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UNIFORM REPRESENTATIONS OF THE INCOMPLETE BETA FUNCTION
IN TERMS OF ELEMENTARY FUNCTIONS∗

CHELO FERREIRA†, JOSÉ L. LÓPEZ‡, AND ESTER PÉREZ SINUSíA†

Abstract. We consider the incomplete beta function Bz(a, b) in the maximum domain of analyticity of its three
variables: a, b, z ∈ C, −a /∈ N, z /∈ [1,∞). For <b ≤ 1 we derive a convergent expansion of z−aBz(a, b) in
terms of the function (1 − z)b and of rational functions of z that is uniformly valid for z in any compact set in
C \ [1,∞). When −b ∈ N ∪ {0}, the expansion also contains a logarithmic term of the form log(1 − z). For
<b ≥ 1 we derive a convergent expansion of z−a(1− z)bBz(a, b) in terms of the function (1− z)b and of rational
functions of z that is uniformly valid for z in any compact set in the exterior of the circle |z − 1| = r for arbitrary
r > 0. The expansions are accompanied by realistic error bounds. Some numerical experiments show the accuracy of
the approximations.
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1. Introduction. We may find in the literature a large variety of convergent or asymptotic
expansions of the special functions of mathematical physics that have the important property
of being given in terms of elementary functions: direct or inverse powers of a certain complex
variable z and, sometimes, other elementary functions of z. However, quite often, these
expansions are not simultaneously valid for small and large values of |z|. Thus, it would be
interesting to derive new convergent expansions of these functions in terms of elementary
functions that hold uniformly in z in a large region of the complex plane that includes small
and large values of |z|.

In [1, 5], the authors derived new uniform convergent expansions of the incomplete gamma
function γ(a, z) and the Bessel functions Jν(z) and Yν(z) in terms of elementary functions
of z that hold uniformly in unbounded regions of C containing the point z = 0. The starting
point of the technique used in [1, 5] is an appropriate integral representation of these functions.
The key point is the use of a Taylor expansion, at an appropriate point of the integration
interval, of a certain factor of the integrand that is independent of the variable z. This fact, the
independence of this factor with respect to z, translates into a convergent uniform expansion
in a large region of the complex z-plane. The expansions given in [1, 5] are accompanied by
error bounds and numerical experiments showing the accuracy of the approximations.

In this work, we continue that line of investigation considering the incomplete beta
function Bz(a, b). This function is used extensively in statistics as the probability integral of
the beta distribution and as a special case of the (negative) binomial distribution, Student’s
distribution, and the F -(variance-ratio)distribution [3]. Among its physical applications, we
mention its use in Monte Carlo simulations in statistical mechanics [4] and in cosmology [2].
We consider Bz(a, b) as a function of the complex variable z and derive new convergent
expansions that are uniformly valid in an unbounded region of the complex z-plane that
contains the point z = 0. The starting point is the integral definition of the incomplete beta
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function [9, eq. 8.17.1],

(1.1) z−aBz(a, b) :=

∫ 1

0

ta−1(1− zt)b−1dt,

valid for <a > 0 and z ∈ C \ [1,∞). The incomplete beta function Bz(a, b) reduces to the
ordinary beta function B(a, b) when z = 1 and, except for positive integer values of b, has
a branch cut discontinuity in the complex z-plane running from 1 to ∞. When a or b are
positive integers, the incomplete beta function is an elementary function of z.

For reasons that will become clear later, it is convenient to consider the integral (1.1)
only for <b ≤ 1. When <b ≥ 1, we consider instead the following integral representation of
Bz(a, b) that may be obtained from (1.1) after the change of variable t→ 1− t:

(1.2) z−aBz(a, b) = (1− z)b−1
∫ 1

0

(1− t)a−1
(

1 +
z

1− z
t

)b−1
dt,

valid for <a > 0 and z ∈ C \ [1,∞).
By using the recurrence relation [9, eq. 8.17.20],

Bz(a, b) =
a+ b

a
Bz(a+ 1, b) +

za(1− z)b

a
,

we find that the function Bz(a, b) may be analytically continued in the complex variable a to
the negative half plane <a ≤ 0 with poles at the negative integers a = −1,−2,−3, . . . And
conversely, by using repeatedly this formula, we have that Bz(a, b), with <a ≤ 0, may be
written as a linear combination of elementary functions of its three variables and an incomplete
beta function with <a > 0. Therefore, without loss of generality, in the remaining of the paper
we restrict ourselves to <a > 0.

The power series expansion of the incomplete Beta function is given by [10]

(1.3) z−aBz(a, b) =

∞∑
n=0

(1− b)n
n!(a+ n)

zn, |z| < 1.

This expansion also converges absolutely when |z| = 1 if <b > 0. It may be derived from
the integral representation (1.1) by replacing the factor (1 − zt)b−1 by its Taylor series at
the origin and interchanging the order of summation and integration. This Taylor series
expansion converges for t ∈ [0, 1], but the convergence is not uniform in |z|. Therefore, the
expansion (1.3) is not uniform in |z| as the remainder is unbounded when |z| → ∞.

From the hypergeometric function representation of Bz(a, b) [9, eq. (8.17.7)],

Bz(a, b) =
za

a
2F1 (a, 1− b; a+ 1; z) ,

and by combining the formulas [8, eq. (15.2.2)] and [8, eqs. (15.8.2) and (15.8.8)], we obtain,
for 1−a−b /∈ N∪{0} and |ph(−z)| < π (ph(z) denotes the phase of the complex number z),
the asymptotic expansion

z−aBz(a, b) ∼
πΓ(a)

Γ(a+ b) sin[π(1− a− b)]

×

[
(−z)−a

Γ(1− b)
− (−z)b−1

Γ(a)Γ(1− a− b)

∞∑
k=0

(1− b)k
(1− a− b− k)k!zk

]
.

(1.4)
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On the other hand, if 1− a− b ∈ N ∪ {0}, |z| > 1, and |ph(−z)| < π, then we have

z−aBz(a, b) ∼
Γ(a)(−z)−a

Γ(1− b)

−a−b∑
k=0

(a)k(−a− b− k)!

k! Γ(1− k) zk

+ (−z)−a
∞∑
k=0

(−1)k(1− b)k
k!(k + 1− a− b)! Γ(a+ b− k) zk+1−a−b

×
[

log(−z) + ψ(k + 1) + ψ(k + 2− a− b)

− ψ(1− b+ k)− ψ(a+ b− k)

]
,

(1.5)

where ψ denotes the digamma function. The expansions (1.4) and (1.5) are asymptotic
expansions of the incomplete beta function for large |z|, but the remainders are unbounded
when |z| → 0, and hence, these expansions are not uniform in |z| either. Other large parameter
asymptotic approximations with certain uniformity properties with respect to the parameters
can be found in [7, 11].

The expansions (1.3), (1.4), and (1.5) have the good property of being given in terms
of elementary functions of z, but they have the inconvenience of not being uniform in |z| in
unbounded regions of the complex plane that include the point z = 0. In this paper we show
that it is possible to derive convergent expansions of Bz(a, b) in terms of elementary functions
that hold uniformly for z in an unbounded region of C that includes the point z = 0. As an
illustration of the approximations that we are going to obtain (see Theorem 2.1 below), we
derive, for example, the following one:

(1.6)
1

z5/2
Bz

(
5

2
,

1

2

)
=

(32 + 40z − 5z2)− (27z2 + 56z + 32)
√

1− z
40
√

2 z3
+ ε(z),

with |ε(z)| < 0.0089 in the negative half plane <z ≤ 0. When z = 0, the right-hand side
of (1.6) must be understood in the limit sense.

In order to derive these kinds of approximations, we use in this paper the technique
proposed in [1, 5]: we consider a Taylor expansion of the factor ta−1 in (1.1) and of the
factor (1− t)a−1 in (1.2). The factor ta−1 in (1.1) is not analytic at the origin unless a ∈ N
(analogously, the factor (1− t)a−1 in (1.2) is not analytic at t = 1). Following the arguments
given in [5], we must consider the expansion of the factors ta−1 and (1− t)a−1 at the middle
point t = 1/2 of the integration interval (0, 1) in the respective integrals (1.1) and (1.2) in such
a way that we assure that the integration interval is contained in the disk of convergence of the
Taylor series. This Taylor expansion is convergent for any t in the integration interval of (1.1)
or (1.2), and obviously, it is independent of z. After the interchange of the order of summation
and integration, the independence with respect to z translates into a remainder that can be
bounded independently of z in a large unbounded region of the complex z-plane that contains
the point z = 0 and that we specify in Theorems 2.1 and 3.1 below. In the following section
we consider the integral representation (1.1) for <b ≤ 1. In Section 3 we consider the integral
representation (1.2) for <b ≥ 1. Section 4 contains some comments about the accuracy of the
approximations. Throughout the paper we use the principal argument arg z ∈ (−π, π].

2. A uniform convergent expansion of Bz(a, b) for <b ≤ 1. In this section we
consider the integral representation (1.1). We define the extended sector (see Figure 2.1):

(2.1) Sθ := {θ ≤ | arg(z)| ≤ π} ∪
{
z ∈ C;

∣∣∣∣z − 1

2

∣∣∣∣ ≤ 1

2
and |z − 1| ≥ sin θ

}
,
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with arbitrary 0 < θ ≤ π/2. We have the following theorem:
THEOREM 2.1. For <a > 0, <b ≤ 1, z ∈ Sθ, with 0 < θ ≤ π/2, and n = 1, 2, 3, . . .,

(2.2) z−aBz(a, b) = 21−a
n−1∑
k=0

(1− a)k
k!

βk(z, b) +Rn(z, a, b),

where βk(z, b) are the elementary functions

βk(z, b) :=
1

zk+1

k∑
j=0

(
k
j

)
2j (z − 2)

k−j

×
[

1− (1− z)j+b

j + b
(1− δj,−b)− δj,−b log(1− z)

]
,

(2.3)

with δk,j the Kronecker delta: δk,j = 1 if k = j, δk,j = 0 if k 6= j. In (2.3), the first term
inside the brackets must be understood as zero if j = −b. For k = 1, 2, 3, . . . and b 6= 0, the
coefficients βk(z, b) satisfy the recurrence relation

βk(z, b) =
1

zb

[
1− (−1)k(1− z)b

]
− 2k

zb
βk−1(z, b+ 1),

β0(z, b) =
1

zb

[
1− (1− z)b

]
.

(2.4)

On the other hand, for k = 1, 2, 3, . . . and b = 0,

βk(z, 0) =
1− (−1)k

kz
+

(
1− 2

z

)
βk−1(z, 0),

β0(z, 0) = −1

z
log(1− z).

(2.5)

When z = 0, the above expressions must be understood in the limit sense. In the extended
sector Sθ, the remainder is bounded in the form

(2.6) |Rn(z, a, b)| ≤ [sin(θ)]<b−1
eπ|=b||(1− a)n|
n! 2<a−1<a

max{2<a−n−1, 1}.

For n ≥ <a− 1 > 0, the remainder term may also be bounded in the form

(2.7) |Rn(z, a, b)| ≤ [sin(θ)]<b−1
eπ|=b| 21−<an|(1− a)n|

(n+ 1)! (<a− 1)
.

The remainder term behaves as Rn(z, a, b) ∼ n−<a as n → ∞ uniformly in |z| in the
extended sector Sθ.

Proof. Consider the truncated Taylor series expansion of the factor ta−1 in the integrand
of the integral definition (1.1) of Bz(a, b) at the middle point t = 1/2 of the integration
interval,

(2.8) ta−1 =
1

2a−1

n−1∑
k=0

(1− a)k
k!

(1− 2t)k + rn(t, a), t ∈ (0, 1],

where rn(t, a) is the Taylor remainder

(2.9) rn(t, a) :=
1

2a−1

∞∑
k=n

(1− a)k
k!

(1− 2t)k, t ∈ (0, 1].

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

454 C. FERREIRA, J. L. LÓPEZ, AND E. PÉREZ SINUSÍA

Re(z)

Im(z)

1

θ

−θ

r

r

FIG. 2.1. The blue and green regions comprise the extended sector Sθ defined in (2.1), with r := sin θ,
0 < θ ≤ π/2. In particular, Sπ/2 is just the half plane <z ≤ 0 and limθ→0 Sθ = C \ [1,∞). In the region Sθ ,
the remainder Rn(z, a, b) is bounded independently of |z| by the right-hand side of (2.6).

Instead of the point t = 1/2 for the Taylor expansion of ta−1, we could have chosen any other
point t ∈ [1/2, 1] such that the convergence disk of the Taylor series of ta−1 contains the
interval [0, 1]. We have selected the point t = 1/2 because in a previous paper [1], where we
analyzed a similar problem for the incomplete gamma function, we proved that the optimal
choice was the middle point of the interval.

After suitable manipulations, we can write

(2.10) rn(t, a) =
(1− a)n
2a−1n!

(1− 2t)n2F1 (n+ 1− a;n+ 1; 1− 2t) , t ∈ (0, 1].

Replacing (2.8) in the integral representation of Bz(a, b) given in (1.1) and interchanging the
order of summation and integration, we obtain (2.2) with

Rn(z, a, b) :=

∫ 1

0

rn(t, a)(1− zt)b−1 dt(2.11)

and

βk(z, b) :=

∫ 1

0

(1− 2t)k(1− zt)b−1dt =
1

z

∫ 1

1−z

(
1− 2

z
+ 2

u

z

)k
ub−1du.(2.12)

Expanding the first factor of the integrand in the second integral in terms of powers of u and
integrating term-wise, we obtain (2.3). Integrating by parts in any of the integrals in (2.12), it
is straightforward to see that, for k = 1, 2, 3, . . ., the functions βk(z, b) satisfy the recurrence
relations (2.4) and (2.5).

In order to derive the bound (2.6), we need a bound for the factor (1− zt)b−1 uniformly
valid for t ∈ [0, 1]. It is straightforward to verify that, for t ∈ [0, 1], we have the bound
|(1− zt)b−1| ≤ eπ|=b|M(z, b) with

(2.13) M(z, b) :=


1, if <(z) ≤ 0,

|1− z|<b−1, if <(1/z) ≥ 1,

|sin(arg(z))|<b−1 , if 0 < <(1/z) < 1.
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Re(z)

Im(z)

1/2

Re(1/z)>1

0<Re(1/z)<1

Re(z)<0

1

FIG. 2.2. Different regions considered in formula (2.13). The green region <(1/z) > 1 is the open disk of
radius 1/2 with center at z = 1/2. The red region 0 < <(1/z) < 1 is the intersection of the half plane <z > 0
with the exterior of this disk.

The regions of the complex z-plane considered in this formula are depicted in Figure 2.2. For
z ∈ Sθ, with 0 < θ ≤ π/2, we have that M(z, b) ≤ [sin(θ)]<b−1. This inequality may be
proved by using the following geometrical arguments:

(i) at the points of the circle |z − 1/2| = 1/2, we have that |1− z| = |sin(arg(z))|;
(ii) the closest points of the sector θ ≤ | arg(z)| < π/2 to the point z = 1 are just the

two points obtained from the intersection of the rays arg z = ±θ with the circle
|z − 1/2| = 1/2;

(iii) the closest points of the region
{
z ∈ C;

∣∣z − 1
2

∣∣ ≤ 1
2 and |z − 1| ≥ sin θ

}
to the

point z = 1 are those of the portion of the circle |z − 1| = sin θ contained inside this
region.

Now we use that rn(t, a) is integrable in (0, 1), the bound |(1− zt)b−1| ≤ eπ|=b| [sin(θ)]<b−1

for t ∈ [0, 1], and insert (2.10) into (2.11). Thus, we obtain

|Rn(z, a, b)| ≤ eπ|=b|[sin(θ)]<b−1
|(1− a)n|
n! 2<a−1

×
∫ 1

0

|1− 2t|n |2F1 (n+ 1− a, 1;n+ 1; 1− 2t)| dt.

From the integral representation of the hypergeometric function [8, eq. (15.6.1)], we find that,
for t ∈ (0, 1),

|2F1 (n+ 1− a, 1;n+ 1; 1− 2t)| ≤ 2F1 (n+ 1−<a, 1;n+ 1; 1− 2t) .

Then,

|Rn(a, z, b)| ≤ eπ|=b|[sin(θ)]<b−1
|(1− a)n|
n! 2<a−1

×
∫ 1

0

|1− 2t|n 2F1 (n+ 1−<a, 1;n+ 1; 1− 2t) dt

= eπ|=b|[sin(θ)]<b−1
|(1− a)n|
n! 2<a

[
1

<a
+

1

n+ 1
2F1 (n+ 1−<a, 1;n+ 2;−1)

]
.

(2.14)

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

456 C. FERREIRA, J. L. LÓPEZ, AND E. PÉREZ SINUSÍA

Using now the contiguous hypergeometric function [8, eq. (15.5.14)] with a = 1,
b = n+ 1−<a, c = n+ 1, and z = −1, we find that

1

n+ 1
2F1 (n+ 1−<a, 1;n+ 2;−1) =

<a+ 1

n<a 2F1 (n+ 1−<a, 1;n+ 1;−1)

− 2

n<a 2F1 (n+ 1−<a, 2;n+ 1;−1) ,

and by applying [8, eq. (15.5.11)] in the second hypergeometric function, we can write

2 2F1 (n+ 1−<a, 2;n+ 1;−1) = n+ (<a+ 1− 2n)2F1 (n+ 1−<a, 1;n+ 1;−1) .

Thus, inserting these formulas into (2.14), we get

(2.15) |Rn(z, a, b)| ≤ eπ|=b|[sin(θ)]<b−1
|(1− a)n|
n! 2<a−1<a 2F1 (n+ 1−<a, 1;n+ 1;−1) .

From the integral representation of the hypergeometric function [8, eq. (15.6.1)], we have that

2F1 (n+ 1−<a, 1;n+ 1;−1) = n

∫ 1

0

(1− t)n−1(1 + t)<a−n−1dt ≤ max{2<a−n−1, 1}.

The bound (2.6) follows from (2.15) and this last inequality.
When n ≥ <a− 1 > 0, we consider again the integral representation of the hypergeo-

metric function [8, eq. (15.6.1)],

|2F1 (n+ 1− a, 1;n+ 1; 1− 2t)| ≤ n
∫ 1

0

(1− s)n−1[1− (1− 2t)s]<a−n−1ds.

When t ∈ (0, 1), we have [1− (1− 2t)s]<a−n−1 ≤ (1− s)<a−n−1, and thus,

|2F1 (n+ 1− a, 1;n+ 1; 1− 2t)| ≤ n

<a− 1
.

Therefore, from (2.10) we have that

|rn (t, a)| ≤ |(1− a)n| |1− 2t|n

2<a−1(n− 1)!(<a− 1)
.

Formula (2.7) follows straightforwardly by inserting this bound into (2.11).
Finally, using the Stirling formula and [6, eq. (30)] in (2.6) or (2.7), we obtain that

Rn(a, z) ∼ n−<a as n → ∞. Then, any of the bounds (2.6) or (2.7) show the uniform
character of the expansion (2.2) in the extended sector Sθ.

Formula (1.6) follows from Theorem 2.1 with a = 5/2, b = 1/2, and n = 3. An error
bound simpler than those given in (2.6) and (2.7) can be found when a is real. It is stated in
the following proposition.

PROPOSITION 2.2. For a > 0, <b ≤ 1, z ∈ Sθ, and n = 1, 2, 3, . . ., the error term
Rn(z, a, b) in Theorem 2.1 may be bounded as

(2.16) |Rn(z, a, b)| ≤ [sin(θ)]<b−1
eπ|=b||(1− a)n|

2a−1 an!
.

Proof. Take p := bac, and define α := a− p. Then we have that, for k ≥ p,

(2.17) (1− a)k = (−1)p(α)p(1− α)k−p.
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TABLE 2.1
The first few terms in the expansion (2.2) of z−aBz(a, b) when −b /∈ N ∪ {0}.

n (1− a)nβn(z, b)/n!

0

(
1− (1− z)b

)
bz

1

(
(a− 2)(1 + b) + (a− 2− ab)(1− z)b

)
b(b+ 1)z

+
2(a− 1)

(
1− (1− z)b

)
b(b+ 1)z2

2

((−3+a)(−2+a)(1+b)(2+b)+(a(10+(−5+b)b)+a2(−2+b−b2)−2(6+b+b2))(1−z)b)
2b(b+1)(b+2)z

+
2(−1+a)(−(−3+a)(2+b)+(−6−a(−2+b)+b)(1−z)b)

b(b+1)(b+2)z2 +
4(−2+a)(−1+a)(1−(1−z)b)

b(b+1)(b+2)z3

Using this equality in (2.9), we find that

|rn (t, a)| ≤ (α)p
2a−1

∞∑
k=n

(1− α)k−p
k!

|1− 2t|k.

We insert this bound into (2.11), and by using that |(1 − zt)b−1| ≤ eπ|=b|[sin(θ)]<b−1 for
t ∈ [0, 1] and (2.17), we find (2.16).

Table 2.1 provides the first few terms of the approximation of z−aBz(a, b) given by the
expansion (2.2) for <b ≤ 1 and −b /∈ N ∪ {0}. These terms are rational functions of z and
functions of (1− z)b. When −b ∈ N ∪ {0}, the terms of the expansion (2.2) also contain the
term log(1− z).

In Figure 2.3 we plot the relative errors, on a logarithmic scale, of the approximation of
z−aBz(a, b) given in Theorem 2.1 for n = 1, 2, 3, 4, 5, z = ρeiθ, with θ = 0, π/4, π/2,−π/3,
ρ ∈ [−100, 1) or ρ ∈ [−100, 100], and different values of the parameters a and b. This serves
as a numerical experiment investigating the rate of convergence provided by (2.2). We also
observe the uniform character of the approximation in the region Sθ.

3. A uniform convergent expansion of Bz(a, b) for <b ≥ 1. In this section we
consider the integral representation (1.2). For any 0 < r ≤ 1, consider the punctured complex
plane at z = 1 with the interval [1,∞) removed:

(3.1) Cr := {z ∈ C; |z − 1| ≥ r, | arg(1− z)| < π}.

We have the following theorem.
THEOREM 3.1. For <a > 0, <b ≥ 1, z ∈ Cr, with 0 < r ≤ 1, and n = 1, 2, 3, . . .,

(3.2) z−a(1− z)1−bBz(a, b) = 21−a
n−1∑
k=0

(−1)k(1− a)k
k!

βk(z, b) +Rn(z, a, b),

where the functions βk(z, b) are the elementary functions

(3.3) βk(z, b) :=
1

zk+1

k∑
j=0

(
k
j

)
(−2)j(2− z)k−j (1− z)1−b − (1− z)j+1

j + b
.
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FIG. 2.3. Plots of the relative errors, on a logarithmic scale, of the approximation of z−aBz(a, b) given in
Theorem 2.1 for n = 1 (red), n = 2 (green), n = 3 (blue), n = 4 (black), and n = 5 (orange) for z = ρeiθ with
θ = 0, a = 1.5, b = 0.5 (top left), θ = π/4, a = 0.9, b = −1−0.3i (top right), θ = π/2, a = 1+0.25i, b = 0.7
(bottom left), θ = −π/3, a = 2.1 + i, b = 0.8 + 0.2i (bottom right), and ρ ∈ [−100, 1) or ρ ∈ [−100, 100].

For k = 1, 2, 3, . . ., they satisfy the recurrence relation

βk(z, b) =
1− z
zb

[
(−1)k

(1− z)b
− 1

]
+

2k(1− z)
zb

βk−1(z, b+ 1),

β0(z, b) =
1− z
zb

[
1

(1− z)b
− 1

]
.

(3.4)

When z = 0, the above expressions must be understood in the limit sense. The remainder is
bounded in the form

(3.5) |Rn(z, a, b)| ≤ eπ|=b||(1− a)n|
n! 2<a−1<a r<b−1

max{2<a−n−1, 1}.

For n ≥ <a− 1 > 0, the remainder term may also be bounded in the form

(3.6) |Rn(z, a, b)| ≤ eπ|=b|21−<a|(1− a)n|
(n− 1)!(n+ 1) (<a− 1)r<b−1

.

The remainder term behaves as Rn(z, a, b) ∼ n−<a as n→∞, uniformly for z ∈ Cr.
Proof. The proof is similar to that of Theorem 2.1 but considering the integral repre-

sentation (1.2) instead of (1.1). That is, we must consider the Taylor expansion of the factor
(1− t)a−1 at t = 1/2 instead of the expansion of the factor ta−1. Moreover, we must replace
z by z/(z − 1) in the factor (1− zt)b−1. We only give here a few significant details.

Replacing the truncated Taylor series expansion of (1−t)a−1 at t = 1/2 on the right-hand
side of (1.2), we obtain (3.2) with

(3.7) Rn(z, a, b) :=

∫ 1

0

rn(t, a)

(
1 +

z

1− z
t

)b−1
dt
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and

βk(z, b) : =

∫ 1

0

(1− 2t)k
(

1 +
z

1− z
t

)b−1
dt

=
1− z
z

∫ (1−z)−1

1

(
2− z
z
− 2(1− z)

z
u

)k
ub−1du.

Expanding the first factor of the integrand in the second integral in terms of powers of u and
integrating term-wise, we obtain (3.3). Thus, we obtain (3.2) with Rn(z, a, b) given in (3.7).
Now, in order to derive the bounds (3.5) and (3.6) instead of a bound for the factor (1− zt)b−1
valid for every t ∈ [0, 1], we need a bound for the factor (1− z(z − 1)−1t)b−1 valid for every
t ∈ [0, 1]. It is given by |(1− z(z − 1)−1t)b−1| ≤ eπ|=b|M(z, b) with

M(z, b) := max{1, |1− z|1−<b}.

It is clear that M(z, b) ≤ r1−<b, for z ∈ Cr, and thus, instead of (2.6) and (2.7), we
obtain (3.5) and (3.6).

Numerical experiments show that the recurrence relations (2.4) and (3.4) are not stable
for general values of the variable z and the parameter b. Therefore, for large values of k, it is
more convenient to use the explicit expressions (2.3) or (3.3), respectively.

Simpler error bounds than (3.5) and (3.6) can be found when a is real. The proof is similar
to the proof of Proposition 2.2, and we omit it.

PROPOSITION 3.2. For a > 0, <b ≥ 1, z ∈ Cr, with Cr defined in (3.1), for 0 < r ≤ 1
and n = 1, 2, 3, . . ., the error termRn(z, a, b) defined by (3.7) in Theorem 3.1 may be bounded
in the form

|Rn(z, a, b)| ≤ eπ|=b||(1− a)n|
a r<b−1 2a−1 n!

.

Table 3.1 shows the first few terms of the approximation of z−a(1 − z)1−bBz(a, b)
given by the expansion (3.2). These terms are rational functions of z and functions of
(1 − z)b. In Figure 3.1 we give the relative errors, on a logarithmic scale, of the approx-
imation of z−a(1 − z)1−bBz(a, b) from Theorem 3.1 for n = 1, 2, 3, 4, 5 and z = ρeiθ

with θ = 0,π/4, π/2,−π/3, ρ ∈ [−100, 1) or ρ ∈ [−100, 100], and different values of the
parameters a and b. This serves as a numerical experiment confirming the rate of conver-
gence provided by (3.2). We also observe the uniform character of the approximation in the
region Cr.

4. Some remarks on the numerical experiments. The numerical experiments per-
formed for large values of the parameters |a| and/or |b| show that the accuracy of the approx-
imation (2.2) gets worse as the values of the parameters become larger (one or both). For
the approximation (3.2), the relative errors grow for large |a| or large |a| and |b|, although
the precision is acceptable for large |b|, except for values of z ∈ [0, 2], approximately. So,
both approaches get worse in general with increasing |a| and/or |b|. In order to avoid these
numerical difficulties when one of these parameter is large, it is possible to apply the recurrence
relations [9, eq. 8.17.16, eq. 8.17.17, eq. 8.17.20 or eq. 8.17.21] to replace them by smaller
ones and then use the expansions (2.2) and (3.2). The new approximations obtained in this
way remain expressions in terms of elementary functions. Of course, this approach can be
applied as long as one is sure about the numerical stability of the above mentioned recursions.

On the other hand, numerical experiments indicate that the error bounds (2.6), (2.7),
(3.5), and (3.6) oscillate between values of two and three times the maximum error in the
corresponding approximation, depending on the parameters: the bounds are better for small
values of the parameters a and b.
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TABLE 3.1
The first few terms in the expansion (3.2) of z−a(1− z)1−bBz(a, b).

n (−1)n(1− a)nβn(z, b)/n!

0

(
−1 + (1− z)−b

)
(1− z)

bz

1
(1−z)−b(−1+z)(2−2(1−z)1+b−2(1+b)z+a(−2+z+bz+(1−z)b(2+(−1+b)z)))

b(b+1)z2

2

(−1+(1−z)−b)(1−z)
bz − (a−1)(1−z)1−b(2(−1+(1−z)b)+(1+b−(1−z)b+b(1−z)b)z)

b(b+1)z2

−
(
(a− 1)(a− 2)(1− z)1−b

)
× 1

2b(b+1)(b+2)z3

(
8
(
−1 + (1− z)b

)
+ 4

(
2 + b− 2(1− z)b + b(1− z)b

)
z

+
(
2
(
−1 + (1− z)b

)
+ b2

(
−1 + (1− z)b

)
− b

(
3 + (1− z)b

))
z2

)
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FIG. 3.1. Plots of the relative errors, on a logarithmic scale, of the approximation of z−a(1− z)1−bBz(a, b)
given in Theorem 3.1 for n = 1 (red), n = 2 (green), n = 3 (blue), n = 4 (black), and n = 5 (orange) for
z = ρeiθ with θ = 0, a = 1.5, b = 3 (top left), θ = π/4, a = 1.3 + 0.75i, b = 2 (top right), θ = π/2, a = 1.1,
b = 2.25 + 0.25i (bottom left), θ = −π/3, a = 1.5 − 0.2i, b = 3.0 − i (bottom right), and ρ ∈ [−100, 1) or
ρ ∈ [−100, 100].
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