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ADAPTIVE FETI-DP AND BDDC METHODS WITH A GENERALIZED
TRANSFORMATION OF BASIS FOR HETEROGENEOUS PROBLEMS∗

AXEL KLAWONN†, MARTIN KÜHN†, AND OLIVER RHEINBACH‡

Abstract. In FETI-DP (Finite Element Tearing and Interconnecting) and BDDC (Balancing Domain Decom-
position by Constraints) domain decomposition methods, the transformation-of-basis approach is used to improve
the convergence by combining the local assembly with a change of basis. Suitable basis vectors can be constructed
by the recently introduced adaptive coarse space approaches. The resulting FETI-DP and BDDC methods fulfill a
condition number bound independent of heterogeneities in the problem. The adaptive method with a transformation
of basis presented here builds on a recently introduced adaptive FETI-DP approach for elliptic problems in three
dimensions and uses a coarse space constructed from solving small, local eigenvalue problems on closed faces and
on a small number of edges. In contrast to our earlier work on adaptive FETI-DP, the coarse space correction is not
implemented by using balancing (or deflation), which requires the use of an exact coarse space solver, but by using
local transformations. This will make it simpler to extend the method to a large number of subdomains and large
supercomputers. The recently established theory of a generalized transformation-of-basis approach yields a condition
number estimate for the preconditioned operator that is independent of jumps of the coefficients across and inside
subdomains when using the local adaptive constraints. It is shown that all results are also valid for BDDC. Numerical
results are presented in three dimensions for FETI-DP and BDDC. We also provide a comparison of different scalings,
i.e., deluxe, rho, stiffness, and multiplicity for our adaptive coarse space in 3D.

Key words. domain decomposition, FETI-DP, BDDC, coarse space, adaptive, eigenvalue problem, elliptic partial
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1. Introduction. Domain decomposition methods [49, 59, 62] are widely-used iterative
methods for the parallel solution of implicit finite element problems. In these methods,
the finite element problem is decomposed into parallel local problems. Additionally, to
obtain scalability in the number of iterations, a coarse space ensures the global transport of
information.

Originally, the coarse space of FETI-DP and BDDC methods [11, 13, 17, 18, 19, 62] is
formed by coupling the subdomains in a few primal variables, i.e., a partial finite element
assembly is used to enforce continuity across subdomain boundaries in a few degrees of
freedom such as corner nodes.

In three dimensions, this is not sufficient to obtain a good condition number bound, and,
e.g., continuous edge averages have to be enforced throughout the iteration additionally. A
transformation of basis to explicitly introduce the averages as new variables and a subsequent
partial finite element assembly is a technique to implement such average constraints in
FETI-DP and BDDC methods; see, e.g., [35, 40, 41, 45]. An alternative is the use of the
edge characteristic functions as deflation vectors in a deflation (also known as projector
preconditioning) or balancing approach; see, e.g., [38]. Indeed, for different problems, many
different FETI-DP and BDDC coarse spaces have been developed over time.

It has been shown in [24, 38] for homogeneous problems that for any FETI-DP method
with a transformation of basis there exists a FETI-DP method using deflation or balancing
with essentially the same spectrum [38, Theorem 6.7]. In [30], we have shown that for
heterogeneous problems, a generalized transformation-of-basis approach is necessary when
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a second coarse space is introduced to improve a domain decomposition method with an
initial (a priori) coarse space and a corresponding scaling. Such a posteriori constraints,
i.e., constraints that are computed after the choice of an initial coarse space and a scaling,
are typical for domain decomposition methods with automatic or so-called adaptive coarse
spaces. These approaches have been introduced for highly heterogeneous problems, notably
in compressible or almost incompressible elasticity with coefficient jumps. For the resulting
coarse spaces the condition number then is independent of the heterogeneities. Of course,
this comes at the price of a larger coarse problem. It is therefore important that an automatic
coarse space generates a small a posteriori coarse space.

The adaptive (i.e., problem-specific) coarse spaces are constructed automatically, i.e.,
during the computation typically by (approximately) solving local eigenvalue problems. Since
these computations are performed after the introduction of the scaling, the constraints are
scaling dependent, and the enforcement of these constraints has to be carried out by a general-
ization of the transformation-of-basis approach as introduced in [30]. A subtle detail of this
new method, which is relevant for the theory, is that we observe nontrivial values at coarse
nodes of the a posteriori or second coarse space when the FETI-DP or BDDC operators PD or
I − ED are applied to functions from the new constraint space; cf. [30].

Recently, such domain decomposition methods with adaptive coarse spaces have gained
considerable interest. In [6, 7], adaptive Neumann-Neumann methods were considered.
Adaptive Schwarz methods were considered later by [15, 16, 20, 21, 60], where one of these
methods was generalized to adaptive BDD and FETI; see [61].

For FETI-DP and BDDC, adaptive methods were introduced or considered in [5, 9, 12,
26, 27, 28, 31, 33, 34, 47, 48, 52, 53]. In adaptive FETI-DP and BDDC methods, typically
(approximate) eigenvectors from local eigenvalue problems on, e.g., faces or edges, are
integrated into the coarse space. A deflation or balancing approach, as in [38], can then be
used to implement the coarse space correction using the eigenvectors as deflation vectors. This
approach can be used with different automatic coarse space strategies and was used in [33]
for a comparison of adaptive approaches in two dimensions. As shown by the authors in [28],
deflation can also be used in three dimensions to create an adaptive FETI-DP method with a
condition number bound for heterogeneous problems that is independent of the jumps of the
coefficients. The approach in [28] thus sets the successful heuristics introduced in [47], using
only face eigenvalue problems, on a firm theoretical ground by adding a small number of edge
eigenvalue problems.

However, in the deflation and balancing approach as used in [28], the coarse correction
has to be computed quite exactly to ensure convergence to the correct solution; see [38]. When
the coarse problem becomes large, an exact solution of the coarse problem can be inefficient.

Using a transformation-of-basis (or change-of-variables) approach combined with partial
assembly can be an efficient alternative; see also, e.g., [35, 40]. Building on this, highly
scalable inexact FETI-DP methods have been constructed as in [32, 36] that scale to hundreds
of thousands of processor cores using a single cycle of an AMG method for the coarse problem.

In this current paper, we show that for adaptive coarse spaces, the generalized transfor-
mation-of-basis approach [30] can be used instead of deflation as in [28]. As in [28], we
obtain a condition number bound independent of heterogeneities. This paper thus combines
the generalized transformation-of-basis approach for FETI-DP with the adaptive coarse space
[28] for problems in three dimensions and gives a condition number bound for this new
approach. We will argue that the explicit condition number of the adaptive FETI-DP or BDDC
method with the generalized transformation-of-basis approach is always smaller or equal to
the condition number of FETI-DP with balancing or deflation.
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Adaptive coarse spaces for BDDC methods, e.g., [5, 9, 52, 53], are related to our approach,
and we will also give a condition number bound and present numerical results for the coarse
space of [28] with BDDC using the generalized transformation-of-basis approach. This
extends [28], where only FETI-DP was considered because deflation for FETI-DP and BDDC
are not equivalent [38].

The remainder of the paper is organized as follows. In Section 2 we introduce the model
problem considered and the geometry used. In Section 3, we shortly rephrase the standard
FETI-DP and BDDC methods. In Section 4, we introduce the generalized eigenvalue problems
already considered in [28] that can result in adaptive constraints for FETI-DP and BDDC
enforceable by the generalized transformation of basis as presented in [30]. This section will
be concluded by a condition number bound for both the adaptive FETI-DP and the adaptive
BDDC method. A vast overview on the numerical behavior of the new algorithm and of
heuristic modifications thereof (cf. [28]) will be presented in Section 5. In Section 6, we
provide some preliminary results using a first parallel implementation of our adaptive FETI-DP
methods. Finally, we draw a conclusion in Section 7.

2. Model problem and geometry. Given a bounded polyhedral domain Ω ⊂ R3 with
∂ΩD ⊂ ∂Ω a closed subset of positive surface measure and ∂ΩN := ∂Ω \ ∂ΩD, we
consider the weak formulation of (compressible) linear elasticity. We introduce the space
H1

0 (Ω, ∂ΩD)3 := {v ∈ H1(Ω)3 : v = 0 on ∂ΩD} as well as the Young Modulus E(x) > 0
and the Poisson ratio 0 < ν(x) < 1/2 for all x ∈ Ω, and we are interested in finding
u ∈ H1

0 (Ω, ∂ΩD)3 such that

a(u, v) = F (v) ∀v ∈ H1
0 (Ω, ∂ΩD)3,

where

a(u, v) :=

∫
Ω

2µε(u) : ε(v)dx+

∫
Ω

λdiv(u)div(v)dx,

F (v) :=

∫
Ω

f · vdx+

∫
∂ΩN

g · vds.

Here, λ and µ are the Lamé constants, and

ε(u) : ε(v) = tr(ε(u)T ε(v)) with ε(u) =
1

2
(∇u+∇uT ).

The functions f : Ω→ R3 and g : ∂ΩN → R3 denote volume and surface force, respectively.
Let us note that our theory also holds for the case of almost incompressible linear elasticity;
see [28] and the numerical results therein.

The domain Ω will be decomposed into N nonoverlapping, open subdomains Ωi,
i = 1, . . . , N . The interface Γ is defined as the union of the subdomain boundaries with-
out taking ∂Ω into account, i.e., Γ := {x ∈ Ωi ∩ Ωj ; i 6= j}. Then, the subdomains are each
triangulated and then discretized by the finite element method with matching nodes on the
interface. For simplicity, we use piecewise linear conforming finite elements.

In three dimensions, the interface can be decomposed into vertices, edges, and faces; for a
detailed definition of these sets, cf. [40]. Edges and faces are defined as open sets. In a regular
decomposition, vertices are the endpoints of edges. In general, this also applies to irregular
decompositions. However, in these cases, edges with less than two vertices or vertices not
being the endpoint of an edge can appear. A face between two arbitrary subdomains Ωi and
Ωj will be denoted by F ij , while we denote edges between Ωi, Ωj , Ωl and possibly more
subdomains by E il. Vertices of Ωi that belong to multiple subdomains are denoted by Vik.
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Finally, we introduce the finite element spaces used for the FETI-DP and BDDC methods.
For i = 1, . . . , N , by Wh(Ωi) we denote the local finite element space on Ωi. The local
trace space Wi := Wh(Γi) is defined on Γi := Ωi ∩ Γ. We also introduce the global product
space W := ΠN

i=1Wi and denote the space of functions that are continuous on the interface by
Ŵ ⊂W .

3. FETI-DP and BDDC methods with a transformation of basis.

3.1. Standard FETI-DP and BDDC. The FETI-DP method was originally introduced
in [17, 18]. To obtain the BDDC method, different authors proposed similar ways; see
[11, 13, 19].

We partition the degrees of freedom on the subdomains Ωi ⊂ Ω, i = 1, . . . , N , into
interior, dual, and primal degrees of freedom, denoted by I , ∆′, and Π′, respectively. For
subdomains Ωi that share a part of the global boundary, i.e., ∂Ωi ∩ ∂Ω 6= ∅, their degrees of
freedom on ∂Ω are assigned to the interior index set I . The assembled local stiffness matrices
and the local load vectors of the subdomains Ωi, i = 1, . . . , N , then can be partitioned
correspondingly. We need two different kinds of groupings of the previously introduced index
sets I , ∆′, and Π′, i.e., on the one hand, we group interior and dual variables denoted by the
index (·)B′ , and, on the other hand, we group dual and primal indices denoted by the index
(·)Γ. Then, there are multiple partitionings of the local stiffness matrices,

K(i) =:

K
(i)
II K

(i)T
∆′I K

(i)T
Π′I

K
(i)
∆′I K

(i)
∆′∆′ K

(i)T
Π′∆′

K
(i)
Π′I K

(i)
Π′∆′ K

(i)
Π′Π′




=:

[
K

(i)
B′B′ K

(i)T
Π′B′

K
(i)
Π′B′ K

(i)
Π′Π′

]
,

=:

[
K

(i)
II K

(i)T
IΓ

K
(i)
IΓ K

(i)
ΓΓ

]
.

In the same manner, the load vectors f (i) and the displacements u(i), i = 1, . . . , N , can be
partitioned. We then introduce the block diagonal matrices

KII := diagNi=1K
(i)
II , KB′B′ := diagNi=1K

(i)
B′B′ , KΓΓ := diagNi=1K

(i)
ΓΓ

as well as the corresponding offdiagonal block KΓI . Again, the global right-hand side f and
the global displacement vector u can be partitioned accordingly.

The inter-subdomain assembly operator RTΠ′ :=
[
R

(1)T
Π′ , . . . , R

(N)T
Π′

]
, which performs

the partial finite element assembly in the primal variables u(i)
Π′ , is central to FETI-DP and

BDDC. For BDDC, we also need RT∆′ :=
[
R

(1)T
∆′ , . . . , R

(N)T
∆′

]
, which performs the finite

element assembly in the dual variables u(i)
∆′ . For FETI-DP, instead of RT∆′ , we need a signed

Boolean jump operator B and its restriction to the interface BΓ = [B
(1)
Γ , . . . , B

(N)
Γ ], which

has one +1 and one −1 per row such that BΓuΓ = 0 if and only if uΓ is continuous on the
interface Γ.

Then, the FETI-DP master system is given byKB′B′ K̃T
Π′B′ BTB′

K̃Π′B′ K̃Π′Π′ 0
BB′ 0 0

uB′

ũΠ′

λ

 =

f̃0
0

 ,
where we performed the partial assembly in the primal variables to couple the subdomain
problems, i.e.,

K̃Π′Π′ =

N∑
i=1

R
(i)T
Π′ K

(i)
Π′Π′R

(i)
Π′ ,
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K̃Π′B′ =
[
R

(1)T
Π′ K

(1)
Π′B′ , . . . , R

(N)T
Π′ K

(N)
Π′B′

]
,

f̃ =

[
fTB′ , (

N∑
i=1

R
(i)T
Π′ f

(i)
Π′ )T

]T
,

and

BB′ =
[
B

(1)
B′ , . . . , B

(N)
B′

]
,

the part of B where the columns corresponding to primal variables were removed.
By proper block Gaussian elimination, we obtain the (unpreconditioned) standard FETI-

DP system Fλ = d, where

Fλ :=
(
BB′K−1

B′B′B
T
B′ +BB′K−1

B′B′K̃
T
Π′BS̃

−1
Π′Π′K̃Π′B′K−1

B′B′B
T
B′

)
λ

=
(
BΓS̃

−1BTΓ

)
λ,

d := BB′K−1
B′B′fB′ +BB′K−1

B′B′K̃
T
Π′B′ S̃−1

Π′Π′

(( N∑
i=1

R
(i)T
Π′ f

(i)
Π′

)
−K̃Π′B′K−1

B′B′fB′

)
.

(3.1)

The Schur complement S̃Π′Π′ := K̃Π′Π′ − K̃Π′B′
(
KB′B′

)−1
K̃T

Π′B′ represents the initial
(a priori) coarse space. The Schur complement S̃ is obtained from the local contributions
S(i) := diagNi=1

(
K

(i)
ΓΓ −K

(i)
ΓI

(
K

(i)
II

)−1
K

(i)T
ΓI

)
assembled in the primal variables Π′.

To define the BDDC method, it is convenient to introduce a modified ordering, i.e.,[
u

(1)
∆′ , . . . , u

(N)
∆′ , u

(1)
Π′ , . . . , u

(N)
Π′

]
instead of

[
u

(1)
∆′ , u

(1)
Π′ , . . . , u

(N)
∆′ , u

(N)
Π′

]
. We use the block

diagonal matrix KΓΓ and KΓI to define the Schur complement on the interface Γ,

SΓΓ := KΓΓ −KΓIK
−1
II K

T
ΓI .

The right-hand side is obtained by the corresponding elimination of the interior degrees of
freedom from f and is denoted by [gT∆′ , gTΠ′ ]T . The (unpreconditioned) BDDC system for
uTΓ = [uT∆′ , uTΠ′ ]T with right-hand side gT = [gT∆′R∆′ , gTΠ′RΠ′ ]T writes

SuΓ :=

[
RT∆′ 0

0 IΠ′

] [
I∆′ 0
0 RTΠ′

]
SΓΓ

[
I∆′ 0
0 RΠ′

] [
R∆′ 0

0 IΠ′

]
uΓ = g.

For heterogeneous problems, the use of an appropriate scaling is important. To be effective,
this scaling has to depend on the coefficient. The scaling is of equal importance in adaptive
FETI-DP and BDDC methods since, for a bad scaling, the resulting automatic coarse space
can be very large [33].

In this paper, we will consider four different scalings. First, we introduce the standard
ρ-scaling; see, e.g., [37, 39, 54, 57, 62]. For x ∈ Γi, we define Nx := {i | x ∈ ∂Ωi}. The
coefficient evaluation is given by ρ̂i(x) := supx∈supp(ϕx)∩Ωi

ρ(x), where ϕx is the nodal finite
element function at x and supp(ϕx) its support. Let Ωj and Ωi share either a face or an edge,
and let x ∈ ∂Ωi ∩ ∂Ωj . The corresponding nontrivial row of B(j) is then multiplied by the

scaling δ†i (x) := ρ̂i(x)/
(∑

k∈Nx
ρ̂k(x)

)
and vice versa. By this, we obtain the local scaling

D(j). In BDDC the degrees of freedom on ∂Ωi are scaled by δ†i (x). This defines the BDDC
scaling D(i)

u .
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Second, we introduce the stiffness- (or K-, or super-lumped-) scaling [55], which is
a heuristic approximation of the ρ-scaling. There, we replace the coefficient ρ̂i(x) by the
corresponding diagonal element of the local stiffness matrix K(i).

Third, we introduce multiplicity-scaling [17, 55], where the inverse of the multiplicity is
used as a scaling. We obtain multiplicity-scaling from ρ-scaling by setting the coefficient to
one.

Last, we consider deluxe-scaling, which was introduced recently; see, e.g, [4, 8, 10, 12, 14].
Deluxe-scaling is computationally expensive. Let us define the Schur complement of the
stiffness matrix on the interface Γ, i.e.,

SΓΓ := diagNi=1 S
(i).

Then, consider either a face F ij shared by the two subdomains Ωi and Ωj or an edge E ik
shared by the subdomains Ωi, Ωj , Ωk. Multiplicities greater than three can be handled
analogously. Define for l ∈ {i, j} the matrix S(l)

Fij ,0 as the restriction of S(l) to the (open)
face F ij . For a face F ij , in deluxe-scaling the nontrivial rows of B(j) corresponding to the

Lagrange multipliers on this face are multiplied by D(i)T
u,Fij =

(
(S

(i)
Fij ,0 + S

(j)
Fij ,0)−1S

(i)
Fij ,0

)T
if the orientation of the constraints in B is chosen consistently. Otherwise, certain entries
of D(i)

u,Fij have to be scaled by −1. For l ∈ {i, j, k}, define S(l)

Eik,0 as the restriction of
S(l) to the (open) edge E ik. For an edge E ik, in deluxe-scaling the nontrivial rows of B(j)

corresponding to the Lagrange multipliers coupling Ωi and Ωj on this edge are multiplied

by D(i)T

u,Eik =
(

(S
(i)

Eik,0 + S
(j)

Eik,0 + S
(k)

Eik,0)−1S
(i)

Eik,0

)T
. Again, a consistent orientation of the

Lagrange multipliers is assumed.
Choosing either of the scalings we can define the standard FETI-DP Dirichlet precondi-

tioner (see [62])

M−1
D := BD,ΓR

T
ΓSΓΓRΓB

T
D,Γ = BD,ΓS̃B

T
D,Γ.(3.2)

The standard BDDC preconditioner can be written

M−1
BDDC :=

[
RT∆′,Du

RΓ 0

0 IΠ′

] [
KB′B′ K̃T

Π′B′

K̃Π′B′ K̃Π′Π′

]−1 [
RTΓR∆′,Du

0
0 IΠ′

]
,(3.3)

where BD,Γ and R∆′,Du
are the scaled variants BΓ and R∆′ .

3.2. A standard transformation of basis for FETI-DP and BDDC. We briefly recall
the standard transformation of basis (see, e.g., [35, 38, 40, 41, 45]), which, in the adaptive
context, will be replaced by the generalized transformation of basis as described in [30].

Consider an edge E shared by Ωi, Ωj , and some other subdomains. It is intended to
enforce the Krylov iterates u to fulfill a constraint of the form

cT
(
u

(i)
E − u

(j)
E

)
= 0 ⇔ cTu

(i)
E = cTu

(j)
E(3.4)

for a normalized constraint vector c. For c different from any Euclidean basis vector, this
corresponds to the use of a non-nodal basis function in the transformation of basis.

We then define a (square) transformation matrix T (l)
E =

[
c, C(l)⊥], l ∈ {i, j}, where

C(l)⊥ is constructed such that the transformation is orthogonal. We then define the transforma-
tion matrix T (l) by extending T (l)

E by the identity matrix outside of the edge. The transformed
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variables u(l), stiffness matrices K
(l)

, and load vectors f
(l)

on Ωl then are

K
(l)

= T (l)TK(l)T (l), u(l) = T (l)Tu(l), f
(l)

= T (l)T f (l), l ∈ {i, j}.

After the basis transformation, the constraint is explicitly enforced by a partial subassembly in
the new primal variables.

Applying the constraint vector to the displacements on the edge yields

cTu
(l)
E = cTT

(l)
E u

(l)
E = cT

[
c, C(l)⊥

]
u

(l)
E = u

(l)
E,1, l ∈ {i, j},

where u(l)
E,1 is the displacement at the first degree of freedom on the edge E . A finite element

assembly in this degree of freedom gives continuous values

ûE,1 := û
(i)
E,1 := û

(j)
E,1 :=

1

2
u

(i)
E,1 +

1

2
u

(j)
E,1

and (possibly) noncontinuous values û(l)
E,k = u

(l)
E,k for k > 1, l ∈ {i, j}. For the vectors that

are transformed back to the original basis, we see that the constraint is enforced:

cT
(
T

(i)
E û

(i)
E − T

(j)
E û

(j)
E

)
=

1

2
u

(i)
E,1 +

1

2
u

(j)
E,1 −

(1

2
u

(i)
E,1 +

1

2
u

(j)
E,1

)
= 0.

This degree of freedom then belongs to the new set of primal variables Π.

3.3. An alternative formulation of the transformation of basis for FETI-DP and
BDDC. In [40], a technique was introduced to avoid affecting the sparsity of the matrix
K

(i)

B′B′ by the explicit transformation of basis. This is important for face constraints. To
resolve this issue, as in [40, Section 4.2.2], we can alternatively introduce additional, local
Lagrange multipliers µ(i) and consider local saddle point problems.

Let us briefly consider this in detail. By applying the operator F , the expression

BB′K
−1

B′B′vB′

(
or B(i)

B′

(
K

(i)

B′B′

)−1

v
(i)
B′

)
has to be evaluated locally. Obviously, the mini-

mization of u(i)T
B′ K

(i)

B′B′u
(i)
B′ leads to the same result as the minimization of

[
u

(i)T
B′ 0

] [K(i)

B′B′ K
(i)T

Π′B′

K
(i)

Π′B′ K
(i)

Π′Π′

] [
u

(i)
B′

0

]
,(3.5)

where the values at the additional primal variables Π (cf. the previous Section 3.2) are set to
zero. This is admissible since the jump operator is applied afterwards, and thus the values at
the primal variables are set to zero.

Then, instead of minimizing the expression (3.5) in the transformed variables u(i)
B′ , we

introduce a corresponding constraint Q(i)Tu(i) = 0 for the nontransformed variables. This
consequently leads to the following saddle point problem K(i)

II K
(i)
IΓ 0

K
(i)T
IΓ K

(i)
ΓΓ Q(i)

0 Q(i)T 0


u(i)

I

u
(i)
Γ

µ(i)

 =

v(i)
I

v
(i)
Γ

0

(3.6)

with additional local Lagrange multipliers µ(i) (cf. [40, Section 4.2.2] for more details), and
where the right-hand side (v

(i)T
I , v

(i)T
Γ ) corresponds to (vTB′ , 0) transformed back to the initial

basis and restricted to the local subdomain.
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Similar techniques of using saddle point problems to enforce the primal constraints have
been used by other authors: in [18] the Lagrange multipliers are global; in [46, 47] the saddle
point problems are local, which is also the case in our approach. In our case, however, the
coarse Schur complement operator is assembled from the local subdomain contributions rather
than built from a triple matrix product.

4. Adaptive FETI-DP and BDDC methods with a generalized transformation-of-
basis approach. In this section, we revisit the adaptive FETI-DP method [28, Section 5]
and construct a corresponding method without using deflation or balancing. For highly
heterogeneous problems, the a priori coarse space might not be sufficient to ensure convergence,
and therefore adaptive strategies such as [28, Section 5] are needed. We will explain how to
define the new basis vectors (in the space of displacements) for the generalized transformation-
of-basis approach [30] and how they are related to the deflation vectors used in [28] (which,
for FETI-DP, are defined in the Lagrange multiplier space).

It is well known that deflation vectors are typically chosen as (approximate) eigenvectors
corresponding to extreme eigenvalues of the operator in order to reduce the (effective) condition
number of the deflated operator [38, 50, 51]. In adaptive domain decomposition, the deflation
vectors are obtained from (approximately) solving local eigenvalue problems; see, e.g., [28]
and the many other references cited in the introduction.

4.1. Generalized eigenvalue problems. Let us consider either a face F ij between the
subdomains Ωi and Ωj or an edge E il between the subdomains Ωi and Ωl, where Ωi and Ωl
have no common face; cf. Figure 4.1 (left). As in [47] for faces and [34] for faces and edges,
we define the operator on the closure of the face BFij = [B

(i)

Fij B
(j)

Fij ] and BEil = [B
(i)

Eil B
(l)

Eil ]

as the submatrix of [B(i) B(j)] and [B(i) B(l)], respectively, consisting of all the rows that
contain exactly one +1 and one −1. The operators BFij and BEil provide the local jump on
the closure of the face or edge, respectively.

Analogously, B
D,Fij = [B

(i)

D,Fij B
(j)

D,Fij ] and BD,Eil = [B
(i)

D,Eil B
(l)

D,Eil ] are the subma-

trices of [B
(i)
D B

(j)
D ] and [B

(i)
D B

(l)
D ], respectively. We also need

P
D,Fij := BT

D,FijBFij , PD,Eil := BTD,EilBEil , and Sis :=

[
S(i) 0

0 S(s)

]
, s ∈ {j, l}.

We now establish and solve the following generalized eigenvalue problems that can be
motivated by the localization of the global PD operator from the standard FETI-DP theory.
We define the bilinear form sis(uis, vis) := (Sisuis, vis) with the displacement variables
uis, vis ∈Wi ×Ws, s ∈ {j, l}. The local generalized eigenvalue problem on either a face or
an edge can then be formulated in variational form:

Find wkis ∈ (kerSis)
⊥ with µkis > TOL, such that

sis(PD,Zisvis, PD,Ziswkis) = µkissis(vis, w
k
is) ∀vis ∈ (kerSis)

⊥, s ∈ {j, l};(4.1)

cf. [47, Sections 3 and 4] and [28, Section 5] for a more detailed description.
We assume that we have now computed certain eigenvectors wkis for µkis > TOL,

s ∈ {j, l}, on closed faces or edges. Later, during the FETI-DP iteration, we then enforce
constraints of the form (see (4.1) and [28, Section 5])

(wis, P
T

D,ZisSisPD,Ziswkis) = 0 ∀wis ∈Wi ×Ws, s ∈ {j, l},(4.2)
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by deflation or balancing (see [28] and [38]) or, as presented in the following, by a partial
assembly after a transformation of basis on edges and faces.

Eigenvectors on closed faces. We define ukij = B
D,FijSijPD,Fijwkij and decompose it

into edge components ukij,Em and a component ukij,F on the open face, all extended by zero to
the closure (excluding the vertices) of the face; cf. [28, 29].

Eigenvectors on edges. The edge eigenvalue problems are crucial to obtain a convergence
bound for heterogeneous problems in three dimensions [28]. For the theory in [28], edge
eigenvalue problems are, however, only needed for edges which belong to more than three
subdomains, i.e., with a multiplicity larger than three. If automatic mesh partitioners are
used, then this applies to only a small percentage of edges. The methods proposed in [28],
covered by a condition number bound, are therefore only slightly more expensive than the
successful, classical face-based approaches from [47, 48], which only provided a condition
number indicator.

4.2. Constraints for the generalized transformation of basis and solution spaces.
For face eigenvalue problems, we obtain edge components and a component on the open face

qkij,Em := BT
Fijukij,Em and qkij,F := BT

Fijukij,F

and enforce the corresponding constraints on the displacement variable wij , i.e.,

(wij , q
k
ij,Em) = (wij , B

T

Fijukij,Em) = 0, m = 1, 2, . . . ,(4.3)

(wij , q
k
ij,F ) = (wij , B

T

Fijukij,F ) = 0.(4.4)

Hence, we obtain the constraint vectors in the displacement space by a multiplication of the
constraint vector in the Lagrange multiplier space by the localized version of the jump operator
B, i.e., by BT

Fij .
For the edge eigenvalue problems, we choose constraint vectors

qkil := BTEilu
k
il := PTD,EilSilPD,Eilw

k
il

such that the constraint

(wil, q
k
il) = (wil, B

T
Eilu

k
il) = 0(4.5)

is satisfied. Thus, we obtain the constraint vectors in the displacement space by a multiplication
of the constraint vector in the Lagrange multiplier space by the localized version of the jump
operator B, i.e., by BTEil .

We extend all constraint vectors qkij,Em , qkij,F , and qkil by zero to W̃ . These vectors define
the columns of the matrix Q. Analogously, we extend all constraint vectors ukij,Em , ukij,F , and
ukil by zero to the space of the Lagrange multipliers, defining the columns of the matrix U .

Obviously, the spaces

W̃Q = {w ∈ W̃ : QTw = 0} and W̃U = {w ∈ W̃ : UTBw = 0}(4.6)

are the same but they correspond to two different approaches to implement the constraints.
The space W̃U corresponds to the solution space for deflation or balancing; cf. [28]. In order
to define the solution space for the generalized transformation of basis as introduced in [30],
we have to introduce some notation and give some remarks. The solution space W̃Q̂ for the

transformation-of-basis approach will result from a restriction of W̃Q.
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We now explain the necessary details that have to be considered when our adaptive
constraints are implemented such that the restrictions of the generalized transformation-of-
basis approach [30] are satisfied.

Due to the form of the given constraints (see (4.3)–(4.5)), we have for qkij,Em , qkij,F , and
qkil

(wij , q
k
ij,Em) = 0 ⇔ (B

(i)

Fijw
(i), ukij,Em) = −(B

(j)

Fijw
(j), ukij,Em),

(wij , q
k
ij,F ) = 0 ⇔ (B

(i)

Fijw
(i), ukij,F ) = −(B

(j)

Fijw
(j), ukij,F ),

(wil, q
k
il) = 0 ⇔ (B

(i)

Eilw
(i), ukil) = −(B

(l)

Eilw
(l), ukil).

(4.7)

Since B(i)

Fij and B(j)

Fij are closely related, i.e., both operators only differ by their sign when

restricted to the face (i.e., B(i)

Fij and B(j)

Fij differ by their sign when all zero columns are
removed), the constraint vector on the face will be identical for both sides of the face. The same
arguments apply to the edge eigenvalue problems and the edge constraints from face eigenvalue
problems since, again, B(i)

Eil and −B(l)

Eil are identical if restricted to the corresponding edge.
Given computed eigenvectors and resulting sets of orthonormalized constraints on a

certain open face F ij and on its related edges Em or just on an edge E il; cf. (4.3)–(4.5).
The orthonormalized result will be denoted by TFij ,Π and TEm,Π or TEil,Π. The matrices
TFij := [TFij ,Π, TFij ,∆], TEm = [TEm,Π, TEm,∆], and TEil = [TEil,Π, TEil,∆] then are
computed such that they are orthogonal matrices.

Given a face F ij , the sets of orthogonalized constraints TFij ,Π and TEm,Π can then be
used as constraint vectors for both subdomains Ωi and Ωj . This results from the form of B and
the fact that the constraint vector restricted to one subdomain equals (−1) times the constraint
vector restricted to the other subdomain; cf. (4.7). Given an edge E il (Em can be handled
likewise), the same applies for the two subdomains considered in the edge eigenvalue problem.

In order to satisfy the assumptions of the generalized transformation-of-basis approach,
we also enforce the same constraints for all other jumps between two arbitrary subdomains at
the considered face or edge. Then, for a face F ij with jumps w(i) − w(j) and edges Em or an
edge E il and all jumps w(i) − w(s) across the edge, we have that the local transformations are
equal for all subdomains sharing either the face or the edge, i.e.,

T
(i)
|Fij = T

(j)
|Fij = TFij , T

(i)
|Em = T

(s)
|Em = TEm , T

(i)

|Eil = T
(s)

|Eil = TEil(4.8)

and all pairs of subdomains {Ωi,Ωs} sharing the edges Em or E il.
Thus, the constraint set obtained from our local eigenvalue problems can be extended

such that the local transformations satisfy condition (4.8) for the generalized transformation
of basis as given in [30]. We then have Q̂ := [Q, ∗] with rangeQ ⊂ range Q̂ and the solution
space

W̃Q̂ = {w ∈ W̃ : Q̂Tw = 0} ⊂ W̃Q = W̃U ;(4.9)

cf. the definitions in (4.6). The constraints are then enforced by a partial subassembly;
cf. Figure 4.1. Therefore, the solution space W̃Q̂ is in general a strict subset of the solution

space W̃U , and we obtain our PD-estimate from [28, Lemma 6.1] for W̃Q̂, i.e., for w ∈ W̃Q̂,
we have

|PDw|2S̃ ≤ 4 max{NF , NEME}2TOL|w|2
S̃
.(4.10)
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Ωk

Ωi Ωj

Ωl Ωk

Ωi Ωj

Ωl Ωk

Ωi Ωj

Ωl

FIGURE 4.1. Cross sectional view of four subdomains sharing an edge. Arrows symbolize redundant Lagrange
multipliers in FETI-DP (left). Assume that, using deflation, one primal constraint is introduced, involving the
Lagrange multiplier depicted in bold red color (middle). Using partial assembly, after a generalized transformation
of basis, the primal constraint is now enforced between all four subdomains, effectively removing all six Lagrange
multipliers (right).

In our implementation, the constrained elements of the space W̃Q̂ are represented by

W̃T,a := {ŵ = RTµT
Tw : w ∈ W̃}, where RTµ = (RTR)−1RT , T = blockdiagi=1,...,NT

(i).
This requires the definition of RT and T (i), i = 1, . . . , n. The operator RT assembles in all a
posteriori degrees of freedom and leaves all other degrees of freedom (interior, a priori primal
and remaining dual variables) unchanged. The operator T (i) reduces to the identity on all
interior degrees of freedom and is blockdiagonal on the interface with blocks TFij and TEil
for all faces F ij and edges E il shared by Ωi.

4.3. Adaptive FETI-DP and BDDC operators for the generalized transformation-of-
basis approach. In [30], FETI-DP and BDDC methods using a generalized transformation-
of-basis approach were introduced.

Using this approach and the notation from [30], the preconditioned adaptive FETI-DP
method is then given by

M̂−1
T F̂ λ := (B̂D

̂̃
SB̂TD) (B̂

̂̃
S
−1

B̂T )λ

:= (BDTRµ(RTTT S̃TR)RTµT
TBTD) (BTR(RTTT S̃TR)−1RTTTBT )λ = d̂.

(4.11)

Introducing another operator R′T which assembles in all remaining dual and a posteriori
primal variables and leaves the a priori primal variables unchanged, the preconditioned adaptive
BDDC method is given by

M̂−1
BDDC Su := (R′TTD̂uR

̂̃
S
−1

RT D̂uT
TR′) (R′T S̃R′)u

:= (R′TDuTR (RTTT S̃TR)−1RTTTDuR
′) (R′T S̃R′)u = ĝ

(4.12)

with Du the degree of freedom scaling in BDDC corresponding to the Lagrange multiplier
scaling D in FETI-DP.

4.4. Condition number estimate for adaptive FETI-DP and BDDC. We can now
formulate the following theorem for our adaptive algorithm using a generalized transformation
of basis based on [30].

In [30], a correspondence of FETI-DP or BDDC methods using a generalized transforma-
tion of basis and of FETI-DP methods using deflation or balancing was shown. These methods
have essentially the same eigenvalues, and as opposed to the previous theory, this result also
applies to general scalings and heterogeneous problems including coefficient jumps inside
subdomains.

THEOREM 4.1. Let NF denote the maximum number of faces of a subdomain, NE the
maximum number of edges of a subdomain,ME the maximum multiplicity of an edge, and TOL
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FIGURE 5.1. Irregular decomposition of the unit cube with composite material (left), representative volume
element (center), and randomized coefficients (right). High coefficients E2 = 1e+06 (for composite and random) and
E2 = 2.1e+05 (for the RVE) are shown in a dark purple color in the picture, subdomains shown in different colors in
the background and by half-transparent slices. Visualization for N = 8 and 1/h = 3N1/3 (left), N = 512 and
1/h = 4N1/3 (center), and N = 8 and 1/h = 5N1/3 (right).

a given tolerance for solving the local generalized eigenvalue problems (4.1). Furthermore,
let all vertices chosen to be primal. Then, the condition number κ(M̂−1

T F̂ ) of the FETI-DP
algorithm with constraints enforced by the generalized transformation of basis as described
satisfies

κ(M̂−1
T F̂ ) ≤ 4 max{NF , NEME}2TOL.

The condition number κ(M̂−1
BDDC S) of the BDDC algorithm with adaptive constraints enforced

by the generalized transformation of basis as described above satisfies

κ(M̂−1
BDDC S) ≤ 4 max{NF , NEME}2TOL.

Proof. The proof is complete by acknowledging that this is a special case of [30, Theo-
rem 6.7] and [30, Theorem 7.3] if the transformations are built according to [30] (i.e., they are
identical for all sides of any considered edge) and by using (4.10).

Note that the bound in (4.1) is algebraic in the sense that the condition number bound
holds under very weak assumptions. However, under unfavorable conditions, the coarse space
can be so large that the method reduces to a direct solver.

REMARK 4.2. Note that the explicit condition number of the FETI-DP or BDDC method
with our generalized transformation-of-basis approach is always smaller or equal to that
of the corresponding balancing or deflation approach. This results from the fact that in
our generalized transformation-of-basis approach in the partial assembly, we often enforce
additional constraints compared to the deflation approach—without creating a larger coarse
space; cf. (4.9), (4.8), and Figure 4.1.

Nevertheless, note that we can always find an equivalent balancing or deflation method by
expanding the constraint columns U such that all the constraints from W̃Q̂ are implemented

and such that κ(M−1
PPF ) = κ(M̂−1

T F̂ ); cf. [30].

5. Numerical results. In this section, we provide numerical results for the adaptive
coarse spaces presented in [28] (including the classical variants of [47, 48] relying on face
eigenvalue problems only) but implemented by the generalized transformation-of-basis ap-
proach for FETI-DP and BDDC.

As in [28], we consider compressible linear elasticity on the unit cube Ω = [0, 1]3 as a
model problem. The Poisson ratio is ν = 0.3 and the Young Modulus is E ∈ {1, 1e+06}. We
assume constant values of E and ν on each finite element.
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FIGURE 5.2. Local eigenvalues greater than 0.1 from all generalized eigenvalue problems (4.1) for some
simulations for the three materials depicted in Figure 5.1: Composite material (left), representative volume element
(center), and randomized coefficients for N = 216 and the first five runs (right).

The initial coarse space for all methods consists of vertex constraints. We then add several
other vertices such that each nonstraight edge has at least three primal vertices. This choice is
identical to that of [28].

We consider irregular decompositions of the unit cube. These decompositions are obtained
from the METIS graph partitioner (see [25]) using the options -ncommon=3 and -contig
to avoid noncontiguous subdomains and unwanted hinge modes between sets of tetrahedra
inside single subdomains.

We test five different algorithms for FETI-DP and BDDC; cf. [28]. The first three,
Algorithms Ia, Ib, and Ic originate from our recent paper [28] but are using a transformation
of basis instead of balancing. Algorithm Ia uses all the constraints obtained from the local
eigenvalue problems. Algorithm Ib and Algorithm Ic are heuristically reduced variants of
Algorithm Ia. For Algorithm Ib, edge eigenvalue problems are discarded if there are no
jumps of the Young Modulus present within a distance of one finite element around the edges.
In Algorithm Ic not only edge eigenvalue problems are discarded on these edges but also
edge constraints from face eigenvalue problems. The Algorithms II and III are the classical
face-based algorithms from [47, 48]. There, Algorithm II uses all constraints (edge and
face constraints) obtained from face eigenvalue problems but still lacks any edge eigenvalue
problem. Algorithm III was already tested in [48] and just uses face constraints from face
eigenvalue problems.

In all tables, we denote by κ the condition number of the preconditioned FETI-DP and
BDDC operator, and its denotes the number of preconditioned conjugate gradient (pcg)
iterations that are needed until convergence. The iteration is also stopped if no convergence is
observed within 500 iterations. As a stopping criterion, we require the pcg algorithm to reduce
the preconditioned starting residual by 10−10. The condition numbers κ given in the table
are the standard estimates obtained from pcg. The condition number estimates for FETI-DP
and BDDC differ slightly since, in most cases, the estimates of the smallest eigenvalue differ
slightly, typically starting in the second or third digit.

By |Π′| we denote the size of the standard coarse space while by |Π| we indicate the size
of the corresponding adaptive coarse space implemented by the transformation of basis; see
the previous sections and [30]. By N we denote the number of subdomains. For our coarse
spaces introduced in [28], we also present #Eevp, the number of edge eigenvalue problems,
and in parentheses the percentage of these in the total number of eigenvalue problems.

For all runs, we highlight small condition numbers, i.e., κ ≤ 50, in bold face. If not stated
otherwise, all eigenvalue problems are solved by the MATLAB builtin “eig” function; cf.
Section 5.1.4 and Section 5.3 for a solution of the eigenvalue problems by the LOBPCG solver
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[42, 43]. Except in Table 5.9, we always use TOL = 10. The resulting condition number is
typically at the order of TOL; see also [28, p. A2893].

When ρ-scaling is used we apply the standard ρ-scaling, where the nodal coefficient values
are given by the maximum value of the coefficient function on all neighboring tetrahedra
inside the same subdomain.

We enforce zero Dirichlet boundary conditions for the face with x = 0 and zero Neumann
boundary conditions elsewhere and apply the body force f = (0.1, 0.1, 0.1)T .

The following section has three subsections. In Section 5.1, we test the transformation-of-
basis approach for materials already tested with ρ-scaling and the balancing approach in [28].
In Section 5.2, we test our composite material and randomly distributed coefficients with
different scalings such as ρ-, deluxe-, stiffness-/K-, and multiplicity-scaling. In Section 5.3, we
present more results in order to demonstrate the robustness of our algorithm with the LOBPCG
eigensolver [42, 43].

5.1. Comparison to the balancing method. In this section, we test three different
distributions of the Young Modulus E; see Figure 5.1, the more detailed descriptions in the
following Sections 5.1.1–5.1.3, or our recent paper [28].

5.1.1. Composite material. In this section, we consider a composite material. The
material consists of a soft matrix material with E = 1 that surrounds N2/3 many beams that
run in a straight line from the face with x = 0 to the face with x = 1 and that occupy 1/9 of
that cross-section of the material; cf. Figure 5.1 and [28] where we referred to this material as
composite material 1.

We see that FETI-DP and BDDC behave almost identically. Clearly, the coarse spaces are
of the same size and the iteration count is almost the same for both methods. We see that the
size of the second-level coarse space is quite modest compared to the standard coarse space.
Compared to the coarse space implemented by the balancing approach (cf. [28, Table 8.2]),
the coarse space by the transformation of basis in Table 5.1 is up to two times the size of the
previous one. This is due to the fact that we always make all three degrees of freedom primal
that belong to a node, even if only one or two constraints are required. On the other hand, the
coarse spaces of [28, Table 8.3] and Table 5.2 do have a comparable size regardless of the
implementation.

For a more detailed consideration of the computational overhead of additional edge
eigenvalue problems, see the very detailed discussion in [28]. For a distribution of the local
eigenvalues for some of the runs; see Figure 5.2 (left).

5.1.2. Representative volume element. In this section, we consider a representative
volume element of a modern steel microstructure; see Figure 5.1. The RVE has been obtained
from the one in [44, Fig. 5.5] by resampling; see [28, Section 8.2]. As in [44], we use ν = 0.3,
E1 = 210, and E2 = 210 000 as artificial material parameters. The FETI-DP and BDDC
algorithms tested here and the FETI-DP algorithm with a balancing approach (see [28]) show
almost identical convergence behavior. The transformation-of-basis approach gives a larger
coarse space. As mentioned in the previous section this could be improved so that the balancing
approach does not have significant advantages over the transformation approach; we did not
do so because of the ease of implementation. For a distribution of the local eigenvalues, see
Figure 5.2 (center).

5.1.3. Randomly distributed coefficients. In this section, we test randomly distributed
coefficients. We let 20% of the tetrahedra in the unit cube take the value E = 1e+06 while the
other tetrahedra take E = 1. Both, FETI-DP and BDDC behave almost identically. The coarse
spaces of transformation and balancing are of comparable size; cf. [28] for N ∈ {43, 53}.
Compared to [28], we now show results for N = 63 where it can also be seen that not only
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TABLE 5.1
Compressible linear elasticity with E1 = 1, E2 = 1e+06. Coarse spaces for TOL = 10 for all generalized

eigenvalue problems.

Composite material, irregular partitioning, and 1/h = 3N1/3.

FETI-DP
Algorithm Ia, Ib, and Ic Algorithm II Algorithm III

N |Π′| κ its |Π| #Eevp κ its |Π| κ its |Π|

33 615
a) 8.44 29 144 7 (11.9%)

8.44 29 144 8.31e+05 51 90b) 8.44 29 144 4 (7.1%)
c) 8.44 29 129 4 (7.1%)

53 3084
a) 14.30 36 459 14 (5.2%)

14.30 36 453 3.29e+05 187 303b) 14.30 36 459 8 (3.0%)
c) 14.30 37 375 8 (3.0%)

73 8781
a) 13.92 40 1098 48 (6.0%)

2.93e+05 84 1074 2.96e+05 373 780b) 13.92 40 1089 21 (2.7%)
c) 13.93 41 942 21 (2.7%)

93 19029
a) 16.27 41 2070 90 (5.2%)

2.66e+05 71 2043 4.69e+05 482 1572b) 16.28 42 2067 45 (2.7%)
c) 16.28 42 1812 45 (2.7%)

113 35214
a) 15.05 43 3582 167 (5.2%)

2.66e+05 142 3504 3.60e+05 500 2724b) 15.05 43 3570 95 (3.0%)
c) 15.05 43 3192 95 (3.0%)

133 58179
a) 17.12 44 5895 303 (5.6%)

2.74e+05 225 5739 3.01e+05 500 4557b) 17.12 44 5889 171 (3.3%)
c) 17.13 44 5346 171 (3.3%)

BDDC
Algorithm Ia, Ib, and Ic Algorithm II Algorithm III

N |Π′| κ its |Π| #Eevp κ its |Π| κ its |Π|

33 615
a) 8.52 29 144 7 (11.9%)

8.52 29 144 8.42e+05 66 90b) 8.52 29 144 4 (7.1%)
c) 8.52 29 129 4 (7.1%)

53 3084
a) 14.44 35 459 14 (5.2%)

14.44 37 453 3.33e+05 241 303b) 14.44 35 459 8 (3.0%)
c) 14.45 36 375 8 (3.0%)

73 8781
a) 14.08 40 1098 48 (6.0%)

2.97e+05 98 1074 3.00e+05 459 780b) 14.08 40 1089 21 (2.7%)
c) 14.08 41 942 21 (2.7%)

93 19029
a) 16.44 41 2070 90 (5.2%)

2.69e+05 76 2043 4.75e+05 500 1572b) 16.44 41 2067 45 (2.7%)
c) 16.44 42 1812 45 (2.7%)

113 35214
a) 15.22 40 3582 167 (5.2%)

2.69e+05 162 3504 3.72e+05 500 2724b) 15.22 41 3570 95 (3.0%)
c) 15.22 42 3192 95 (3.0%)

133 58179
a) 17.32 41 5895 303 (5.6%)

2.77e+05 250 5739 3.40e+05 500 4557b) 17.32 41 5889 171 (3.3%)
c) 17.32 41 5346 171 (3.3%)

the condition number but also the iteration count of Algorithm II deteriorates with larger N .
Therefore, we also include the maximum and minimum value in the table. For a distribution
of the local eigenvalues for some of the runs, see Figure 5.2 (right).

5.1.4. Composite material using LOBPCG as an eigenvalue solver. In this section,
we present results for the FETI-DP and BDDC algorithm in combination with the iterative
LOBPCG (cf. [42, 43]) eigenvalue solver. We choose a block size of 10 and use a Cholesky
decomposition of the right-hand side of the eigenvalue problem as local preconditioner. We
limit the number of maximum iterations of the iterative solver as indicated in the table. We test
a larger example than in the previous paper [28], i.e., N = 53, to show that a larger admissible
number of iterations does not consequently lead to faster convergence; see the results for
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TABLE 5.2
Compressible linear elasticity with E1 = 1, E2 = 1e+06. Coarse spaces for TOL = 10 for all generalized

eigenvalue problems.

Composite material, irregular partitioning, and 1/h = 6N1/3.

FETI-DP
Algorithm Ia, Ib, and Ic Algorithm II Algorithm III

N |Π′| κ its |Π| #Eevp κ its |Π| κ its |Π|

33 960
a) 8.65 34 699 2 (2.0%)

8.65 34 699 1.36e+06 68 243b) 8.65 34 699 1 (1.0%)
c) 8.67 34 450 1 (1.0%)

53 5433
a) 9.16 35 3675 25 (4.2%)

9.16 35 3669 5.50e+05 190 1242b) 9.16 35 3675 12 (2.1%)
c) 10.49 36 2325 12 (2.1%)

73 16248
a) 10.76 37 10101 65 (3.6%)

10.76 37 10089 1.21e+06 424 3606b) 10.76 37 10101 27 (1.5%)
c) 13.36 39 6693 27 (1.5%)

BDDC
Algorithm Ia, Ib, and Ic Algorithm II Algorithm III

N |Π′| κ its |Π| #Eevp κ its |Π| κ its |Π|

33 960
a) 8.68 32 699 2 (2.0%)

8.68 32 699 1.37e+06 77 243b) 8.68 32 699 1 (1.0%)
c) 8.69 32 450 1 (1.0%)

53 5433
a) 9.22 33 3675 25 (4.2%)

9.22 33 3669 5.53e+05 216 1242b) 9.22 33 3675 12 (2.1%)
c) 10.53 34 2325 12 (2.1%)

73 16248
a) 10.84 35 10101 65 (3.6%)

10.84 35 10089 1.22e+06 492 3606b) 10.84 35 10101 27 (1.5%)
c) 13.44 38 6693 27 (1.5%)

LOBPCG with up to 200 iterations. We use a stopping criterion of 1e-05 for LOBPCG
which, in combination with badly conditioned local matrices, already lead to instability of
the solver. The implementation of LOBPCG already states that “excessively small requested
tolerance may result in often restarts and instability”; see [42]. However, it should be noted
that convergence does not seem to be necessary since 2–5 iterations already seem to give a
stable algorithm with fast convergence.

5.2. Scaling comparisons. In this section, we compare the performance of the algo-
rithms introduced above with four different kinds of scalings. Besides to ρ-scaling for which
we already gave performance results before, we also test deluxe-, stiffness/K-, and multiplicity-
scaling. As already reported in [28], neither Algorithm II nor III are sufficient to ensure
convergence with ρ-scaling. But also for the other scalings as deluxe, Algorithm II is not
robust. Concerning Algorithm Ia–c, as expected, the coarse space for deluxe-scaling is the
smallest and the fewest iterations are needed for convergence. But deluxe-scaling is also far
more costly than ρ- or stiffness-scaling, and these two only need an about 10–15% larger coarse
space to achieve similar convergence results. Multiplicity-scaling cannot be recommended
since it uses a coarse space that is almost two times as large as that of deluxe-scaling, i.e., an
overhead of 70–90% is needed.

5.2.1. Composite material. First, we test the four different scalings for the composite
material and 1/h = 6N1/3 as in Section 5.1.1; cf. Table 5.6 for the different scaling results.

5.2.2. Randomly distributed coefficients. Second, we test the four different scalings for
randomly distributed coefficients with 20% high and 80% low coefficients as in Section 5.1.3
but with 1/h = 8N1/3 instead of 1/h = 5N1/3; cf. Tables 5.7 and 5.8 for the different scaling
results. Again, Algorithm II and III are not robust for any scaling. Considering Algorithm Ia–c,
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TABLE 5.3
Compressible linear elasticity. Coarse spaces for TOL = 10 for all generalized eigenvalue problems.

Representative Volume Element with E1 = 210, E2 = 210 000,
regular and irregular partitioning, N = 83 and 1/h = 32.

FETI-DP
Algorithm Ia, Ib, and Ic Algorithm II Algorithm III

|Π′| κ its |Π| Eevp κ its |Π| κ its |Π|

18888
a) 13.75 37 1275 114 (5.6%)

13.75 37 1263 354.30 98 699b) 13.75 37 1275 27 (1.4%)
c) 13.75 38 990 27 (1.4%)

BDDC
Algorithm Ia, Ib, and Ic Algorithm II Algorithm III

|Π′| κ its |Π| Eevp κ its |Π| κ its |Π|

18888
a) 13.94 31 1275 114 (5.6%)

13.94 31 1263 359.20 84 699b) 13.94 31 1275 27 (1.4%)
c) 13.94 33 990 27 (1.4%)
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FIGURE 5.3. Irregular decomposition of the unit cube into 64 subdomains (left), randomly distributed coefficients
for seven materials with E1 = 1e+00 in lightgray to E7 = 1e+06 in black (center), and approximated local
eigenvalues greater 0.1 from all generalized eigenvalue problems (4.1) (right: estimates from two iterations with
LOBPCG on the local eigenvalue problems).

the coarse space for deluxe-scaling is again the smallest and the fewest iterations are needed
for convergence. But deluxe-scaling is also far more costly than ρ- or stiffness-scaling, and
these two only need an about 10–15% larger coarse space to achieve similar convergence
results. Once again, multiplicity-scaling cannot be recommended since it uses a coarse space
that is sometimes even two times as large as that of deluxe-scaling.

5.3. Verification of the robustness with LOBPCG eigensolver and randomly dis-
tributed coefficients. In this section, we test the LOBPCG eigensolver with blocksize 10, a
Cholesky decomposition of the right-hand side of the eigenvalue problem as preconditioner
and maximal two iterations on each eigenvalue problem.

We test three different random coefficient distributions for a heterogeneous material
composed of seven different homogeneous materials. In these examples, 30% of the tetrahedra
have a Young’s Modulus of E1 = 1, then 20% have a Young’s Modulus of E2 = 10, and an-
other 10% each have a Young’s Modulus of E3 = 100, E4 = 1000, E5 = 1e+04, E6 = 1e+05,
and E7 = 1e+06; see Table 5.9. As can be seen from Figure 5.3 (right) the approximated
spectrum of the local eigenvalue problems is continuous such that we can expect different
results for different tolerances.

We first observe that for all tolerances, convergence is achieved using just two iterations of
the LOBPCG eigensolver. Considering the different tolerances, for all runs the approximated
condition number is of the size of the chosen tolerance TOL. We state that only TOL = 10
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TABLE 5.6
Compressible linear elasticity with E1 = 1, E2 = 1e+06. Coarse spaces for TOL = 10 for all generalized

eigenvalue problems.

Composite material, irregular partitioning, and 1/h = 6N1/3.
FETI-DP Scaling comparison

Algorithm Ia, Ib, and Ic Algorithm II Algorithm III
N |Π′| κ its |Π| #Eevp κ its |Π| κ its |Π|

ρ-scaling

33 960
a) 8.65 34 699 2 (2.0%)

8.65 34 699 1.36e+06 68 243b) 8.65 34 699 1 (1.0%)
c) 8.67 34 450 1 (1.0%)

53 5433
a) 9.16 35 3675 25 (4.2%)

9.16 35 3669 5.50e+05 190 1242b) 9.16 35 3675 12 (2.1%)
c) 10.49 36 2325 12 (2.1%)

73 16248
a) 10.76 37 10101 65 (3.6%)

10.76 37 10089 1.21e+06 424 3606b) 10.76 37 10101 27 (1.5%)
c) 13.36 39 6693 27 (1.5%)

93 35838
a) 10.13 36 19632 144 (3.6%)

10.13 36 19626 7.77e+05 500 7053b) 10.13 36 19632 52 (1.3%)
c) 12.85 39 12921 52 (1.3%)

deluxe-scaling

33 960
a) 7.51 20 603 2 (2.0%)

7.51 20 603 7.52 27 207b) 7.51 20 603 1 (1.0%)
c) 7.51 20 393 1 (1.0%)

53 5433
a) 9.61 29 3129 25 (4.2%)

9.61 29 3126 9.98e+03 77 1002b) 9.61 29 3129 12 (2.1%)
c) 9.63 29 2004 12 (2.1%)

73 16248
a) 7.69 30 8721 65 (3.6%)

7.69 30 8709 3.04e+04 178 2976b) 7.69 30 8721 27 (1.5%)
c) 7.70 30 5859 27 (1.5%)

93 35838
a) 10.76 34 16671 144 (3.6%)

10.76 34 16656 8.57e+04 221 5718b) 10.76 34 16671 52 (1.3%)
c) 10.77 34 11022 52 (1.3%)

stiffness-scaling

33 960
a) 7.84 26 654 2 (2.0%)

7.84 26 654 7.23e+04 55 228b) 7.84 26 654 1 (1.0%)
c) 7.85 27 423 1 (1.0%)

53 5433
a) 11.16 32 3393 25 (4.2%)

11.16 32 3390 3.45e+04 148 1107b) 11.16 32 3393 12 (2.1%)
c) 11.19 32 2151 12 (2.1%)

73 16248
a) 9.12 33 9255 65 (3.6%)

9.12 33 9240 9.74e+04 342 3174b) 9.12 33 9255 27 (1.5%)
c) 9.15 34 6132 27 (1.5%)

93 35838
a) 9.92 34 17718 144 (3.6%)

9.92 34 17712 1.04e+05 395 6138b) 9.92 34 17718 52 (1.3%)
c) 9.93 34 11583 52 (1.3%)

multiplicity-scaling

33 960
a) 8.63 33 1029 2 (2.0%)

5.51e+05 54 1026 1.36e+06 345 426b) 8.63 33 1029 1 (1.01%)
c) 8.66 35 696 1 (1.01%)

53 5433
a) 9.10 35 5172 25 (4.2%)

9.10 35 5169 1.62e+06 500 2115b) 9.10 35 5172 12 (2.07%)
c) 10.46 36 3420 12 (2.07%)

73 16248
a) 10.73 37 14625 65 (3.6%)

10.73 37 14619 1.72e+06 500 6183b) 10.73 37 14625 27 (1.54%)
c) 13.34 39 10023 27 (1.54%)

93 35838
a) 10.09 36 29598 144 (3.6%)

10.09 36 29592 1.58e+06 500 12477b) 10.09 36 29598 52 (1.3%)
c) 12.77 39 20010 52 (1.3%)
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TABLE 5.7
Compressible linear elasticity with E1 = 1, E2 = 1e+06. Coarse spaces for TOL = 10 for all generalized

eigenvalue problems.

Randomly distributed coefficients with 20% high and 80% low coefficients,
irregular partitioning, N = 43, and 1/h = 32.

FETI-DP Scaling comparison; Part 1 (ρ and deluxe)
Algorithm Ia, Ib, and Ic Algorithm II Algorithm III

run |Π′| κ its |Π| #Eevp κ its |Π| κ its |Π|
ρ-scaling

1 2646
a) 9.24 33 7350 8 (2.8%)

12.21 34 7347 5.00e+05 500 3543b) 9.24 33 7350 8 (2.8%)
c) 9.24 33 7350 8 (2.8%)

2 2646
a) 9.40 33 7278 8 (2.8%)

1.57e+05 52 7272 4.74e+05 500 3480b) 9.40 33 7278 8 (2.8%)
c) 9.40 33 7278 8 (2.8%)

3 2646
a) 8.32 33 7320 8 (2.8%)

6.52e+04 67 7308 4.72e+05 500 3525b) 8.32 33 7320 8 (2.8%)
c) 8.32 33 7320 8 (2.8%)

4 2646
a) 9.44 34 7230 8 (2.8%)

9.44 34 7227 4.67e+05 500 3408b) 9.44 34 7230 8 (2.8%)
c) 9.44 34 7230 8 (2.8%)

5 2646
a) 9.26 33 7416 8 (2.8%)

2.54e+05 73 7407 4.69e+05 500 3588b) 9.26 33 7416 8 (2.8%)
c) 9.26 33 7416 8 (2.8%)

6 2646
a) 9.73 34 7311 8 (2.8%)

9.73 34 7308 5.80e+05 500 3477b) 9.73 34 7311 8 (2.8%)
c) 9.73 34 7311 8 (2.8%)

deluxe-scaling

1 2646
a) 6.08 21 6174 8 (2.8%)

7.09 22 6171 1.86e+05 358 2769b) 6.08 21 6174 8 (2.8%)
c) 6.08 21 6174 8 (2.8%)

2 2646
a) 5.65 22 5997 8 (2.8%)

5.65 22 5997 6.90e+04 285 2643b) 5.65 22 5997 8 (2.8%)
c) 5.65 22 5997 8 (2.8%)

3 2646
a) 4.89 23 6069 8 (2.8%)

3.12e+04 42 6057 2.35e+05 433 2703b) 4.89 23 6069 8 (2.8%)
c) 4.89 23 6069 8 (2.8%)

4 2646
a) 5.94 24 5979 8 (2.8%)

5.94 24 5976 2.07e+05 336 2601b) 5.94 24 5979 8 (2.8%)
c) 5.94 24 5979 8 (2.8%)

5 2646
a) 4.70 22 6207 8 (2.8%)

3.14e+04 36 6201 1.37e+05 320 2799b) 4.70 22 6207 8 (2.8%)
c) 4.70 22 6207 8 (2.8%)

6 2646
a) 4.43 22 6249 8 (2.8%)

4.43 22 6246 1.95e+05 346 2841b) 4.43 22 6249 8 (2.8%)
c) 4.43 22 6249 8 (2.8%)

ensures convergence within less than 50 iterations, but it also uses a coarse space that is three
times as large as that of TOL = 100 and nine to ten times as large as that of TOL = 1000. A
trade-off between fast convergence and a manageable size of the coarse space is a problem-
and facility-dependent task.

6. Parallel results. We present some preliminary CPU timings using a first parallel
implementation of our adaptive FETI-DP Algorithms Ia and Ic compared to the standard
nonadaptive FETI-DP with a full vertex and edge average coarse space. In all FETI-DP
methods, we use stiffness scaling, that is, we use the diagonal entries of the stiffness matrices.
We use PETSc [2, 3] with the PARDISO solver from the Intel MKL [23, 58] as a direct solver,
and the SLEPc software library [22, 56] to solve the local generalized eigenvalue problems.
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TABLE 5.8
Compressible linear elasticity with E1 = 1, E2 = 1e+06. Coarse spaces for TOL = 10 for all generalized

eigenvalue problems.

Randomly distributed coefficients with 20% high and 80% low coefficients,
irregular partitioning, N = 43, and 1/h = 32.

FETI-DP Scaling comparison; Part 2 (stiffness and multiplicity)
Algorithm Ia, Ib, and Ic Algorithm II Algorithm III

run |Π′| κ its |Π| #Eevp κ its |Π| κ its |Π|
stiffness-scaling

1 2646
a) 7.82 29 6921 8 (2.8%)

7.82 29 6918 2.15e+05 500 3177b) 7.82 29 6921 8 (2.8%)
c) 7.82 29 6921 8 (2.8%)

2 2646
a) 7.40 27 6876 8 (2.8%)

2.86e+04 43 6870 3.05e+05 500 3171b) 7.40 27 6876 8 (2.8%)
c) 7.40 27 6876 8 (2.8%)

3 2646
a) 9.97 30 6903 8 (2.8%)

6.47e+04 61 6891 2.72e+05 500 3195b) 9.97 30 6903 8 (2.8%)
c) 9.97 30 6903 8 (2.8%)

4 2646
a) 7.80 30 6738 8 (2.8%)

7.80 30 6735 2.19e+05 500 3033b) 7.80 30 6738 8 (2.8%)
c) 7.80 30 6738 8 (2.8%)

5 2646
a) 8.49 29 6987 8 (2.8%)

3.63e+04 60 6978 2.15e+05 500 3228b) 8.49 29 6987 8 (2.8%)
c) 8.49 29 6987 8 (2.8%)

6 2646
a) 7.32 29 6888 8 (2.8%)

7.32 29 6885 3.04e+05 500 3144b) 7.32 29 6888 8 (2.8%)
c) 7.32 29 6888 8 (2.8%)

multiplicity-scaling

1 2646
a) 8.48 32 12744 8 (2.8%)

6.12e+05 116 12732 9.70e+05 500 8574b) 8.48 32 12744 8 (2.8%)
c) 8.48 32 12744 8 (2.8%)

2 2646
a) 9.02 33 12900 8 (2.8%)

9.69e+05 130 12885 1.31e+06 500 8721b) 9.02 33 12900 8 (2.8%)
c) 9.02 33 12900 8 (2.8%)

3 2646
a) 9.42 33 13092 8 (2.8%)

6.32e+04 64 13080 1.42e+06 8922b) 9.42 33 13092 8 (2.8%)
c) 9.42 33 13092 8 (2.8%)

4 2646
a) 9.13 33 13074 8 (2.8%)

2.69e+05 140 13059 1.35e+06 500 8895b) 9.13 33 13074 8 (2.8%)
c) 9.13 33 13074 8 (2.8%)

5 2646
a) 7.78 31 12972 8 (2.8%)

2.48e+05 67 12963 1.85e+06 500 8805b) 7.78 31 12972 8 (2.8%)
c) 7.78 31 12972 8 (2.8%)

6 2646
a) 8.82 32 12894 8 (2.8%)

3.18e+05 104 12882 1.11e+06 500 8718b) 8.82 32 12894 8 (2.8%)
c) 8.82 32 12894 8 (2.8%)

As before, we consider the unit cube and the linear elastic composite material as depicted
in Figure 5.1 (left) with a METIS decomposition. We enforce zero Dirichlet boundary
conditions on the face with x = 0 and apply the body force f = (0.1, 0.1, 0.1)T . We use
conforming P2 finite elements on a mesh with H/h = 6.

For Algorithm Ia, the eigenvalue problems are solved by the SLEPc Krylov-Schur method
with block size 10. In Algorithm Ic, we use only two iterations of the Krylov-Schur method
with block size 10.

In our parallel implementation, we make the more realistic assumption that the coefficient
evaluation function is not known. Thus, the strategy of Algorithm Ic, to discard eigenvalue
problems and constraints, is based on the stiffness scaling from which we try to deduce
coefficient jumps. We also use TOL = 50 log(H/h) to reduce the adaptive coarse space
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TABLE 5.9
Compressible linear elasticity for a heterogeneous material composed of seven different homogeneous materials

with E1 = 1 to E7 = 1e+06. Coarse spaces for TOL = 10, TOL = 100, and TOL = 1000 for all generalized
eigenvalue problems. Solution of the local eigenvalue problems by LOBPCG with blocksize 10 and a maximum of two
iterations.

Randomly distributed coefficients with seven different values for the Young modulus E,
E1 = 1 (30%), E2 = 10 (20%), Ei = 10i−1, i = 3, . . . , 7 (10% each),

irreg. partition., N = 43, and 1/h = 48.
Algorithm Ia, Ib, and Ic Algorithm II Algorithm III

run |Π′| κ its |Π| #Eevp κ its |Π| κ its |Π|
TOL=10

1 2820
a) 14.11 41 12084 2 (0.7%)

14.11 41 12084 1.12e+05 500 4842b) 14.11 41 12084 2 (0.7%)
c) 14.11 41 12084 2 (0.7%)

2 2820
a) 13.18 40 12186 2 (0.7%)

13.18 40 12186 2.12e+05 500 4920b) 13.18 40 12186 2 (0.7%)
c) 13.18 40 12186 2 (0.7%)

3 2820
a) 18.89 42 12147 2 (0.7%)

18.89 42 12147 1.04e+05 500 4863b) 18.89 42 12147 2 (0.7%)
c) 18.89 42 12147 2 (0.7%)

TOL=100

1 2820
a) 107.26 113 4278 2 (0.7%)

107.26 113 4278 1.11e+05 500 987b) 107.26 113 4278 2 (0.7%)
c) 107.26 113 4278 2 (0.7%)

2 2820
a) 100.32 110 4299 2 (0.7%)

100.32 110 4299 2.11e+05 500 1041b) 100.32 110 4299 2 (0.7%)
c) 100.32 110 4299 2 (0.7%)

3 2820
a) 115.62 114 4329 2 (0.7%)

115.62 114 4329 1.04e+05 500 1041b) 115.62 114 4329 2 (0.7%)
c) 115.62 114 4329 2 (0.7%)

TOL=1000

1 2820
a) 970.55 321 1311 2 (0.7%)

970.55 321 1311 1.11e+05 500 321b) 970.55 321 1311 2 (0.7%)
c) 970.55 321 1311 2 (0.7%)

2 2820
a) 993.08 320 1260 2 (0.7%)

993.08 320 1260 2.08e+05 500 318b) 993.08 320 1260 2 (0.7%)
c) 993.08 320 1260 2 (0.7%)

3 2820
a) 1609.10 343 1158 2 (0.7%)

1609.10 343 1158 1.03e+05 500 273b) 1609.10 343 1158 2 (0.7%)
c) 1609.10 343 1158 2 (0.7%)

dimension; cf. Table 5.9 for a comparison of different tolerances. If the local iterative solver
breaks down due to the high condition numbers of the local matrices, then we use the SLEPc
interface to the LAPACK solver [1].

We also report the size of the coarse space (nonadaptive and adaptive) denoted by |Π̂|
and the number of nonzeros in the coarse space matrix in parentheses. The computation is
conducted with one subdomain per core on the supercomputer magnitUDE at the Center for
Computational Sciences and Simulation (CCSS) of the University of Duisburg-Essen. We use
a preconditioned conjugate gradients method with up to 10,000 iterations and a maximum
wall time of one hour. We report the number of Krylov iterations, the total runtime, and the
KSP residual norm ‖res‖ at convergence or cancellation when the wall time is exceeded.

Table 6.1 shows that the standard nonadaptive method does not converge as required and
is thus not suited for this problem. The adaptive methods reduce the run time significantly
and also reduce the residual to the given tolerance. For this problem and the strategy of
Algorithm Ic, we obtain comparable results for both adaptive methods.
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TABLE 6.1
Compressible linear elasticity with E1 = 1, E2 = 1e+06. Coarse spaces for TOL = 50 log(H/h) for all

generalized eigenvalue problems.

Composite material
irregular partitioning, and H/h = 6.

N = 64 N = 216

its ‖res‖ runtime |Π̂| its ‖res‖ runtime |Π̂|
(nnz) (nnz)

Standard >6373 5.22e-5 >60 min 2346 >6033 7.56e-4 >60 min 9828
FETI-DP (859,212) (4,466,412)
Adaptive

63 4.68e-11 23.4 min 3258 75 8.83e-11 37.9 min 13627FETI-DP
(Alg. Ia) (1,379,072) (7,393,571)
Adaptive

63 4.30e-11 21.7 min 3248 76 5.85e-11 35.7 min 13615FETI-DP
(Alg. Ic) (1,374,056) (7,384,271)

7. Conclusion. In [28], an adaptive coarse space for FETI-DP domain decomposition
methods applied to heterogeneous elliptic problems in three dimension was introduced. The
method is based on numerically solving local eigenvalue problems on faces and edges of
subdomains and on using these eigenvectors as deflation vectors. The condition number of the
resulting preconditioner operator using deflation is bounded independently of the heterogene-
ity. Then, in [30], for heterogeneous problems and general scalings, a correspondence was
shown between FETI-DP methods using deflation and FETI-DP and BDDC methods using a
generalized transformation of basis combined with a partial finite element assembly.

In this current paper, we now combine the approaches in [28] and [30] and obtain FETI-DP
and BDDC methods with a condition number bound independent of heterogeneities but using a
generalized transformation of basis instead of deflation. For the new approach, it will be easier
to extend the parallel scalability to a large number of subdomains on large supercomputers,
also for heterogeneous problems, by solving the coarse problem inexactly. This is not possible
in projection approaches like deflation or balancing.

We also present comparisons of the adaptive method with different scalings such as
ρ-, deluxe-, stiffness-, and multiplicity-scaling. For our test cases, we state that ρ-scaling
just needs about 10% of additional constraints compared to deluxe-scaling. The findings of
stiffness-scaling are comparable to those of ρ-scaling. Multiplicity-scaling on the other hand
gives significantly larger coarse spaces.

We additionally show that, also for hard problems including those with random coefficients
with seven different materials, only two iterations of an iterative solver on the local eigenvalue
problems can be sufficient to obtain fast convergence of the overall method.

Eventually, we present some preliminary results for parallel adaptive FETI-DP to show
that Algorithms Ia and Ic both excel the standard nonadaptive approach with respect to run
time and residual norm reduction.
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[7] P. BJØRSTAD AND P. KRZYŻANOWSKI, A flexible 2-level Neumann-Neumann method for structural analysis
problems, in Parallel Processing and Applied Mathematics, R. Wyrzykowski, J. Dongarra, M. Paprzycki,
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