8) in Theorem 4.6 would give (slightly) weaker
convergence bounds for the multiplicative Schwarz method. However, the right-hand side of
(4.8) represents a more convenient bound on the convergence factor which directly depends on
the parameters ε, α, and N of our problem.
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4.2. Bounds for the central difference scheme. We will now consider the discretization
by the central difference scheme, i.e., the matrix A with the entries given by (2.6). It turns out
that the analysis for this scheme is more complicated than for the upwind scheme since, as
mentioned earlier, the matrix AH need not be an M -matrix. Moreover, as we will see below,
the multiplicative Schwarz method may not converge when the parameter m is odd.

The following result about the entries a, b, and c of A will be frequently used below.
LEMMA 4.7. For the central difference scheme we have

(4.9) a > 0, c, b < 0, −(c+ b) = |c|+ |b| = a− β ≤ a, and
∣∣∣∣ ba
∣∣∣∣ < 1.

Proof. The inequalities a > 0 and c < 0 are obvious from (2.6). From (2.2)–(2.3) and
N ≥ 4 we have that

(4.10) αh = 2ε
2 lnN

N
< 2ε,

and thus

b =
αh− 2ε

h(H + h)
< 0.

Moreover, −(c+ b) = a− β ≤ a, which yields∣∣∣∣ ba
∣∣∣∣ = ∣∣∣∣ b

β − (c+ b)

∣∣∣∣ < 1.

We next consider the matrix Ah from the central difference scheme.
LEMMA 4.8. The matrix Ah from the central difference scheme satisfies the assumptions

of Lemma 4.4, and for the corresponding quantities from Lemma 4.3 we have

|π(2)| ≤ 1 and ‖p(2)‖∞ =
∣∣p(2)

1

∣∣ ≤ 1.

Proof. The inequalities ah > 0 and ch < 0 are obvious from (2.6) and using (4.10) we get

bh =
αh− 2ε

2h2
< 0.

Since also

|ch|+ |bh| =
2ε

h2
≤ ah,

the matrix Ah satisfies the assumptions of Lemma 4.4. Thus, in particular, |ch|
(
A−1h

)
1,1
≤ 1.

Using also (4.9) gives

|π(2)| = |c|
a+ b|ch|

(
A−1h

)
1,1

≤ |c|
a+ b

=
|c|
|c|+ β

≤ 1.

Finally, since the entries of A−1h decay along a column away from the diagonal, we obtain
‖p(2)‖∞ =

∣∣p(2)

1

∣∣ = |π(2)| |ch|
(
A−1h

)
1,1
≤ 1.

We now concentrate on bounding the quantities from Lemma 4.3 related to the matrix AH

for the central difference scheme. We will distinguish the three cases αH < 2ε, αH = 2ε,
and αH > 2ε or, equivalently, the cases that the entry

bH =
αH − 2ε

2H2
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of AH is negative, zero, or positive. It is clear from (4.5) that the sign of bH is important for
the value |ρ|.

A simple computation shows that bH ≤ 0 if and only if

ε ≥ α

N + 2 lnN
·

If ε� α ≈ 1, then this condition means that ε(N + 2 lnN) = O(1), which is an unrealistic
assumption on the discretization parameter N . Nevertheless, we include the case bH ≤ 0 for
completeness.

We first assume that

(4.11) αH < 2ε,

which means that bH < 0.
LEMMA 4.9. If αH < 2ε, then the matrix AH from the central difference scheme satisfies

the assumptions of Lemma 4.4, and we have

|π(1)| ≤ 1 and ‖p(1)‖∞ = |p(1)

m | <
ε

ε+ α
N

·

Proof. The inequalities aH > 0 and cH < 0 are obvious from (2.6), and bH < 0 holds
because of (4.11). Moreover,

|cH |+ |bH | =
α

2H
+

ε

H2
+

ε

H2
− α

2H
=

2ε

H2
≤ aH ,

so that the matrix AH satisfies the assumptions of Lemma 4.4. In particular,

|bH |
(
A−1H

)
m,m
≤ 1.

Using (4.9) we obtain

|π(1)| = |b|
a+ c|bH |

(
A−1H

)
m,m

≤ |b|
a+ c

≤ 1.

Moreover, using that the entries of A−1H decay along a column away from the diagonal as
well as

|bH |
(
A−1H

)
m,m
≤ |bH |
|cH |

,

which follows from (4.6), we see that

‖p(1)‖∞ = |p(1)

m | = |π(1)| |bH |
(
A−1H

)
m,m
≤ |cH |
|bH |

=
2ε− αH
2ε+ αH

<
2ε− αH + αh

2ε+ αH + αh

<
2ε

2ε+ α(H + h)
=

ε

ε+ α
N

,

where we used h < H and h+H = 2
N .

Next we consider the (very) special case

(4.12) αH = 2ε,

which means that bH = 0.
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LEMMA 4.10. If αH = 2ε, then the matrix AH from the central difference scheme is
nonsingular, and we have |π(1)| < 1 and p(1) = 0.

Proof. If bH = 0, then AH is lower triangular and nonsingular since aH > 0. Using the
definitions of p(1) and π(1) from Lemma 4.3 and the last inequality in (4.9) we obtain

p(1) = − bbHA
−1
H em

a− bH
(
A−1H

)
m,m

c
= 0, |π(1)| =

∣∣∣∣∣ b

a− cbH
(
A−1H

)
m,m

∣∣∣∣∣ =
∣∣∣∣ ba
∣∣∣∣ < 1.

The third case we consider is

(4.13) αH > 2ε,

which means that bH > 0. This is the most common situation from a practical point of view,
but now AH does not satisfy the assumptions of Lemma 4.4. We therefore need a different
approach for bounding the quantities from Lemma 4.3 and in particular the entries of the
vector A−1H em. Note that because of (4.13) we have

−1 < 2ε− αH
2ε+ αH

=
bH
cH

< 0.

LEMMA 4.11. If αH > 2ε, then the matrix AH from the central difference scheme is a
nonsingular tridiagonal Toeplitz matrix with the entries aH , bH > 0, and cH < 0. Moreover,

(4.14) 0 <
∣∣(A−1H )i,m

∣∣ ≤ (A−1H )m,m
1−

(
bH
cH

)i
1−

(
bH
cH

)m · ∣∣∣∣bHcH
∣∣∣∣m−i , i = 1, . . . ,m,

where the second inequality in (4.14) is an equality if β = 0. If m = N/2− 1 is even, then

(4.15) bH
∣∣(A−1H )i,m

∣∣ < 2, i = 1, . . . ,m,

and

(4.16) bH(A
−1
H )m,m ≤

1−
∣∣∣ bHcH ∣∣∣m∣∣∣ cHbH ∣∣∣+ ∣∣∣ bHcH ∣∣∣m <

2mε

ε+ αH
2

·

Proof. The inequalities aH > 0 and cH < 0 are obvious from (2.6), and bH > 0 holds
because of (4.13).

In order to see that AH is nonsingular, note that eigenvalues of the tridiagonal Toeplitz
matrix AH are given by

λi = aH + 2
√
bHcH cos

(
iπ

m+ 1

)
, i = 1, . . . ,m.

Since bHcH < 0, the number
√
bHcH is purely imaginary, and hence all eigenvalues are

nonzero.
Adapting [25, Theorem 2] to our notation (and formulating this result in terms of columns

instead of rows) shows that the entries of the vector ξ ≡ [ξ1, . . . , ξm]T ≡ A−1H em can be
written as

ξi = (−1)m−ibm−iH

θi−1
θm

, i = 1, . . . ,m,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

CONVERGENCE OF THE MULTIPLICATIVE SCHWARZ METHOD 53

where

(4.17) θi ≡ aHθi−1 − bHcHθi−2, θ0 ≡ 1, θ1 ≡ aH .

Since bHcH < 0 and aH > 0, we have θi > 0 for all i ≥ 0 and ξi 6= 0. Since bH > 0, ξi
changes sign like (−1)m−i, and ξm > 0. Consequently, the first inequality in (4.14) holds.

If we define the sequence of positive numbers

ωi ≡
θi−1
θi

, i = 1, 2, . . . ,

then

(4.18) ξi = (−1)m−ibm−iH

m∏
j=i

ωj = ξm(−1)m−ibm−iH

m−1∏
j=i

ωj , i = 1, . . . ,m.

We will prove by induction that

(4.19) ωi ≤ −
ciH − biH

ci+1
H − bi+1

H

for all i ≥ 1, with equality if β = 0. For i = 1 we have

−cH − bH
c2H − b2H

=
1

− (cH + bH)
=

1

aH − β
≥ 1

aH
= ω1,

with equality if β = 0. Using the recurrence (4.17), the inequality aH ≥ −(cH + bH), which
is an equality if β = 0, and the induction hypothesis, we obtain

1

ωi
= aH − ωi−1bHcH ≥ −(cH + bH) +

ci−1H − bi−1H

ciH − biH
bHcH = −c

i+1
H − bi+1

H

ciH − biH
,

again with equality if β = 0.
Combining (4.18) and (4.19) yields

(4.20) |ξi| ≤ ξmb
m−i
H

∣∣∣∣ ciH − biHcmH − bmH

∣∣∣∣ = ξm
1−

(
bH
cH

)i
1−

(
bH
cH

)m · ∣∣∣∣bHcH
∣∣∣∣m−i ,

showing the second inequality in (4.14), which is an equality if β = 0.
Now let m be even. Using (4.19) we obtain

(4.21) bHξm ≤ −bH
cmH − bmH

cm+1
H − bm+1

H

=
1−

∣∣∣ bHcH ∣∣∣m∣∣∣ cHbH ∣∣∣+ ∣∣∣ bHcH ∣∣∣m < 1−
∣∣∣∣bHcH

∣∣∣∣m ,
which contains the first inequality in (4.16). Using (4.20) and (4.21) we obtain

|ξi| < ξm
2

1−
∣∣∣ bHcH ∣∣∣m < ξm

2

bHξm
=

2

bH
,

which shows (4.15). Let us write∣∣∣∣bHcH
∣∣∣∣ = αH − 2ε

αH + 2ε
= 1− 2ε

ε+ αH
2

≡ 1− ν.
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Using (4.13) we have 0 < ν < 1, and by induction it can be easily shown that the inequality
1− (1− ν)m < mν holds for every integer m ≥ 2. Thus,

bHξm < 1−
∣∣∣∣bHcH

∣∣∣∣m = 1− (1− ν)m < mν =
2mε

ε+ αH
2

,

which proves the second inequality in (4.16).
Using Lemma 4.11 and the assumption that m is even, we can bound the quantities from

Lemma 4.3 related to the matrix AH from the central difference scheme as follows.
LEMMA 4.12. If (4.13) holds and if m = N/2− 1 is even, then

|π(1)| < 1, |p(1)

m | <
2mε

ε+ αH
2

, ‖p(1)‖∞ < 2.

Proof. From (4.9) we know that c < 0, and from Lemma 4.11 we know that bH > 0 and(
A−1H

)
m,m

> 0. Therefore,

∣∣π(1)
∣∣ = ∣∣b∣∣

a+
∣∣c∣∣bH (A−1H )m,m <

∣∣∣∣ ba
∣∣∣∣ < 1,

where we have used (4.9). Thus, using also (4.16), we obtain

|p(1)

m | = |π(1)| bH
(
A−1H

)
m,m

<
2mε

ε+ αH
2

·

Finally, (4.15) implies that ‖p(1)‖∞ = |π(1)|bH‖A−1H em‖∞ < 2.
We can now formulate an analogue of Theorem 4.6 for the central difference scheme.
THEOREM 4.13. For the central difference scheme we have

(4.22) |ρ| <

{
ε

ε+ α
N

if αH ≤ 2ε,
2mε
ε+αH

2

if αH > 2ε and m = N/2− 1 is even.

If αH ≤ 2ε, we have

‖(I − P2)(I − P1)‖∞ ≤ 1, ‖(I − P1)(I − P2)‖∞ ≤ 1,

and if αH > 2ε, we have

‖(I − P2)(I − P1)‖∞ < 2, ‖(I − P1)(I − P2)‖∞ < 2.

Thus, the error of the multiplicative Schwarz method (3.2) for both iteration matrices satisfies

‖e(k+1)‖∞
‖e(0)‖∞

<


(

ε
ε+ α

N

)k
if αH ≤ 2ε,

2
(

2mε
ε+αH

2

)k
if αH > 2ε and m = N/2− 1 is even.

Proof. From (4.4) we know that ρ = p(1)
m p

(2)

1 , and hence the bounds on |ρ| follow from
|p(2)

1 | ≤ 1 (Lemma 4.8), and Lemmas 4.9–4.10 for the case αH ≤ 2ε, as well as Lemma 4.12
for the case αH > 2ε.
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For the first iteration matrix we have

‖(I − P1)(I − P2)‖∞ =

∥∥∥∥∥∥
 p(2)

1 p(1)

p(2)

1 π(1)

−p(2)

∥∥∥∥∥∥
∞

= max{|p(2)

1 | ‖p(1)‖∞, |p(2)

1 π(1)|, ‖p(2)‖∞},

and for the second iteration matrix we have

‖(I − P2)(I − P1)‖∞ =

∥∥∥∥∥∥
 −p(1)

p(1)
m π

(2)

p(1)
m p

(2)

∥∥∥∥∥∥
∞

= max{‖p(1)‖∞, |p(1)

m π
(2)|, |p(1)

m | ‖p(2)‖∞}.

The bounds on these matrices now follow from the Lemmas 4.8, 4.9, 4.10, 4.12, and the error
bound for the multiplicative Schwarz method follows from (3.3) and (4.4).

As in the discussion of Theorem 4.6 we could use 1
N ≤ H and m = N

2 − 1, and thus
obtain

|ρ| ≤ 2mε

ε+ αH
2

<
Nε

ε+ α
2N

,

where the right-hand side again represents a bound on the convergence factor that directly
depends of the parameters of our problem.

Because of the factor 2m ≈ N , the error bound for the central differences discretization
can be significantly larger than for the upwind scheme. Thus, we expect that the multiplicative
Schwarz method for the central differences discretization converges slower than for the
upwind scheme, at least when αH > 2ε. An example with ε = 10−4 and N = 198, leading
to |ρ| = 8.3 × 10−1 and a very slow convergence of the multiplicative Schwarz method is
shown in Section 5. In this case, the bound (4.22) is even greater than one. It should be noted,
however, that in a strongly convection-dominated case the situation εN2 = O(1) is rather
unrealistic.

Finally, let us discuss the situation when (4.13) holds, so that −1 < bH/cH < 0 but m
is odd. In this case the multiplicative Schwarz method does not converge for all parameter
choices, and we will now give an intuitive explanation for this fact. For simplicity, let β = 0.
Then (4.19) yields

bH(A−1H )m,m = bHξm = −
1−

(
bH
cH

)m
cH
bH
−
(
bH
cH

)m =
1 +

∣∣∣ bHcH ∣∣∣m∣∣∣ cHbH ∣∣∣− ∣∣∣ bHcH ∣∣∣m ·
The essential inequality in (4.21) then fails to hold, and we may have bH(A−1H )m,m > 1.
Using the exact expression for ρ in (4.5), it is then easy to find parameters for which |ρ| > 1,
and for which the multiplicative Schwarz method indeed diverges. Note that even if m is odd,
it holds for sufficiently large values of m that |ρ| < 1, and the multiplicative Schwarz method
converges to the discrete solution. However, in this case we cannot expect the convergence to
be as fast as in the case of even values of m.

These problems with odd m correspond to the situation when equation (2.1) is discretized
using central differences on a uniform mesh. Consider, for example, the discrete solution of
the problem (2.1) with α = 1, β = 0, f(x) ≡ 1, and u0 = u1 = 0, which can be found in
[22, Section 4]. If the number of interior points of the uniform mesh is even, then the discrete
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solution oscillates but with an amplitude bounded by one, so that some important information
about the analytic solution is still preserved in the discrete solution. If the number of inner
points is odd, the discrete solution is highly oscillating (cf. [22, Figure 4.1]), and therefore it
does not provide much useful information about the analytic solution.

In our case of the Shishkin mesh, the multiplicative Schwarz method solves discrete
problems on the coarse mesh and the fine mesh in an alternating way, and it combines the
solutions of the two subproblems. If m is odd and the discrete solution on the coarse mesh is
highly oscillating, then this solution is essentially useless, and the multiplicative Schwarz may
fail to improve the approximation to the discrete solution.

4.3. Remarks on diagonally scaled linear algebraic systems. As mentioned in Sec-
tion 2, the large difference between the mesh sizes H and h leads to highly ill-conditioned
matrices A, both for the upwind and the central difference scheme. As shown by Roos [21]
(for the upwind scheme), the ill-conditioning can be avoided by a simple diagonal scaling; cf.
the numerical example in Section 2. In our notation, the linear algebraic system AuN = fN

is multiplied from the left by the diagonal matrix

(4.23) D =

 dHIm
d

dhIm

 ,
where for the upwind scheme we choose

dH =
H

α
, d =

hH

2ε
, dh =

h2

ε
,

and for the central difference scheme we choose

dH =
2H

α
, d =

hH + h2

2ε
, dh =

h2

ε
·

We will now explain the effect of a diagonal scaling with a matrix D as in (4.23) on our
convergence analysis of the multiplicative Schwarz method.

MultiplyingA from the left withD preserves the Toeplitz structure of the matrix as well as
the M -matrix property of the submatrices (if it holds for the unscaled matrix). The derivations
of all bounds in Sections 4.1 and 4.2 depend on these properties and on ratios between elements
in the same row such as |b/a| and |bH/cH |; see in particular Lemma 4.5 for the upwind and
Lemma 4.11 for the central difference scheme. The ratios, however, are invariant under any
diagonal scaling of the form (4.23). Consequently, all convergence bounds in Theorems 4.6
and 4.13 hold for the multiplicative Schwarz method applied to DAuN = DfN for a diagonal
matrix D as in (4.23) with any positive diagonal entries dH , d, and dh.

Note that, using a convenient scaling, one can also see the structure of the (scaled) matrices
AH and Ah. In particular, let β = 0 and ε� αH . Then there is a scaling such that the scaled
matrix Ah is close to tridiag(−1, 2,−1). Another scaling can be found such that the scaled
AH is close to tridiag(−1, 1, 0) for the upwind scheme and close to tridiag(−1, 0, 1) for the
central difference scheme. The matrix (1/

√
2)tridiag(−1, 0, 1) ∈ Rm×m is orthogonal when

m is even, but it is singular when m is odd. This gives another intuitive explanation for the
problems occurring when an odd value of m is chosen in the central difference scheme (also
see our discussion of this point above).

In our experiments, the diagonal scaling had virtually no effect on the actual convergence
of the Schwarz method (similar to the GMRES method; see Figures 2.2–2.4). In the following
section we therefore present only results for the unscaled systems with A as in (2.4)–(2.6).
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FIG. 5.1. Convergence of multiplicative Schwarz and error bounds for ε = 10−8, N = 198.

0 1 2 3 4 5 6 7 8 9 10

k

10
-20

10
-15

10
-10

10
-5

10
0

E
rr

o
r 

n
o

rm
s
 a

n
d

 b
o

u
n

d
s

Upwind

T=(I-P
2
)(I-P

1
)

error bound
T=(I-P

1
)(I-P

2
)

error bound

0 1 2 3 4 5 6 7 8 9 10

k

10
-20

10
-15

10
-10

10
-5

10
0

E
rr

o
r 

n
o

rm
s
 a

n
d

 b
o

u
n

d
s

Central differences

T=(I-P
2
)(I-P

1
)

T=(I-P
1
)(I-P

2
)

error bound

FIG. 5.2. Convergence of multiplicative Schwarz and error bounds for ε = 10−6, N = 198.

5. Numerical examples. We now illustrate the convergence behavior of the multiplica-
tive Schwarz method applied to the Shishkin mesh discretization of the problem (2.1) with

α = 1, β = 0, f(x) ≡ 1, u0 = u1 = 0.

The analytic solution of this problem with ε = 0.01 is shown in Figure 2.1.
We first consider N = 198, so that m = N/2 − 1 = 98 is even. Recall that the

(unpreconditioned) GMRES method converges very slowly for both types of discretizations
(upwind and central differences); see Figures 2.2–2.4.

For our experiments we computed uN = A−1fN using the backslash operator in MAT-
LAB. (Applying iterative refinement in order to improve the numerical solution obtained in
this way yields virtually the same results, so we do not consider iterative refinement here.)
Using the solution obtained by MATLAB’s backslash operator, we computed the error norms
of the multiplicative Schwarz method by ‖e(k)‖∞ = ‖x(k+1) − uN‖∞ with x(k+1) as in (3.2)
(rather than using the update formula e(k) = Te(k−1)). Consequently, the computed error
norms stagnate on the level of the maximal attainable accuracy of the method. On the other
hand, an error bound of the form |ρ|k for some |ρ| < 1 becomes arbitrarily small for k →∞.

We start with the upwind discretization. The left parts of Figures 5.1–5.5 show the error
norms

‖e(k)‖∞
‖e(0)‖∞

, k = 0, 1, 2 . . . ,
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FIG. 5.3. Convergence of multiplicative Schwarz and error bounds for ε = 10−4, N = 198.
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FIG. 5.4. Convergence of multiplicative Schwarz and error bounds for ε = 10−8, N = 10002.

for the iteration matrices T = (I − P1)(I − P2) (solid) and T = (I − P1)(I − P2) (dashed)
as well as the corresponding upper bounds from Theorem 4.6, for increasing values of ε. We
observe that the bounds are quite close to the actual errors. Moreover, in each case the error
norm for the multiplicative Schwarz method with the iteration matrix T = (I − P1)(I − P2)
almost stagnates in the first step, as predicted by the bound in Theorem 4.6.

On the right parts of Figures 5.1–5.5 we display the error norms of the multiplicative
Schwarz method and the corresponding convergence bounds from Theorem 4.13 for the central
difference scheme. For our choice of parameters we have αH > 2ε. Note that the error norms
are virtually the same for both iteration matrices. However, the bounds are not as tight as for
the upwind scheme. For fixed N the bounds become weaker with increasing ε, i.e., decreasing
convection-dominance. For our chosen parameters and ε = 10−4, giving εN2 = O(1), the
convergence of the multiplicative Schwarz method becomes very slow, and the bound (4.22)
fails to predict convergence at all. The values of |ρ| and the corresponding bounds from
Theorems 4.6 and 4.13 are shown in Table 5.1 for the case N = 198. We observe that the
bounds on |ρ| for the upwind scheme are tighter than for the central difference scheme.

We also run the experiments for a larger value of N , namely N = 10002, to further illus-
trate our results. We consider the special cases εN2 ≈ 1 (Figure 5.4) and εN ≈ 1 (Figure 5.5)
which are mainly of theoretical interest. While the bound (4.7) for the upwind scheme is still
tight and descriptive, the bound (4.22) for the central difference scheme does not predict con-
vergence well. Note that the parameters used in Figure 5.5 yield αH ≈ 1.9959× 10−4 < 2ε,
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FIG. 5.5. Convergence of multiplicative Schwarz and error bounds for ε = 10−4, N = 10002.

TABLE 5.1
Values of |ρ| computed using (4.5) and the corresponding bounds (4.7) and (4.22) for different ε and N = 198.

upwind central differences
ε |ρ| (4.5) bound (4.7) |ρ| (4.5) bound (4.22)

10−8 9.4× 10−7 9.9× 10−7 1.8× 10−4 3.9× 10−4

10−6 9.4× 10−5 9.9× 10−5 1.8× 10−2 3.9× 10−2

10−4 9.3× 10−3 9.8× 10−3 8.3× 10−1 3.8× 100

and hence the right part of Figure 5.5 shows error norms and the convergence bound corre-
sponding to the case αH ≤ 2ε in Theorem 4.13.

We conclude our numerical experiments by applying GMRES to the linear algebraic
system preconditioned with multiplicative Schwarz, i.e., the linear algebraic system (6.1), in
the case N = 198. The true (preconditioned) relative residual norms are shown in Figures 5.6–
5.8. In all cases convergence is achieved in two iterations, which is explained in the next
section. These figures are the counterparts to Figures 2.2–2.4, where GMRES makes little
progress until iteration 198.

6. Concluding discussion. We studied the convergence of the multiplicative Schwarz
method applied to upwind and central finite difference discretizations of one-dimensional
singularly perturbed convection-diffusion model problems posed on a Shishkin mesh. The
matrices that arise from the discretization are nonsymmetric and usually nonnormal as well
as ill-conditioned, which leads to very slow convergence of standard iterative solvers like the
(unpreconditioned) GMRES method.

In the simple one-dimensional case analyzed in this paper, the Shishkin mesh divides
the discretized domain into two local subdomains where the solution presents a different
characteristic nature. Therefore, a solution approach based on domain decomposition methods
seemed only natural. For the upwind scheme, we proved rapid convergence of the multiplica-
tive Schwarz method for all relevant problem parameters. The convergence for the central
difference scheme is slower but still rapid when N2ε < α and if N/2− 1 is even.

Based on (3.2), it is clear that the multiplicative Schwarz method can be seen as a
Richardson iteration for the system

(6.1) (I − T )x = v.
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FIG. 5.6. GMRES convergence for ε = 10−4.
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FIG. 5.7. GMRES convergence for ε = 10−6.
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FIG. 5.8. GMRES convergence for ε = 10−8.

Furthermore, the iteration scheme (3.2) can be written in the form

x(k+1) = x(k) + (I − T )(x− x(k)),

so that the multiplicative Schwarz method as well as GMRES applied to (6.1) obtain their
approximations from the Krylov subspace Kk(I − T, r0). Consequently, in terms of the
residual norm, GMRES applied to (6.1) will always converge faster than the multiplicative
Schwarz method. Moreover, if one applies GMRES to (6.1), then the multiplicative Schwarz
method can be seen as a preconditioner for the GMRES method; see, e.g., [11] where this
approach is taken. The preconditioner M such that M−1Ax = M−1b results in (6.1), can
formally be written as M = A(I − T )−1; see, e.g., [13, Lemma 2.3].

In general, if a matrix T satisfies r = rank(T ), then for any initial residual r0 we have

dim (Kk(I − T, r0)) ≤ r + 1,

so that GMRES applied to the system (6.1) converges to the solution in at most r + 1 steps
(in exact arithmetic). In the one-dimensional model problem studied in this paper we have
a matrix T with r = 1. Thus, GMRES applied to (6.1) converges in (at most) two steps
(see Figures 5.6–5.8) even if the multiplicative Schwarz iteration itself converges slowly or
diverges, which may happen for the central difference scheme and m odd. In a generalization
of the approach presented in this paper to two- or three-dimensional problems and hence more
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complicated Shishkin meshes with several transition points, one can possibly exploit a low
rank structure of the iteration matrix as well.

It is important to point out that, typically, in practical implementations the local subdomain
problems will not be solved exactly. In the case of inexact solves the bounds obtained in this
paper and the exact termination of GMRES in r+1 steps will no longer hold. Nevertheless, the
theory for the exact case presented here gives an indication of the behavior in the inexact case.
This is a standard approach in the context of preconditioning. An example of this framework
is given by the saddle-point preconditioners for which GMRES terminates in a few steps;
see [3]. In the context of domain decomposition methods, in particular for Schwarz methods,
the concept of inexact subdomain solves was investigated, e.g., in [2, Section 4]. See also [9],
where a similar situation is described for algebraic optimized Schwarz methods.
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