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ADAPTIVE REFINEMENT STRATEGIES FOR THE SIMULATION OF
GAS FLOW IN NETWORKS USING A MODEL HIERARCHY∗

PIA DOMSCHKE†, ASEEM DUA‡, JEROEN J. STOLWIJK‡, JENS LANG†§, AND VOLKER MEHRMANN‡

Abstract. A model hierarchy that is based on the one-dimensional isothermal Euler equations of fluid dynamics
is used for the simulation and optimisation of natural gas flow through a pipeline network. Adaptive refinement
strategies have the aim of bringing the simulation error below a prescribed tolerance while keeping the computational
costs low. While spatial and temporal stepsize adaptivity is well studied in the literature, model adaptivity is a new
field of research. The problem of finding an optimal refinement strategy that combines these three types of adaptivity
is a generalisation of the unbounded knapsack problem. A refinement strategy that is currently used in gas flow
simulation software is compared to two novel greedy-like strategies. Both a theoretical experiment and a realistic gas
flow simulation show that the novel strategies significantly outperform the current refinement strategy with respect to
the computational cost incurred.
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1. Introduction. The simulation of natural gas flows in pipeline networks is a topic of
research that has been studied at various scales: from the individual pipeline to the entire
network. Studies in control and optimisation of natural gas supply in a dynamic supply-
demand environment strongly depend on large scale simulations of pipeline networks. In the
last decades, considerable research on the modelling, simulation, and optimisation of gas flow
through pipeline networks has been conducted; see, e.g., [1, 2, 3, 14, 15, 22, 25, 26, 28, 29,
34, 37, 38]. Depending upon requirement, there exist multiple models, based on the Euler
equations of fluid dynamics, to predict the system behaviour with varying levels of accuracy.
Generally, more accurate models are computationally more expensive. Hence, in order to make
real-time decisions, an appropriate trade-off between accuracy and computational complexity
should be made. This can be achieved by using a hierarchy of models, where the models can
be adaptively switched during the simulation process. Beside the models, the discretisation
mesh may be varied in space and time, which places the demand for an adaptive strategy to
automatically steer the simulation by changing the models and the discretisation meshes.

Since the simulations are the basis for decisions in the optimisation and control of the gas
flow, the reliability of the simulation is of prime importance. The simulation is to be carried
out such that the relative error in the state or in a functional of interest is below a specified
tolerance. Starting with a coarse simulation, an adaptive strategy is used to bring the error
below the tolerance by refining the discretisation in time and space or refining models, i.e.,
shifting to a model of higher accuracy. Hence, we have three different refinement possibilities
for each pipe j ∈ Jp of the pipeline network, where Jp denotes the set of pipes in the network.
These refinement possibilities are indexed by i = 1, . . . , 3Np, whereNp := |Jp| is the number
of pipes. Refinements are to be chosen such that the computational costs are kept low. We
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define an optimal refinement strategy as a strategy which returns the solution of the constrained
optimisation problem

min
ri

c+

3Np∑
i=1

ri∑
k=1

∆cik

s.t. |η| −
3Np∑
i=1

ri∑
k=1

∆ηik ≤ tol.

(1.1)

Here, the constants c and η denote the cost and relative error of the starting simulation,
respectively. For each refinement possibility i, ri is the number of refinements, ∆ηik the
relative error reduction due to the kth subsequent refinement, and ∆cik the corresponding cost
addition. We note that if ∆cik, ∆ηik are constant for all k, then this problem is equivalent to
the unbounded knapsack problem, which is NP-hard; see, e.g., [30]. We aim to find a good
approximation to the solution of this generalisation of the knapsack problem. For this, we
examine three adaptive refinement strategies which return approximate solutions of (1.1). We
call these strategies individual tolerances (S1), maximal error refinement (S2), and maximal
error-to-cost refinement (S3). The ideas of the first two strategies are frequently used in practice
for the adaptation of the computational mesh; cf. the overview given in [4, Section 5.2]. An
effective adaptive mesh refinement strategy for hyperbolic partial differential equations (PDEs)
on a rectangular domain has been developed in [5, 6, 7, 8]. Based on the ideas of this strategy, a
mesh and model adaptation strategy for hyperbolic PDEs on a pipe network has been presented
in [17, 19, 20, 21, 22, 31]. The latter strategy is almost identical to Strategy S1. The idea
of Strategy S2 is similar to the technique that is used in the adaptive finite element method;
see, e.g., [11, 12, 13, 23, 24]. Strategy S2 also bears similarities to the adaptive strategy in
a general multiscale setting that is discussed in [35]. Strategy S3 is based on the idea of a
greedy approximation algorithm for solving the unbounded knapsack problem; see [16]. The
aim of this paper is to compare the performance of the three mesh and model refinement
Strategies S1–S3 on a gas pipeline network with respect to their computational cost incurred.
The ideas presented here are for the example of pipe networks. By generalising pipes to
functional sub-domains, the described principles of adaptive refinement can be extended to
simulations for other applications which use a model hierarchy, e.g., power grids and water
supply networks.

This paper is organised as follows. Section 2 introduces a model hierarchy for the
simulation of gas flow through a single pipe as well as the aim of the adaptive refinement
strategies. Section 3 describes the three proposed refinement strategies and Section 4 introduces
both a synthetic experiment on an abstract gas network and an application of the refinement
strategies to a realistic network simulation. Finally, some conclusions are given in Section 5.

2. Simulation of gas flow. In this section, we present a framework for the simulation of
gas flow in a pipe network. We give a description of a gas network in Section 2.1, including
a model hierarchy for the pipes and the fuel gas consumption of a compressor. Model and
discretisation error estimators w.r.t. a user-defined functional are derived in Section 2.2. We
then outline a framework for the adaptive simulation of pipe networks using the given model
hierarchy in Section 2.3. Finally, we highlight the aims of the refinement strategies within the
simulation framework in Section 2.4.

2.1. Gas network. We follow the framework given in [17, 19] to describe the gas
network. The network is modelled as a directed graph G=(J ,V) with edges J and vertices V .
The set of edges J consists of pipes j ∈ Jp, compressor stations c ∈ Jc, and valves Jv . Each
pipe j ∈ Jp is defined as an interval [xaj , x

b
j ] with a direction from xaj to xbj . In each pipe, one
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of the models described in Section 2.1.1 holds and adequate initial and coupling as well as
boundary conditions have to be specified. Valves and compressors are described by algebraic
equations.

2.1.1. Model hierarchy. As an example, we take a three-model hierarchy for the gas
flow simulations, discussed in detail in [20]. The isothermal Euler equations [33] consist of
the continuity and the momentum equation together with the equation of state for real gases.
We simplify these equations by assuming the pipe to be horizontal and the speed of sound to
be constant, yielding a nonlinear model

pt +
ρ0c

2

A
qx = 0,

qt +
A

ρ0
px +

ρ0c
2

A

(
q2

p

)
x

= −λρ0c
2

2DA

|q|q
p
.

(M1)

Here, q = Aρv/ρ0 denotes the mass flow rate under standard conditions (1 atm air pressure,
temperature of 0 ◦C), p denotes the pressure, c =

√
p/ρ the speed of sound, A the cross-

sectional area of the pipe, λ > 0 the Darcy friction coefficient, D the pipe diameter, ρ the gas
density, v the gas velocity, and ρ0 the density under standard conditions. If the gas velocity
is much smaller than the speed of sound, i.e., if |v| � c, then we can neglect the nonlinear
term in the spatial derivative of the momentum equation in M1. This results in a semilinear
model [17, 36]

pt +
ρ0c

2

A
qx = 0,

qt +
A

ρ0
px = −λρ0c

2

2DA

|q|q
p
.

(M2)

A further simplification of assuming a stationary state, i.e., setting the time derivatives to zero,
yields a system of two ordinary differential equations, which can be solved analytically and
are referred to as the algebraic model

q = const.,

p(x) =

√
p2

in −
λρ2

0c
2|q|q

DA2
x.

(M3)

Here, pin = p(0) denotes the pressure at the inbound of the pipe. The three models are shown in
hierarchical form in Figure 2.1. The model hierarchy is set in the decreasing order of accuracy
for our purpose of gas flows. In general, models M1 and M2 can not be solved analytically.
Therefore, a discretisation method has to be applied in order to obtain an approximate discrete
solution. In practical gas flow applications, box schemes, which are introduced in [39], have
been shown to be effective discretisation schemes for these two systems of hyperbolic PDEs.
We apply the implicit box scheme, which is conservative and stable under mild conditions [18].
For the scalar balance law

ut + f(u)x = g(u),

with initial conditions u(x, 0) = u0(x), this box scheme is given by

(2.1)
u`i−1 + u`i

2
=
u`−1
i−1 + u`−1

i

2
− ∆t

∆x
(f `i − f `i−1) + ∆t

g`i−1 + g`i
2

,

where u`i = u(xi, t`) and f `i = f(u(xi, t`)). The implicit box scheme is convergent of order 2
in space and order 1 in time [32]. Each pipe in the network is simulated using one of the three
models and varying discretisation stepsizes in space and time.
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2.1.2. Compressor station. The pressure of the gas is increased using a compressor
station, which consists of several compressors. A compressor consumes some of the gas
during its operation. The equation for the fuel gas consumption of a compressor c ∈ Jc is
given by [27]

Gc(t) = cF qin(t)

((
pout(t)

pin(t)

) γ−1
γ

− 1

)
,(2.2)

with in- and outgoing pressure pin, pout, and ingoing flow rate qin. The parameter cF is a
compressor specific constant and γ the isentropic coefficient of the gas.

Nonlinear model M1

Semilinear model M2

Algebraic model M3

|v| � c

pt = qt = 0

FIG. 2.1. The model hierarchy for the simulation of gas flow that is considered in this paper.

2.2. Error estimators. Using the solution of adjoint equations as done in [4, 9, 10, 17,
19], we derive a model and a discretisation error estimator which measure the influence of the
model and the discretisation on a user-defined output functional M . The functional M can be
of any form, for example measuring the fuel gas consumption of the compressor stations via

M(p, q) =
∑
c∈Jc

∫ T

0

Gc(t) dt

with Gc(t) being the fuel gas consumption of the individual compressor c ∈ Jc as given
in (2.2). In the following, we consider the arbitrary cost functional

M(p, q) =

∫ T

0

∫
Ω

N(p, q) dx dt+

∫
Ω

NT (p, q) dx

+
∑
v∈V

∫ T

0

Nv(p, q) dt+
∑
i∈JALG

∫ T

0

Ni(pi, qi) dt,

where Ω =
∑
j∈JPDE

[xaj , x
b
j ], pi = [p(xai , t), p(x

b
i , t)]

T , and qi = [q(xai , t), q(x
b
i , t)]

T . The
sets JALG and JPDE contain the arcs that are modelled by algebraic equations (i.e., pipes using
model M3 or other network components like valves or compressor stations) and arcs that
are modelled by PDEs (i.e., pipes using models M1 or M2), respectively. The components
N(p, q), Nv(p, q), and Ni(pi, qi) define tracking-type costs on the respective sets (Ω, specific
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nodes, or algebraic arcs) in the whole time interval (0, T ) and the component NT (p, q) defines
costs on Ω at the final time T . The adjoint equations of model M2 with respect to M(p, q) are
given by

ξ1t +
A

ρ0
ξ2x = −λρ0c

2

2DA

|q|q
p2

ξ2 −
∂N(p, q)

∂p
,

ξ2t +
ρ0c

2

A
ξ1x =

λρ0c
2

DA

|q|
p
ξ2 −

∂N(p, q)

∂q
,

(2.3)

together with appropriate “initial”, coupling, and node conditions. Note that in the adjoint
equation (2.3) only the tracking-type component N(p, q) appears. The remaining components
occur in the “initial”, coupling, and node conditions; cf. [17, Eq. (3.33)] or [22, Eq. (20)]. The
solution ξ = [ξ1, ξ2]T of the adjoint equations consists of the adjoint pressure and mass flow
rate of the semilinear model M2 with respect to the functional M(p, q). Let u = [p, q]T be
the solution of the nonlinear model M1 and uh = [ph, qh]T the discretised solution of the
semilinear model M2. For the discretisation of M2 we apply the implicit box scheme in (2.1).
Then, the difference between the output functional M(u) and M(uh) can be approximated
using Taylor expansion. Inserting the solution ξ of the adjoint system (2.3), we get a first order
error estimator for the model and the discretisation error given by [17, 19, 22]

M(u)−M(uh) ≈ ηLIN-NL
m + ηLIN

h ,

ηLIN-NL
m =

∫ T

0

∫
Ω

−ξT
[

0
ρ0c

2(qh)2

Aph

]
x

dx dt,

ηLIN
h =

∫ T

0

∫
Ω

−ξT
[

pht + ρ0c
2

A qhx
qht + A

ρ0
phx + λρ0c

2|qh|qh
2DAph

]
dx dt.

The discretisation error estimator ηLIN
h may be split up into a temporal and spatial discretisation

error estimator as follows. Let u be the exact and uh be the discretised solution of the
semilinear model M2. We use a short notation of M2, i.e., ut + f(u)x = g(u), which yields

ηLIN
h =

∫ T

0

∫
Ω

−ξT
(
uht + f(uh)x − g(uh)

)
dx dt

=

∫ T

0

∫
Ω

−ξT
(
(uht − ut) + (f(uh)x − f(u)x)− (g(uh)− g(u))

)
dx dt

=

∫ T

0

∫
Ω

−ξT (uht − ut) dx dt︸ ︷︷ ︸
=:ηLIN

t

+

∫ T

0

∫
Ω

−ξT
(
(f(uh)x − f(u)x)− (g(uh)− g(u))

)
dx dt︸ ︷︷ ︸

=:ηLIN
x

,

since u is the exact solution of M2. The temporal discretisation error estimator can be split up
into error estimators for the individual pipes via

(2.4) ηLIN
t =

∫ T

0

∑
j∈Jp

∫ xbj

xaj

−ξT (uht − ut) dx dt =
∑
j∈Jp

ηLIN
t,j ,
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analogously for the spatial discretisation and model error estimator. For the computation
of the discretisation error estimators, the exact solution is approximated by a higher-order
reconstruction using neighbouring points. We use a polynomial reconstruction of order 2 for
the time derivative and denote it by ut≈Rt(uh). The spatial derivative of f and the value
of g are reconstructed with order 4, giving f(u)x≈Rx(f(uh)) and g(u)≈R(g(uh)). Thus,
the computed estimators are given by

ηLIN
t,j ≈

∫ T

0

∫ xbj

xaj

−ξT
(
uht −Rt(uh)

)
dx dt,(2.5a)

ηLIN
x,j ≈

∫ T

0

∫ xbj

xaj

−ξT
((
f(uh)x −Rx(f(uh))

)
−
(
g(uh)−R(g(uh))

))
dx dt,(2.5b)

ηLIN-NL
m,j =

∫ T

0

∫ xbj

xaj

−ξT
[

0
ρ0c

2(qh)2

Aph

]
x

dx dt,(2.5c)

for all j ∈ Jp. The model error estimator ηALG-LIN
m,j between the algebraic and the semilinear

model and the discretisation error estimators ηNL
t,j and ηNL

x,j for the nonlinear model are derived
analogously for every pipe j ∈ Jp; see [21].

2.3. Adaptive gas network simulation. We consider a gas flow simulation over a
pipeline network Jp. The simulation time [0, T ] is divided into time intervals of equal
size [tk, tk+1], k = 0, 1, . . . , N−1, and tN = T . Given a starting model distribution over
the network m0 = [m0,1,m0,2, . . . ,m0,Np ]T , with m0,j ∈ {1, 2, 3}, and a corresponding
discretisation in space nx,0 and in time nt,0, a simulation is run for [t0, t1]. We obtain
error distributions along the network using the a posteriori error estimators in Section 2.2:
ηm = [ηm,1, ηm,2, . . . , ηm,Np ]T for the model errors and ηx = [ηx,1, ηx,2, . . . , ηx,Np ]T and
ηt = [ηt,1, ηt,2, . . . , ηt,Np ]T for the spatial and temporal discretisation errors, respectively.
The simulation error for a single pipe is the sum of all three errors. For the simulation to be
valid, the relative error in M must be below a given tolerance tol. Hence, we require that

(2.6)
|M(u)−M(uh)|
|M(uh)|

≈
|
∑
j∈Jp (ηm,j + ηx,j + ηt,j)|

|M(uh)|
< tol.

If the tolerance is not achieved, then models and discretisation meshes are refined. The task
of deciding the required refinements is made by an adaptive strategy. A switch to a higher
model in the hierarchy is called a model refinement and a refinement of the mesh is called
a discretisation refinement. With the new models and discretisations we re-simulate for the
time interval and continue the cycle. Once the solution meets the tolerance requirements, the
models and discretisations are coarsened if appropriate, the simulation progresses to the next
time interval, and the cycle repeats. This simulation flow is shown in Figure 2.2 for an interval
[tk, tk+1].

2.4. Structure and aim of adaptive strategies. Our focus lies on comparing adaptive
strategies that control the errors and drive the simulation. For the time interval [tk, tk+1] an
adaptive strategy takes as input the error distributions ηm,k,ηx,k,ηt,k, the model distribu-
tion mk, and the number of (equidistant) nodes in the spatial and temporal discretisations
nx,k,nt,k. For notational convenience we drop the dependence on k in the following. The
strategy returns a refinement scheme rm = [rm,1, . . . , rm,Np ]T , rx = [rx,1, . . . , rx,Np ]T ,
rt = [rt,1, . . . , rt,Np ]T , where rm,j ∈ {0, 1, 2}, rx,j , rt,j ∈ N denote the number of refine-
ments to be made in the models and in the discretisations for all pipes j ∈ Jp such that the
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constraint (2.6) is satisfied. The aim of the adaptive strategies is to achieve this constraint
while keeping the computational costs that are incurred in the simulation low.

3. Refinement strategies. In this section, we discuss three strategies for the adaptive
refinements in the network simulation. The first strategy assigns individual error tolerances to
each pipe and executes multiple discretisation refinements simultaneously. The second and
third strategy use the overall error tolerance and iteratively refine only the best option(s) in the
network.

We first provide some general remarks which hold for every strategy. Relations be-
tween the initial numbers of discretisation intervals n−1 and the numbers of intervals after
r refinements n(r)−1 are given by

nx,j (rx,j)− 1 = 2rx,j (nx,j − 1),

nt,j (rt,j)− 1 = 2rt,j (nt,j − 1), ∀j ∈ Jp,
(3.1)

where n is the number of nodes. Thus, the number of intervals is doubled for a single
refinement. We choose this factor 2 such that, given a conservative initialisation for the implicit
box scheme (2.1) on the coarser grid, it is possible to obtain a conservative initialisation on
the refined grid. Namely, the pointwise values of corresponding grid points are copied from
the coarser grid and the intermediate grid points are assigned the arithmetic mean of the two
neighbouring grid points [22, 31]. From (3.1) it follows that approximate relations between
the initial discretisation error estimators η and the estimators after r refinements η(r) are given

Start: k = 0

Simulate for

[tk, tk+1]

A posteriori error esti-

mates give ηm, ηx, ηt

Total error

< tol?

Adaptive strategy returns

refinements rm, rx, rt

mk,nx,k,nt,k

rm = rx = rt = 0

k = k + 1

Coarsen model and

discretisation if appropriate
k = N − 1?

Stop

No

YesNo

Yes

FIG. 2.2. Gas flow adaptive simulation process using an adaptive refinement strategy which returns a set of
refinements rm, rx, rt.
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by

ηx,j (rx,j) ≈
ηx,j

2sxrx,j
, ηt,j (rt,j) ≈

ηt,j
2strt,j

, ∀j ∈ Jp,

where sx and st are the convergence orders of the spatial and temporal discretisation schemes,
respectively. The reduction for the error is only an approximation. Therefore, to have a safe
upper bound for the estimated error after refinement, we multiply these approximated errors
by a safety factor of refinement fr > 1 in each of the pipes that require refinements to be made.
This ensures that it is very unlikely that the actual error overshoots its estimated value after
the refinement. In the model hierarchy presented in Figure 2.1, discretisation errors feature
only in the models M1 and M2. The algebraic model M3 has no discretisation errors. Thus,
when models are switched from M3 to M2, discretisation errors are introduced. For pipe j
simulated with the most detailed model M1, we set the model error to ηm,j = 0.

Strategy 1: Individual tolerances (S1). In order to meet the tolerance of the network
error, we derive fixed individual error tolerances for the individual pipes for each of the three
error types. The simulation is then carried out such that for each pipe the error is below the
individual tolerance for all three errors. The pseudocode for individual tolerances is given in
Algorithm 1. We set the tolerance for the model errors as

tolm = κ · tol, κ ∈ (0, 1) .

Algorithm 1 : Individual tolerances
Input: ηm,ηx,ηt, tol, sx, st, fr

1: rm ← 0
2: while |

∑
j∈Jp (ηm,j + ηx,j + ηt,j)| > tol |M(uh)| do

3: for j = 1, . . . , Np do
4: if |ηx,j | > tolx|M(uh)|/Np then

5: rx,j ← ceil
(

log

(
fr|ηx,j |Np

tolx|M(uh)|

)
1

log (2sx)

)
6: end if
7: if |ηt,j | > tolt|M(uh)|/Np then

8: rt,j ← ceil
(

log

(
fr|ηt,j |Np

tolt|M(uh)|

)
1

log (2st)

)
9: end if

10: end for
11: update ηm,ηx,ηt
12: if |

∑
j∈Jp (ηm,j + ηx,j + ηt,j)| > tol |M(uh)| then

13: for j = 1, . . . , Np do
14: if |ηm,j | > tolm|M(uh)|/Np then
15: rm,j ← rm,j + 1
16: end if
17: end for
18: end if
19: update ηm,ηx,ηt
20: end while
Output: rm, rx, rt
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The remaining tolerance tol− tolm = (1− κ)tol is equally divided between the spatial and
temporal discretisations, i.e.,

tolx = tolt = (1− κ) /2 · tol

are the tolerances for both error types for the entire network. To get the tolerances for individual
pipes, we uniformly distribute these tolerances over the entire network, i.e., we divide them by
the number of pipes Np. For the refinements, first the number of discretisation refinements are
computed that bring the discretisation errors below the respective tolerances for every pipe.
That is, for every pipe j for which

(3.2) |ηx,j | >
tolx
Np
|M(uh)|

holds, we require for the spatial discretisation error after rx,j refinements that

fr|ηx,j(rx,j)| = fr
|ηx,j |

2sxrx,j
≤ tolx

Np
|M(uh)|.

Solving this inequality for the number of refinements rx,j yields

rx,j = ceil
(

log

(
fr|ηx,j |Np

tolx|M(uh)|

)
1

log (2sx)

)
,

where ceil is the ceiling function, i.e., ceil(α) is the smallest integer greater than or equal
to α. The mesh size is then refined rx,j times for every pipe j for which (3.2) holds; see
Algorithm 1, lines 4, 5. The procedure for the computation of the number of temporal
discretisation refinements is analogous; see Algorithm 1, lines 7, 8. The gas network is
simulated again with the refined spatial and temporal stepsizes and the new error distributions
ηm,ηx,ηt are computed (Algorithm 1, line 11). Subsequently, if the relative network error
still exceeds the tolerance, i.e., if (2.6) is not satisfied, then the model of every pipe j for which

|ηm,j | >
tolm
Np
|M(uh)|

holds is refined to the next model higher up in the hierarchy (Algorithm 1, lines 12, 14, 15). The
simulation errors are then re-evaluated again and this cycle is repeated until (2.6) is satisfied
(Algorithm 1, lines 19, 2). This strategy is very similar to the one discussed in [17, Section 3.3].
The only differences are that the temporal error and tolerance are there considered for the
entire network instead of the individual pipes.

Strategy 2: Maximal error refinement (S2). Since Strategy 1 assigns individual tol-
erances, it loses the view of the network as a whole. However, the contribution of different
errors to the overall network can balance each other without overshooting the total network
tolerance. This is accounted for in the following strategy where we seek to make only those
refinements which result in the maximal error reduction. This results in an iterative procedure,
which we split in a network controller (see Algorithm 2a) and pipe level computations; see
Algorithm 2b. For every pipe j, the estimated error reductions due to a single refinement in
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the model ∆ηm,j and in the space and time discretisations ∆ηx,j , ∆ηt,j are given by

∆ηm,j = Fm(mc,j ,mc,j − 1) |ηm,j |+ |ηx,j(mc,j , rx,j)| − |ηx,j(mc,j − 1, rx,j)|(3.3a)
+ |ηt,j(mc,j , rt,j)| − |ηt,j(mc,j − 1, rt,j)|

= Fm(mc,j ,mc,j − 1) |ηm,j |

+
(
Fx(mc,j)− Fx(mc,j − 1)

)(
1 + (fr − 1) sign(rx,j)

) |ηx,j |
2sxrx,j

+
(
Ft(mc,j)− Ft(mc,j − 1)

)(
1 + (fr − 1) sign(rt,j)

) |ηt,j |
2strt,j

,

∆ηx,j = |ηx,j(mc,j , rx,j)| − |ηx,j(mc,j , rx,j + 1)|(3.3b)

= Fx(mc,j)
(
1 + (fr − 1) sign(rx,j)− 2−sxfr

) |ηx,j |
2sxrx,j

,

∆ηt,j = |ηt,j(mc,j , rt,j)| − |ηt,j(mc,j , rt,j + 1)|(3.3c)

= Ft(mc,j)
(
1 + (fr − 1) sign(rt,j)− 2−stfr

) |ηt,j |
2strt,j

,

where ηx,j , ηt,j , ηm,j denote the error estimators for the initial discretisation stepsizes and
model distribution and the functions

ηx,j(mc,j , rx,j) = Fx(mc,j)
(
1 + (fr − 1) sign(rx,j)

) ηx,j
2sxrx,j

,

ηt,j(mc,j , rt,j) = Ft(mc,j)
(
1 + (fr − 1) sign(rt,j)

) ηt,j
2strt,j

,

estimate the new discretisation errors after model and/or grid refinements. Here, the factor
Fm(a, b) denotes an error reduction factor for the model error when models are shifted from a
to b. The spatial and temporal discretisation errors also depend on the simulation model.
The factors Fx(mc,j), Ft(mc,j) denote error amplification factors for the discretisation errors
which account for this model dependency, where mc,j=1, 2, 3 denotes the current model of
pipe j and refers to models M1, M2, M3, respectively. Since the discretisation error is absent
for mc=3, we set Fx(3)=Ft(3)=0. Furthermore, we set Fx(2)=Ft(2)=1. For model M1,
the amplification factor for the discretisation errors is set with respect to the benchmark

Algorithm 2a : Maximal error refinement
Input: m,ηm,ηx,ηt, tol, sx, st, φ

1: for j = 1, . . . , Np do
2: bj , zj ← MAXERRORRED(mj , rm,j , rx,j , rt,j , ηm,j , ηx,j , ηt,j , sx, st)
3: end for
4: while networkError > tol |M(uh)| do
5: bound← φ ·maxj bj
6: for j = 1, . . . , Np do
7: if bj > bound then
8: rzj ,j ← rzj ,j + 1
9: bj , zj ← MAXERRORRED(mj , rm,j , rx,j , rt,j , ηm,j , ηx,j , ηt,j , sx, st)

10: end if
11: end for
12: update networkError
13: end while
Output: rm, rx, rt
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model M2. Note that in determining ∆ηm,j in (3.3a) we also consider changes in the spatial
and temporal discretisation errors since the central idea is to account for a net error reduction.
The approximate error reductions ∆ηm,j ,∆ηx,j ,∆ηt,j are computed in Algorithm 2b, lines
4, 8, 9. Then, the best option

bj = max
j∈Jp

{∆ηm,j , ∆ηx,j , ∆ηt,j}

is passed to the network; see Algorithm 2b, line 10. There, the notation [b, z] = max{·} is
similar to MATLAB notation where b denotes the maximal element and z is the corresponding
index. On the network level, we mark those pipes for refinement for which the error reductions
are larger than φ ·maxj bj , with φ ≤ 1 (Algorithm 2a, lines 5, 7). The numbers of refinements
of the selected pipes are increased by one and the best options of these pipes are updated
(Algorithm 2a, lines 8, 9). Then, the total network error is updated (Algorithm 2a, line 12).
This can be done either by simulating the gas network again with the refined models and
discretisations and computing the new error estimates in (2.5) or by using the error reduction
estimates ∆η in (3.3) to update the error estimators via

(3.4) η(r+1) = η(r)− sign(η(r))∆η,

with r the number of refinements. This iteration is repeated until the relative absolute network
error is brought below the tolerance (Algorithm 2a, line 4).

Strategy 3: Maximal error-to-cost refinement (S3). The adaptive refinements are
made with an objective of reducing the computational cost without compromising on the
simulation error. However, the previous two strategies do not address the computational
costs explicitly. They address the error tolerance which is merely a constraint to the adap-
tive strategies viewed in the optimization setting (1.1). In this strategy we also take into
account the computational costs that are incurred by the refinements. Strategy 3, given in
Algorithm 3a for the network level and Algorithm 3b for the pipe level, is identical to Strat-
egy 2 on the network level. On the pipe level, however, we also compute the cost additions
∆cm,j , ∆cx,j , ∆ct,j using a cost functional Fc(mc, rx, rt) for each of the corresponding
error reductions ∆ηm,j , ∆ηx,j , ∆ηt,j ; see Algorithm 3b, lines 11, 13, 14. The error controller
on the pipe level passes the best option

bj = max

{
∆ηm,j
∆cm,j

,
∆ηx,j
∆cx,j

,
∆ηt,j
∆ct,j

}
,

Algorithm 2b : Maximal pipe error reduction
1: function MAXERRORRED(m, rm, rx, rt, ηm, ηx, ηt, sx, st)
2: mc ← m− rm
3: if mc 6= 1 then
4: Compute ∆ηm as in (3.3a)
5: else
6: ∆ηm ← 0
7: end if
8: Compute ∆ηx as in (3.3b)
9: Compute ∆ηt as in (3.3c)

10: [b, z] = max{∆ηm, ∆ηx, ∆ηt}
11: return b, z
12: end function
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i.e., the maximal error-to-cost ratio, to the network (Algorithm 3b, line 15). The idea of this
strategy is similar to the greedy approximation algorithm for solving the unbounded knapsack
problem, see [16].

For the experiments and simulations performed in this paper we compute the computa-
tional cost per pipe in CPU seconds using a cost functional of the form

(3.5) F (m,nx, nt) = Cm n
αm
x nβmt ,

where nx, nt denote the number of nodes in space and time, m ∈ {1, 2, 3} denotes the model,
and Cm, αm, βm are model-dependent constants. These constants are determined by the
method of least squares. For this, gas flow simulations through a single pipe are performed
using the software ANACONDA (cf. [31, 32]) with many different values of nx and nt, which
return the corresponding computational cost values F . The constants are given in Table 3.1.
We note that although no discretisation is required for the algebraic model M3, still a mesh is
used in this model to determine the evaluation points. These evaluation points are used for
the computation of the model error estimator ηALG-LIN

m,j ; cf. Section 2.2. We can rewrite the
functional (3.5) in terms of refinements, which is needed in Algorithm 3b, assuming that the
initial number of nodes nx,0, nt,0 are known. Then we get the cost functional

(3.6) Fc(m, rx, rt) = Cm (2rx nx,0)
αm (2rt nt,0)

βm .

Having defined two new greedy-like refinement Strategies S2 and S3, in the next section
we compare their performance with the existing Strategy S1.

TABLE 3.1
Cost functional constants in (3.5), (3.6).

m Cm αm βm
1 8.45 · 10−5 0.952 0.937
2 1.06 · 10−4 0.908 0.925
3 5.49 · 10−5 0.694 0.857

Algorithm 3a : Maximal error-to-cost refinement
Input: m,ηm,ηx,ηt, tol, sx, st, φ

Same as Algorithm 2a, replacing lines 2, 9 with
bj , zj ← MAXERRORTOCOSTRATIO(m, rm,j , rx,j , rt,j , ηm,j , ηx,j , ηt,j , sx, st)

Output: rm, rx, rt

Algorithm 3b : Maximal pipe error-to-cost ratio
1: function MAXERRORTOCOSTRATIO(m, rm, rx, rt, ηm, ηx, ηt, sx, st)

Lines 2-9 same as Algorithm 2b
10: if mc 6= 1 then
11: ∆cm ← Fc(mc − 1, rx, rt)− Fc(mc, rx, rt)
12: end if
13: ∆cx ← Fc(mc, rx + 1, rt)− Fc(mc, rx, rt)
14: ∆ct ← Fc(mc, rx, rt + 1)− Fc(mc, rx, rt)
15: [b, z] = max{∆ηm/∆cm, ∆ηx/∆cx, ∆ηt/∆ct}
16: return b, z
17: end function
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4. Numerical results. In this section we numerically test the performance of the three
refinement strategies given in Section 3. A synthetic experiment on an abstract gas network is
conducted in Section 4.1 and an application of the algorithms to the numerical simulation of a
realistic gas network is presented in Section 4.2.

4.1. Synthetic experiment. Let us consider an abstract gas network that is given by its
number of pipes Np. On this network we perform a synthetic experiment in order to test and
compare the three refinement strategies given in Section 3. The experiment is conducted by
first drawing random samples of initial discretisation and model errors ηm,ηx,ηt ∈ RNp and
initial numbers of discretisation nodes nx,nt ∈ NNp from probability distributions. Then, for
every sample, the three algorithms are executed using the approximate error reductions in (3.3)
to update the errors. The computational simulation cost after applying the resulting refinement
scheme is computed using the functional in (3.6) for every sample and strategy. Finally, the
mean of the computational cost values over all samples is computed for every strategy. Each
error sample represents the evaluation of the error estimators in (2.5) on a specific but unknown
network configuration of Np pipes. Thus, the abstract network setting enables us to consider
many possible pipe network configurations by drawing a large number of error samples. It also
enables us to execute the three algorithms a large number of times with a low computational
cost since the need for actual gas flow simulations within the network is circumvented.

We test the performance of the three refinement strategies on 104 random samples of error
distributions ηm,ηx,ηt ∈ R12 in a network of Np = 12 pipes. The initial number of space
and time discretisation nodes nx,j , nt,j are randomly chosen from the interval [100, 200] for
every pipe j. All models are set to the most simple model M3 in the beginning. The error
reduction upon model refinement also takes into account the introduction or increase of the
spatial and temporal errors; see (3.3a). This requires that the spatial and temporal errors are
small when compared to the model error. Hence, for the experiment, the initial model errors are
drawn from the distribution U [0, 1], where U [a, b] denotes a uniform probability distribution
on the interval [a, b]. The initial spatial and temporal discretisation errors are drawn from
the distribution U [0, 0.2]. The model and discretisation error estimators η after increasing
the number of refinements r by one are given in (3.4), where ∆η is given in (3.3) with
Fm(3, 2) = 3/4, Fm(2, 1) = 1/4. We choose sx= 2, st= 1, since these are the convergence
orders of the implicit box scheme in (2.1). The parameter κ = 1/3 for Strategy 1 is chosen
such that all three error types have an equal fraction of the network tolerance. Strategies 2 and 3
are tested for a fraction φ ∈ {0.8, 0.9, 1} of the maximal best option. The strategies work with
a relative error tolerance of tol = 10−1 with a target functional value M(uh) = 2.5 ·Np = 30.
Hence, we require for the total network simulation error that

|
∑
j∈Jp

(ηm,j + ηx,j + ηt,j)| < tol |M(uh)| = 3.

Each strategy returns a refinement scheme which brings the simulation error below the
network tolerance. The goal is to have a low computational cost. The mean of the total
computational cost values in CPU seconds over 104 samples is displayed in Table 4.1 for every
refinement strategy. We also provide the percentage savings in the mean total computational
cost of the strategies with respect to Strategy 1. We denote the strategies as S1–S3. The
subscripts 1, 2, 3 refer to φ = 0.8, 0.9, 1, respectively. We observe that Strategies S2 and S3
have a percentage saving of over 77% with respect to S1 for all values of φ ∈ {0.8, 0.9, 1}.
Among the different values, φ = 1 performs best for both S2 and S3.

In this experiment we find that by working with a greedy-like strategy for error control,
an adaptive process can reduce the computational cost significantly. Furthermore, accounting
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for the computational cost explicitly in our estimates, we find even better refinement schemes
that result in lower computational costs.

TABLE 4.1
Mean total computational cost values in CPU seconds for Strategies S1–S3 and savings with respect to S1. The

subscripts 1, 2, 3 denote the different values of φ = 0.8, 0.9, 1, respectively.

Strategy Mean CPU time [s] Savings
S1 36.1 -
S21 8.30 77.0 %
S22 8.04 77.7 %
S23 7.72 78.6 %
S31 7.64 78.8 %
S32 7.39 79.5 %
S33 7.12 80.3 %

4.2. Application to a realistic network simulation. We now apply the three different
strategies to a simulation of a gas supply network, which is shown in Figure 4.1. The
considered network consists of twelve pipes (P01–P12, with lengths between 30 km and
100 km), two sources (S01–S02), four consumers (C01–C04), three compressor stations
(Comp01–Comp03) and one control valve (CV01). Starting with stationary initial data, the
boundary conditions and the control for the compressor stations and the control valve are
time-dependent. The simulation time is 4 hours. The target functional M(u) is given by the
total fuel gas consumption of the three compressors and the error estimators are evaluated
using a dual weighted residual method; see Section 2.2. The simulation is performed using the
software ANACONDA; cf. [31, 32].

REMARK 4.1. For the strategies proposed in Section 3, the temporal error ηt=
∑
j∈Jpηt,j ,

cf. (2.4), is considered individually for each pipe. In the implementation of ANACONDA,
however, it is only computed globally. In order to get a local temporal error and hence to fit
into the setting, we distribute the temporal error uniformly among the pipes. If the time step
size has to be refined in a single pipe following one of the strategies above, then it will be
refined globally and the temporal error estimators of all pipes are updated.

S01

S02

C01

C02

C03

C04

P01 P02 P03

P04

P05

P06
P07

P08 P09

P10

P11

P12

C
V

01

Comp01 Comp02 Comp03

FIG. 4.1. Gas supply network with compressor stations and a control valve.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

REFINEMENT STRATEGIES FOR FLOWS IN NETWORKS 111

TABLE 4.2
Relative error (tol = 10−4) and computational cost (in s) of a network simulation using Strategies S1–S3 and

savings with respect to a conventional modelling. The subscripts 1, 2, 3 denote the different values of φ = 0.8, 0.9, 1,
respectively.

Strategy Relative error CPU time [s] DOF-ST M1/M2/M3 [%] Savings
S1 1.384 · 10−5 7.53 49 664 100 / 0 / 0 73.3 %
S21 3.730 · 10−5 2.42 11 264 92 / 0 / 8 91.4 %
S22 3.091 · 10−5 2.27 10 496 92 / 0 / 8 92.0 %
S23 3.091 · 10−5 2.29 10 496 92 / 0 / 8 91.9 %
S31 5.076 · 10−5 3.12 11 684 83 / 17 / 0 88.9 %
S32 5.190 · 10−5 2.83 12 928 100 / 0 / 0 90.0 %
S33 5.098 · 10−5 2.83 11 684 92 / 8 / 0 90.0 %

conventional 4.573 · 10−5 28.2 358 848 100 / 0 / 0 -
reference - 1013 23 923 200

A reference solution was computed using model M1 and a very fine spatial-temporal
discretisation with approximately 24 million degrees of freedom in space and time (DOF-ST).
The simulation was performed using the strategies from Section 3 with a relative tolerance of
tol = 10−4 and with a conventional modelling using the most accurate model and a uniform
space and time discretisation with 360 000 DOF-ST. Note that with the conventional modelling,
we did not estimate any model or discretisation errors and hence did not gain any information
about the accuracy of the solution. Table 4.2 shows the relative errors of the simulations
compared to the reference solution, the total CPU time, the degrees of freedom in space and
time (DOF-ST), the models used (in percent), and the percentage savings of the Strategies S1
to S3 in relation to the conventional modelling.

We see that the relative error of the Strategies S1 to S3 are in a similar range as of the
simulation using the conventional modelling. However, due to the adaptive error control,
the DOF-ST are reduced significantly. We see that the results of Strategies S2 and S3 are
in a similar range and that these strategies gain an additional saving of 15 % to 20 % as
compared to Strategy S1. Regarding the synthetic experiment in Section 4.1, this means that
the savings with respect to S1 are in the range of 60 % to 70 %. The choice of the parameter
φ ∈ {0.8, 0.9, 1.0}, however, does not seem to have a significant influence on the saving.
Moreover, the maximal error-to-cost Strategy S3 does not result in a larger saving of CPU
time. What is noticeable is that the relative errors of the Strategies S2 and S3 are closer to
the proposed relative tolerance, which shows that they are not as restrictive as the individual
tolerances Strategy S1.

5. Conclusions. In this paper we address the problem of automatic error control for
large scale gas flow simulations that use a model hierarchy. The simulation needs to be
reliable, i.e., keeping the total relative error below a specified tolerance, while retaining low
computational costs. The problem of finding an optimal refinement strategy is a generalisation
of the knapsack problem. We present three strategies for adaptive simulation error control via
spatial and temporal discretisation and model refinements. The strategy individual tolerances,
which is currently implemented in ANACONDA, sets a uniform tolerance for each error type
and each pipe, maximal error refinement iteratively chooses those refinements that result in
the largest error reduction and has a network overview, and maximal error-to-cost refinement
also accounts for the increase in computational cost inflicted by the refinement.

We construct a synthetic experiment to test the three strategies on many different network
configurations. From this experiment we find that the two greedy-like strategies significantly
reduce the computational cost as compared to the individual tolerances strategy. This result is
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largely reflected in an actual gas flow simulation using ANACONDA for a 12 pipe network
including compressor stations and a control valve. Especially when the simulation process is a
key component in a gas flow optimisation problem, the greedy-like refinement strategies lead
to considerable computational savings without compromising on the simulation accuracy.
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