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FREQUENCY-DEPENDENT RECONSTRUCTION OF IMBALANCES∗

JENNY NIEBSCH† AND RONNY RAMLAU‡

Abstract. Imbalances in rotating machines cause vibrations of the system and may lead to an early wearout of the
machine. In this paper, we consider the development of an algorithm for the detection (and subsequent correction) of
imbalances from vibrational measurements at certain nodes of the system. Since, e.g., modern wind turbines operate
with variable speed, the vibration data are usually collected during changing rotational speed. Based on a mathematical
model that connects the measured vibrations at different rotational speeds with the imbalance distribution, we propose
an algorithm for its reconstruction. The reconstruction algorithm is based on a tensor product formulation of the
forward model. Test examples with artificial data are used to verify our approach.
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1. Introduction. Imbalances affect all types of rotating machinery, e.g., generators,
aircraft engines, or wind turbines [8, 30]. Mathematically, an imbalance is described as an
additional massm located at a distance r from the center of rotation and at an angle ϕ to a prior
chosen zero mark, i.e., p0 = mreiϕ. During the operation of the machinery with a certain
frequency, imbalances induce forces that cause displacements in the form of vibrations of the
machine. These vibrations are of the same frequency as the rotating frequency. Sometimes
vibrations can be measured by mounting sensors at certain positions, e.g., at the casing of an
aircraft engine or in the nacelle of a wind turbine. The identification of an imbalance from
measurements allows to eliminate or at least reduce it by placing an appropriate counterweight
opposite to the determined position of the eccentric mass. A safe and economic operation of a
rotating machinery very much depends on a well-balanced state. Therefore the reconstruction
of imbalances from vibration measurements is an important topic.

The mathematical description of the connection between the load from an imbalance and
the displacement involves a partial differential equation (PDE) which is seldom explicitly
solvable. Applying a finite element method, the PDE can be transformed into a system of
ordinary differential equations (ODEs) of second order; cf. [6]:

(Lu)(t) := Mu′′(t) + Du′(t) + Su(t) = p(t).(1.1)

The chosen number of nodes in the finite element model and the number of degrees of freedom
(DOF) of each node determine the sizeN = Number of nodes× Number of DOF of the vector
of displacements u and the vector of loads p. Accordingly, the mass matrix M, the damping
matrix D, and the stiffness matrix S are square matrices of dimension N ×N . Depending
on the direction of the force and the possible location of the imbalance, the forces only affect
certain DOF. In most applications there are only a few nodes where imbalances and resulting
forces can occur. Hence, the vector p is usually sparse.

Unfortunately, equation (1.1) cannot be used directly to compute p from measured
displacement data u. Since the data are usually corrupted by noise and the operator L as
a differential operator can not be stably evaluated, other methods for finding p and with it
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the imbalance have to be employed. The transformation of (1.1) into an equivalent operator
equation of the form

(Tp)(t) = u(t)(1.2)

allows us to treat the problem as an ill-posed inverse problem and solve it by regularization
techniques.

In case the rotating frequency f or the angular velocity ω = 2πf is constant or quasi-
static, the transformation from (1.1) into (1.2) is simple. Using the fact that the load induced by
an imbalance at the k-th DOF, p0

k = mkrke
iϕk , is a harmonic centrifugal force computed by

pk(t) = p0
kω

2eiωt, (1.2) reduces to a system of algebraic equations. With p0 = (p0
1, . . . , p

0
N )T ,

the vector p(t) of the load functions for all DOF is given by

p(t) = p0 · ω2eiωt.

Assuming u(t) = u0eiωt and inserting it into the ODE system (1.1), we get an algebraic
system for the amplitude vector u0 and the imbalance vector p0,

Tp0 :=

(
−M +

i

ω
D +

1

ω2
S

)−1

p0 = u0.(1.3)

It can be reduced in dimension by taking into account the sparse structure of p0 and the fact
that u0 can usually only be measured at a few DOF. This case was solved earlier and applied
to several industrial applications; see, e.g., [3, 24, 25].

However, practical applications often require the measurement of the displacement while
ω is not constant. For instance, wind turbines operate with variable speed. Another example
is a test run of an aircraft engine which is so expensive that it saves a lot of money to take
measurements during an idle to maximum cycle or vice versa. Thus, the investigation of the
imbalance reconstruction problem with time-dependent ω is well justified.

The transformation of (1.1) into (1.2) is mathematically difficult as a time-dependent ω
changes the load from an imbalance with the simple structure p(t) = p0ω2eiωt (allowing the
simplifications mentioned above) to

p(t) = <(p0[ω2(t)− iω′(t)]ei ϕ(t))

=
(
mkrkω

2(t) cos(ϕ(t) + ϕk) +mkrkω
′(t) sin(ϕ(t) + ϕk)

)N
k=1

,
(1.4)

with ϕ′(t) = ω(t). The transformation problem for this case was considered in [26]. Because
standard methods like the transformation into a system of first-order ODEs or the use of numer-
ical ODE solvers were found to be unsuitable, equation (1.1) with a general time-dependent
function p(t) as right-hand side and without the damping term Du′(t) was transformed into an
equivalent integral equation representing (1.2). Moreover, tensor products of function spaces
and operators were used to represent this integral equation in an efficient way and to simplify
the discretization process. In this way the direct problem of computing the displacements
u(t) for a given load function p(t) was solved and resulted in a description of the operator T
in (1.2).

As mentioned above, the inverse problem of reconstructing p(t), or in our applications p0

in (1.4), from measured data u(t) is ill-posed. Its solution is the topic of this paper. In Section 2
we present the tensor notation of the operator T derived in [26]. In Section 3 we include all
restrictions arising in our application into the mathematical formulation. This leads to a slightly
different formulation of the operator T from (1.2), i.e., now we consider T as an operator
acting on p0 instead of p(t). T is again represented in terms of tensor products. In Section 4
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we briefly summarize the options to solve the ill-posed inverse problem of reconstructing
the imbalance p0 from given noisy data u. Section 5 is devoted to the discretization of
the problem using a Galerkin scheme. The discretized operator can be represented using
Kronecker products. Finally, Section 6 states the final algorithm for the reconstruction of an
imbalance distribution from given data and provides numerical test examples to verify the new
reconstruction algorithm.

2. Integral formulation of the general forward problem. In [26] a formulation in
the form (1.2) was presented for the case of a machine without damping or with negligible
damping and a time-dependent load vector p(t) as well as unknown initial conditions. The
ODE system then reads:

Mu′′(t) + Su(t) = p(t), u(0) = α, u′(0) = β, α, β ∈ RN , t ∈ [0, Te],(2.1)

with

p(t) = (p1(t), . . . , pN (t))T , u(t) = (u1(t), . . . , uN (t))T ∈ (L2([0, Te]))
N .

The space (L2([0, Te]))
N can be represented as the tensor product RN ⊗ L2([0, Te]). For

details we refer to [26, Section 3]. The representation of p(t) and u(t) as tensor products is
expressed as

p(t) =

N∑
i=1

ei ⊗ pi(t)

and for u(t) likewise.
To present the solution operator T of (2.1), we define the compact integral operator

K : L2[0, Te]→ L2[0, Te] by

(Kpi)(t) :=

t∫
0

(t− θ)pi(θ)dθ,

and the linear operators which are represented by the matrices

B := M−1 and C := M−1S.(2.2)

The operator K : RN ⊗ L2([0, Te])× RN × RN → RN ⊗ L2([0, Te]) is defined by

(K[p, α, β])(t) = (B⊗K)

(
N∑
i=1

ei ⊗ pi(t)

)
+

N∑
i=1

αiei ⊗ 1 +

N∑
i=1

βiei ⊗ t,

where B⊗K is the tensor product of B and K, (ei)
N
i=1 is the orthonormal basis of RN , and

1 denotes the constant function f(t) = 1 on L2([0, Te]). The operator A and the identity I are
defined by

A : RN ⊗ L2([0, Te])→ RN ⊗ L2([0, Te]) I : RN ⊗ L2([0, Te])→ RN ⊗ L2([0, Te])

A = C⊗ (−K), I = IRN ⊗ IL2
;

see [26, (3.3) and Cor. 3.8]. Here IRN and IL2
are the identity operators in RN and L2([0, Te]),

respectively. With these preparations we can now present the equivalent integral representation
of (2.1) as

(T [p, α, β])(t) = ((I−A)−1K [p, α, β])(t) = u(t)(2.3)
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with

T : RN ⊗ L2([0, Te])× RN × RN → RN ⊗ L2([0, Te]).

Equation (2.3) is discretized by a Galerkin scheme, which results in a representation in terms of
Kronecker products. The forward computation was implemented, and test examples presented
in [26] show the stability of the method.

3. Computing the imbalance distribution from vibration measurements—the in-
verse problem. Now that our problem is represented in the form (2.3), we can attempt
to solve the inverse problem where u(t) is given and [p(t), α, β] is to be determined. Con-
sidering the application we have in mind, several restrictions and constraints have to be taken
into account. First of all, the vibrations u can only be measured for certain DOF, e.g., for the
radial displacements, and at certain positions where sensors can be placed, e.g., in the nacelle
of a wind turbine. Additionally, its measurements are taken at discrete times. Secondly, the
sparse structure of the imbalance vector p0 can be used. However, most important is the third
fact, namely that we are not really interested in p(t) as a function of t (cf. (1.4)). Assuming
we know the time-dependent angular velocity ω(t) from measurements at certain points in
time, we are only interested in recovering p0.

3.1. Measurement restrictions. Let N be the number of degrees of freedom in the
rotating system. Then u = (ui(t))i=1,...,N is a vector of N L2-functions, where each
function ui(t) describes the displacement of the ith DOF. We assume that the displacement
can only be measured at a number of s DOF indexed by N1, . . . , Ns, s ≤ N . We define
s := {N1, . . . , Ns} ⊂ {1, . . . , N} and the operator Ps as an orthogonal projection:

Ps : RN ⊗ L2([0, Te]) −→ Rs ⊗ L2([0, Te])

u =

N∑
i=1

ei ⊗ ui 7→
s∑
i=1

ei ⊗ uNi
=: us.(3.1)

Using tensor product notation, we have

Ps = Is ⊗ IL2

with the identity operator IL2
of L2([0, Te]) and the (s×N)-matrix Is with the entries

(Is)ij =

{
1 if j = Ni,

0 otherwise.
(3.2)

Applying Ps on both sides of (2.3), we arrive at

(Ps(I−A)−1K [p, α, β])(t) = us(t).

3.2. Restriction to imbalance positions. From the N DOF in our system, let only r be
subjected to a load from an imbalance. Let {L1, . . . , Lr} ⊂ {1, . . . , N} be the set of indices
of the DOF that are subjected to imbalances. We define the restrictions

p̄ :=

r∑
i=1

ei ⊗ pLi
, B̄ := (BL1

, . . . ,BLr
) ∈ RN×r,(3.3)
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where BLi
, i = 1, . . . , r, is the Li-th column of the matrix B and ei, i = 1, . . . , r, are the unit

vectors in Rr. Then we define the operator K̄ as

K̄[p̄, α, β] = (B̄⊗K)

(
r∑
i=1

ei ⊗ pLi

)
+

N∑
i=1

αiei ⊗ 1 +

N∑
i=1

βiei ⊗ t.(3.4)

Now the problem for the restricted imbalance and data situation reads as

(Ps(I−A)−1K̄ [p̄, α, β])(t) = us(t).(3.5)

3.3. Reconstruction of the imbalance vector p0. The aim of all our considerations is
the reconstruction of the imbalance vector p̄0 which is hidden in the load vector

p̄(t) = <[p̄0(ω2(t)− iω′(t))eiϕ(t)].

The solution of the inverse problem (3.5) for given us would provide us with an approximate
solution for p̄(t). The angular velocity ω(t) as well as the angle ϕ(t) can be measured along
with us. The remaining question is how to determine p̄0.

By a splitting into real and imaginary part, p̄0 = p̄R + ip̄I , and the definition

Ω(t) := (ω2(t)− iω′(t))eiϕ(t) = ΩR(t) + iΩI(t)k,(3.6)

we can write p̄(t) as

p̄(t) = p̄RΩR(t)− p̄IΩI(t).

We assume that ω(t), which is given only at discrete times, can be approximated sufficiently
accurately by a C1-function and thus Ω(t) can be determined. Then we use the special
structure of p̄(t) when applying K̄ from (3.4): we have

(B̄⊗K)

(
r∑
i=1

ei ⊗ p̄Li

)
=

r∑
i=1

B̄ei ⊗Kp̄Li

=

r∑
i=1

B̄ei ⊗ [p̄RLi
(KΩR)(t)− p̄ILi

(KΩI)(t)]

=

r∑
i=1

B̄ei ⊗ [KΩR ,−KΩI ]

[
p̄RLi

p̄ILi

]

= (B̄⊗K)

r∑
i=1

ei ⊗ [ΩR ,−ΩI ]

[
p̄RLi

p̄ILi

]
.

(3.7)

With the definition

KΩ

[
r∑
i=1

ei ⊗
[
p̄RLi

p̄ILi

]
, α, β

]
:= (B̄⊗K)

r∑
i=1

ei ⊗ [ΩR ,−ΩI ]

[
p̄RLi

p̄ILi

]

+

N∑
i=1

αiei ⊗ 1 +

N∑
i=1

βiei ⊗ t,

(3.8)

we get a new formulation of (3.5):

(Ps(I−A)−1KΩ)

[
r∑
i=1

ei ⊗
[
p̄RLi

p̄ILi

]
, α, β

]
= us.(3.9)
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Following this approach and using the abbreviations

T := Ps(I−A)−1KΩ, x :=

[
r∑
i=1

ei ⊗
[
p̄RLi

p̄ILi

]
, α, β

]
, y := us,(3.10)

we state our inverse problem as:

Tx = y,

where T is now an operator between X = R2(r+N) and Y = Rs ⊗ L2[0, Te], and x is to be
reconstructed from given noisy data yδ with ‖y − yδ‖ ≤ δ. We remark that x is not a vector
of functions of t anymore but the vector of imbalance values and initial values. We also recall
that we are interested in the imbalance values p̄RLi

, p̄ILi
, i = 1, . . . , r, only.

4. Regularization. Inverting T involves the inversion of the compact integral operatorK,
and the problem is thus ill-posed, i.e., it requires regularization techniques for its solution.
Applying regularization basically means that the generalized inverse T † of T is replaced by
a family of continuous operators Rγ , γ ∈ R+, that converges pointwise to the generalized
inverse. The regularization parameter γ has to be adapted to the amount of noise in the data. For
a review on the theory of inverse problems, we refer to the monographs [4, 5, 15, 19, 22, 23, 29].
Frequently used regularizations are the following:

• Truncated singular value decomposition (SVD) is based on the representation of the
generalized inverse of T using the singular system {vn, un;σn} of T ,

T †y =

∞∑
n=1

σ−1
n 〈y, un〉vn.

The method, applied to noisy data yδ fulfilling ‖y − yδ‖ ≤ δ, is defined as

Rγy =
∑
σn>γ

σ−1
n 〈y, un〉vn,

where the regularization parameter γ acts as a lower threshold for the singular
values. The method has been used in particular for the solution of discrete ill-posed
problems [10] and in combination with the L-curve method [11, 12, 13] for the
determination of the cut-off.

• Tikhonov regularization [27, 28] is probably the best-analyzed regularization method.
Here the regularization operator Rγ applied to noisy data yδ is given by

xδγ = Rγy
δ = (T ∗T + γI)−1T ∗yδ.

For an analysis of the method with a linear operator we refer in particular to [4, 7].
The regularization parameter γ has to be chosen appropriately, e.g., according to
Morozov’s discrepancy principle [23], where γ is chosen such that the residual is of
the same magnitude as the noise level, i.e., ‖Txδγ−yδ‖ ≤ Cδ. Alternatively, heuristic
parameter choice rules that determine the regularization parameter independently of
the noise level can be used; see, e.g., [16, 17, 18] and the references therein.

• Iterative methods aim at finding an approximate solution by minimizing the residual
‖yδ−Ax‖ or, equivalently, by finding an approximate solution of the normal equation

T ∗Tx = T ∗yδ.

Regularization is obtained by an early termination of the iteration, e.g., based on the
discrepancy principle. Examples are Landweber iteration [2, 20] or the conjugate
gradient method [1, 9, 14, 21].

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

IMBALANCE RECONSTRUCTION 441

Since Tikhonov regularization as well as the iterative methods require the frequent
application of T and T ∗, which requires in particular the evaluation of (I − A)−1 and
(I − A∗)−1, we opted for the use of the truncated SVD. Note that the computation of the
singular system of the discretized operator T is not too expensive since the operator is restricted
to the few imbalance and measurement positions resulting in a low-dimensional matrix.

5. Discretization. For the discretization of (3.9), we take advantage of the tensor repre-
sentation. It was shown in [26] that we only need to discretize the function space L2[0, Te]

and use the canonical Euclidean basis in Rs,RN , and Rr, denoted by {ei}s,N,ri=1 .

5.1. Discretization of L2[0, Te]. Consider the n-dimensional subspace L2,n[0, Te] ⊂
L2[0, Te] determined by a basis {ψ1, . . . , ψn}, e.g., the normed hat functions. An L2-function
f can be projected onto L2,n by

Pnf = fn(t) =

n∑
j=1

fjψj(t), t ∈ [0, Te],

where the coefficient vector (fj)
n
j=1 is given by

(fj)
n
j=1 = D−1f , with f = (〈ψj , f〉)nj=1 and D = (〈ψi, ψj〉)ni,j=1 .

Whenever the basis functions are orthonormal, which is not the case for hat functions, the
matrix D becomes the identity matrix in Rn. In this way the functions ΩR(t),ΩI(t), the
functions f(t) = 1 and f(t) = t, and the components uNi

(t), i = 1, . . . , s, of the data
y ∈ Rs ⊗ L2[0, Te] can be projected onto the subspace L2,n. In particular, we have that
uNi

(t) =
∑n
j=1 u

j
Ni
ψj(t). The discretized data vector can be written in Kronecker product

notation as

y ≈ yn =

s∑
i=1

ei ⊗ (ujNi
)nj=1.(5.1)

We remark that the number of entries of yn is s · n.

5.2. Discretization of T . We present the discretized version of T based on a Galerkin
formulation. It was shown in [26] that the Galerkin method applied to tensor products leads to
Kronecker products of matrices. This was in fact a major motivation to use the tensor product
formulation in the first place.

We use the following definitions:

F = (〈ψi,Kψj〉)i,j=1,...,n ,(5.2)

Ω =

ΩR1 −ΩI1
...

...
ΩRn −ΩIn

 ,(5.3)

c = (〈ψj , 1〉)nj=1 and d = (〈ψj , t〉)nj=1 .(5.4)

Recall that (ΩR,Ij )nj=1 = D−1
(〈
ψj ,Ω

R,I
〉)n
j=1

.
It is shown without difficulty (see Appendix A) that when using a Galerkin scheme, the

discretized form of
N∑
i=1

ei ⊗ zi(t) = KΩ

[
r∑
i=1

ei ⊗
[
p̄RLi

p̄ILi

]
, α, β

]
(5.5)
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is given in terms of Kronecker products by

N∑
i=1

ei ⊗ zi = [(B̄⊗ F)(IRr ⊗Ω), IRN ⊗ c, IRN ⊗ d]


∑r
i=1 ei ⊗

[
p̄RLi

p̄ILi

]
α
β

(5.6)

with B̄ defined in (2.2) and (3.3), F from (5.2), IRr , IRN the unit matrix on Rr and RN , Ω
from (5.3), and c and d from (5.4).

Again from [26], we know that (I−A)−1 applied to
∑N
i=1 ei ⊗ zi(t) is discretized by

the solution of the system

(5.7)
N∑
i=1

ei ⊗ zi = [IRN ⊗D−C⊗ (−F)]

N∑
i=1

ei ⊗D−1ui.

Recall that Ps from (3.1) was the projection from RN ⊗ L2 onto Rs ⊗ L2. Its projection Pn,s
onto Rs ⊗ L2,n can be represented as the Kronecker product of the matrix Is from (3.2) of
dimension s and the matrix D,

(5.8) Ps,n = Is ⊗D.

Combining (5.6), (5.7), and (5.8), the discretization of T from (3.10) is given by the matrix
Tn with

Tn = (Is ⊗ In)[IRN ⊗D−C⊗ (−F)]−1[(B̄⊗ F)(IRr ⊗Ω), IRN ⊗ c, IRN ⊗ d].(5.9)

Here the unit matrix In of dimension n× n appears as the product D ·D−1. The inversion
of the matrix [IRN ⊗D−C⊗ (−F)] is difficult since the matrix is ill-conditioned. For our
applications it turned out that just the smallest singular value of the matrix causes a difficulty.
Therefore we have used a truncated singular value decomposition of that matrix by using the
Matlab implemented function pinv. This stabilizes the problem sufficiently.

6. Algorithm and numerical examples. Algorithm 6.1 summarizes the steps necessary

to compute the solution
∑r
i=1 ei ⊗

[
p̄RLi

p̄ILi

]
of the inverse problem for a given data vector us(t)

and the frequency-related function Ω(t) from (3.6).

Algorithm 6.1: Algorithm for the solution of the inverse problem.
1: Given Te, n, τ = {t1, . . . , tn}, and ψj(t), uNi , j = 1, . . . , n, ω(τ), ϕ(τ).
2: Compute B,C, D,F, c,d, and Ω.
3: Compute (ujNi

)nj=1 = D−1 (〈ψj , uNi
〉)nj=1, and write the discretized data y as

in (5.1).
4: Compute Tn from (5.9).
5: Apply the truncated SVD to solve Tnx = y with x as in (3.10).
6: Extract the imbalance p̄RLi

, p̄ILi
from x as in (3.10), and compute the absolute value

and angle of p̄RLi
+ ip̄ILi

.
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FIG. 6.1. General finite element model of a wind turbine with 5 nodes.

6.1. Numerical examples. To verify the algorithm we chose the system matrices M and
S from the model of a wind turbine S77; cf. [25]. The simple structure of a wind turbine allows
the use of models with few nodes. In this case the model has only 5 nodes; see Figure 6.1. Each
node is considered having 2 degrees of freedom, i.e., the displacement in the radial direction
z and the associated cross section slope. Hence, the matrices are of dimension N ×N with
N = 10. The matrices B = M−1 and C = M−1S are computed.

Looking for a rotor imbalance in a wind turbine rotor corresponds to finding an imbalance
that only affects the displacement of the last node in the model in radial direction, i.e., the
penultimate DOF. Thus, p0 can be restricted to p̄0 = p0

N−1, and B is restricted accordingly.
Sensors for vibration measurements are always placed in the nacelle of the turbine which is
represented by the last node of the model as well as the rotor. Here the radial displacement is
measured at a position corresponding again to the DOF N − 1. Normalized hat functions were
chosen as a basis of L2,n([0, T ]). In this case, D can be computed explicitly as a tridiagonal
n× n matrix. At this stage we have to rely on artificial data in all examples. Also we cannot
yet specify the nature of the noise in the data. Hence, we just choose white Gaussian noise.
The regularization parameter, i.e., the threshold for the singular values, has been fine-tuned
experimentally.

6.1.1. Constant frequency. First we test the new algorithm for constant frequency. Thus,
we can use the established technique (1.3) to produce the correct data. We define an imbalance
p0
N−1 = 250eiπ/6 which corresponds to an imbalance of 250 kg ·m at an angle of 30◦, i.e.,

blade 1 (angle = 0◦) and blade 2 (angle = 120◦) are imbalanced, and the imbalances sum up
to p0

N−1. We assume a constant frequency of 0.34 Hz, which is close to the first eigenfrequency
of 0.354 Hz. Therefore ωc = 0.68 ·π rad/s, ϕ(t) = ωct, and Ω(t) = ω2

ce
iωct. As time interval

we chose [0, 5] s. It was divided into 500 subintervals of length h = 0.01 s, i.e., n = 501.
We used the forward model for the constant frequency case, cf. (1.3), to compute the data
u(t) and restricted it to the sensor position y = uN−1(t). The data were randomly disturbed
with a noise level of δ = 5%, i.e., ‖yδ − y‖/‖y‖ = 0.05. A reconstruction by Algorithm 6.1
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FIG. 6.2. Frequency function from a GE 1.5 fitted with ω(t) = 0.3317 + 0.003 sin
(
t+2π

5

)
.

with the exact data produced the exact imbalance. In case of disturbed data, the reconstructed

imbalance was 253.2 kg ·m at an angle of 27.5◦. The reconstruction error ‖p
0
N−1−p

0
rec‖

‖p0N−1‖
is 5%,

which corresponds to the noise level. We remark that the error for the absolute value of the
imbalance is only 1.3% while the error of the angle is 8.5%.

6.1.2. Disturbed constant frequency. A modern wind turbine operates with variable
frequency. Even if the wind is strong enough to operate with nominal speed, the frequency
usually changes a bit. A typical frequency function from a GE 1.5 wind turbine is shown in
Figure 6.2. For our test, we assume that the frequency changes harmonically around a constant
one like in the case displayed in Figure 6.2.

Setting. As in Section 6.1.1 we use the S77 wind turbine and the imbalance of 250 kg ·m
at 30◦. We assume that the frequency oscillates around the constant frequency ωc = 0.64 · π;
ω(t) = ωc + 0.05 sin(ωc

10 · t). Assuming ϕ(0) = 0, we have

ϕ(t) = ωct−
0.5

ωc
cos
(ωc

10
· t
)
, and

Ω(t) =
[
ω2(t)− i 0.005 ωc cos

(ωc
10
· t
)]
eiϕ(t).

A time interval of [0; 5] s was chosen.
Vibration data. Artificial data can be produced via a forward computation of

u = Tn[p;α;β], where α and β are the initial values taken from the constant frequency
case. We can disturb the data randomly to simulate noise that would occur in real data. On
the other hand, we can expect that the data from the constant frequency case are very close to
the data of the disturbed frequency case as long as the disturbance of the frequency is small.
Figure 6.3 displays the exact data for the constant frequency case compared to exact and
randomly disturbed data produced with the forward model with variable frequency.

Reconstruction. The imbalance was reconstructed from the noisy data of the forward
computation with Tn, where the data error level ranges from 5% to 25%. The absolute

value |p0
rec| of the reconstructed imbalance, its relative error Eabs =

||p0rec|−|p0N−1||
|p0N−1|

, the

angle ϕrecN−1, its relative error Eangle =
|ϕrec

N−1−ϕN−1|
|ϕN−1| , as well as the relative reconstruction

error Ep =
‖p0−p0rec‖
‖p0‖ for each noise level are presented in Table 6.1. We also provide a

reconstruction for data from the constant frequency model.
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FIG. 6.3. Data from the constant frequency case compared to exact and disturbed data produced with the
forward operator Tn.

TABLE 6.1
Reconstruction results for an S77 running with frequency ω(t) = ωc + 0.05 sin(ωc · t) for noisy data.

noise level |p0
rec| in kgm Eabs ϕrecN−1 in ◦ Eangle Ep

0% 250 30
5% 252 1% 28.8 3.8 % 2.4%
10% 251.6 0.6% 28.7 4.3% 2.4%
15% 258 3% 28.9 3.5% 3.7%
20% 238 5% 26.6 11% 7.5%
25% 235 6% 43.6 45% 23%

constant frequency data
0% 245 2% 41.4 38 % 20%

We observe that the reconstruction error is smaller than the noise level. Also, the recon-
struction of the absolute value of the imbalance is more accurate than the reconstruction of
the angle. For data from the constant frequency case, the absolute value of the reconstructed
imbalance is still quite accurate while the angle shows a larger error.

6.1.3. Linear frequency.
Setting. The same setting as in the previous example was used with a linear frequency

function. We assume a linear frequency growth from 0.28 Hz to 0.33 Hz in 5 s. Thus,
ω(t) = 2π(0.01t+ 0.28), ϕ(t) = 0.01πt2 + 0.56π, and Ω(t) =

[
ω2(t)− i 0.02π

]
eiϕ(t).

Vibration data. The data were produced by a forward computation via u = Tn[p;α;β]
and randomly disturbed noise with increasing noise level. To provide the initial values
α = u(0) and β = u̇(0), we have computed u using the constant frequency approach with
ωc = 0.56π, which corresponds to the initial frequency of 0.28 Hz. To simulate noisy
measurements of the data, we

a) added random noise to u with a noise level of 5–20%;
b) assumed, in addition to the data error in u, an error in the function ω(t). Since ω

is taken from measurements that are approximated by a linear function, we used a
slightly different approximation to simulate that error: ω(t) = 2π(0.008t+ 0.287)
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Reconstruction results. For both data a) and b) we get very stable results; cf. Table 6.2.
The reconstruction error is much smaller than the data error. This indicates that the time
variable approach is very suitable for the situation when measurements are taken during an
idle-to-maximum run (e.g., for aircraft engines) or vice versa (e.g., for vacuum pumps).

TABLE 6.2
Reconstruction results for an S77 running with frequency ω(t) = ω(t) = 2π(0.01t+ 0.28) for noisy data.

noise level |p0
rec| in kgm Eabs ϕrecN−1 in ◦ Eangle Ep

original 250 30
a) 5% 249.7 0.15% 29.96 0.1 % 0.15%

10% 251 0.4% 29.86 0.46% 0.45%
15% 252 0.75% 30.3 1% 0.9%
20% 247.5 1% 30.03 0.1% 1%

b) disturbed frequency data
20% 252 0.7% 30.5 1.8 % 1.2%

7. Summary and outlook. In this paper we have considered the inverse problem of
reconstructing an imbalance distribution p0 in a rotating system from measured displacement
data u(t) that are collected during a run of an rotating machinery with varying angular
velocity ω(t). All restrictions posed by practical applications were taken into account. After
discretization, our final algorithm uses a truncated SVD of the resulting system matrix to
obtain a regularized solution. The method, tested with artificial data for different settings,
provide stable results. In the cases where the frequency changes harmonically around a
constant frequency or for a linear change of the frequency, the reconstruction error was at
the same magnitude as the data error. Tests with real data from actual wind turbines or other
rotating machinery remain a task for future work. In particular, the transformation of the
usually measured acceleration/velocity data to the displacement data, which is the input for
our algorithm, has to be considered.

Appendix A. Discretization of KΩ. In this section we discretize equation (5.5) using a
Galerkin scheme. Using (3.8) and (3.7), equation (5.5) reads

N∑
i=1

ei ⊗ zi(t) =

r∑
i=1

B̄ei ⊗ [p̄RLi
(KΩR)(t)− p̄ILi

(KΩI)(t)] +

N∑
i=1

αiei ⊗ 1 +

N∑
i=1

βiei ⊗ t.

The functions ΩR(t), ΩI(t) are approximated in L2,n by

n∑
j=1

ΩR,Ij ψj(t), with (ΩR,Ij )nj=1 = D−1
(〈
ψj ,Ω

R,I
〉)n
j=1

,

and we define c = (〈ψj , 1〉)nj=1 , d = (〈ψj , t〉)nj=1 as in (5.4).

Here ψj(t), j = 1, . . . , n, are the basis functions ofL2,n. This implies that the tensor prod-
ucts {ei ⊗ ψj}j=1,...,n

i=1,...,N form a basis of the finite-dimensional tensor subspace
RN ⊗ L2,n ⊂ RN ⊗ L2. These basis functions serve as test functions in a Galerkin method.
The equation above is transformed by computing the inner product on both sides with the test
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functions. The left-hand side becomes〈
ek ⊗ ψ`,

N∑
i=1

ei ⊗ zi

〉
=

N∑
i=1

〈ek ⊗ ψ`, ei ⊗ zi〉 =

N∑
i=1

〈ek, ei〉 〈ψ`, zi〉

=

N∑
i=1

δki 〈ψ`, zi〉 = 〈ψ`, zk〉 .

The two last sums on the right-hand side become〈
ek ⊗ ψ`,

N∑
i=1

αiei ⊗ 1

〉
=

N∑
i=1

αi 〈ek, ei〉 〈ψ`, 1〉 = αkcl,〈
ek ⊗ ψ`,

N∑
i=1

βiei ⊗ t

〉
=

N∑
i=1

βi 〈ek, ei〉 〈ψ`, t〉 = βkdl.

The first sum on the right-hand side becomes〈
ek ⊗ ψ`,

r∑
i=1

B̄ei ⊗
n∑
j=1

[p̄RLi
ΩRj − p̄ILi

ΩIj ](Kψj)

〉

=

r∑
i=1

〈
ek, B̄ei

〉〈
ψ`,

n∑
j=1

[p̄RLi
ΩRj − p̄ILi

ΩIj ](Kψj)

〉

=

n∑
j=1

〈ψ`, (Kψj)〉
r∑
i=1

〈
ek, B̄ei

〉 [
ΩRj −ΩIj

] [p̄RLi

p̄ILi

]
.

For all basis functions {ei ⊗ ψj}j=1,...,n
i=1,...,N , the above computations lead to a system of nN

equations, which are combined in a vectorized set of equations



〈ψ1, z1〉
...

〈ψn, z1〉
〈ψ1, z2〉

...
〈ψn, z2〉

...

...
〈ψ1, zN 〉

...
〈ψn, zN 〉



=

n∑
j=1



〈ψ1,Kψj〉
∑r
i=1 b̄1i(Ωp)

(i)
j

...
〈ψn,Kψj〉

∑r
i=1 b̄1i(Ωp)

(i)
j

〈ψ1,Kψj〉
∑r
i=1 b̄2i(Ωp)

(i)
j

...
〈ψn,Kψj〉

∑r
i=1 b̄2i(Ωp)

(i)
j

...

...
〈ψ1,Kψj〉

∑r
i=1 b̄Ni(Ωp)

(i)
j

...
〈ψn,Kψj〉

∑r
i=1 b̄Ni(Ωp)

(i)
j



+

α1c
...

αNc

+

β1d
...

βNd

 ,

where

(Ωp)
(i)
j =

[
ΩRj −ΩIj

] [p̄RLi

p̄ILi

]
.
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In terms of Kronecker products, with zi = (〈ψj , zi〉)nj=1, this is the same as

N∑
i=1

ei ⊗ zi = (B̄⊗ F)(Ir ⊗Ω)

r∑
i=1

ei ⊗
[
p̄RLi

p̄ILi

]
+ (IRN ⊗ c)α+ (IRN ⊗ d)β,

and thus (5.6) follows.

REFERENCES

[1] H. BRAKHAGE, On ill-posed problems and the method of conjugate gradients, in Inverse and Ill-Posed
Problems, H. Engl and C. Groetsch, eds., Notes Rep. Math. Sci. Engrg. Vol. 4, Academic Press, Boston,
1987, pp. 165–175.

[2] M. DEFRIESE AND C. DE MOL, A note on stopping rules for iterativ regularization methods and filtered svd,
in Inverse Problems: An Interdisciplinary Study, P. Sabatier, ed., Adv. Electron. Electron Phys., Suppl. 19,
Academic Press, London, 1987, pp. 261–268.

[3] V. DICKEN, I. MENZ, P. MAASS, J. NIEBSCH, AND R. RAMLAU, Nonlinear inverse unbalance reconstruction
in rotor dynamics, Inverse Probl. Sci. Eng., 13 (2005), pp. 507–543.

[4] H. W. ENGL, M. HANKE, AND A. NEUBAUER, Regularization of Inverse Problems, Kluwer, Dordrecht, 1996.
[5] H. W. ENGL AND R. RAMLAU, Regularization of inverse problems, in Encyclopedia of Applied and Computa-

tional Mathematics, B. Engquist, ed., Springer, Berlin, 2015, pp. 1233–1241.
[6] R. GASCH AND K. KNOTHE, Strukturdynamik 2, Springer, Berlin, 1989.
[7] C. W. GROETSCH, The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind, Pitman,

Boston, 1984.
[8] Z. HAMEED, Y. S. HONG, Y. M. CHO, S. H. AHN, AND C.-K. SONG, Condition monitoring and fault

detection of wind turbines and related algorithms: A review, Renewable and Sustainable Energy Reviews,
13 (2009), pp. 1–39.

[9] M. HANKE, Conjugate Gradient Type Methods for Ill-posed Problems, Longman Scientific & Technical,
Harlow, 1995.

[10] P. C. HANSEN, Truncated singular value decomposition solutions to discrete ill-posed problems with ill-
determined numerical rank, SIAM J. Sci. Statist. Comput., 11 (1990), pp. 503–518.

[11] , Analysis of discrete ill-posed problems by means of the L-curve, SIAM Rev., 34 (1992), pp. 561–580.
[12] P. C. HANSEN AND D. P. O’LEARY, The use of the L-curve in the regularization of discrete ill-posed

problems, SIAM J. Sci. Comput., 14 (1993), pp. 1487–1503.
[13] P. C. HANSEN, T. SEKII, AND H. SHIBAHASHI, The modified truncated SVD method for regularization in

general form, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 1142–1150.
[14] M. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear systems, J. Research Nat.

Bur. Standards, 49 (1952), pp. 409–436.
[15] J. KAIPIO AND E. SOMERSALO, Statistical and Computational Inverse Problems, Springer, New York, 2005.
[16] S. KINDERMANN, Convergence analysis of minimization-based noise level-free parameter choice rules for

linear ill-posed problems, Electron. Trans. Numer. Anal., 38 (2011), pp. 233–257.
http://etna.ricam.oeaw.ac.at/vol.38.2011/pp233-257.dir/pp233-257.pdf

[17] S. KINDERMANN, Discretization independent convergence rates for noise level-free parameter choice rules in
the regularization of ill-conditioned problems, Electron. Trans. Numer. Anal., 40 (2013), pp. 58–81.
http://etna.ricam.oeaw.ac.at/vol.40.2013/pp58-81.dir/pp58-81.pdf

[18] S. KINDERMANN AND A. NEUBAUER, On the convergence of the quasioptimality criterion for (iterated)
Tikhonov regularization, Inverse Probl. Imaging, 2 (2008), pp. 291–299.

[19] A. KIRSCH, An Introduction to the Mathematical Theory of Inverse Problems, 2nd ed., Springer, New York,
2011.

[20] L. LANDWEBER, An iteration formula for Fredholm integral equations of the first kind, Amer. J. Math., 73
(1951), pp. 615–624.

[21] A. K. LOUIS, Convergence of the conjugate gradient method for compact operators, in Inverse and Ill-Posed
Problems, H. Engl and C. Groetsch, eds., Notes Rep. Math. Sci. Engrg. Vol. 4, Academic Press, Boston,
1987, pp. 177–183.

[22] A. K. LOUIS, Inverse und Schlecht Gestellte Probleme, Teubner, Stuttgart, 1989.
[23] V. A. MOROZOV, Methods for Solving Incorrectly Posed Problems, Springer, New York, 1984.
[24] J. NIEBSCH AND R. RAMLAU, Mathematical imbalance determination from vibrational measurements and

industrial applications, in ASME 2008 Proceedings of IDETC/CIE, vol. 3, ASME, New York, 2008,
pp. 1035–1042.

[25] , Imbalance estimation without test masses for wind turbines, J. Sol. Energy Eng., 131 (2009),
Art. 0111010 (7 pages).

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://etna.ricam.oeaw.ac.at/vol.38.2011/pp233-257.dir/pp233-257.pdf
http://etna.ricam.oeaw.ac.at/vol.40.2013/pp58-81.dir/pp58-81.pdf


ETNA
Kent State University and

Johann Radon Institute (RICAM)

IMBALANCE RECONSTRUCTION 449

[26] J. NIEBSCH, R. RAMLAU, AND K. M. SOODHALTER, Solution of coupled differential equations arising from
imbalance problems, Electron. Trans. Numer. Anal., 46 (2017), pp. 89–106.
http://etna.ricam.oeaw.ac.at/vol.46.2017/pp89-106.dir/pp89-106.pdf

[27] A. TIKHONOV, Regularization of incorrectly posed problems, Soviet Math. Dokl., 4 (1963), pp. 1624–1627.
[28] , Solution of incorrectly formulated problems and the regularization method, Soviet Math. Dokl., 4

(1963), pp. 1035–1038.
[29] C. R. VOGEL, Computational Methods for Inverse Problems, SIAM, Philadelphia, 2002.
[30] S. ZHOU AND J. SHI, Active balancing and bibration control of rotating machinery: a survey, The Shock and

Vibration Digest, 33 (2001), pp. 361–371.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://etna.ricam.oeaw.ac.at/vol.46.2017/pp89-106.dir/pp89-106.pdf

