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A POSTERIORI STOPPING CRITERIA FOR SPACE-TIME DOMAIN
DECOMPOSITION FOR THE HEAT EQUATION IN MIXED FORMULATIONS∗
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Abstract. We propose and analyze a posteriori estimates for global-in-time, nonoverlapping domain decomposi-
tion methods for heterogeneous and anisotropic porous media diffusion problems. We consider mixed formulations
with a lowest-order Raviart-Thomas-Nédélec discretization often used for such problems. Optimized Robin transmis-
sion conditions are employed on the space-time interface between subdomains, and different time grids are used to
adapt to different time scales in the subdomains. Our estimators allow to distinguish the spatial discretization, the
temporal discretization, and the domain decomposition error components. We design an adaptive space-time domain
decomposition algorithm, wherein the iterations are stopped when the domain decomposition error does not affect
significantly the global error. Overall, a guaranteed bound for the overall error is obtained at each iteration of the
space-time domain decomposition algorithm, and simultaneously important savings in terms of the number of domain
decomposition iterations can be achieved. Numerical results for two-dimensional problems with strong heterogeneities
and local time-stepping are presented to illustrate the performance of our adaptive domain decomposition algorithm.

Key words. mixed finite element method, global-in-time domain decomposition, nonconforming time grids,
Robin interface conditions, a posteriori error estimate, stopping criteria
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1. Introduction. In many simulations of time-dependent physical phenomena, such as
flow and transport in porous media, the domain of calculation is a union of subdomains with
different physical properties in which the time scales may be very different. In this article we
are concerned with space-time domain decomposition algorithms, well-suited to non-matching
time grids, for solving the following diffusion problem with final time T > 0: find the potential
p and the flux u such that:

u = −SSS∇p in Ω× (0, T ),(1.1a)
∂p

∂t
+∇·u = f in Ω× (0, T ),(1.1b)

p = gD on ΓD × (0, T ),(1.1c)

−u·n = gN on ΓN × (0, T ),(1.1d)
p(·, 0) = p0 in Ω,(1.1e)

where Ω ⊂ Rd, d = 2, 3, is a polygonal (polyhedral if d = 3) domain (open, bounded, and
connected set) with Lipschitz-continuous boundary ∂Ω decomposed into two connected sets
ΓD and ΓN with ΓD of nonzero (d− 1)-dimensional measure, gN ∈ L2(ΓN × (0, T )) is the
Neumann boundary condition, gD ∈ H

1
2 (ΓD × (0, T )) ∩ C0((Γ

D
)× (0, T )) is the Dirichlet

boundary condition, and p0 ∈ H1(Ω) is the initial condition with p0|ΓD = gD(·, 0)|ΓD .
Furthermore, f ∈ L2(Ω× (0, T )) is the source term, n is the outward unit normal vector to
∂Ω, and SSS is a symmetric, bounded, and uniformly positive definite tensor whose terms are
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for simplicity supposed piecewise constant on the mesh Th of Ω defined below and constant
in time. We consider a global-in-time optimized Schwarz method which uses the optimized
Schwarz waveform relaxation (OSWR) approach [30, 49]. This is an iterative method that uses
computations in the subdomains over the whole space-time interval, exchanging space-time
boundary data through transmission conditions on the space-time interfaces. The OSWR
algorithm uses more general (Robin or Ventcell) transmission operators in which coefficients
can be optimized to improve convergence rates; see [30, 41, 49]. The optimization of the Robin
(or Ventcell) parameters was analyzed in [10, 46]. Generalizations to heterogeneous problems
with nonmatching time grids were introduced in [11, 12, 29, 33, 34, 35, 36, 38, 39, 40]. More
precisely, in [12, 35, 36], a discontinuous Galerkin (DG) method for the time discretization
of the OSWR algorithm was introduced and analyzed for the case of nonconforming time
grids. A suitable time projection between subdomains is defined using an optimal projection
algorithm as in [31, 32] with no additional grid. In the context of mixed finite elements, which
are mass conservative and which can handle well heterogeneous and anisotropic diffusion
tensors, we refer also to [22, 38, 40]. The multi-domain problem can actually be reformulated
as an interface problem (see [20], [38], or [3]) that can be solved by various iterative methods
such as the block-Jacobi or GMRES method.

Our first objective in this contribution is to design a posteriori estimates valid at each step
of the space-time domain decomposition algorithm. For general algebraic iterative solvers,
several techniques with residual-based estimates have been developed; see [6, 7, 9]; see
also [50, 53, 57] for goal-oriented a posteriori error estimates. A general framework for
any numerical method and any algebraic solver has been introduced in [25], building on
the ideas from [42], and has been extended to coupled unsteady nonlinear and degenerate
problems in [14, 19]. For lowest-order time discretizations, this approach is based on a
H1(Ω)-conforming reconstruction of the potential, continuous and piecewise affine in time,
and an equilibrated H(div,Ω)-conforming reconstruction of the flux, piecewise constant in
time. It yields a guaranteed and fully computable upper bound of the error measured in the
energy norm augmented by a dual norm of the time derivative (see [24, 61]) without unknown
constants. Using a globally equivalent norm, which contains also the temporal jumps of the
numerical solution, it leads to local space-time efficiency; see the recent contribution [23].

Recently, a posteriori error estimates and stopping criteria for non-overlapping domain
decomposition algorithms such as FETI [27] or BDD [16, 48] have been proposed in [58, 59].
Both upper and lower bounds for the overall error are derived, and the discretization and the
domain decomposition error components are distinguished. Also this approach is based on
H1(Ω)-conforming potential and H(div,Ω)-conforming flux reconstructions and follows the
a posteriori techniques of [26, 45, 55, 56]. A key observation is that such reconstructions
can be easily obtained when the solution approach involves subdomain problems with both
Dirichlet and Neumann interface conditions at each domain decomposition (DD) iteration as
this is the case for FETI or BDD.

For domain decomposition strategies with more general interface conditions and where
neither the conformity of the flux nor that of the potential is preserved (as long as the conver-
gence is not reached), a new adaptive domain decomposition algorithm has been introduced
in [3]. More precisely, three reconstructions are proposed: a flux reconstruction that is
globally H(div,Ω)-conforming and locally conservative in each mesh element based on the
construction of [54, Section 3.5.2] as well as two H1-conforming potential reconstructions,
one globally on Ω relying on the averaging operator Iav (see [1, 13, 43]) and another on each
subdomain Ωi, which introduces weights on the interfaces and whose goal is to separate the
DD and the discretization components. Then, error control is achieved at each step, and an
adaptive domain decomposition algorithm is proposed wherein the iterations are stopped when
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the domain decomposition error does not affect significantly the overall error.
This paper is a continuation of [3]: we provide a new approach that makes it possible

to extend this adaptive domain decomposition algorithm to model coupled time-dependent
diffusion problems. We focus on mixed finite element discretizations in the subdomains and
extend the approaches from [2, 3, 23, 24, 44, 54, 62, 63] for a posteriori error estimates. We
first build a flux reconstruction that is globally H(div,Ω)-conforming, locally conservative in
each mesh element, and piecewise constant in time. Following [3], a simple coarse balancing
problem is first solved, and then we solve a local Neumann problem in a band around the
interfaces in each subdomain by the mixed finite element method. Finally, twoH1-conforming
potential reconstructions are built. One is standard relying on the adjustment of the averaging
operator Iav for parabolic problems following [24], whereas the other one uses weights on the
interfaces following [3] to separate the space-time DD and the discretization components.

The outline of this paper is as follows: after introducing some useful notations in Section 2,
we present in Section 3 the multi-domain formulation using the global-in-time optimized
Schwarz method and reformulate it as a space-time interface problem. We next detail the
fully discrete interface problem using the mixed finite element method in space and the
discontinuous Galerkin method of order zero in time. This interface problem can be solved
using either a block-Jacobi or a GMRES method. In Section 4, we derive a fully computable
upper bound for the error between the exact and the approximate numerical solution at a
given DD iteration in the energy norm. The details about the employed flux and potential
reconstructions are given in Section 5. Finally, in Section 6, we provide numerical results
for a two-dimensional problem with strong heterogeneities, inspired from a problem which
simulates the transport of a contaminant in and around a nuclear waste repository site. It
relies on the GMRES iterations and testifies tight overall error control, simultaneously for the
error due to the domain decomposition and the nonconforming time grids, and an important
reduction of the number of space-time DD iterations.

2. Preliminaries. In this section we introduce the partition of the domain Ω and some
function spaces following the same notations given in [3].

2.1. Partitions of the domain Ω. We suppose that the domain Ω is decomposed into

N non-overlapping polygonal subdomains Ωi, i ∈ J1,N K, such that Ω =

N⋃
i=1

Ωi. For all

i ∈ J1,N K, let ΓN
i := ΓN ∩ ∂Ωi, ΓD

i := ΓD ∩ ∂Ωi, and ni be the unit outward-pointing
normal of ∂Ωi. Let Bi be the set of neighbors of the subdomain Ωi that share at least one
edge if d = 2 with Ωi (face if d = 3), and let |Bi| be the cardinality of this set. Using
this notation, we introduce the interface Γi,j := ∂Ωi ∩ ∂Ωj , j ∈ Bi, between two adjacent
subdomains Ωi and Ωj . Consequently, ∂Ωi = ΓN

i ∪ΓD
i ∪Γi with Γi := ∪

j∈Bi
Γi,j . We also

define Γ :=
⋃

i∈J1,N K

Γi.

We then let Th :=

N⋃
i=1

Th,i, where Th,i is a regular triangulation of the subdomain Ωi,

such that Ωi =
⋃

K∈Th,i

K, where |Th,i| is the number of triangles (tetrahedra if d = 3) in the

i-th subdomain. We suppose that Th,i is a conforming mesh, i.e., if K, K ′ ∈ Th,i, K 6= K ′,
then K ∩K ′ is either an empty set or a common vertex or edge or face. For simplicity, we also
assume that Th is conforming, although this assumption could be easily avoided by introducing
the concept of a simplicial submesh as in, e.g., [21, 54] and the references therein. We denote
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FIG. 2.1. Nonconforming time grids between two subdomains Ω1 and Ω2 (left) and the intersection time grid
(right).

the set of all edges (faces if d = 3) of Th,i by Eh,i and the set of all edges (faces) of K ∈ Th by
EK . E int

h,i is the set of interior edges (faces) of the subdomain Ωi, Eext
h,i := EΓD

h,i ∪EΓN

h,i is the set
of boundary edges (faces) on ∂Ω ∩ ∂Ωi, and EΓi,j

h is the set of edges (faces) on the interface
Γi,j . Then Eh,i = (

⋃
j∈Bi

EΓi,j

h )∪E int
h,i ∪Eext

h,i . Let hK denote the diameter of K, and let hi be

the largest diameter of all triangles (tetrahedra if d = 3) in Th,i, i.e., hi := max
K∈Th,i

hK .

2.2. Partitions of the time interval (0, T ). For i ∈ J1,N K, let {tn,i}0≤n≤Ni be a se-
quence of discrete times of the subdomain Ωi with t0,i = 0 < t1,i < · · ·< tNi−1,i < tNi,i=T.
We denote by Tτ,i the partition of the time interval (0, T ) into subintervals In,i := (tn−1,i, tn,i]
and set τn,i := tn,i − tn−1,i for all 1 ≤ n ≤ Ni. The partition Tτ,i of Ωi is possibly different
from the partition Tτ,j of the neighboring subdomain Ωj , j ∈ Bi. Though our space-time DD
supports such nonconforming time grids, in our a posteriori error analysis we will additionally
need an intersection of all the different time meshes (coarsest common refinement of all

individual time grids): Tτ := {tn}0≤n≤N =

N⋃
i=1

{tn,i}0≤n≤Ni , with In := (tn−1, tn] and

τn := tn − tn−1 for all 1 ≤ n ≤ N . An illustration is given in Figure 2.1 for the case of two
subdomains. Practically, the most appropriate case is when the time grids in the individual
subdomains are not completely independent but rather stem from a subrefinement of some
common time grid.

2.3. Some functions spaces. We recall here the definition of some basic function spaces.
For a given non-empty domain D ⊂ Ω and a real number l, 1 ≤ l ≤ ∞, we employ the
standard functional notations Ll(D) and Ll(D) := [Ll(D)]d of Lebesgue spaces. We denote
by (·, ·)D the scalar product for L2(D) and L2(D) associated with the norm ‖·‖D and by |D|
the Lebesgue measure of D. If D = Ω, then the index will be dropped. Let 〈·, ·〉γ be the
scalar product for L2(γ) on the (d − 1)-dimensional set γ = ∂D or a subset of it. Let also
H1(D) := {v ∈ L2(D); ∇v ∈ L2(D)} be the Sobolev space of scalar-valued functions with
weak derivatives square-integrable, and let H(div, D) := {v ∈ L2(D); ∇·v ∈ L2(D)} be
the space of vector-valued functions whose weak divergences are square-integrable. Finally, for
any scalar-, vector-, or tensor-valued function ϕ defined on Ω, we let ϕi denote the restriction
of ϕ to Ωi, i = 1, . . . ,N .

3. The global-in-time optimized Schwarz method using OSWR. In this section we
describe a nonoverlapping space-time domain decomposition method using optimized Schwarz
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waveform relaxation (OSWR) [10, 30, 46, 49] in the context of a mixed formulation; see [38,
40]. This method is global in time and allows to use different time steps in different subdo-
mains; see [11, 12, 29, 33, 34, 35, 36, 38, 40]. The time projection between subdomains is
obtained by a projection algorithm with linear complexity and without any additional grid;
see [31, 32]. Using the notations of Section 2, the original problem (1.1) can be reformulated
as the following equivalent multi-domain problem, for i ∈ J1,N K:

ui = −SSS∇pi in Ωi × (0, T ),(3.1a)
∂pi
∂t

+∇·ui = f in Ωi × (0, T ),(3.1b)

pi = gD on ΓD
i × (0, T ),(3.1c)

−ui·n = gN on ΓN
i × (0, T ),(3.1d)

p(·, 0) = p0(·) in Ωi,(3.1e)

together with the “natural” transmission conditions on the space-time interfaces:

(3.2) pi = pj and ui·ni + uj ·nj = 0 on Γi,j × (0, T ), ∀j ∈ Bi,

which ensure the continuity of the potential p and of the normal trace of the flux u on the
interface Γi,j×(0, T ). Alternatively, one may replace the natural conditions (3.2) by equivalent
Robin transmission conditions [47] as follows:

(3.3) −βi,jui·ni + pi = −βi,juj ·ni + pj on Γi,j × (0, T ), ∀j ∈ Bi,

where βi,j > 0, j ∈ Bi, i ∈ J1,N K are free parameters that may be optimized to improve the
convergence factor of the iterative domain decomposition algorithm; see [10, 28, 30, 41, 49].

As noticed in [3, 38] in the context of mixed finite elements, the potential pi is in L2(Ωi)
so that pi|Γi,j is not well defined. Thus a Robin condition −βi,jui·ni + pi = ξi,j with given
Robin boundary data ξi,j on Γi,j × (0, T ) will help to define pi on Γi,j × (0, T ) through the
well-defined expression

(3.4) pi|Γi,j := ξi,j + βi,jui·ni,

provided that ui·ni ∈ L2(Γi,j).

3.1. The continuous space-time interface problem. Using a global-in-time Robin-to-
Robin interface operator, the multi-domain problem (3.1) with (3.3) can be reformulated
as a problem where the unknowns are located only on the space-time interfaces; see, e.g.,
[3, 17, 33, 38]. We first introduce the following notations for i ∈ J1,N K:

LT (Γi) :=
∏
j∈Bi

L2(0, T ;L2(Γi,j)),

VT,i := L2(0, T ;L2(Ωi))× L2(0, T ;L2(ΓD
i ))× L2(0, T ;L2(ΓN

i ))×H1(Ωi).

Following [3, 38] and for the abstract formulation of the interface problem, we introduce
the space Wi := {v ∈ H(div,Ωi); v·ni ∈ L2(∂Ωi)} with an increased normal trace
regularity to handle Robin conditions. One could possibly weaken this requirement by using
the techniques of [15]; in any case, the present a posteriori error analysis does not rely on
it. We then define the space WgN

i := {v ∈ Wi; v·ni = gN on ΓN ∩ ∂Ωi} of functions
satisfying the Neumann boundary condition on ΓN. We now introduce the subproblem solution
operator for the subdomain Ωi, i ∈ J1,N K, that maps the available Robin condition ξi and
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equation data stored in the vectorFFF i to ξi together with the subdomain potential pi and flux
ui:

(3.5) Mi :
LT (Γi)× VT,i → LT (Γi)×H1(0, T ;L2(Ωi))× L2(0, T ; WgN

i ),

(ξi,FFF i) → (ξi, pi,ui),

where ξi := (ξi,j)j∈Bi ,FFF i := (f |Ωi , gD|ΓD
i
, gN|ΓN

i
, p0|Ωi), and where (pi,ui) is the solution

of the following problem in Ωi (in an appropriate mixed formulation):

ui = −SSS∇pi in Ωi × (0, T ),(3.6a)
∂pi
∂t

+∇·ui = f in Ωi × (0, T ),(3.6b)

pi = gD on ΓD
i × (0, T ),(3.6c)

−ui·ni = gN on ΓN
i × (0, T ),(3.6d)

−βi,jui·ni + pi = ξi,j on Γi,j × (0, T ), ∀j ∈ Bi,(3.6e)
pi(·, 0) = p0(·) in Ωi.(3.6f)

Using (3.4), we also introduce the operator Ri that maps the available Robin condition ξi
together with a potential pi and flux ui to a new Robin datum
(3.7)

Ri :
LT (Γi)×H1(0, T ;L2(Ωi))×L2(0, T ; WgN

i )→ LT (Γi),

(ξi, pi,ui) →
(
βj,iui·ni + (ξi,j + βi,jui·ni)

)
j∈Bi

.

The Robin-to-Robin operator is then defined as

SRtR
i := Ri ◦Mi : LT (Γi)× VT,i → LT (Γi).

Condition (3.3) with (pi,ui) the solution of the subproblem (3.6) leads to the equivalent
space-time interface problem: find ξ := (ξ1, . . . , ξN ) ∈ LT (Γ) :=

∏
i∈J1,N K

LT (Γi) such that

(3.8) (ξi)j = (SRtR
j (ξj ,FFF j))i, ∀j ∈ Bi, ∀i ∈ J1,N K.

Using the relation Mj(ξj ,FFFj) = Mj(ξj ,000) +Mj(000,FFF j) as well as the linearity of the
operatorRi and defining

SR :
LT (Γ) → LT (Γ)

ξ →
((

(ξi)j − (SRtR
j (ξj ,000))i

)
j∈Bi

)
1≤i≤N

,

and

χχχ :=
((

(SRtR
j (000,FFF j))i

)
j∈Bi

)
1≤i≤N

,

problem (3.8) can be rewritten as:

(3.9) SR ξ = χχχ.

The interface problem (3.9) is usually solved by iterative methods such as block-Jacobi
iterations, which correspond to the OSWR algorithm, or Krylov-type methods like GMRES;
see, e.g., [3] for details.
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3.2. The fully discrete and nonconforming-in-time interface problem. In this part,
after introducing some notations, we present the fully discrete counterpart of the interface
problem (3.9) using the lowest-order mixed finite element method (MFE) in space and the
discontinuous Galerkin method of order zero in time (DG0) [60]. In the case of different time
meshes in different subdomains, the semi-discrete-in-time counterpart of (3.9) is analyzed
in [35, 36], where it is shown that the method preserves the order of the discontinuous Galerkin
method. This result is shown numerically in the context of the MFE method in [38]. Recall
that for a piecewise-constant-in-time source term f , the DG0-in-time scheme corresponds to
the backward Euler scheme.

3.2.1. Notations.

Time discretization. Let E be a space of functions defined on a subset D of Ω (typically
a subdomain or an interface), and let v(·, t) be a function taking its values in E. We denote by
P 0
Tτ,i(E) the vector space such that v(x, ·), x ∈ D, is piecewise constant in time:

(3.10) P 0
Tτ,i(E) := {v(·, t) : (0, T )→ E; v(·, t) is constant on In,i, 1 ≤ n ≤ Ni}.

A function in P 0
Tτ,i(E) is thus defined by the Ni functions {vn := v(·, t)|In,i}1≤n≤Ni in E.

In particular, for the physical data we define f̃i ∈ P 0
Tτ,i(L

2(Ωi)), g̃D,i ∈ P 0
Tτ,i(L

2(ΓD
i )), and

g̃N,i ∈ P 0
Tτ,i(L

2(ΓN
i )) such that, for n = 1, . . . , N ,

f̃i|In,i := f̃n,i, g̃D,i|In,i := g̃n,iD , and g̃N,i|In,i := g̃n,iN , 1 ≤ n ≤ Ni,

where

f̃n,i :=
1

τn,i

∫
In,i

f(·, t)dt, g̃n,iD :=
1

τn,i

∫
In,i

gD(·, t)dt, g̃n,iN :=
1

τn,i

∫
In,i

gN(·, t)dt.

In addition, and especially for use in Definition 4.3 below for the a posteriori estimates, we
denote by P 1

Tτ,i(E) the vector space such that v(x, ·) is continuous and piecewise affine in
time:

P 1
Tτ,i(E) :=

{
v(·, t) : (0, T )→ E; v(·, t) ∈ C0(0, T ;E),

v(·, t) is affine on In,i, 1 ≤ n ≤ Ni
}
.

(3.11)

Note that a function in P 1
Tτ,i(E) is defined by N + 1 functions {vn := v(·, tn)}0≤n≤Ni and

that if v ∈ P 1
Tτ,i(E), then ∂tv ∈ P 0

Tτ,i(E) is such that

(3.12) ∂tv|In,i =
1

τn,i
(vn − vn−1), 1 ≤ n ≤ Ni.

Time projections. For a given interface Γi,j , we introduce the L2-projection opera-
tor Πi,j from P 0

Tτ,j (L
2(Γi,j)) onto P 0

Tτ,i(L
2(Γi,j)), i.e., for φ ∈ P 0

Tτ,j (L
2(Γi,j)), the projec-

tion (Πi,jφ)|In,i is the average value of φ on In,i for n = 1, . . . , Ni:

(Πi,jφ)|In,i =
1

|In,i|

Nj∑
l=1

∫
Il,j∩In,i

φ.
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Space discretization. LetMh,i×Wh,i ⊂ L2(Ωi)×H(div,Ωi) be the Raviart-Thomas-
Nédélec mixed finite element spaces of order 0 for each subdomain Ωi:

Mh,i := {qh,i ∈ L2(Ωi); qh,i|K ∈ P0(K), ∀K ∈ Th,i},

where P0(K) is the space of polynomials of degree 0, and

Wh,i := {vh,i ∈ H(div,Ωi); vh,i|K ∈ RTN0(K), ∀K ∈ Th,i},

where RTN0(K) := [P0(K)]d + xP0(K), x ∈ Rd, is the Raviart-Thomas-Nédélec space of
degree zero associated with the element K ∈ Th,i. Let |e| be the measure of an edge e ⊂ ΓN

i

(face if d = 3). We then define

W0
h,i :=

{
wh,i ∈Wh,i; wh,i·n|e = 0

}
, e ⊂ ΓN

i ,

WgN,n
h,i :=

{
wh,i ∈Wh,i; wh,i·n|e =

1

|e|

∫
e

g̃n,iN dγ
}
, e ⊂ ΓN

i , n = 1, . . . , Ni,

WgN

hτ,i := {whτ,i ∈ P 0
Tτ,i(Wh,i); whτ,i|In,i ∈WgN,n

h,i }.

In the following, for each subdomain Ωi, phτ,i is a function in P 0
Tτ,i(Mh,i) such that, on each

element K ∈ Th,i, phτ,i(·, 0) =
1

|K|

∫
K

p0dx and uhτ,i is a function in WgN

hτ,i.

Note that for a function vh,i ∈Wh,i and a given boundary Γ, the normal trace of vh,i
on Γ is in P0(EΓ

h ). The discrete spaces for the Robin and physical data are, respectively, for
i ∈ J1,N K,

LTτ,i,h(Γi) :=
∏
j∈Bi

P 0
Tτ,i(P0(EΓi,j

h )),

VTτ,i := P 0
Tτ,i(L

2(Ωi))× P 0
Tτ,i(L

2(ΓD
i ))× P 0

Tτ,i(L
2(ΓN

i ))×H1(Ωi).

3.2.2. Discrete interface problem. The discrete counterpart of the subproblem solution
operatorMi, i ∈ J1,N K, from (3.5)–(3.6) is as follows:

(3.13) Mhτ,i :
LTτ,i,h(Γi)× VTτ,i → LTτ,i,h(Γi)× P 0

Tτ,i(Mh,i)×WgN

hτ,i,

(ξhτ,i,FFFτ,i) → (ξhτ,i, phτ,i,uhτ,i),

where ξhτ,i := (ξhτ,i,j)j∈Bi :=
{(
ξnh,i,j

)
j∈Bi

}
1≤n≤Ni

with ξnh,i,j being the piecewise space-

time constant discrete Robin condition,FFFτ,i = (f̃i, g̃D,i, g̃N,i, p0|Ωi), and where (phτ,i,uhτ,i),
phτ,i|In,i := pnh,i, uhτ,i|In,i := unh,i, is the solution of the following fully discrete problem in
Ωi: find unh,i ∈WgN,n

h,i and pnh,i ∈Mh,i on the interval In, for n = 1, . . . , Ni, such that

ai(u
n
h,i,vh,i)− bi(vh,i, p

n
h,i) = `̀̀ni (vh,i), ∀vh,i ∈W0

h,i,(3.14a)
1

τn,i
(pnh,i − pn−1

h,i , qh,i)Ωi + bi(u
n
h,i, qh,i) = (f̃n,i, qh,i)Ωi , ∀qh,i ∈Mh,i,(3.14b)

(p0
h,i, qh,i)Ωi = (p0, qh,i), ∀qh,i ∈Mh,i,(3.14c)

where the bilinear forms ai and bi and the linear form `̀̀ni are defined by:

ai :

Wh,i×Wh,i → R,
ai(uh,i,vh,i) := (SSS−1uh,i,vh,i)Ωi+

∑
j∈Bi
〈βi,juh,i·ni,vh,i·ni〉Γi,j ,
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bi :
Wh,i×Mh,i → R,
bi(vh,i, qh,i) := (qh,i,∇·vh,i)Ωi ,

`̀̀ni :

Wh,i → R,
`̀̀i(vh,i) := −〈g̃n,iD ,vh,i·ni〉ΓD

i
−
∑
j∈Bi
〈ξnh,i,j ,vh,i·ni〉Γi,j .

The discrete counterpartRhτ,i of the operatorRi defined in (3.7) is
(3.15)

Rhτ,i :
LTτ,i,h(Γi)×P 0

Tτ,i(Mh,i)×WgN

hτ,i→ LTτ,i,h(Γi),

(ξhτ,i, phτ,i,uhτ,i) →
(
βj,iuhτ,i·ni + (ξhτ,i,j + βi,juhτ,i·ni)

)
j∈Bi

.

The discrete Robin-to-Robin operator is then defined as:

(3.16) SRtR
hτ,i := Rhτ,i ◦Mhτ,i : LTτ,i,h(Γi)× VTτ,i → LTτ,i,h(Γi).

Finally, the discrete counterpart of the space-time interface problem (3.9) is as follows: find
ξhτ := (ξhτ,1, . . . , ξhτ,N ) ∈ LTτ,i,h(Γ) :=

∏
i∈J1,N K

LTτ,i,h(Γi) such that

(3.17) SR,hτ ξhτ = χχχhτ ,

where

(3.18) SR,hτ :
LTτ,i,h(Γ) → LTτ,i,h(Γ),

ξhτ →
((

(ξhτ,i)j − (SRtR
hτ,j (ξhτ,j ,000))i

)
j∈Bi

)
1≤i≤N

,

and

χχχhτ :=
((

(SRtR
hτ,j (000,FFFτ,j))i

)
j∈Bi

)
1≤i≤N

.

Applying the block-Jacobi or the GMRES iteration as in [3] gives rise to the discrete
approximations

pkhτ |Ωi×In,i := pk,nh,i , ukhτ |Ωi×In,i := uk,nh,i , ∀i ∈ J1,N K, 1 ≤ n ≤ Ni.

REMARK 3.1. As noticed in [3], for time-matching grids, at each iteration of the domain
decomposition method, continuity of the normal traces of ukhτ holds across the edges (faces if
d = 3) between two simplices in each subdomain Ωi but not across the interfaces in Γi. The
continuity of the normal traces of ukhτ (and of the pressure in the sense of Remark 4.1 below)
will only be satisfied at convergence of the space-time DD algorithm.

4. General a posteriori error estimate: fully computable upper bound. The purpose
of this section is to bound the error using the space-time energy norm given in [23, 24, 61]
between the exact solution and the approximate solution at each iteration k of the space-time
DD method. The indicators which bound the error are completely calculable and constructed
from the approximate solution (pkhτ ,u

k
hτ ). We first construct a postprocessing function

p̃khτ from which we then obtain a potential reconstruction skhτ at each iteration of the DD
algorithm following [24]. We also construct a subdomain potential reconstruction skhτ,i for
each subdomain Ωi, ∀i ∈ J1,N K, at each iteration of the DD algorithm, following the idea
presented in [3], so as to distinguish the error from H1

0 (Ω)-nonconformity and from domain

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

160 S. ALI HASSAN, C. JAPHET, AND M. VOHRALÍK

decomposition. Then, using the same idea of extracting bands and solving local Neumann
problems as presented in [3] to evaluate the error in the H(div,Ω)-nonconformity, we build a
flux reconstruction σkhτ at each iteration of the DD algorithm. Then, the space discretization
error, the time discretization error, and the domain decomposition error are distinguished.

We first introduce the broken Sobolev space

H1(Th) := {v ∈ L2(Ω); v|K ∈ H1(K),∀K ∈ Th}

and define the energy semi-norm on H1(Th) by

|||ϕ|||2 :=
∑
K∈Th

|||ϕ|||2K :=
∑
K∈Th

‖SSS
1
2∇ϕ‖2K ,

for all ϕ ∈ H1(Th), and the energy norm on L2(Ω) by

|||v|||2? :=
∑
K∈Th

|||v|||2?,K :=
∑
K∈Th

‖SSS−
1
2 v‖2K ,

for all v ∈ L2(Ω). Then, for a given function v, we let its jump and average be defined
respectively by

[[v]] := v|K − v|K′ and {{v}} :=
1

2
(v|K + v|K′) if e ∈

(
∪

j∈Bi
EΓi,j
h

)
∪E int

h,i ,

[[v]] := v|e − gD and {{v}} :=
1

2
(v|e + gD) if e ∈ EΓD

h,i .

In what follows, for D ⊂ Ω, we denote respectively by cSSS,D, CSSS,D the smallest and the
largest eigenvalue of the tensor SSS in D. Finally, for the forthcoming theorems, we will use the
Poincaré inequality: for K ∈ Th, since K is convex, we have:

(4.1) ‖ϕ− π0ϕ‖K ≤
hK
π
‖∇ϕ‖K ∀ϕ ∈ H1(K),

where π0ϕ is the mean value of ϕ on K.

4.1. Construction of the unknown values of (pkhτ,i, u
k
hτ,i) on Tτ,j , j ∈ Bi. At iter-

ation k of the DD algorithm, when different time grids are employed in different subdomains,
we obtain for all i ∈ J1,N K the couple (pk,nh,i ,u

k,n
h,i ) at each time step tn,i, 1 ≤ n ≤ Ni.

Here, tn,i 6= tn,j for j ∈ Bi in general, and, consequently, the couples (pk,nh,i ,u
k,n
h,i ) for

1 ≤ n ≤ Ni are not approximations at the same times as (pk,nh,j ,u
k,n
h,j ), 1 ≤ n ≤ Nj . For our a

posteriori error analysis, we first need to define these approximations pairs on the common
refinement of all individual time grids Tτ given in Section 2.2. To do so, for i ∈ J1,N K,
1 ≤ n ≤ Ni, we first compute the number R of the new time steps between tn−1,i and
tn,i. Let tm−1 = tn−1,i and tm+R = tn,i be the two successive time steps in {tn,i}0≤n≤Ni
where the couples (pk,m−1

h,i ,uk,m−1
h,i ) and (pk,m+R

h,i ,uk,m+R
h,i ) are known. We then compute

the couple (pk,m−1+r
h,i ,uk,m−1+r

h,i ) for r = 1, . . . , R by

uk,m−1+r
h,i := uk,m−1

h,i +
r

R+ 1
(uk,m+R
h,i − uk,m−1

h,i ),

pk,m−1+r
h,i := pk,m−1

h,i +
r

R+ 1
(pk,m+R
h,i − pk,m−1

h,i ).

Note that this is a simple explicit postprocessing step. Generalizing (3.10) and (3.11), we
define the following two spaces for the intersection time grid Tτ :

P 0
Tτ (E) := {v(·, t) : (0, T )→ E; v(·, t) is constant on In, 1 ≤ n ≤ N},
P 1
Tτ (E) := {v(·, t) : (0, T )→ E; v(·, t)∈C0(0, T ;E), v(·, t) is affine on In, 1 ≤ n ≤ N}.
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4.2. Postprocessing of the approximate solution. We first introduce a postprocessing
step as described in [5, 8, 62]; in our case, we apply it at each time step. We in particular
construct p̃k,nh,i ∈ P2(Th,i) for each subdomain i ∈ J1,N K at each iteration k and for each time
step n of the intersection time grid Tτ , 0 ≤ n ≤ N , such that

−SSS∇p̃k,nh,i |K = uk,nh,i |K , ∀K ∈ Th,i,(4.2a)

π0(p̃k,nh,i |K) = pk,nh,i |K , ∀K ∈ Th,i.(4.2b)

Therefrom, denoting as usual p̃k,nh |Ωi = p̃k,nh,i , we construct a postprocessing estimate of the
approximate solution for which we will perform the a posteriori error analysis and which is a
discontinuous piecewise second-order polynomial in space and continuous piecewise affine in
time:

p̃khτ ∈ P 1
Tτ (P2(Th)), p̃khτ (·, tn) := p̃k,nh .

REMARK 4.1. As discussed in [62], p̃k,nh |Ωi is not in H1(Ωi) but is weakly continuous,
i.e., 〈[[p̃k,nh ]], 1〉e = 0 on the interior edges e ∈ E int

h,i but not on the edges e ∈ EΓi,j
h located

on the interface. Only at convergence and for a conforming time grid, we obtain the weak
continuity 〈[[p̃k,nh ]], 1〉e = 0 for e ∈ EΓi,j

h .

4.3. The concept of potential and flux reconstruction for the heat equation. The
main idea of our estimation is to construct the following three auxiliary objects for each itera-
tion k, k ≥ 0, of the global-in-time DD algorithm: skhτ , skhτ , and σkhτ . These reconstructions
will be the central tools used in Theorem 4.5 below.

DEFINITION 4.2 (Subdomain potential reconstruction). For Ωi, i ∈ J1,N K, we call a
subdomain potential reconstruction any function skhτ,i constructed from p̃khτ,i such that

i. it is subdomain H1(Ωi)-conforming in space, continuous and piecewise affine in
time, i.e.,

skhτ,i ∈ P 1
Tτ (H1(Ωi) ∩ C0(Ωi)),(4.3a)

skhτ,i|ΓD
i

= gD|ΓD
i

;(4.3b)

ii. at each time step n of the common refinement temporal mesh Tτ , 0 ≤ n ≤ N , the
mean values of p̃k,nh,i are preserved,

(4.4) (sk,nh,i , 1)K = (p̃k,nh,i , 1)K , ∀K ∈ Th,i,

where sk,nh,i := skhτ,i(·, tn);
iii. it is built locally subdomain by subdomain to capture the nonconformity from the

numerical scheme by comparing it with p̃khτ in the sense that the estimators (4.12d),
and (4.12g) as well as (4.12b) below are as small as possible (recall (4.2a) which
explains the comparison of the fluxes −SSS∇sk,nh and uk,nh ).
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DEFINITION 4.3 (Potential reconstruction). We call a potential reconstruction any
function skhτ constructed from p̃khτ such that

i. it is globally H1(Ω)-conforming in space, continuous and piecewise affine in time,
i.e.,

skhτ ∈ P 1
Tτ (H1(Ω) ∩ C0(Ω)),(4.5a)

skhτ |ΓD = gD;(4.5b)

ii. at each time step n of the common refinement temporal mesh Tτ , 0 ≤ n ≤ N , the
mean values of p̃k,nh are preserved,

(4.6) (sk,nh , 1)K = (p̃k,nh , 1)K , ∀K ∈ Th,

where sk,nh := skhτ (·, tn);
iii. its comparison with skhτ of Definition 4.2 estimates the domain decomposition error

in the sense that{∫ T

0

|||skhτ − skhτ |||2dt
} 1

2 → 0 and
{∫ T

0

||∂t(skhτ − skhτ )||2dt
} 1

2 → 0

when k →∞ in the case of a conforming time grid.
DEFINITION 4.4 (Equilibrated flux reconstruction). We call an equilibrated flux recon-

struction any function σkhτ constructed from p̃khτ , ukhτ such that
i. it is H(div)-conforming and locally conservative in space and piecewise constant in

time, i.e.,

(4.7) σkhτ ∈ P 0
Tτ (H(div,Ω));

ii. it has a local conservation property at each time step n of Tτ , 0 ≤ n ≤ N :

(4.8) (f̃n − ∂tp̃khτ |In −∇·σ
k,n
h , 1)K = 0, ∀K ∈ Th,

together with the Neumann condition:

(4.9) −(σk,nh ·nΩ, 1)e = (g̃N, 1)e, ∀e ∈
N
∪
i=1
EΓN

h,i ,

where, recall, by convention, σk,nh := σkhτ |In ;
iii. its comparison with ukhτ can be used to estimate the DD error in the sense that{∫ T

0

|||ukhτ −σkhτ |||2?dt
} 1

2 → 0 when k →∞ in the case of a conforming time grid.

4.4. Fully computable upper bound. Let us define X := L2(0, T ;H1
0 (Ω)) and

X ′ = L2(0, T ;H−1(Ω)). We consider ΓN = ∅ and gD = 0 in this section for simplic-
ity keeping in mind that all the results can be extended to the general case proceeding as in,
e.g., [21]; see also the references therein. To work with the nonconforming approximation p̃khτ
of Section 4.2, we introduce the broken X-norm where∇ is the broken gradient operator:

|||q|||2X :=

N∑
n=1

∫
In

||SSS
1
2∇q(·, t)||2dt =

N∑
n=1

∫
In

∑
K∈Th

||SSS
1
2∇q(·, t)||2K dt.

Let Y := {q ∈ X; ∂tq ∈ X ′}. For q ∈ Y , we will use the space-time norm proposed in [23]:

(4.10) |||q|||2Y := |||q|||2X + ||∂tq||2X′ + ||q(·, T )||2,
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where

||∂tq||X′ :=

{∫ T

0

||∂tq||2H−1(Ω) dt

} 1
2

:=

{∫ T

0

(
sup

v∈H1
0 (Ω); ‖SSS

1
2∇v‖=1

〈∂tq, v〉
)2

dt

} 1
2

,

and we again extend the Y -norm and the X ′ norm to piecewise regular-in-space functions
only since p̃hτ /∈ X . By the weak solution of problem (1.1) under the above assumptions, we
then understand p ∈ Y such that p(·, 0) = p0 and

(4.11)
∫ T

0

{〈∂tp, v〉+ (SSS∇p,∇v)}dt =

∫ T

0

(f, v) dt ∀v ∈ X.

Our main result is then:
THEOREM 4.5 (A posteriori error estimates for the potential, distinguishing space,

time, and domain decomposition error components). Let p be the weak solution of prob-
lem (1.1) given by (4.11). Let p̃khτ ∈ P 1

Tτ (H1(Th)) be an arbitrary approximation to p,
in particular, p̃k,nh = p̃khτ (·, tn) can be the postprocessing approximation (4.2) of the solu-
tion (pk,nh ,uk,nh ) at iteration k of the global-in-time Robin DD algorithm (3.14)–(3.17). Let
uk,nh |K := −SSS∇p̃k,nh |K in each element K ∈ Th. Let skhτ,i be the subdomain potential
reconstruction of Definition 4.2, let skhτ be the potential reconstruction of Definition 4.3, and
let σkhτ be the equilibrated flux reconstruction of Definition 4.4. Then there holds

|||p− p̃khτ |||Y ≤ η̃k := ηksp + ηktm + ηkDD,NCtm
+ ηkIC + ||f − f̃ ||X′ ,

where the “spatial discretization estimator” is

ηksp :=

{
N∑
n=1

τn
∑
K∈Th

(ηk,nosc,K + ηk,nDF,1,a,K)2

} 1
2

+

{
N∑
n=1

∫
In

∑
K∈Th

(ηkNCP,1,a,K(t))2dt

} 1
2

+

{
N∑
n=1

τn
∑
K∈Th

(ηk,nNCP,2,a,K)2

} 1
2

+ ||sk,Nh − p̃k,Nh ||,

the “time discretization estimator” is

ηktm :=

{
N∑
n=1

∑
K∈Th

1

3
τn|||sk,nh − sk,n−1

h |||2K

} 1
2

,

the “domain decomposition and nonconformity discretization in time estimator” is

ηkDD,NCtm
:=

{
N∑
n=1

τn
∑
K∈Th

(ηk,nDF,1,b,K + ηk,nNCP,1,b,K)2

} 1
2

+

{
N∑
n=1

∫
In

∑
K∈Th

(ηkNCP,1,b,K(t))2dt

} 1
2

+

{
N∑
n=1

τn
∑
K∈Th

(ηk,nNCP,2,b,K)2

} 1
2

,

and the “initial condition estimator” is

ηkIC := ||sk,0h − p0||.
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For all 1 ≤ n ≤ N and K ∈ Th, the following terms are the elementwise estimators:

ηk,nosc,K :=
hK
π
c
− 1

2

SSS,K‖f̃
n − ∂tskhτ |In −∇·σ

k,n
h ‖K , “data oscillation”,(4.12a)

ηk,nDF,1,a,K := |||SSS∇sk,nh + uk,nh |||?,K , “constitutive relation”,(4.12b)

ηk,nDF,1,b,K := |||uk,nh − σk,nh |||?,K , “DD flux nonconformity”,(4.12c)

ηkNCP,1,a,K(t) := |||(p̃khτ − skhτ )(t)|||K , t ∈ In, “potential nonconformity”,(4.12d)

ηkNCP,1,b,K(t) := |||(skhτ − skhτ )(t)|||K , t ∈ In, “DD potential nonconformity”,(4.12e)

ηk,nNCP,1,b,K := |||sk,nh − sk,nh |||K , “DD potential nonconformity”,(4.12f)

ηk,nNCP,2,a,K :=
hK
π
c
− 1

2

SSS,K ||∂t(p̃
k
hτ − skhτ )|In ||K , “potential nonconformity”,(4.12g)

ηk,nNCP,2,b,K :=
hK
π
c
− 1

2

SSS,K ||∂t(s
k
hτ − skhτ )|In ||K , “DD potential nonconformity”,(4.12h)

where we recall that cSSS,K is the smallest eigenvalue of the tensor SSS in K.
Proof. Using Theorem 2.1 and (2.7) in [23], for a given s ∈ Y we have:

(4.13) |||p− s|||2Y = ||R(s)||2X′ + ||p0 − s(·, 0)||2,

where

||R(s)||X′ := sup
v∈X, |||v|||X=1

〈R(s), v〉X′,X

with the residual of the weak formulation (4.11) given for any v ∈ X by

〈R(s), v〉X′,X :=

∫ T

0

{(f, v)− 〈∂ts, v〉 − (SSS∇s,∇v)} (t) dt.

In our case, at iteration k of the DD algorithm, p̃khτ /∈ Y . For this reason, we cannot
apply (4.13) to |||p − p̃khτ |||Y . Thus, we decompose |||p − p̃khτ |||Y into two parts using the
triangle inequality and then apply (4.13) to |||p− skhτ |||Y since skhτ ∈ Y :

|||p− p̃khτ |||Y ≤ |||p− skhτ |||Y + |||skhτ − p̃khτ |||Y
≤ ||R(skhτ )||X′ + ηkIC + |||skhτ − p̃khτ |||Y .

(4.14)

It remains to provide a computable upper bound for ||R(skhτ )||X′ together with |||skhτ − p̃khτ |||Y
and then combine these results.

1) A computable upper bound for ||R(skhτ )||X′ . To bound the dual norm ||R(skhτ )||X′ ,
we proceed as in [24, Lemma 5.2]. Let v ∈ X with |||v|||X = 1 be fixed. By adding and
subtracting (σkhτ ,∇v), using the Green theorem, and adding and subtracting (f̃ , v), we obtain:

〈R(skhτ ), v〉X′,X

=

∫ T

0

{
(f, v)− (∂ts

k
hτ +∇·σkhτ , v)− (SSS∇skhτ + σkhτ ,∇v)

}
(t) dt

=

∫ T

0

{
(f − f̃ , v) + (f̃ − ∂tskhτ −∇·σkhτ , v)− (SSS∇skhτ + σkhτ ,∇v)

}
(t) dt

=: R1 +R2 +R3.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

A POSTERIORI ESTMATES FOR SPACE-TIME DD METHOD IN MIXED FORMULATIONS 165

First, as |||v|||X = 1, we have |R1| ≤ ||f − f̃ ||X′ |||v|||X = ||f − f̃ ||X′ . Then, we use the
property skhτ ∈ P 1

Tτ (H1
0 (Ω) ∩ C0(Ω)) (see (4.5)) for the case where ΓN = ∅ and gD = 0

together with σkhτ ∈ P 0
Tτ (H(div,Ω)) (see (4.7)) to infer

R2 =

N∑
n=1

∫
In

(f̃n − ∂tskhτ |In −∇·σ
k,n
h , v(t)) dt.

Next, Lemma 3.1 in [24], which is a consequence of (4.5) and (4.6), gives for each time step n,
1 ≤ n ≤ N ,

(4.15) (∂ts
k
hτ |In , 1)K = (∂tp̃

k
hτ |In , 1)K , ∀K ∈ Th.

Then, for all n, 1 ≤ n ≤ N , using this property and (4.8), we obtain

(f̃n − ∂tskhτ |In −∇·σ
k,n
h , 1)K = 0, ∀K ∈ Th.

Thus, we can write for a.e. t ∈ In
(f̃n − ∂tskhτ |In −∇·σ

k,n
h , v(t))K = (f̃n − ∂tskhτ |In −∇·σ

k,n
h , v(t)− π0v(t))K

≤ hK
π
c
− 1

2

SSS,K ||f̃n − ∂ts
k
hτ |In −∇·σ

k,n
h ||K |||v|||K(t),

employing the Poincaré inequality (4.1) on each K ∈ Th. Finally,

R3 ≤
N∑
n=1

∫
In

∑
K∈Th

|||SSS∇skhτ (t) + σk,nh |||?,K |||v|||K(t).

The Cauchy-Schwarz inequality yields by collecting the above estimates

|R2 +R3| ≤
{ N∑
n=1

∫
In

∑
K∈Th

(ηk,nosc,K + |||SSS∇skhτ (t) + σk,nh |||?,K)2 dt

} 1
2

.

Using the triangle inequality, we obtain:

|||SSS∇skhτ (t) + σk,nh |||?,K ≤ |||SSS∇(skhτ (t)− sk,nh )|||?,K + |||SSS∇sk,nh + σk,nh |||?,K ,

which leads to{ N∑
n=1

∫
In

∑
K∈Th

(ηk,nosc,K + |||SSS∇skhτ (t) + σk,nh |||?,K)2 dt

} 1
2

≤
{ N∑
n=1

∫
In

∑
K∈Th

(ηk,nosc,K + |||SSS∇sk,nh + σk,nh |||?,K)2 dt

} 1
2

+

{ N∑
n=1

∫
In

∑
K∈Th

|||SSS∇(skhτ (t)− sk,nh )|||2?,K dt

} 1
2

,

where both terms on the right-hand side can be now integrated in time. Combining the
above results and for the last term proceeding as in [61, equation 6.5], (

∫
In

(s − sn)2(t) dt

=
∫ 1

0
(sn − sn−1)2τnr2dr = (sn − sn−1)2τn/3), we finally obtain the computable upper

bound for ||R(skhτ )||X′ as follows:

||R(skhτ )||X′ ≤

{
N∑
n=1

τn
∑
K∈Th

(ηk,nosc,K + |||SSS∇sk,nh + σk,nh |||?,K)2

} 1
2

+ ηktm + ||f − f̃ ||X′ .

(4.16)
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2) A computable upper bound for |||skhτ − p̃
k
hτ |||Y . We have by definition (4.10)

(4.17) |||skhτ − p̃khτ |||2Y = |||skhτ − p̃khτ |||2X + ||∂t(skhτ − p̃khτ )||2X′ + ||sk,Nh − p̃k,Nh ||2.

It is clear that

(4.18) |||skhτ − p̃khτ |||2X =

N∑
n=1

∫
In

∑
K∈Th

|||(p̃khτ − skhτ )(t)|||2Kdt.

To bound the middle term in (4.17), we follow [24, Lemma 5.3]. Let v ∈ X with |||v|||X = 1
be fixed. As skhτ and p̃khτ are piecewise affine and continuous in time, we can write:

||∂t(skhτ − p̃khτ )||2X′ =

∫ T

0

||∂t(skhτ − p̃khτ )||2H−1(Ω) dt

=

N∑
n=1

∫
In

sup
v∈H1

0 (Ω); ‖SSS
1
2∇v‖=1

(∂t(s
k
hτ − p̃khτ )|In , v)2 dt.

Then, since for all 1 ≤ n ≤ N and on each element K ∈ Th, the quantity ∂t(skhτ − p̃khτ )|In
has zero mean value by (4.15),

||∂t(skhτ − p̃khτ )||2X′ =

N∑
n=1

∫
In

sup
v∈H1

0 (Ω); ‖SSS
1
2∇v‖=1

(∂t(s
k
hτ − p̃khτ )|In , v(t)− π0v(t))2 dt.

Using the Cauchy-Schwarz and Poincaré inequalities, one obtains

(4.19) ||∂t(skhτ − p̃khτ )||2X′ ≤
N∑
n=1

∫
In

{ ∑
K∈Th

(
hK
π
c
− 1

2

SSS,K ||∂t(s
k
hτ − p̃khτ )|In ||K

)2

|||v|||2
}

dt,

where the right-hand side can be easily integrated in time. Finally, using |||v|||X = 1 and
from (4.17), (4.18), and (4.19), we obtain:

|||skhτ − p̃khτ |||2Y ≤
N∑
n=1

∫
In

∑
K∈Th

|||(p̃khτ − skhτ )(t)|||2Kdt

+

N∑
n=1

τn
∑
K∈Th

(
hK
π
c
− 1

2

SSS,K ||∂t(s
k
hτ − p̃khτ )|In ||K

)2

+ ||sk,Nh − p̃k,Nh ||2.

(4.20)

3) The final bound. The final bound follows from (4.14), (4.16), and (4.20) by triangle
inequalities distinguishing the error components due to the discretization in time ηktm, the
discretization in space ηksp, the global-in-time DD method ηkDD,NCtm

, the initial condition ηkIC,
and the data oscillation ||f − f̃ ||X′ .

REMARK 4.6. The estimator ηDD,NCtm
mixes the error due to the global-in-time domain

decomposition method with the possible nonconformity discretization in time. Indeed, there
is in particular no reason for ηk,nDF,1,b,K given in (4.12c), which is part of ηkDD,NCtm

, to con-
verge to zero for k → ∞ for nonconforming-in-time grids. Indeed, σk,nh satisfies the local
conservation (4.8) on each element K in space, but this is not necessarily the case for uk,nh on
nonconforming-in-time grids. In the case of the same time grid in all the subdomains, however,
ηDD,NCtm

vanishes at convergence of the DD algorithm.
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5. Potential and flux reconstructions for the global-in-time DD in the MFE method.
In this section, we propose concrete candidates for the reconstructions sk,nh,i , sk,nh , and σk,nh of
Definitions 4.2–4.4, so that Theorem 4.5 becomes practicable. Let 1 ≤ n ≤ N be fixed.

5.1. Potential reconstruction. Let Ta := {K ∈ Th; a ∈ K} be the set of the elements
K that share the given vertex a from the set of vertices Vh, and let |Ta| be its cardinality.
In order to build a potential reconstruction sk,nh which is H1(Ω)-conforming in space as
indicated in (4.5) and which satisfies the mean value constraint (4.6), we proceed as in [24].
We first apply the averaging operator Iav : P2(Th)→ P2(Th) ∩H1(Ω) which associates to
a discontinuous piecewise second-order polynomial p̃k,nh ∈ P2(Th) a continuous piecewise
second-order polynomial Iav(p̃k,nh ). The value of Iav(p̃k,nh ) is prescribed at each Lagrange
node a of P2(Th) ∩H1(Ω) by the average of the values of p̃k,nh at this node:

Iav(p̃k,nh )(a) :=
1

|Ta|
∑
K∈Ta

p̃k,nh |K(a).

At the Dirichlet boundary nodes aD ∈ ΓD, the value of Iav(p̃k,nh ) is set to gD(aD). In order
to obtain (4.6) while maintaining (4.5), we define sk,nh as

sk,nh := Iav(p̃k,nh ) +
∑
K∈Th

αk,nK bK ,

where αk,nK is chosen as

(5.1) αk,nK :=
1

(bK , 1)K
(p̃k,nh − Iav(p̃k,nh ), 1)K ,

and where bK is the bubble function on the element K. This is a time-independent function
defined as the product of the barycentric coordinates of K so that its value on the boundary
∂K of K is zero.

5.2. Subdomain potential reconstruction. For each iteration k of the DD method, for
each time step n, and in each subdomain Ωi, we have to build the subdomain potential
reconstruction sk,nh,i which satisfies (4.3a) and (4.4). The construction of the subdomain
potential reconstruction sk,nh,i differs from the construction of sk,nh,i only at the nodes located on
the interface Γi,j ; our sk,nh,i is discontinuous across the interfaces at the beginning of the DD
algorithm but coincides with sk,nh,i at convergence of the DD algorithm for a conforming time

grid. In order to obtain sk,nh,i , we first build a potential reconstruction, denoted sk,nh,i , as in [3],
and then we add the second part which allows us the verify (4.4).

5.2.1. Notations. We denote by VΓi,j

h ⊂ Vh, i < j, i, j ∈ J1,N K, the set of vertices
located on the interface Γi,j . We denote the set of vertices a ∈ ∂Γi,j by V∂Γi,j

h and the set of
vertices a ∈ Γi,j\(∂Γi,j) by VΓi,j\(∂Γi,j)

h . Let Ia be the set of interfaces Γi,j that share the
vertex a ∈ V∂Γi,j

h : Ia := {Γi,j : i < j, i, j ∈ J1,N K,a ∈ V∂Γi,j

h }. Let |Ia| be the cardinality
of this set, and let Ira be the r-th interface in Ia sharing a. Due to the domain decomposition,

Ta =

N⋃
i=1

{K ∈ Th,i; a ∈ K} =

N⋃
i=1

T ia , where T ia is the set of all elements in the subdomain

Ωi sharing the node a; we denote by |T ia | their number. We will also need B̃i, the set of
subdomains other than Ωi that share at least one vertex with Ωi and its cardinality |B̃i|.
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5.2.2. Weights. Using the above notations, we aim to construct weights on the interface
at each iteration k of the DD algorithm which depend on the quantities 〈[[p̃k,nh ]], 1〉e, for all
e ∈ EΓi,j

h , using the fact that 〈[[p̃k,nh ]], 1〉e → 0 when k →∞ for conforming time grids on all
e ∈ EΓi,j

h . Following [3], we define the weight of the edge (face) e ∈ EΓi,j
h by

wk,ne :=

(
|〈[[p̃k,nh ]], 1〉e|
〈|[[p̃k,nh ]]|, 1〉e

)α
, α ≥ 1,

(note the different position of the absolute value) and the weight on the Lagrange node
a ∈ VΓi,j

h located on the interface (in two space dimensions for simplicity) by

wk,na :=


1

2
(wk,ne + wk,ne′ ) if a ∈ VΓi,j\(∂Γi,j)

h where e, e′ ∈ EΓi,j
h , e 6= e′, e ∩ e′ = a,

1

|Ia|

|Ia|∑
r=1

wk,ner if a ∈ V∂Γi,j
h where a ∈ er ⊂ Ira.

We note that both wk,na and wk,ne have similar properties: they are typically close to 1 at the be-
ginning of the DD algorithm and approach 0 during the DD iterations for conforming time grids.
This is a consequence of |〈[[p̃k,nh ]], 1〉e| ≤ 〈|[[p̃k,nh ]]|, 1〉e, which gives 0 ≤ wk,ne , wk,na ≤ 1.

Contrary to the standard averaging operator Iav in sk,nh,i , where the weights are distributed
uniformly on each element K ∈ Ta sharing the node a (being equal to 1

|Ta| ), we now want to

define weights for the subdomain potential reconstruction sk,nh,i in the sense of Definition 4.2,
where all elements sharing the same node on the interface do not have the same weight during
the iterations of the DD algorithm:

DEFINITION 5.1 (Weights of Lagrange nodes on the interface for each patch T ia ). For
each interface Lagrange node a ∈ Vh ∩ Γi, i ∈ J1,N K, define

(5.2) wk,ni,a :=
1

|T ia |+ (1− wk,na )
∑
j∈B̃i |T

j
a |
.

The construction (5.2) ensures that at the beginning of the DD iterations, wk,ni,a ≈ 1
|T ia |

,

whereas for later DD iterations, wk,ni,a ≈ 1
|Ta| for conforming time grids.

5.2.3. Construction of sk,nh,i . We first build sk,nh,i as follows:

s
k,n
h,i (a) = wk,ni,a

∑
K∈T ia

p̃k,nh,i |K(a) + wk,ni,a (1− wk,na )
∑
j∈B̃i

∑
K∈T ja

p̃k,nh,j |K(a),

where the weights wk,ni,a and wk,na presented before are constructed at each time step n. Here,

s
k,n
h,i satisfies (4.3a): sk,nh,i ∈ H1(Ωi); we pointwise enforce the boundary condition (4.3b)

for smooth enough gD. It remains to verify the condition (4.4) for skhτ,i. More precisely, we
need the mean value of sk,nh,i on each triangle at time tn to be equal to the mean value of
the postprocessing approximation p̃k,nh,i of the discrete solution. For this purpose and while
maintaining (4.3a), sk,nh,i is defined as follows:

sk,nh,i := s
k,n
h,i +

∑
K∈Th

αk,nK bK ,

where αk,nK =
1

(bK , 1)K
(p̃k,nh − sk,nh,i , 1)K is chosen in the same spirit as in (5.1).
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5.3. Flux reconstruction. The domain decomposition with Robin transmission condi-
tions does not yield continuity of the flux uk,nh across the interface. Consequently, uk,nh is not
H(div,Ω)-conforming at each time step n. Suppose now that for all interface edges (faces)
e ⊂ Γi,j , ne has the same direction as the interface normal nΓi,j , where nΓi,j is set arbitrarily,
pointing either from Ωi to Ωj or from Ωj to Ωi with j ∈ Bi, i < j, i ∈ J1,N K. Then, simply
defining

(5.3) σk,nh ·ne =

 {{u
k,n
h ·ne}}, ∀e ∈ ∪

j∈Bi
EΓi,j

h ,

uk,nh,i ·ne, ∀e ∈ E int
h,i ∪Eext

h,i ,

leads to (4.7), σk,nh ∈ H(div,Ω) at each time step n, as well as (4.9), but not to (4.8) for the
elements having an edge (if d = 2) or a face (if d = 3) on the interface Γi,j . Following [3],
we now present a procedure allowing to construct an equilibrated flux σk,nh satisfying (4.7),
(4.9), as well as (4.8) at each time step n, relying on interface corrections from a coarse global
problem that are further distributed by local problems posed in subdomain bands attached to
the interface.

5.3.1. Simple coarse balancing problem. At first we partition each subdomain Ωi,
i ∈ J1,N K, into two disjoint parts Ωext

i and Ωint
i such that Ωext

i ∪Ωint
i = Ωi. The so-called

band Ωext
i is made up of simplices that have an edge, a vertex, or a face on any interface

Γi,j , j ∈ Bi. We also denote by Γbi , b ∈ Bi,ext, the intersections of ∂Ωext
i with ∂Ωi ∩ ∂Ω of

nonzero (d− 1)-dimensional measure. We let Bi,ext empty when |∂Ωi ∩ ∂Ω| = 0.
Before defining the coarse balancing problem, we evaluate the misfit of the mass balance

in each band Ωext
i , i ∈ J1,N K, due to the averaging in (5.3). Taking qh,i = 1 in (3.14b) and

then using (3.12) and (4.2b), we have (∇·uk,nh , 1)Ωi = (f̃n− ∂tp̃khτ |In , 1)Ωi . This also reads

(5.4) (∇·uk,nh , 1)Ωi = (f̃n − ∂tp̃khτ |In , 1)Ωext
i

+ (f̃n − ∂tp̃khτ |In , 1)Ωint
i
.

By taking qh,i = 1 in Ωint
i only in (3.14b), the second term on the right-hand side of (5.4) is

as follows: (f̃n− ∂tp̃khτ |In , 1)Ωint
i

= (∇·uk,nh , 1)Ωint
i

, and thus replacing this term in (5.4) we
obtain

(f̃n − ∂tp̃khτ |In , 1)Ωext
i

= (∇·uk,nh , 1)Ωi − (∇·uk,nh , 1)Ωint
i
.

Using the Green theorem in the previous equation leads to

(f̃n − ∂tp̃khτ |In , 1)Ωext
i

= 〈uk,nh ·n∂Ωi , 1〉∂Ωi\Γi + 〈uk,nh ·n∂Ωi , 1〉Γi − 〈u
k,n
h ·n∂Ωint

i
, 1〉∂Ωint

i
.

Then, adding and subtracting 〈σk,nh ·n∂Ωi , 1〉Γi in the previous equation and using the fact that
n∂Ωint

i
= −n∂Ωext

i
over ∂Ωint

i ∩ ∂Ωext
i for the last term on the right-hand side, we get

(f̃n − ∂tp̃khτ |In , 1)Ωext
i

= 〈σk,nh ·n∂Ωi , 1〉Γi + 〈(uk,nh − σk,nh )·n∂Ωi , 1〉Γi
− 〈uk,nh ·n∂Ωint

i
, 1〉∂Ωint

i
+ 〈uk,nh ·n∂Ωi , 1〉∂Ωi\Γi ,

or, equivalently, using (5.3),∑
j∈Bi

nΓi,j·n∂Ωext
i

∑
e⊂Γi,j

∫
e

1

2
[[uk,nh ·ne]]dγ = (f̃n−∂tp̃khτ |In , 1)Ωext

i
−〈{{uk,nh ·n∂Ωext

i
}}, 1〉∂Ωext

i
,
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which corresponds to the misfit of the mass balance in each band Ωext
i , i ∈ J1,N K. We now try

to correct the averaged interface normal fluxes and the original boundary normal fluxes of (5.3)
with one value ckΓi,j = ckΓj,i per interface Γi,j = Γj,i and one value ckΓbi per the boundary part

Γbi of Γi such that:

ck,nΓi,j
≈ 0 for i, j ∈ J1,N K, i < j such that j ∈ Bi,(5.5a)

ck,n
Γbi
≈ 0 for i ∈ J1,N K and b ∈ Bi,ext, so that |∂Ωext

i ∩ ∂Ω| > 0.(5.5b)

On the boundary ∂Ωext
i ∩ ∂Ωint

i , we keep the same value of the flux uk,nh ·n∂Ωext
i ∩∂Ωint

i
. We

require the following N balancing conditions, one for each band Ωext
i , to be satisfied:

∑
b∈Bi,ext

ck,n
Γbi

+
∑
j∈Bi

(nΓi,j ·n∂Ωext
i

)ck,nΓi,j
= (f̃n−∂tp̃khτ |In , 1)Ωext

i
−〈{{uk,nh ·n∂Ωext

i
}}, 1〉∂Ωext

i
.

At each time step n, the above equations for i ∈ J1,N K lead to a rectangular linear system
which has infinitely many solutions. We use the least-squares algorithm to obtain the closest
solution to (5.5):

N∑
i=1

∑
b∈Bi,ext

(ck,n
Γbi

)2 +

N∑
i=1

∑
j∈Bi, i<j

(ck,nΓi,j
)2 → min.

In place of (5.3), the resulting boundary fluxes are finally

σk,nh ·ne =



{{uk,nh ·ne}}+
1

|Γi,j |
ck,nΓi,j

, ∀e ⊂ Γi,j , for i, j ∈ J1,N K, i < j

such that j ∈ Bi,
uk,nh,i ·ne +

1

|Γbi |
ck,n
Γbi
, ∀e ⊂ Γbi for i ∈ J1,N K and b ∈ Bi,ext

so that |∂Ωext
i ∩ ∂Ω| > 0,

uk,nh,i ·ne, ∀e ⊂ ∂Ωext
i ∩ ∂Ωint

i , i = 1, . . . ,N ,
uk,nh,i ·ne, on ∂Ωi ∩ ∂Ω \ Γbi , i = 1, . . . ,N .

With these boundary fluxes, the mass balance on each domain Ωext
i is satisfied at each time

step n of the intersection time grid Tτ .

5.3.2. Solving local Neumann problems in bands. Following [54, Section 3.5.2], we
finally solve a well-posed local Neumann problem in each band Ωext

i and at each time step
n in order to obtain the local conservation property (4.8). This is graphically illustrated in
Figure 5.1, where the bands for the case of two subdomains are highlighted.
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Ω1 Ω2
x

y

t

T

0

FIG. 5.1. Bands in Ω1 and Ω2 for each time step.

DEFINITION 5.2 (Spaces of the local Neumann problems). We define in each band Ωext
i ,

i ∈ J1,N K, and for each time step 1 ≤ n ≤ N of the intersection time grid Tτ the spaces

Wh,z,n,Ωext
i

:=

{
vh ∈Wh,i(Ω

ext
i ) :

vh·nΩext
i

= z + n∂Ωext
i
·nΓi,j

ck,nΓi,j

|Γi,j |
if z 6= ?, 0 else on Γi,j , j ∈ Bi,

vh·nΩext
i

= z +
ck,n
Γbi

|Γbi |
if z 6= ?, 0 else on Γbi , b ∈ Bi,ext,

vh·nΩext
i

= z if z 6= ?, 0 else on ∂Ωext
i ∩ ∂Ωint

i ,

vh·nΩext
i

= z if z 6= ?, 0 else on ∂Ωi ∩ ∂Ω \ Γbi

}
.

DEFINITION 5.3 (Mixed finite element local Neumann problems in the bands Ωext
i ). We

define the following local Neumann problems: Find σk,nh |Ωext
i
∈Wh,{{uk,nh ·nΩext

i
}},n,Ωext

i
and

qk,nh ∈Mh,i(Ω
ext
i ) such that (qk,nh , 1)|Ωext

i
= 0, which solve the following mixed problem:

(SSS−1(σk,nh − uk,nh ),vh)Ωext
i
− (qk,nh ,∇·vh)Ωext

i
= 0, ∀vh ∈Wh,?,n,Ωext

i
,

(∇·σk,nh , wh)Ωext
i

= (f̃n,i − ∂tp̃khτ |In , wh)Ωext
i
, ∀wh ∈Mh,i(Ω

ext
i ) with (wh, 1)|Ωext

i
= 0.

5.3.3. Construction of σkh. We finally set, for all i ∈ J1,N K, and for each time step n,
1 ≤ n ≤ N , of the intersection time grid Tτ

σk,nh :=

{
σk,nh on Ωext

i via Definition 5.3,
uk,nh on Ωint

i .

Prescribing σkhτ by the N functions
(
σk,nh

)
1≤n≤N on the time subintervals

{
In
}

1≤n≤N
satisfies all conditions of Definition 4.4.
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6. Numerical results: an example in an industrial context. We are concerned with
a model problem given by ANDRA, the French National Agency for Radioactive Waste
Management (see also [38]), which is a simplified version of a problem that simulates the
transport of contaminants in and around a nuclear waste repository site. The simulation domain
is depicted in Figure 6.1 (left) (not to scale). The repository (yellow) where the nuclear waste
is stored is a 2950m×10m rectangle located in the center of a clay domain of 3950m×140m
(light brown). In this example, we consider a more general time-dependent diffusion problem
with a discontinuous porosity φ 6= 1 so that the equation is as follows:

u = −SSS∇p in Ω× (0, T ),(6.1a)

φ
∂p

∂t
+∇·u = f in Ω× (0, T ),(6.1b)

where Ω = [0, 3950] × [0, 140], p represents the concentration of the contaminant, f is the
source term, φ is the porosity, and SSS is the time-independent diffusion tensor. The initial
condition is p0 = 0, and we set homogeneous Dirichlet conditions on top and bottom of Ω
and homogeneous Neumann conditions on the other sides of ∂Ω. We decompose Ω into nine
subdomains where Ω5 is the nuclear waste repository domain; see Figure 6.1 (right). For this
simulation, we are interested in the long-term behavior of the repository, over one million
years, so that we set T = 106 years. The porosity in Ω is as follows:

φ =

{
0.2 in Ω5,
0.05 in Ωi, i 6= 5,

the diffusion tensor is:

SSS =

{
2× 10−9III m2/s in Ω5,
5× 10−12III m2/s in Ωi, i 6= 5,

where III is the identity matrix, and the source term f is zero in the clay layer and

f =

{
10−5years−1 if t ≤ 105 years,
0 if t > 105 years,

in the repository.

In order to solve our problem, we first express (6.1) in dimensionless form.

6.1. Dimensionless problem. Let (6.1) be the equation defined in Ω × [0, T ], where

Ω = [0, X]× [0, Y ] and where SSS is a diagonal matrix:
[
SSSx 0
0 SSSy

]
. The equations (6.1) can

be written as follows:

u = −
[
SSSx

∂p

∂x
, SSSy

∂p

∂y

]
in Ω× (0, T ),

φ
∂p

∂t
+∇·u = f in Ω× (0, T ),

where ∇·u = −SSSx
∂2p

∂x2
− SSSy

∂2p

∂y2
. We choose characteristic lengths L in x and H in y, a

characteristic time tc, and a characteristic pressure P . The dimensionless variables are

x̃ =
x

L
, ỹ =

y

H
, t̃ =

t

tc
,
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10m 140m

3950m

2950m

Ω1 Ω2 Ω3

Ω4 Ω5 Ω6

Ω7 Ω8 Ω9

FIG. 6.1. Geometry of the nuclear waste repository (yellow) and the clay layer around it (light brown) on the
left and its decomposition into 9 subdomains on the right.

so that

∂

∂x
=

∂

∂x̃

∂x̃

∂x
=

1

L

∂

∂x̃
and

∂2

∂x2
=

1

L2

∂2

∂x̃2
,

∂

∂y
=

∂

∂ỹ

∂ỹ

∂y
=

1

H

∂

∂ỹ
and

∂2

∂y2
=

1

H2

∂2

∂ỹ2
,

∂

∂t
=

∂

∂t̃

∂t̃

∂t
=

1

tc

∂

∂t̃
.

Thus, (6.1) becomes:

u = −
[
SSSx
L

∂p

∂x̃
,
SSSy
H

∂p

∂ỹ

]
in Ω× (0,

T

tc
),

φ
∂p

∂t̃
+ tc∇·u = tcf in Ω× (0,

T

tc
),

where∇·u = −S̃SSx
∂2p

∂x̃2
− S̃SSy

∂2p

∂ỹ2
with S̃SSx =

SSSx
L2

and S̃SSy =
SSSy
H2

.

To cope with the anisotropy of the domain as well as to better visualize the solution
and the error distribution in the estimators, we decided to choose L = 14, H = 1, whereas
tc = 1 years ≈ 3.16× 107s. Figure 6.2 shows an example of the discretization in space for

Ω̃ :=
[
0,

3950

14

]
× [0, 140], where the refinement in and around the subdomain Ω̃5 containing

the nuclear waste is high compared to the other subdomains. In our example, the number of
triangles in the mesh Th of Ω̃ is 34984.

REMARK 6.1 (Adaptive DD and mesh refinement). In this article the mesh is generated
with the Freefem++ scientific calculation code [37] without mesh adaptivity, which creates
the (not necessary) refinements around the interfaces. An example where the proposed adaptive
stopping criterion is combined with adaptive mesh refinement is given in [3, Section 6.3]. It
illustrates how the reduction in the number of DD iterations behaves as the grid is adaptively
refined and the discretization error is reduced using an adaptive initial guess for the DD solver.

6.2. An example with global time stepping. In this example, conforming time grids
are used such that τn,i = 4000 years for all 1 ≤ n ≤ Ni = 250 and for all subdomains Ωi,
1 ≤ i ≤ 9. Table 6.1 summarizes the discretization data as well as the stopping criterion.
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FIG. 6.2. Example of a discretization used in and around a nuclear waste repository site.

TABLE 6.1
Industrial example with conforming time grids and using the GMRES solver.

Number of triangles in Th 34984
Number of subdomains 9
Subdomain solver Direct
DD solver GMRES
Final time T = 106 years
Time step τn,i, 1 ≤ i ≤ 9 106/250 = 4000 years
Original DD stopping criterion 10−6

A posteriori stopping criterion ηkDD,NCtm
≤0.5 min(ηktm, η

k
sp)

Total number of iterations 28
Number of iterations with a posteriori stopping criterion 8
Unnecessary iterations 20
Spared iteration from the total number of iteration ≈ 71.42 %
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FIG. 6.3. Error component estimates using conforming time grids and with the GMRES solver (left) and zoom
until iteration 8 where the a posteriori stopping criterion is satisfied (right).

Figure 6.3 displays the evolution of our estimators ηkDD,NCtm
in green, ηksp in black, ηktm

in magenta, and their sum in blue as a function of the number of iterations of the DD GMRES
solver. In the left figure, these estimators are computed every 9 iterations to decrease the
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calculation cost. The right figure corresponds to a zoom into the first DD iterations, where the
estimators are computed every iteration. We observe that ηkDD,NCtm

dominates until iteration 5,
then gets smaller compared to ηksp and ηktm, and then vanishes as expected (see Remark 4.6).
Concerning ηksp and ηktm, they are approximately constant after iteration 7 and until iteration 28.
We have chosen the a posteriori stopping criterion

(6.2) ηkDD,NCtm
≤ 0.5 min(ηktm, η

k
sp),

leading to 8 iterations, in contrast to the usual stopping criterion that is fulfilled when the jump
of the Robin condition on the interface is less than 10−6, which is satisfied at iteration 28 only.

Figure 6.3 also displays the evolution of the DD error |||p̃khτ − p̃∞hτ |||Y (approximated
by {|||p̃khτ − p̃∞hτ |||2X + ||(p̃khτ − p̃∞hτ )||2} 1

2 , see Remark 6.3 below) in cyan, where p̃∞hτ is the
postprocessing approximation of the converged DD solution (computed with a tolerance 10−13

for the jump of the Robin condition on the interfaces). Numerically, we can thus observe that
our estimate ηkDD,NCtm

is an upper bound for the space-time DD error, though we have no
theoretical proof for this.

REMARK 6.2 (Stopping criterion). The rationale of the criterion (6.2) is to stop the
iterations when the DD error falls below the discretization error up to a factor here chosen
as 0.5. This can be ensured when a guaranteed upper bound for the DD error and a guaranteed
lower bound for the discretization error are available. Though we do not develop such
refined estimates here, they could be obtained following the methodology recently proposed
in [52, Section 6.3] and [51, Section 5.2].

6.3. An example with local time-stepping. Here, nonconforming time grids are used
such that τn,5 = 1000 years in Ω5 for all 1 ≤ n ≤ N5 = 1000 and τn,i = 5000 years for all
1 ≤ n ≤ Ni = 200, for i 6= 5. The ratio of the number of time discretization steps between
the subdomains N5

Ni
is 5, for i 6= 5. Table 6.2 summarizes the discretization data as well as the

stopping criterion.

TABLE 6.2
Industrial example with nonconforming time grids and using the GMRES solver.

Number of triangles in Th 34984
Number of subdomains 9
Subdomain solver Direct
DD solver GMRES
Final time T = 106 years
Time step τn,i, i 6= 5 106/200 = 5000 years
Time step τn,i, i = 5 106/1000 = 1000 years
Original DD stopping criterion 10−6

A posteriori stopping criterion ηkDD,NCtm
≤0.5 min(ηktm, η

k
sp)

Total number of iterations 28
Number of iterations with a posteriori stopping criterion 10
Unnecessary iterations 18
Spared iteration from the total number of iteration ≈ 64.2 %

The evolution of ηkDD,NCtm
in green, ηksp in black, ηktm in magenta, and their sum in blue

as a function of the number of iterations of the DD GMRES solver is presented in Figure 6.4,
left. Here again, the estimators are computed every 9 iterations to decrease the calculation
cost. We remark that in the zoom at the right part of Figure 6.4, the estimator ηkDD,NCtm

dominates until iteration 5 and then decreases again until iteration 10 wherefrom it stagnates.
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FIG. 6.4. Error component estimates using different time grids and with the GMRES solver (left) and zoom
until iteration 10 where the a posteriori stopping criterion is satisfied (right).

TABLE 6.3
Illustration of time requirements (in seconds): industrial example with nonconforming time grids and using the

GMRES solver.

DD Estimate Estimate / DD

Mesh 1 Preparation 0.2 0.7 2.9
Per iteration 1.4 3.3 2.4

Mesh 2 Preparation 0.8 3.8 4.4
Per iteration 15.5 24.0 1.5

Concerning ηksp and ηktm, they are approximately constant after iteration 7 and until iteration
28. We have chosen the a posteriori stopping criterion (6.2) leading to 11 iterations in contrast
to the usual stopping criterion that tests whether the jump of the Robin condition on the
interface is less than 10−6, which is satisfied at iteration 28 only. Figure 6.5 then presents
the elementwise contributions of the estimator ηkDD,NCtm

at the final time T = 106 years
at iteration 11 (top left), with a zoom into the interface (bottom left), and at iteration 28
(top right) with a zoom into the interface (bottom right) of the DD algorithm, respectively.
We remark that they decrease slightly but still persist around the interfaces Γ5,j at iteration
28. As explained before, see Remark 4.6, ηkDD,NCtm

estimates simultaneously the error due
to the domain decomposition and nonconforming time grids; in the first iterations, the DD
part dominates, whereas later, the nonconforming time grids part remains. Recall again that
ηkDD,NCtm

vanishes for global time stepping; see Remark 4.6 and Section 6.2.

Table 6.3 gives insight into the computational cost in the studied test case in Section 6.3.
Here, mesh 1 contained 12754 triangular elements, 600 time steps in the subdomain Ω5,
and 120 time steps in the other subdomains, whereas mesh 2 was roughly two times finer
with 51054 triangles, 1200 time steps in Ω5, and 240 time steps elsewhere. Our prototype
Matlab implementation uses vectorization following [18] but no parallelism; indeed, most of
the evaluation of the estimators can be completely parallelized which can further drastically
decrease the cost. It can be seen from Table 6.3 that the price of the evaluation of our estimators
is of the same order as that of DD both in the preparatory phase carried out before the iterations
start as well as per one DD iteration. It can also be noticed that the (decisive) price per iteration
decreases for the finer mesh (and shall become negligible in the limit) since in contrast to the
DD procedure, it is linear in terms of the number of mesh elements times the number of time
steps.
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FIG. 6.5. Distribution of ηkDD,NCtm
on Ω̃ at the final time T = 106 years at iteration 11 (top left) with a

zoom into the interface (bottom left) and at iteration 28 (top right) with a zoom into the interface (bottom right) of the
space-time DD algorithm.

6.4. Different ratios of the time discretization between the subdomains. To shed
more light on the choice of increased time resolution in the repository domain Ω̃5 versus the
error induced because of nonconformity of the time grids, we plot in Figure 6.6 the evolution
of our estimates of different error components for different ratios of the time discretization
between the central subdomain Ω̃5 and the surrounding subdomains Ω̃i, i 6= 5, namely

N5

Ni
=

1000

100
= 10 (top left) ,

N5

Ni
=

1000

200
= 5 (top right; the setting of Section 6.3),

N5

Ni
=

400

200
= 2 (bottom left) ,

N5

Ni
=

250

250
= 1 (bottom right; the setting of Section 6.2).

We can observe that in all cases, the discretization-in-space estimator (black) remains approxi-
mately the same, which confirms numerically that it is indeed given by the discretization error
in space. The discretization-in-time estimator (magenta) 1) goes steeply up when the number
of time steps in the central subdomain decreases (between top right and bottom left); 2) is
relatively stable when the number of time steps in the other subdomains is changed (between
top left and top right); 3) goes up when the overall number of time steps decreases (between
bottom left and bottom right). This confirms numerically both that it is connected with the
time discretization error and that it is the number of time steps in the central subdomain that is
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FIG. 6.6. Error component estimates evolution with the GMRES solver for different nonconformity ratios of
discretization in time N5/Ni, i 6= 5: 10, 5, 2, 1 (from top left to bottom right).

the most important. Finally, the curve for the ηkDD,NCtm
estimator (green), goes down when

the nonconformity-in-time discretization ratio decreases from 10 to 2, but for each ratio it
becomes stable after a certain number of iterations. Importantly, when the nonconformity ratio
is 1 (bottom right), we come back to the case of a conforming time grid, and, as expected, the
green line continues to decrease with the DD iterations as now no time discretization error
is included in this curve; see Remark 4.6. We can thus conclude that numerically ηkDD,NCtm

represents well both the error from the DD iterations and from time-nonconforming grids and
that N5/Ni = 10 is the highest reasonable time nonconformity which does not dominate the
other error components.

REMARK 6.3 (Test case with known solution). In [4] we have shown numerical results
for the heat equation with the known solution p(x, y, t) = sin(2πx) sin(2πy) cos(2πt) and
conforming time grids. We have in particular compared the total estimator to an approximation
of the error |||p − p̃khτ |||Y given by {|||p − p̃khτ |||2X + ||(p − p̃khτ )(·, T )||2} 1

2 without the term
||∂t(p − p̃khτ )||X′ . The evaluation of this term would be rather expensive, and we know
from [23, Remark 3.3] that one can expect that ||∂t(p − p̃khτ )||X′ . |||p − p̃khτ |||X . We
observed in [4] that the effectivity index in this case approaches the value of approximately 7.
Importantly, it depends neither on the final time T nor on the spatial and temporal meshes. Its
deviation from to the optimal value of 1 can in part be explained by the fact that the negative
norm in |||p− p̃khτ |||Y has not been computed.
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