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THE INFLUENCE OF DOMAIN TRUNCATION ON THE PERFORMANCE OF
OPTIMIZED SCHWARZ METHODS∗
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Abstract. Optimized Schwarz methods enhance convergence using optimized transmission conditions between
subdomains. The optimization is usually performed for a model problem on an unbounded domain and two
subdomains represented by half spaces. The influence of the domain decomposition geometry on the convergence and
the optimized parameters is thus lost in the process, and it is not even theoretically clear if the results published for
the unbounded domain still hold in concrete applications where the domains are bounded. We prove here rigorously
for a two-subdomain decomposition that the asymptotic performance of optimized Schwarz methods derived from
an unbounded domain analysis still holds in the case of a bounded domain, but the constants in the best choice of
parameters and convergence rate estimates are influenced by the domain truncation. We obtain accurate estimates
for this influence and show theoretically that the domain truncation has more remarkable influence for the slowly
converging optimized Schwarz methods than for those converging fast. When the subdomain size is very small, our
new optimized parameters lead to much faster algorithms than those obtained from an unbounded domain analysis.
We illustrate our theoretical results with numerical experiments.

Key words. optimized Schwarz methods, domain decomposition methods, transmission conditions, influence of
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1. Introduction. In the field of high performance computing, domain decomposition
(DD) methods are among the most flexible and efficient techniques for the simulation of large
scale problems; see for example the monograph [42]. DD methods can deal naturally with com-
plicated heterogeneous problems and reduce dramatically their complexity, leading to scalable
solvers and preconditioners. Beyond the famous finite element tearing and interconnecting
(FETI) methods invented by Farhat and Roux [13] and the balancing domain decomposition by
constraints (BDDC) algorithm introduced by Dohrmann [8], the optimized Schwarz methods
were developed based on a nonoverlapping variant of the alternating Schwarz method proposed
by Lions [31]. They can be used with and without overlap. Their performance can be optimized
by appropriately choosing parameters in the transmission conditions between subdomains, and
the methods have received considerable attention over the past decade in the DD literature;
for overviews, see [14, 35] and the monograph [10]. Optimized Schwarz methods have not
only led to many theoretical developments, for example [17, 20, 22, 23, 29, 32, 33], but also
have been proven very useful in many applications: for instance, we refer to [3, 7, 19, 24]
for Helmholtz problems, [4, 16, 34, 41] for advection diffusion problems, [1, 9, 11, 36, 37]
for Maxwell’s equations, [39, 40] for shallow water problems, [2] for primitive equations,
[27] for the fluid-structure interaction problem, and [28] for an electrocardiology simulation.
Optimized Schwarz methods can be used as efficient preconditioners as well; for example, see
[18, 30] for an optimized Schwarz preconditioner. In addition, optimized Schwarz methods
contribute also to the development of many innovative preconditioners, including the sweeping
preconditioner that recently has received much attention (see [12, 38, 43, 44, 45]) and the
source transfer method (see [6]). We refer the reader to [5] for the precise relation of those
methods.
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FIG. 1.1. The domain decomposition used.

The optimization of transmission conditions in optimized Schwarz methods is generally
based on Fourier techniques applied to a model problem with a decomposition into infinite
domains. However, in applications, the computational domain is finite, and the decomposition
is often given according to physical properties of the underlying model or by a mesh partitioner,
and thus, in many applications, subdomains are of various shapes and sizes. The influence
of the subdomain geometry on the convergence and the optimized parameters in optimized
Schwarz methods is not yet well understood. A first step in this direction can be found in [15],
where it was shown that the subdomain geometry and the boundary conditions indeed affect
the performance of the optimized Schwarz method with Robin transmission conditions. A
further investigation was performed in [21], where the influence of the subdomain geometry on
optimized Schwarz methods with two-sided transmission conditions was addressed in detail.
We note here that in certain cases the interface geometry can correspond to model problems
with variable coefficients; see [22] for a corresponding analysis of optimized Schwarz methods
using the technique of separation of variables.

We study here in detail the influence of the subdomain geometry on optimized Schwarz
methods for the model problem

(1.1) ∆u− ηu = f in Ω, u|∂Ω = 0,

where η ≥ 0 is a model parameter, Ω = {(x, y)| − a < x < b, 0 < y < d} is decomposed
into two subdomains Ω = Ω1 ∪ Ω2 with Ω1 = {(x, y)| − a < x < L, 0 < y < d},
Ω2 = {(x, y)|0 < x < b, 0 < y < d}, L ≥ 0 the overlap between the subdomains, and a, b, d
positive domain parameters. Without loss of generality, we assume a+ L < b; see Figure 1.1.
This setting contains many existing results as special cases, e.g., a = b =∞ leads to the case
of an infinite domain decomposition analyzed in [14]; a = b finite leads to the finite symmetric
domain decomposition in [15], and if b =∞ and a is finite, then we have a one-sided bounded
domain decomposition, which is similar to a circular domain decomposition; see [20, 23].
In this paper, we would like to consider only the two-subdomain decomposition described
above, which allows us to obtain asymptotically accurate formulas of the best transmission
parameters. When the physical domain is decomposed into arbitrary number of subdomains
(cross points may be present), we refer the reader to [25] for a convergence analysis of the
synchronous optimized Schwarz method with Robin transmission condition and to [26] for the
asynchronous case. Beyond the continuous level analysis, see [18] for an algebraic analysis for
problems defined on irregular physical domains. We remark here that for the case of multiple
subdomains, the expression of the convergence factor is too complicated to derive explicit
formulas for the optimal transmission parameters by the optimization technique.
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A parallel Schwarz method for problem (1.1) is defined by solving the following problems
until convergence, for n = 1, 2, . . .,

(1.2)
∆un1 − ηun1 = f, in Ω1,

un1 (−a, y) = 0, 0 < y < d,

∆un2 − ηun2 = f, in Ω2,

un2 (b, y) = 0, 0 < y < d,

with the transmission conditions

(1.3) B1u
n
1 (L, ·) = B1u

n−1
2 (L, ·), B2u

n
2 (0, ·) = B2u

n−1
1 (0, ·),

where u0
2(L, ·) and u0

1(0, ·) are given initial guesses.
Choosing Bi = I , Bi = ∂n + p, Bi = ∂n + p − q∂yy, or Bi = ∂n + pi will result in

Dirichlet, Robin, second-order, or two-sided Robin transmission conditions; see [14]. We
will optimize the transmission parameters and analyze the corresponding performance of the
above mentioned transmission conditions under the given domain decomposition setting and
compare them to those obtained from the infinite domain decomposition analysis.

2. The classical Schwarz algorithm. For Fourier analysis, we assume that the subdo-
main solutions uni (x, y), i = 1, 2, have the form

(2.1) uni (x, y) =

∞∑
k=1

ûni (x, k) sin(ky).

Note here, in practical computations, the Fourier frequency k lies in between kmin and kmax,
the lowest and highest frequencies involved in the computation. For a homogeneous Dirichlet
boundary condition, if a uniform mesh is applied, h is the mesh size along the interface, and
the interface length is d, then one can estimate kmin = π/d and kmax = π/h; see [14].

Inserting (2.1) into (1.2), we obtain after a short calculation assuming f = 0, which
represents the error equations, that

(2.2)
∂xxû

n
1 − (η + k2)ûn1 = 0,

ûn1 (−a, k) = 0,

∂xxû
n
2 − (η + k2)ûn2 = 0,

ûn2 (b, k) = 0.

The closed form solutions of (2.2) are

ûn1 (x, k) = An1 (k) sinh(
√
η + k2(x+ a)),

ûn2 (x, k) = An2 (k) sinh(
√
η + k2(x− b)).

(2.3)

For the classical Schwarz method we have Bi = I , i.e., the identity operator, and we obtain
using (1.3)

(2.4) ûn1 (L, k) = ûn−1
2 (L, k), ûn2 (0, k) = ûn−1

1 (0, k) for all k ∈ K := [kmin, kmax].

Inserting (2.3) evaluated at x = 0 and x = L, respectively, into (2.4) leads to a recurrence for
the constants

An1 (k) =
sinh(

√
η + k2(L− b))

sinh(
√
η + k2(a+ L))

An−1
2 (k), An2 (k) =

sinh(
√
η + k2a)

sinh(
√
η + k2(−b))

An−1
1 (k).

We therefore get

A2n
1 (k) = ρnclaA

0
1(k), A2n

2 (k) = ρnclaA
0
2(k)
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with the contraction factor

ρcla(k, L, η, a, b) :=
sinh(

√
η + k2(b− L))

sinh(
√
η + k2(a+ L))

sinh(
√
η + k2a)

sinh(
√
η + k2b)

·

To understand the influence of the geometry on the classical Schwarz method, we need to
investigate the properties of the contraction factor ρcla. We need the following lemmas, which
also will be useful throughout the rest of the paper.

LEMMA 2.1. The function f(x) = x coth(x) is positive and monotonically increasing in
x, for x > 0, and limx→+∞ x coth(x) = +∞.

Proof. Let g(x) := e2x−e−2x−4x. The derivative of g is g′(x) = 2(e2x+e−2x)−4 > 0
for x > 0, which means, together with g(0) = 0, that the function g is positive for x > 0.
Therefore, the derivative f ′(x) = coth(x) + x(1 − coth2(x)) = g(x)

(ex−e−x)2 > 0 for x > 0.
Together with the fact that limx→0 f(x) = 1, we have that f(x) is positive and monotonically
increasing in x, for x > 0, and clearly the limit as x→ +∞ is infinity.

LEMMA 2.2. LetG(k, η, a, b) :=

√
η+k2

4

(
coth(

√
η + k2a) + coth(

√
η + k2b)

)
. Then

G(k, η, a, b) increases monotonically in k for k > 0 and η, a, b fixed. The functionG(k, η, a, b)

can also be rewritten as G(k, η, a, b) =

√
η+k2

2
1−e−2

√
η+k2(a+b)

(1−e−2
√
η+k2a)(1−e−2

√
η+k2b)

·

Proof. By Lemma 2.1, the function G(k, η, a, b) is the sum of two increasing functions
with positive weights, which implies a monotonic growth in k. The second assertion is obtained
by a direct calculation.

THEOREM 2.3. With overlap L > 0, the classical Schwarz method has asymptotically, as
L tends to 0, the convergence factor

(2.5) max
k∈K
|ρcla(k, L, η, a, b)| = 1− 4GminL+O(L2),

where Gmin = G(kmin, η, a, b). If there is no overlap, then the classical Schwarz method does
not converge.

Proof. Let f(x) := sinh(rx)
sinh(sx) with 0 < r < s. Then, when x > 0 we have that

f ′(x) = (cosh(rx) sinh(sx)r − sinh(rx) cosh(sx)s)/ sinh2(sx) < 0

since for x > 0 the denominator is greater than 0 and the numerator is equivalent to
sinh(rx) sinh(sx)

x (coth(rx)rx − coth(sx)sx) and thus less than 0 by Lemma 2.1. Therefore,

both sinh(
√
η+k2(b−L))

sinh(
√
η+k2b)

and sinh(
√
η+k2a)

sinh(
√
η+k2(a+L))

decrease monotonically in k for k > 0 and as

the product of these two positive functions, ρcla is decreasing monotonically in k for k > 0. As
a consequence, ρcla attains its maximum at k = kmin. A Taylor expansion of the contraction
factor with respect to L for L small at kmin gives (2.5). The second assertion follows from the
fact that ρcla = 1 for any k when L = 0.

3. The optimized transmission conditions. The classical Schwarz method has many
drawbacks: it converges very slow in the overlapping case and does not converge in the
nonoverlapping case. To improve the performance of the Schwarz algorithm (1.2), we can use
Robin transmission conditions. We start with Bi = ∂

∂ni
+ Si, i = 1, 2, and obtain

∂

∂n1
ûn1 + σ1(k)ûn1 =

∂

∂n1
ûn−1

2 + σ1(k)ûn−1
2 , at x = L,(3.1)

∂

∂n2
ûn2 + σ2(k)ûn2 =

∂

∂n2
ûn−1

1 + σ2(k)ûn−1
1 , at x = 0,(3.2)
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where σi, i = 1, 2, are the Fourier symbols of Si. Inserting (2.3) into (3.1) and (3.2), we obtain

An1 (k) =
( ∂
∂x + σ1(k)) sinh(

√
η + k2(x− b))

( ∂
∂x + σ1(k)) sinh(

√
η + k2(x+ a))

∣∣∣∣∣
x=L

An−1
2 (k)

and

An2 (k) =
( ∂
∂x − σ2(k)) sinh(

√
η + k2(x+ a))

( ∂
∂x − σ2(k)) sinh(

√
η + k2(x− b))

∣∣∣∣∣
x=0

An−1
1 (k).

Thus, we have

A2n
1 (k) = ρnA0

1(k), A2n
2 (k) = ρnA0

2(k)

with the contraction factor

ρ(k, L, η, σ1(k), σ2(k), a, b)

:=

√
η + k2 cosh(

√
η + k2(b− L))− σ1(k) sinh(

√
η + k2(b− L))√

η + k2 cosh(
√
η + k2(a+ L)) + σ1(k) sinh(

√
η + k2(a+ L))

×√
η + k2 cosh(

√
η + k2a)− σ2(k) sinh(

√
η + k2a)√

η + k2 cosh(
√
η + k2b) + σ2(k) sinh(

√
η + k2b)

·

The convergence factor ρ can be made identically zero with the optimal choice

σ1(k) =
√
η + k2 coth(

√
η + k2(b− L)), σ2(k) =

√
η + k2 coth(

√
η + k2a),

which results in the well-known optimal Schwarz algorithm. However, this optimal choice
corresponds to a nonlocal transmission condition: it represents a Dirichlet-to-Neumann
operator and is thus rather costly. To obtain an optimized Schwarz method, one approximates
σi(k) such that the information near the interface is transmitted effectively locally. Because
polynomial symbols are local, we search for approximations of the form σappi (k) = pi +
qik

2, i = 1, 2, with pi, qi constants. The idea of optimized Schwarz methods is to determine
the transmission parameters pi, qi by solving a min-max problem under certain constraints,

(3.3) min
pi,qi≥0

max
k∈K
|ρ(k, L, η, σapp1 (k), σapp2 (k), a, b)|.

In addition, since the frequency k is involved in the contraction factor ρ in a complicated
fashion, it is in general not possible to solve (3.3) in closed form. To overcome this difficulty,
we search for an approximate solution to (3.3) which is asymptotically accurate. To this end,
we introduce the following approximation ρapp of the convergence factor ρ:

ρapp(k, L, η, σ1(k), σ2(k)) =

√
η + k2 − σ1(k)√
η + k2 + σ1(k)

√
η + k2 − σ2(k)√
η + k2 + σ2(k)

e−2
√
η+k2L.

When the approximate symbols σappi (k), i = 1, 2, are used, the approximate convergence
factor ρapp is precisely the convergence factor from the infinite domain decomposition analysis;
see [14].

THEOREM 3.1 (Approximation of the convergence factor). The convergence factor ρ is
approximated by ρapp with the estimate

|ρ(k, L, η, σ1(k), σ2(k), a, b)− ρapp(k, L, η, σ1(k), σ2(k))|

≤ 2(e−2
√
η+k2b + e−2

√
η+k2(a+L)).
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FIG. 3.1. The convergence factor ρ compared to its approximation ρapp when η = 2, a = 0.1, b = 0.5,
σ1 = 7, σ2 = 26, and L = 1/100, for k ∈ [π, 100π].

Proof. Noting that

ρ =ρapp+(1−ρapp)
(√

η + k2 − σ2(k)√
η + k2 + σ2(k)

e−2
√
η+k2b+

√
η + k2 − σ1(k)√
η + k2 + σ1(k)

e−2
√
η+k2(a+L)

)
,

we obtain

|ρ− ρapp|

=
∣∣∣(1− ρapp)(√η + k2 − σ2(k)√

η + k2 + σ2(k)
e−2
√
η+k2b +

√
η + k2 − σ1(k)√
η + k2 + σ1(k)

e−2
√
η+k2(a+L)

)∣∣∣
≤ |1− ρapp|

(∣∣∣√η + k2 − σ2(k)√
η + k2 + σ2(k)

e−2
√
η+k2b

∣∣∣+
∣∣∣√η + k2 − σ1(k)√

η + k2 + σ1(k)
e−2
√
η+k2(a+L)

∣∣∣)
≤ 2(e−2

√
η+k2b + e−2

√
η+k2(a+L)),

where σi(k) > 0 and −1 ≤ ρapp ≤ 1 were used.
Theorem 3.1 shows that ρapp approximates the convergence factor ρ very well if the

frequency k is large. However, if the frequency k is small, then the difference between the
exact convergence factor and its approximation can be quite large; see Figure 3.1. As a
consequence, directly optimizing the approximate convergence factor ρapp can not generate
the best transmission parameters for our domain decomposition setting, especially when the
subdomain size parameters a and/or b are small. We will discuss this issue in more detail in
Section 4.

3.1. A low frequency approximation. From the asymptotic behavior of the classical
Schwarz method described in Theorem 2.3, we see that the method is inefficient in damping
low frequency components of the error. To overcome this, one can expand the optimal symbols
σi(k) in a Taylor series about k = 0 to obtain a local transmission condition which is efficient
in damping low frequencies. By truncating the Taylor expansion at zeroth order, we obtain the
Taylor transmission condition of order 0 (T0)

(3.4) pT0
1 =

√
η coth(

√
η(b− L)), pT0

2 =
√
η coth(

√
ηa), qT0

1 = qT0
2 = 0.
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The corresponding convergence factor is

ρT0(k, L, η, pT0
1 , pT0

2 , a, b)

=

√
η + k2 cosh(

√
η + k2(b− L))−√η coth(

√
η(b− L)) sinh(

√
η + k2(b− L))√

η + k2 cosh(
√
η + k2(a+ L)) +

√
η coth(

√
η(b− L)) sinh(

√
η + k2(a+ L))

×√
η + k2 cosh(

√
η + k2a)−√η coth(

√
ηa) sinh(

√
η + k2a)√

η + k2 cosh(
√
η + k2b) +

√
η coth(

√
ηa) sinh(

√
η + k2b)

·

Before analyzing the performance of the corresponding optimized Schwarz method (1.2), we
introduce first the following Lemma, which is also useful for the rest of the paper.

LEMMA 3.2. For any 0 ≤ L < b− a, let

ρb(k, L, η, p1, p2) :=

√
η + k2 cosh(

√
η + k2(b− L))− p1 sinh(

√
η + k2(b− L))√

η + k2 cosh(
√
η + k2b) + p2 sinh(

√
η + k2b)

,

ρa(k, L, η, p1, p2) :=

√
η + k2 cosh(

√
η + k2a)− p2 sinh(

√
η + k2a)√

η + k2 cosh(
√
η + k2(a+ L)) + p1 sinh(

√
η + k2(a+ L))

,

and let kb(L, p1) > 0 be such that

ρb(kb, L, η, p1, p2) = 0 when p1 >
√
η + k2

min coth(
√
η + k2

min(b− L))

and ka(L, p2) > 0 such that

ρa(ka, L, η, p1, p2) = 0 when p2 >
√
η + k2

min coth(
√
η + k2

mina).

Then,
a) kb(L, p1) (resp. ka(L, p2)) behaves asymptotically as p1 (resp. p2) for p1 → +∞

(resp. p2 → +∞);
b) If p1 = p2 = p, then kb(L, p) > ka(L, p) for sufficiently large p;
c) ρb(k, L, η, p1, p2) (resp. ρa(k, L, η, p1, p2)) is negative and increasing in k for
k ∈ (kmin, kb(L, p1)) (resp. k ∈ (kmin, ka(L, p2)));

d) ρb(k, L, η, p1, p2) (resp. ρa(k, L, η, p1, p2)) is positive and asymptotically increasing
in k for 0 < k < cL−

1
2 and L small enough if

p1 <
√
η + k2

min coth(
√
η + k2

min(b− L))(
respectively, p2 <

√
η + k2

min coth(
√
η + k2

mina)
)
.

Proof.
a) We only prove the result for kb(L, p1). Note that

p1 =
√
η + k2

b (L, p1) coth(
√
η + k2

b (L, p1)(b− L)) ≈ kb(L, p1)

since coth(x)→ 1 converges faster than any polynomial as x→ +∞, and we obtain
the assertion independently of L ≥ 0 for p1 large enough.
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b) We prove this by contradiction. If kb = ka, then we have for p1 = p2 = p
that coth(

√
η + k2

b (L, p)(b− L)) = coth(
√
η + k2

b (L, p)a), which contradicts the
assumption a+ L < b. From assertion a) and the fact that a+ L < b, we have for p
large enough that kb(L, p)(b− L) > ka(L, p)a, and then

coth(
√
η + k2

a(L, p)a)/ coth(
√
η + k2

b (L, p)(b− L)) > 1

since coth(x) decreases in x for x > 0. Therefore, if kb(L, p) < ka(L, p), we have

1 >

√
η + k2

b (L, p)√
η + k2

a(L, p)
=

coth(
√
η + k2

a(L, p)a)

coth(
√
η + k2

b (L, p)(b− L))
> 1,

which is clearly a contradiction. We thus must have kb(L, p) > ka(L, p) for p large
enough and any nonnegative L < b− a.

c) We only present the proof for ρb. Note that kb(L, p1) satisfies√
η + k2

b (L, p1) coth(
√
η + k2

b (L, p1)(b− L)) = p1

and
√
η + k2 coth(

√
η + k2(b−L)) increases monotonically in k for k > 0, which

implies ρb < 0 for k ∈ (kmin, kb(L, p1)). We then only need to prove that |ρb|
decreases monotonically in k for k ∈ (kmin, kb(L, p1)). To this end, we rewrite ρb as

ρb =

√
η + k2 coth(

√
η + k2(b− L))− p1√

η + k2 coth(
√
η + k2b) + p2

sinh(
√
η + k2(b− L))

sinh(
√
η + k2b)

·

Clearly, for k ∈ (kmin, kb(L, p1)) the function p1−
√
η+k2 coth(

√
η+k2(b−L))

p2+
√
η+k2 coth(

√
η+k2b)

decrea-

ses monotonically in k. By the proof of Theorem 2.3, we also see that the function
sinh(

√
η + k2(b− L))/ sinh(

√
η + k2b) decreases monotonically in k. Therefore,

as the product of these two positive decreasing functions, we obtain that |ρb| decreases
monotonically in k for k ∈ (kmin, kb(L, p1)).

d) As before, we only give the proof for ρb. By Lemma 2.1, we know that the function√
η + k2 coth(

√
η + k2(b− L)) increases monotonically in k. Therefore, ρb is

positive if p1 <
√
η + k2

min coth(
√
η + k2

min(b − L)). We then apply a Taylor
expansion of ρb in L for L small to obtain

ρb(k, L, η, p1, p2) = ρb(k, 0, η, p1, p2)−B
√
η + k2L+O(L2)

with B =

√
η+k2 sinh(

√
η+k2b)−p1 cosh(

√
η+k2b)√

η+k2 cosh(
√
η+k2b)+p2

. It is easy to verify that |B| < 1,

and therefore we have

|ρb(k, L, η, p1, p2)− ρb(k, 0, η, p1, p2)| <
√
η + k2L+O(L2).

Since ρb(k, 0, η, p1, p2) clearly increases monotonically in k, we obtain that ρb is
asymptotically increasing in k for kmin < k < cL−

1
2 .

THEOREM 3.3 (T0 asymptotics). With overlap L > 0, the parallel Schwarz method (1.2)
with Taylor transmission condition of order 0 given in (3.4) satisfies, asymptotically for L→ 0,
the convergence factor estimate

max
k∈K
|ρT0(k, L, η, pT0

1 , pT0
2 , a, b)| = 1− 8G

1
2
0 L

1
2 +O(L),
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where G0 = G(0, η, a, b). If there is no overlap, then the asymptotic convergence factor
estimate for kmax →∞ is

max
k∈K
|ρT0(k, 0, η, pT0

1 , pT0
2 , a, b)| = 1− 8G0k

−1
max +O(k−2

max).

Proof. A direct calculation shows that ρapp(k, L, η, pT0
1 , pT0

2 ) attains its unique interior

maximum asymptotically at kT0 = 2G
1
2
0 L
− 1

2 . We then rewrite ρT0 as

ρT0 = ρb(k, L, η, p
T0
1 , pT0

2 )ρa(k, L, η, pT0
1 , pT0

2 ).

Applying result d) of Lemma 3.2 implies that the convergence factor ρT0, as the product
of ρa and ρb, is increasing in k asymptotically for kmin < k < kT0. When k > kT0, by
Theorem 3.1 we conclude that the convergence factor ρT0 is asymptotically decreasing in k
since the approximate convergence factor ρapp decreases. Thus, the convergence factor ρT0

attains its maximum asymptotically at kT0. A Taylor expansion of the convergence factor
ρT0 at kT0 gives then the first result. For the second one, from the proof of Lemma 3.2
we know that ρa(k, 0, η, pT0

1 , pT0
2 ) and ρb(k, 0, η, pT0

1 , pT0
2 ) increase monotonically in k for

k > 0. Therefore, the convergence factor ρT0(k, 0, η, pT0
1 , pT0

2 ), as the product of these two,
increases monotonically in k for k > 0, and thus the second result follows from the Taylor
expansion of ρT0 at kmax.

Similarly, Taylor transmission conditions of order 2 (T2) are obtained by truncating the
Taylor expansion of σi(k) at k = 0 at second order,

pT2
1 = pT0

1 , q1 =
1

2
√
η

1− 4(b− L)
√
ηe−2

√
η(b−L) − e−4

√
η(b−L)

(1− e−2
√
η(b−L))2

,

pT2
2 = pT0

2 , q2 =
1

2
√
η

1− 4a
√
ηe−2

√
ηa − e−4

√
ηa

(1− e−2
√
ηa)2

.

However, the calculations involved in the theoretical analysis of the resulting Schwarz methods
becomes very complicated, and we will see that a better performance can be obtained through
optimization.

3.2. Optimized transmission condition of order 0. In this section we impose con-
straints on pi, qi as follows: pi = p with p a positive constant and qi = 0. In this case the
convergence factor of the parallel Schwarz algorithm (1.2) is

ρOO0(k, L, η, p, a, b) =

√
η + k2 cosh(

√
η + k2(b− L))− p sinh(

√
η + k2(b− L))√

η + k2 cosh(
√
η + k2(a+ L)) + p sinh(

√
η + k2(a+ L))

×√
η + k2 cosh(

√
η + k2a)− p sinh(

√
η + k2a)√

η + k2 cosh(
√
η + k2b) + p sinh(

√
η + k2b)

,

and we look for the best transmission parameters by studying the min-max problem

(3.5) min
p>0

(
max
k∈K
|ρOO0(k, L, η, p, a, b)|

)
,

where OO0 stands for "Optimized of Order 0"; see for example [14]. However, unlike in the
infinite domain decomposition analysis [14], the above min-max problem can not be solved
directly. Here, we use the technique applied in [20, 23], that is to say, when the frequency k is
small, we use the exact convergence factor ρOO0 directly; when the frequency k is large, we

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

THE INFLUENCE OF DOMAIN TRUNCATION ON OSM 191

use the approximate convergence factor ρapp instead of the exact convergence factor. We can
prove that we asymptotically solve the min-max problem (3.5):

THEOREM 3.4 (OO0, overlapping case). For L > 0, the solution p∗ to

(3.6) ρOO0(kmin, L, η, p
∗, a, b) = ρapp(k̄

∗, L, η, p∗, p∗)

is given asymptotically by

(3.7) p∗ = 2
1
3G

2
3

minL
− 1

3 ,

where k̄∗ is the location of the unique interior maximum of ρapp and asymptotically given by

k̄∗ = 2
2
3G

1
3

minL
− 2

3 . The above p∗ solves asymptotically the min-max problem (3.5) and the
corresponding convergence factor satisfies the following estimate as L goes to zero:

max
k∈K
|ρOO0(k, L, η, p∗, a, b)| = 1− 2

8
3G

1
3

minL
1
3 +O(L

2
3 ).

Proof. A direct calculation shows that the unique interior maximum point of ρapp with
respect to k is given by k̄(L, η, p) =

√
L(2p+ L(p2 − η))/L. We then need to find the

asymptotic expansion of p∗ for L small from (3.6). We make the ansatz p = CpL
−α for

α > 0 and define p∗ = C∗pL
−α∗

. We first consider the case α < 1. In this case, we have
k̄(L, η, p) ∼

√
2CpL

− 1+α
2 for L small. Expanding the left-hand side of (3.6) in L for L small

yields

(3.8) ρOO0(kmin, L, η, p
∗, a, b) = 1− 8

C∗p
GminL

α∗
+ o(Lα

∗
).

Expanding the right-hand side of (3.6) in L for L small yields

ρapp(k̄
∗, L, η, p∗, p∗) = 1− 4

√
2C∗pL

1−α∗
2 + o(L

1−α∗
2 ).

Since (3.6) holds for all L > 0, we must have an equality of the leading order terms, i.e.,
8
C∗
p
GminL

α∗
= 4
√

2C∗pL
1−α∗

2 , which leads to the solution α∗ = 1
3 , C∗p = 2

1
3G

2
3

min and thus

to the parameter p∗ in (3.7). With this asymptotic expression of p∗, the interior maximum k̄∗

behaves asymptotically like

k̄∗ = 2
2
3G

1
3

minL
− 2

3 .

Similarly, we can show that if α ≥ 1, then there is no valid solution α∗.
We then show the second result. In this case, ka(L, p∗) behaves asymptotically as

ka(L, p∗) = C∗pL
− 1

3 for L small enough. By result c) of Lemma 3.2, we know that the conver-
gence factor ρOO0(k, L, η, p∗, a, b) decreases monotonically in k for k ∈ (kmin, ka(L, p∗)).
This implies that kmin is a possible maximum point for L small.

If k > ka(L, p∗), then we know that

|ρOO0(k, L, η, p∗, a, b)− ρapp(k, L, η, p∗, p∗)|
≤ 2(e−2

√
η+k2a(L,p∗)b + e−2

√
η+k2a(L,p∗)(a+L)).

Hence ρOO0(k, L, η, p∗, a, b) attains its unique interior maximum asymptotically at the point

k̄∗ = 2
2
3G

1
3

minL
− 2

3 .
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We can now show that p∗ given by (3.7) solves the min-max problem (3.5) asymptotically.
Assuming p = CpL

−α, we only need to show that if α 6= α∗ = 1
3 , or Cp 6= C∗p , we have

maxk |ρOO0(k, L, η, p, a, b)| > maxk |ρOO0(k, L, η, p∗, a, b)| for L small enough. We show
that when α 6= α∗, the asymptotic order in the expansion of the convergence factor is amplified.
When α < α∗, we have

ρapp(k̄(L, η, p), L, η, p, p) = 1− 4
√

2CpL
1−α
2 + o(L

1−α
2 ),

and by Theorem 3.1, ρOO0(k̄(L, η, p), L, η, p, a, b) behaves the same way. Thus we have for
L small enough that

ρOO0(k̄(L, η, p), L, η, a, b) > ρOO0(k̄∗, L, η, p∗, a, b).

When α > α∗, we consider the convergence factor at kmin and obtain

ρOO0(kmin, L, η, p, a, b) = 1−
√

8

Cp
GminL

α + o(Lα),

which is greater than ρOO0(kmin, L, η, p
∗, a, b) for L small enough.

We finally consider the case α = α∗ but Cp 6= C∗p . By the asymptotic expansions
above we find that ρOO0(kmin, L, η, p, a, b) > ρOO0(kmin, L, η, p

∗, a, b) if Cp > C∗p and
ρOO0(k̄(L, η, p), L, η, p, a, b) > ρOO0(k̄(L, η, p∗), L, η, p∗, a, b, ) if Cp < C∗p , which con-
cludes the proof of the asymptotic optimality. To show the convergence factor estimate, we
only insert C∗p and α∗ into (3.8).

THEOREM 3.5 (OO0, nonoverlapping case). When the overlap L = 0, the solution p̄ to

(3.9) ρOO0(kmin, 0, η, p̄, a, b) = ρOO0(kmax, 0, η, p̄, a, b)

is given in closed form by

p̄ =

(
faminf

b
minf

a
maxf

b
max

−famin − f bmin + famax + f bmax

(− 1

famax

− 1

f bmax

+
1

famin

+
1

f bmin

)

) 1
2

with

famin = f(a
√
η + k2

min)/a, f bmin = f(b
√
η + k2

min)/b,

famax = f(a
√
η + k2

max)/a, and f bmax = f(b
√
η + k2

max)/b,

where f(x) is defined in Lemma 2.1. In addition, p̄ is, for kmax → +∞, asymptotically given
by

p̄ =
√

2Gmink
1
2
max.

The above p̄ solves asymptotically the min-max problem (3.5), and we get for kmax →∞ the
convergence factor estimate

(3.10) max
k∈K
|ρOO0(k, 0, η, p̄, a, b)| = 1− 2

5
2G

1
2

mink
− 1

2
max +O(k−1

max).

Proof. We rewrite the convergence factor ρOO0(k, 0, η, p, a, b) as

ρOO0(k, 0, η, p, a, b) = ρb(k, 0, η, p, p)ρa(k, 0, η, p, p).
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Solving directly the equi-oscillation equation (3.9) gives the closed form of the parameter p̄.
Note that coth(x)→ 1 converges faster than any polynomial as x→∞, and an asymptotic

expansion in kmax of p̄ gives p̄ =
√

2Gmink
1
2
max for kmax →∞.

From the result c) and the proof of Lemma 3.2, we know that ρOO0(k, 0, η, p̄, a, b) is
monotonically decreasing in k for k ∈ (kmin, ka(0, p̄)) and is monotonically increasing in k
for k ∈ (kb(0, p̄), kmax), and ρOO0(k, 0, η, p̄, a, b) is positive in these two intervals. Thus, in
between ka(0, p̄) and kb(0, p̄), the convergence factor ρOO0 attains its minimum. We show
next that when k lies in between ka(0, p̄) and kb(0, p̄), then

|ρOO0(k, 0, η, p̄, a, b)| < ρOO0(kmin, 0, η, p̄, a, b) for kmax large enough.

Note that both ka(0, p̄) and kb(0, p̄) behave asymptotically as

ka(0, p̄) ≈ kb(0, p̄) ∼
√

2Gmink
1
2
max.

When k lies in between ka(0, p̄) and kb(0, p̄), we have from Theorem 3.1 that

|ρOO0(k, 0, η, p̄, a, b)− ρapp(k, 0, η, p̄, p̄)| ≤ 2(e−2
√
η+k2a(0,p̄)b + e−2

√
η+k2a(0,p̄)a).

Incorporating the above estimate into the fact that ρapp(k, η, 0, p̄, p̄) attains its unique minimum

asymptotically at
√

2Gmink
1
2
max with a minimum value 0, we obtain, as kmax → ∞, that

|ρOO0(k, 0, η, p̄, a, b)| < ρOO0(kmin, 0, η, p̄, a, b) for k ∈ (ka(0, p̄), kb(0, p̄)).
Next, we only need to show that when p 6= p̄, there exists a k∗ such that

ρOO0(k∗, 0, η, p, a, b) > ρOO0(kmin, 0, η, p̄, a, b).

Let p := Cpk
α
max and p̄ := C̄pk

ᾱ
max with C̄p =

√
2Gmin and ᾱ = 1

2 . We show first that if
α 6= ᾱ, then the asymptotic order in the expansion of the convergence factor is amplified. If
α > ᾱ, then we take k∗ = kmin. We have

(3.11) ρOO0(kmin, 0, η, p, a, b) = 1− 8
Gmin

Cp
k−αmax + o(k−αmax).

If α < ᾱ, then we take k∗ = kmax. We have by Theorem 3.1,

(3.12) ρOO0(kmax, 0, η, p, a, b) = 1− 4Cpk
α−1
max + o(kα−1

max ).

Therefore, in each case above we get maxk |ρOO0(k, 0, η, p, a, b)| > 1− ck−δmax with δ > 1
2 .

We then consider the case α = ᾱ but Cp 6= C̄p. By (3.11) we see that

|ρOO0(kmin, 0, η, p, a, b)| > |ρOO0(kmin, 0, η, p̄, a, b)| if Cp > C̄p.

By (3.12) we see that

|ρOO0(kmax, 0, η, p, a, b)| > |ρOO0(kmax, 0, η, p̄, a, b)| if Cp < C̄p.

Hence the maximum of the convergence factor |ρOO0(k, 0, η, p, a, b)| attains its minimum
at p = p̄ asymptotically. Inserting the asymptotic formula of p̄ into ρOO0(kmin, 0, η, p̄, a, b)
and asymptotically expanding it with respect to kmax for kmax large enough gives (3.10).
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3.3. Optimized transmission condition of order 2. In this section we impose on pi
and qi the constraints

pi = p, qi = q, i = 1, 2,

with p and q positive parameters. To determine the best parameters p and q, we thus need to
solve the min-max problem

(3.13) min
p>0,q>0

(
max
k∈K
|ρOO2(k, L, η, p, q, a, b)|

)
,

with

ρOO2(k, L, η, p, q, a, b)

=

√
η + k2 cosh(

√
η + k2(b− L))− (p+ qk2) sinh(

√
η + k2(b− L))√

η + k2 cosh(
√
η + k2(a+ L)) + (p+ qk2) sinh(

√
η + k2(a+ L))

×√
η + k2 cosh(

√
η + k2a)− (p+ qk2) sinh(

√
η + k2a)√

η + k2 cosh(
√
η + k2b) + (p+ qk2) sinh(

√
η + k2b)

,

where OO2 stands for "Optimized of Order 2", a second-order transmission condition that is
also known as the optimized Ventcell transmission condition in the literature. Again, we need
the technique used in [20, 23] for the analysis to obtain the following results.

THEOREM 3.6 (OO2, overlapping case). For L > 0, the solutions p∗ and q∗ to

ρOO2(kmin, L, η, p
∗, q∗, a, b) = ρapp(k̄

∗
1 , L, η, p

∗ + q∗(k̄∗1)2, p∗ + q∗(k̄∗1)2)

= ρapp(k̄
∗
2 , L, η, p

∗ + q∗(k̄∗2)2, p∗ + q∗(k̄∗2)2)
(3.14)

are asymptotically given by

p∗ = 2
1
5G

4
5

minL
− 1

5 , q∗ = 2−
3
5G
− 2

5

minL
3
5 ,

where k̄∗1 and k̄∗2 are the locations of the interior maxima of ρapp which can be expressed

asymptotically as k̄∗1 = 2
2
5G

3
5

minL
− 2

5 and k̄∗2 = 2
4
5G

1
5

minL
− 4

5 . The above p∗ and q∗ solve
asymptotically the min-max problem (3.13), and the corresponding convergence factor satisfies
the estimate as L→ 0

max
k∈K
|ρOO2(k, L, η, p∗, q∗, a, b)| = 1− 2

14
5 G

1
5

minL
1
5 +O(L

2
5 ).

Proof. From the derivative of ρapp(k, L, η, p+ qk2, p+ qk2) in k, we get

k̄1,2(L, η, p, q) =
1

q

√
L+ 2q − 2Lpq ∓

√
Φ

2L
, with

Φ = L2 + 4Lq − 4L2pq + 4q2 − 16Lpq2 + 16Lq3η + 4L2q2η.

We make the ansatz p := CpL
− 1

5 and q := CqL
3
5 . Inserting this ansatz into k̄1,2 and

expanding for L small, we obtain k̄1(L, η, p, q) ∼
√

Cp
Cq
L−

2
5 and k̄2(L, η, p, q) ∼

√
2
Cq
L−

4
5 .

Again, using the same ansatz in the following expansions for L small, we obtain

ρOO2(kmin, L, η, p, q, a, b) = 1− 8Gmin

Cp
L

1
5 +O(L−

2
5 ),(3.15)

ρapp(k̄1, L, η, p+ qk̄2
1, p+ qk̄2

1) = 1− 8
√
CpCqL

1
5 +O(L

2
5 ),(3.16)
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and

ρapp(k̄2, L, η, p+ qk̄2
2, p+ qk̄2

2) = 1− 4
√

2√
Cq
L

1
5 +O(L

2
5 ).(3.17)

By Theorem 3.1, we conclude that ρOO2(k, L, η, p, q, a, b) behaves asymptotically the same
way as ρapp(k, L, η, p+ qk2, p+ qk2) at k̄1,2. Since (3.14) holds for any small L > 0, setting
the coefficients of the term L

1
5 in the three expansions above to be equal to each other, we

obtain

−8Gmin

Cp
= −8

√
CpCq = −4

√
2

Cq
,

whose solution C∗p , C
∗
q leads to the announced results for p∗, q∗, and k̄∗1,2.

Inserting the asymptotic values of p∗, q∗, and k = kmin into the convergence factor
ρOO2(k, L, η, p, q) and expanding for L small, we obtain

ρOO2(kmin, L, η, p
∗, q∗, a, b) = 1− 2

14
5 G

1
5

minL
1
5 +O(L

2
5 ).

Thus, we only need to show that p∗, q∗ solve the min-max problem (3.13) asymptotically.
Note that

ρOO2(k, L, η, p, q, a, b) = ρb(k, L, η, p+ qk2, p+ qk2)ρa(k, L, η, p+ qk2, p+ qk2).

We denote by kb(L, p∗, q∗) the smaller positive zero of ρb(k, L, η, p∗+q∗k2, p∗ + q∗k2) and
by ka(L, p∗, q∗) the smaller positive zero of ρa(k, L, η, p∗ + q∗k2, p∗ + q∗k2). Then sim-
ilar to the proof of Lemma 3.2, we obtain ka(L, p∗, q∗) < kb(L, p

∗, q∗), and both of them
behave as p∗ for L small enough. By a similar argument as for the result c) of Lemma 3.2,
we can show that ρb,a(k, L, η, p∗ + q∗k2, p∗ + q∗k2) are negative and increasing in k for
k ∈ (kmin, ka(L, p∗, q∗)). Thus, ρOO2(k, L, η, p∗, q∗, a, b) is positive and asymptotically de-
creasing in k for k ∈ (kmin, ka(L, p∗, q∗)), and kmin is a possible maximum point for L small
enough. For k ∈ (ka(L, p∗, q∗), kmax), noting that ρapp(k, L, η, p∗+q∗k2, p∗+q∗k2) has two
interior maximum points k̄∗1 and k̄∗2 , by Theorem 3.1, we know that ρOO2(k, L, η, p∗, q∗, a, b)
attains its interior maxima at k̄∗1,2 asymptotically.

We then only need to show that if (p, q) 6= (p∗, q∗), then there exists a k∗ such that for
L > 0 small enough

ρOO2(k∗, L, η, p, q, a, b) > 1− 8Gmin

C∗p
L

1
5 .

To this end, let p := CpL
−α and q := CqL

β . We consider first the case (α, β) 6= (α∗, β∗)
= ( 1

5 ,
3
5 ). It is sufficient to treat the following cases:

a) α > α∗, β > −α. In this case, at k∗ = kmin, we have

ρOO2(k∗, L, η, p, q, a, b) = 1− 8Gmin

Cp
Lα − 4GminL+ o(Lmin{α,1}).

b) α > α∗, β = −α. In this case, at k∗ = kmin, we have

ρOO2(k∗, L, η, p, q, a, b) = 1− 8Gmin

Cp + Cqk2
min

Lα − 4GminL+ o(Lmin{α,1}).
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c) α > α∗, β < −α. In this case, at k∗ = kmin, we have

ρOO2(k∗, L, η, p, q, a, b) = 1− 8Gmin

Cqk2
min

L−β − 4GminL+ o(Lmin{−β,1}).

d) α = α∗, β∗ < β ≤ 1. In this case, at k∗ = CkL
−α+β

2 , we have

ρapp(k
∗, L, η, p+ q(k∗)2, p+ q(k∗)2)

= 1− 4(Cp + CqC
2
k)

Ck
L
β−α

2 − 2CkL
− 2−α−β

2 + o(L
β−α

2 ).

e) α = α∗, β > 1. In this case, at k∗ = CkL
− 3

5 , we have

ρapp(k
∗, L, η, p+ q(k∗)2, p+ q(k∗)2) = 1− 2(

2Cp
Ck

+ Ck)L
2
5 + o(L

2
5 ).

f) α ≤ α∗, β < β∗. In this case, we consider k∗ = CkL
− β+1

2 . We obtain

ρapp(k
∗, L, η, p+ q(k∗)2, p+ q(k∗)2) = 1− 2(

2

CqCk
+ Ck)L

1−β
2 + o(L

1−β
2 ).

g) α < α∗, β > β∗. In this case, at k∗ = CkL
− 2

5 , we have

ρapp(k
∗, L, η, p+ q(k∗)2, p+ q(k∗)2)

= 1− 4(
Cp
Ck

L
2
5−α + CqCkL

β− 2
5 )− 2CkL

3
5 + o(Lmin{ 2

5−α,β−
2
5 ,

3
5}).

h) α < α∗, β = β∗. In this case, at k∗ = CkL
− β+α2 , we have

ρapp(k
∗, L, η, p+ q(k∗)2, p+ q(k∗)2) = 1− 4(

Cp
Ck

+ CqCk)L
β−α

2 + o(L
β−α

2 ).

Note that in the cases d)–h) we get the expansions of ρapp at k∗. By Theorem 3.1 we know
that in each case ρOO2(k∗, L, η, p, q, a, b) has the same asymptotic expansion as the function
ρapp(k

∗, L, η, p+ q(k∗)2, p+ q(k∗)2). We therefore see that in each case above, at the given
frequency k∗, the convergence factor ρOO2(k∗, L, η, p, q, a, b) behaves asymptotically like
1− CLδ with δ > 1

5 .
Thus, it remains to consider the case (α, β) = (α∗, β∗) but (Cp, Cq) 6= (C∗p , C

∗
q ).

From (3.15) we see that ρOO2(kmin, L, η, p, q, a, b) > ρOO2(kmin, L, η, p
∗, q∗, a, b) for L>0

small enough if Cp > C∗p . From (3.17) together with Theorem 3.1, we see that

ρOO2(k̄2, L, η, p, q, a, b) > ρOO2(k̄∗2 , L, η, p
∗, q∗, a, b)

for L > 0 small enough if Cq > C∗q . From (3.16) together with Theorem 3.1, we conclude that
ρOO2(k̄1, L, η, p, q, a, b) > ρOO2(k̄∗1 , L, η, p

∗, q∗, a, b) for L > 0 small enough if Cp < C∗p
or Cq < C∗q , which ends the proof.

THEOREM 3.7 (OO2, nonoverlapping case). For vanishing overlap, L = 0, the solutions
p̄ and q̄ to

ρOO2(kmin, 0, η, p̄, q̄, a, b) = ρapp(k̄
∗, 0, η, p̄+ q̄(k̄∗)2, p̄+ q̄(k̄∗)2)

= ρapp(kmax, 0, η, p̄+ q̄k2
max, p̄+ q̄k2

max)
(3.18)

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

THE INFLUENCE OF DOMAIN TRUNCATION ON OSM 197

are given asymptotically by

p̄ = 2
1
4G

3
4

mink
1
4
max, q̄ = 2−

3
4G
− 1

4

mink
− 3

4
max,

where k̄∗ is the unique interior maximum of ρapp given asymptotically by k̄∗ = 2
1
2G

1
2

mink
1
2
max.

The above p̄ and q̄ solve asymptotically the min-max problem (3.13), and the corresponding
convergence factor ρOO2 satisfies, for kmax → +∞, the estimate

(3.19) max
k∈K
|ρOO2(k, 0, η, p̄, q̄, a, b)| = 1− 2

11
4 G

1
4

mink
− 1

4
max +O(k

− 1
2

max).

Proof. First, it is easy to show that when k > 0, the approximate convergence factor
ρapp(k, 0, η, p+ qk2, p+ qk2) attains its unique interior maximum at k̄(p, q) =

√
p/q − 2η.

Let p := Cpk
1
4
max and q := Cqk

− 3
4

max. Then k̄ behaves like
√
Cp/Cqk

1
2
max as kmax → ∞.

Inserting these p and q into ρOO2(kmin, 0, η, p, q, a, b) and expanding for kmax large gives

(3.20) ρOO2(kmin, 0, η, p, q, a, b) = 1− 8Gmin

Cp
k
− 1

4
max +O(k

− 1
2

max).

Inserting k̄ =
√
Cp/Cqk

1
2
max and the values of p and q into ρapp(k, 0, η, p+ qk2, p+ qk2)

and expanding for kmax large, we obtain

(3.21) ρapp(k̄, 0, η, p+ qk̄2, p+ qk̄2) = 1− 8
√
CpCqk

− 1
4

max +O(k
− 1

2
max).

Inserting k = kmax and p and q into ρapp(k, 0, η, p+ qk2, p+ qk2) and expanding for kmax

large yields

(3.22) ρapp(kmax, 0, η, p+ qk2
max, p+ qk2

max) = 1− 4

Cq
k
− 1

4
max +O(k

− 1
2

max).

From (3.18), we know that for any kmax large enough (3.20), (3.21), and (3.22) should be
equal to each other. We then set the coefficients of the term k

1
4
max of these three equations

equal to find

8Gmin

Cp
=

4

Cq
= 8
√
CpCq.

Let C̄p = 2
1
4G

3
4

min and C̄q = 2−
3
4G
− 1

4

min denote the solutions to the above equations. Then we

get p̄ = C̄pk
1
4
max and q̄ = C̄qk

3
4
max. In addition, the asymptotic expression of k̄∗ follows.

For the second result, by inserting the asymptotic expressions of p̄ and q̄ into
ρOO2(kmin, 0, η, p, q, a, b) and expanding for kmax large, we obtain

ρOO2(kmin, 0, η, p̄, q̄, a, b) = 1− 2
1
4G

1
4

mink
− 1

4
max +O(k

− 1
2

max).

Now we show that p̄, q̄ solve the min-max problem (3.13) for L = 0 asymptotically when
kmax becomes large. We rewrite the convergence factor ρOO2 as

ρOO2(k, 0, η, p, q, a, b) = ρb(k, 0, η, p+ qk2, p+ qk2)ρa(k, 0, η, p+ qk2, p+ qk2),

and denote by ka,b(0, p̄, q̄) the solutions of ρa,b(ka,b, 0, η, p̄ + q̄k2
a,b, p̄ + q̄k2

a,b) = 0. Sim-
ilar to the proof of Theorem 3.6, we have ka(0, p̄, q̄) < kb(0, p̄, q̄). In addition, we know
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that both ρb(k, 0, η, p̄ + q̄k2, p̄ + q̄k2) and ρa(k, 0, η, p̄ + q̄k2, p̄ + q̄k2) are negative and
increasing in k for k ∈ (kmin, ka(0, p̄, q̄)). Then we conclude that, as the product of
these two, the convergence factor ρOO2(k, 0, η, p̄, q̄, a, b) is positive and decreasing in k for
k ∈ (kmin, ka(0, p̄, q̄)). Thus, kmin is a possible maximum point of ρOO2(k, 0, η, p̄, q̄, a, b).

Note that ka(0, p̄, q̄) behaves asymptotically like p̄ = C̄pk
1
4
max. Since it is easy to show that

ρapp(k, 0, η, p̄+ q̄k2, p̄+ q̄k2) attains its maxima at k̄ = 2
1
2G

1
2

mink
1
2
max and kmax, by Theo-

rem 3.1, we conclude that ρOO2(k, 0, η, p̄, q̄, a, b) asymptotically attains its maxima at k̄ and
kmax as well. Altogether, ρOO2(k, 0, η, p̄, q̄, a, b) has three potential maxima at kmin, k̄, and
kmax for kmax large enough.

Then, we need to show that if (p, q) 6= (p̄, q̄), then there exists a k∗ at which the conver-
gence factor |ρOO2| is larger than the maximum value in (3.19). Assume that p := Cpk

α
max

and q := Cqk
−β
max, p̄ := C̄pk

ᾱ
max and q̄ := C̄qk

−β̄
max with ᾱ = 1

4 and β̄ = 3
4 . We show first the

case (α, β) 6= (ᾱ, β̄). It suffices to analyze the following cases.
a) α > ᾱ, β > −α. In this case, at k∗ = kmin, the convergence factor is

ρOO2(k∗, 0, η, p, q, a, b) = 1− 8Gmin

Cp
k−αmax + o(k−αmax).

b) α > ᾱ, β < −α. In this case, at k∗ = kmin, the convergence factor is

ρOO2(k∗, 0, η, ]p, q, a, b) = 1− 8Gmin

Cqk2
min

kβmax + o(kβmax).

c) α > ᾱ, β = −α. In this case, at k∗ = kmin, we have

ρOO2(k∗, 0, η, p, q, a, b) = 1− 8Gmin

Cp + Cqk2
min

kβmax + o(kβmax).

d) α ≤ ᾱ, β ≥ β̄ but (α, β) 6= (ᾱ, β̄). In this case, at k∗ = Ckk
α+β

2
max , we have

ρapp(k
∗, 0, η, p+ q(k∗)2, p+ q(k∗)2) = 1− 4

Cp
Ck

k
α−β

2
max + o(k

α−β
2

max ).

e) α ≤ ᾱ, β < β̄. In this case, at k∗ = kmax, we have

ρapp(k
∗, 0, η, p+ q(k∗)2, p+ q(k∗)2) = 1− 4

Cq
kβ−1

max + o(kβ−1
max ).

For the cases d) and e), we have by Theorem 3.1 that ρOO2(k∗, 0, η, p, q, a, b) behaves asymp-
totically the same way as ρapp(k∗, 0, η, p+ q(k∗)2, p+ q(k∗)2) for kmax large enough. Then,
in each case above we see that at k∗ the convergence factor |ρOO2(k∗, 0, η, p, q, a, b)| behaves
like 1− Ck−δmax with δ > 1

4 .
We then only need to consider the case where (α, β) = (ᾱ, β̄) but (Cp, Cq) 6= (C̄p, C̄q).

From (3.20) we see that if Cp > C̄p and kmax is large enough, we have

|ρOO2(kmin, 0, η, p, q, a, b)| > |ρOO2(kmin, 0, η, p̄, q̄, a, b)|.
If Cq > C∗q and kmax is large enough, then we have from (3.22) together with Theorem 3.1
that

|ρOO2(kmax, 0, η, p, q, a, b)| > |ρOO2(kmax, 0, η, p̄, q̄, a, b)|.
If Cp < C̄p or Cq < C̄q and kmax large enough, then, from (3.21) together with Theorem 3.1,
we have that

|ρOO2(k̄, 0, η, p, q, a, b)| > |ρOO2(k̄, 0, η, p̄, q̄, a, b)|.
This ends the proof.
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3.4. Optimized two-sided Robin transmission conditions. In this section we consider
the optimized two-sided (O2s for short) Robin transmission condition: pi > 0 and qi = 0 for
i = 1, 2. We then need to solve the min-max problem

(3.23) min
p1,p2>0

(
max
k∈K
|ρO2s(k, L, η, p1, p2, a, b)|

)
,

where

ρO2s(k, L, η, p1, p2, a, b)

=

√
η + k2 cosh(

√
η + k2(b− L))− p1 sinh(

√
η + k2(b− L))√

η + k2 cosh(
√
η + k2(a+ L)) + p1 sinh(

√
η + k2(a+ L))

×√
η + k2 cosh(

√
η + k2a)− p2 sinh(

√
η + k2a)√

η + k2 cosh(
√
η + k2b) + p2 sinh(

√
η + k2b)

·

Again, the following results can be obtained using the techniques applied in [20, 23].
THEOREM 3.8 (O2s, overlapping case). For L > 0, the solutions p∗1, p∗2 to

(3.24) ρO2s(kmin, L, η, p
∗
1, p
∗
2, a, b) = −ρapp(k̂∗1 , L, η, p∗1, p∗2) = ρapp(k̂

∗
2 , L, η, p

∗
1, p
∗
2)

are given asymptotically by

(3.25) p∗1 = G
4
5

minL
− 1

5 , p∗2 = G
2
5

minL
− 3

5 ,

where k̂∗1 = G
3
5

minL
− 2

5 and k̂∗2 = G
1
5

minL
− 4

5 are the locations of the interior maxima of |ρapp|.
These values of p∗1, p∗2 asymptotically solve the min-max problem (3.23) and the convergence
factor ρO2s satisfies, for L→ 0, the estimate

max
k∈K
|ρO2s(k, L, η, p

∗
1, p
∗
2, a, b)| = 1− 4G

1
5

minL
1
5 +O(L

2
5 ).

Proof. We first show that the approximate convergence factor ρapp(k, L, η, p∗1, p
∗
2) attains

its interior minimum and maximum asymptotically at k̂∗1 = G
3
5

minL
− 2

5 and k̂∗2 = G
1
5

minL
− 4

5 ,
and then ρO2s(k, L, η, p

∗
1, p
∗
2, a, b) does so as well because of Theorem 3.1. Solving the

equation ∂kρapp(k, L, η, p1, p2) = 0, we get the positive solutions

k̂1,2(L, η, p1, p2) =

√
2

2

√
Lp2

1 + Lp2
2 − 2Lη + p2 + p1 ∓

√
Φ

L
with

Φ = p2
2 + p2

1 + 2p1p2 − 2L2p2
1p

2
2 − 2Lp2

1p2 − 2Lp2
2p1 + L2p4

1 + 2Lp3
1 + L2p4

2 + 2Lp3
2.

We make the ansatz p1 := C1L
− 1

5 and p2 := C2L
− 3

5 . Inserting this ansatz into k̂1,2 we get by
an expansion in L for L small that k̂1 =

√
C1C2L

− 2
5 +O(1) and k̂2 =

√
C2L

− 4
5 +O(L−

2
5 ).

Using the same ansatz also in ρO2s(kmin, L, η, p1, p2, a, b) and expanding for small L gives

(3.26) ρO2s(kmin, L, η, p1, p2, a, b) = 1− 4Gmin

C1
L

1
5 +O(L

2
5 ).

Inserting the same ansatz and the expressions for k̂1,2 into −ρapp(k̂1, L, η, p1, p2) and
ρapp(k̂2, L, η, p1, p2) and expanding for small L, we obtain in addition

−ρapp(k̂1, L, η, p1, p2) = 1− 4

√
C1

C2
L

1
5 +O(L

2
5 ) and(3.27)

ρapp(k̂2, L, η, p1, p2) = 1− 4
√
C2L

1
5 +O(L

2
5 ).(3.28)
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Since (3.24) should hold for any L > 0 small, setting the coefficients of the terms L
1
5 in

(3.26), (3.27), and (3.28) equal, we obtain

(3.29)
4Gmin

C1
= 4

√
C1

C2
= 4
√
C2.

Denoting by C∗1 = 2−
8
5 η

2
5G

4
5

min and C∗2 = 2−
4
5 η

1
5G

2
5

min the solutions to (3.29), we arrive at
the asymptotic expressions of p∗1,2 and k̂∗1,2.

We then prove that the parameters p∗1,2 obtained above solve asymptotically the min-max
problem (3.23). We rewrite the convergence factor ρO2s as

ρO2s(k, L, η, p1, p2, a, b) = ρa(k, L, η, p1, p2)ρb(k, L, η, p1, p2).

Then kb(L, p∗1) behaves like p∗1 = G
4
5

minL
− 1

5 and ka(L, p∗2) behaves like p∗2 = G
2
5

minL
− 3

5 .
By Lemma 3.2 we know that ρa,b(k, L, η, p∗1, p

∗
2) are negative and increasing functions

of k for k ∈ (kmin, kb(L, p
∗
1)) and L small enough. Therefore, the convergence factor

ρO2s(k, L, η, p
∗
1, p
∗
2, a, b), as the product of ρa, ρb, decreases in k for kmin ≤ k ≤ kb(L, p

∗
1)

and L small, hence, k = kmin is a possible maximum point of ρO2s(k, L, η, p
∗
1, p
∗
2, a, b) for L

small.
Since ρapp(k, L, η, p∗1, p

∗
2) attains its unique interior minimum asymptotically at k̂1 and

attains its unique interior maximum asymptotically at k̂2, we know from Theorem 3.1 that
when k > kb(L, p

∗
1), ρO2s(k, L, η, p

∗
1, p
∗
2, a, b) also attains its interior minimum and maximum

asymptotically at k̂∗1 and k̂∗2 , respectively.
We now show that p∗1,2 given in (3.25) solve the min-max problem (3.23) asymptotically.

We make the ansatz p1 := C1L
−α, p2 := C2L

−β , and set p∗1 := C∗1L
−α∗

, p∗2 := C∗2L
−β∗

with α∗ = 1
5 , β
∗ = 3

5 . Then, we obtain

ρO2s(kmin, L, η, p
∗
1, p
∗
2, a, b) = 1− 4G

1
5

minL
1
5 +O(L

2
5 ).

We first prove that if (α, β) 6= (α∗, β∗), then there exists a frequency k∗ such that at this
frequency the convergence factor has an asymptotic order larger than 1

5 . We show this by
examining in detail the following cases, where we consider the case β ≥ α only since it is
easy to verify that a swapping of the parameters p1 and p2 will result in the same asymptotic
expansions.

a) β ≥ α > α∗. In this case, at k∗ = kmin, we have

ρO2s(k
∗, L, η, p1, p2, a, b)

= 1− 4Gmin

C1
Lα − 4Gmin

C2
Lβ − 4GminL+ o(Lmin{α,1}).

b) α < α∗, β > β∗. In this case, at k∗ = CkL
− 2

5 , we have

− ρapp(k∗, L, η, p1, p2)

= 1− 2
C1

Ck
L

2
5−α − 2

Ck
C2

Lβ−
2
5 − 2CkL

3
5 + o(Lmin{ 2

5−α,β−
2
5 ,

3
5}).

c) α = α∗, 1 ≥ β > β∗. In this case, at k∗ = CkL
−α+β

2 , we have

ρapp(k
∗, L, η, p1, p2) = −1 + 2(

C1

Ck
+
Ck
C2

)L
β−α

2 + 2CkL
2−α−β

2 + o(L
β−α

2 ).
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d) α = α∗, β > 1. In this case, at k∗ = CkL
− 3

5 , we obtain that

ρapp(k
∗, L, η, p1, p2) = −1 + 2(

C1

Ck
+ Ck)L

2
5 + o(L

2
5 ).

e) α ≤ α∗, α ≤ β < β∗. In this case, at k∗ = CkL
− β+1

2 , we obtain that

ρapp(k
∗, L, η, p1, p2) = 1− 2

C1

Ck
L
β+1−2α

2 − 2(
C2

Ck
+ Ck)L

1−β
2 + o(L

1−β
2 ).

f) β = β∗, α < α∗. In this case, choosing k∗ = CkL
−α+β

2 gives

ρapp(k
∗, L, η, p1, p2) = −1 + 2(

C1

Ck
+
Ck
C2

)L
β−α

2 + o(L
β−α

2 ).

Note that by Theorem 3.1 in the cases b)–f) we have that ρO2s(k
∗, L, η, p1, p2, a, b) behaves

asymptotically in the same way as ρapp(k∗, L, η, p1, p2) for L > 0 small enough. Therefore,
in each case above we see that at k∗ the convergence factor |ρO2s(k

∗, L,R, η, p, q)| behaves
asymptotically like 1− CLδ with δ > 1

5 .
We finally consider the case (α, β) = (α∗, β∗) but (C1, C2) 6= (C∗1 , C

∗
2 ). If C1 > C∗1 ,

then we get from (3.26) that

|ρO2s(kmin, L, η, p1, p2, a, b)| > |ρO2s(kmin, L, η, p
∗
1, p
∗
2, a, b)|,

and if C2 < C∗2 , we get from (3.28) together with Theorem 3.1 that

ρO2s(k̂2, L, η, p1, p2, a, b) > ρO2s(k̂
∗
2 , L, η, p

∗
1, p
∗
2, a, b),

both for L > 0 small enough. The last case we need to consider is C1 < C∗1 and C2 > C∗2 ,
and we have C1

C2
<

C∗
1

C∗
2

. Thus from (3.27) together with Theorem 3.1, we have

|ρO2s(k̂1, L, η, p1, p2, a, b)| > |ρO2s(k̂
∗
1 , L, η, p

∗
1, p
∗
2, a, b)|

for L > 0 small enough, which concludes the proof.
THEOREM 3.9 (O2s, nonoverlapping case). For vanishing overlap, L = 0, the solutions

p̄1, p̄2 to

(3.30) ρO2s(kmin, 0, η, p̄1, p̄2, a, b) = −ρapp(k̂∗, 0, η, p̄1, p̄2) = ρapp(kmax, 0, η, p̄1, p̄2)

are given asymptotically by

p̄1 = 2
1
4G

3
4

mink
1
4
max, p̄2 = 2

3
4G

1
4

mink
3
4
max,

where k̂∗ = (2Gmin)
1
2 k

1
2
max is the location of the interior maximum of |ρapp|. The previous

p̄1, p̄2 asymptotically solve the min-max problem (3.23) and the corresponding convergence
factor satisfies, for kmax →∞, the estimate

max
k∈K
|ρO2s(k, 0, η, p̄1, p̄2, a, b)| = 1− 2

7
4G

1
4

mink
− 1

4
max +O(k

− 1
2

max).

Proof. First of all, we solve directly for the root of the derivative of ρapp(k, 0, η, p1, p2)
with respect to k and obtain its unique positive solution as

k̂(η, p1, p2) :=
√
p1p2 − η.
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Let p1 := C1k
1
4
max and p2 := C2k

3
4
max. Inserting these values of p1,2 into k̂ and expanding for

kmax large, we have k̂ =
√
C1C2k

1
2
max +O(k

− 1
2

max), which, of course, behaves asymptotically

like k̂ =
√
C1C2k

1
2
max. Inserting the values of p1,2 into ρO2s(kmin, 0, η, p1, p2, a, b), and

expanding for kmax large, we get

(3.31) ρO2s(kmin, 0, η, p1, p2, a, b) = 1− 4Gmin

C1
k
− 1

4
max +O(k

− 1
2

max).

Inserting k̂ and p1,2 into ρapp(k, 0, η, p1, p2) and expanding for kmax large, we find

(3.32) −ρapp(k̂, 0, η, p1, p2) = 1− 4

√
C1

C2
k
− 1

4
max +O(k

− 1
2

max).

Moreover, inserting p1,2 into ρapp(kmax, 0, η, p1, p2) and expanding for kmax large, we obtain

(3.33) ρapp(kmax, 0, η, p1, p2) = 1− 2C2k
− 1

4
max +O(k

− 1
2

max).

Since (3.30) holds for any kmax large enough, we set the coefficients of the term k
− 1

4
max in

(3.31)–(3.33) equal to obtain

4Gmin

C1
= 4

√
C1

C2
= 2C2.

Denoting by C̄1 = 2
1
4G

3
4

min and C̄2 = 2
3
4G

1
4

min the solutions to the above equations, we obtain
the asymptotic expressions of p̄1,2 and k̂∗.

We finally have to prove that the parameters p̄1,2 given above asymptotically solve the
min-max problem (3.23) for L = 0 and kmax large enough. Similar techniques as used in
Theorem 3.8 show that |ρO2s(k, 0, η, p̄1, p̄2, a, b)| should attain its maxima at kmin, k̂∗1 , or
kmax asymptotically. We then show that if (p1, p2) 6= (p̄1, p̄2), then there exists a k∗ such that

|ρO2s(k
∗, 0, η, p1, p2, a, b)| > |ρO2s(kmin, 0, η, p

∗
1, p
∗
2, a, b)|

for kmax large enough.
Let p1 := C1k

α
max, p2 := C2k

β
max, and p̄1 := C̄1k

ᾱ
max, p̄2 := C̄2k

β̄
max with (ᾱ, β̄) =

( 1
4 ,

3
4 ). Similar to Theorem 3.8, we discuss the case β ≥ α only. It suffices to consider the

following cases:
a). β > α > ᾱ. In this case, at k∗ = kmin, we have

|ρO2s(k
∗, 0, η, p1, p2, a, b)| = 1− 4Gmin

C1
k−αmax + o(k−αmax).

b). β = α > ᾱ. In this case, at k∗ = kmin, we have

|ρO2s(k
∗, 0, η, p1, p2, a, b)| = 1− 4Gmin(

1

C1
+

1

C2
)k−αmax + o(k−αmax).

c). α ≤ ᾱ, β ≥ β̄ but (α, β) 6= (ᾱ, β̄). In this case, at k∗ = Ckk
α+β

2
max , we have

ρapp(k
∗, 0, η, p1, p2) = −1 + 2(

C1

Ck
+
Ck
C2

)k
α−β

2
max + o(k

α−β
2

max ).
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d). α ≤ ᾱ, α < β < β̄. In this case, at k∗ = kmax, we have

ρapp(k
∗, 0, η, p1, p2) = 1− 2C2k

β−1
max + o(kβ−1

max ).

e). β = α ≤ ᾱ. In this case, at k∗ = kmax, we have

ρapp(k
∗, 0, η, p1, p2) = 1− 2(C1 + C2)kβ−1

max + o(kβ−1
max ).

Note that in the cases c)–e) we only get the asymptotic expansions of ρapp at k∗. By Theo-
rem 3.1 we know that ρO2s(k

∗, 0, η, p1, p2, a, b) behaves the same way as ρapp(k∗, 0, η, p1, p2).
Therefore, in each case above, we see that the convergence factor |ρO2s(k, 0, η, p1, p2, a, b)|
behaves at k∗ asymptotically like 1− Ck−δmax with δ > 1

4 .
We then consider the case (α, β) = (ᾱ, β̄) but (C1, C2) 6= (C̄1, C̄2). If C1 > C̄1, then

we have from (3.31) that

|ρO2s(kmin, 0, η, p1, p2, a, b)| > |ρO2s(kmin, 0, η, p̄1, p̄2, a, b)|

for kmax large enough. If C2 < C̄2, then we have from (3.33) together with Theorem 3.1 that

|ρO2s(kmax, 0, η, p1, p2, a, b)| > |ρO2s(kmax, 0, η, p̄1, p̄2, a, b)|

for kmax large enough. If C1 < C̄1 and C2 > C̄2, then we have from (3.32) together with
Theorem 3.1 that

|ρO2s(k̄, 0, η, p1, p2, a, b)| > |ρO2s(k̂
∗, 0, η, p̄1, p̄2, a, b)|

for kmax large enough. The second result is obtained by inserting the optimized parameters
p̄1,2 into (3.31).

4. Discussion. We now discuss how the domain geometry, in our case the subdomain
size parameters, affects the performance of the parallel Schwarz algorithm (1.2) and compare
the parallel Schwarz methods with the optimized transmission conditions obtained in our
analysis to those from the infinite domain decomposition analysis [14].

First of all, we observe that not all positive parameters in the transmission conditions
will lead to a convergent Schwarz iteration between the two subdomains, which is similar
to the case of a circular domain decomposition; see [20, 23]. If we choose for example
p1 = 100, p2 = 0.01, q1 = q2 = 0, L = 0.01, then the convergence factor approximately
equals ρ ≈ −2.1637 at k = π for the problem parameters η = 2, a = 0.1, b = 0.5. In fact,
note that

lim
p1→+∞

√
η + k2 coth(

√
η + k2(b− L))− p1√

η + k2 coth(
√
η + k2(a+ L)) + p1

= −1,

lim
p2→0

√
η + k2 coth(

√
η + k2a)− p2√

η + k2 coth(
√
η + k2b) + p2

=

√
η + k2 coth(

√
η + k2a)√

η + k2 coth(
√
η + k2b)

,

which is approximately b
a for

√
η + k2 → 0, and ρcla → 1 for

√
η + k2 → 0. This shows,

together with the fact that the convergence factor is the product of the above three terms, that a
large p1 and a small p2 may lead to a nonconvergent method. This indicates that one should
better use the large parameter in the small subdomain and the small parameter in the large
subdomain, which is in agreement with the results in [21]. We also see from the above analysis
that the larger the difference between the subdomain size is, the larger the measure of the
parameter set becomes where the parameters lead to a nonconvergent method.
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Next, we show that the finiteness and asymmetry of the domain decomposition influences
the performance of the parallel Schwarz algorithm (1.2) with the various transmission condi-
tions. We investigate first some properties of the geometry function G described in Lemma 2.2.
Since coth(x) > 1, for x > 0, we have G(k, η, a, b) >

√
η + k2 =: Ḡ for all k > 0. In

addition, it is easy to show that G(k, η, a, b) decreases monotonically to Ḡ as a, b → ∞.
Therefore, when a, b→∞ we have lima,b→∞G(k, η, a, b) = Ḡ, and the optimized transmis-
sion conditions in our analysis converge to their counterparts obtained by the infinite domain
decomposition analysis [14]. This result can also be obtained by directly comparing the
corresponding transmission conditions found in both cases. Note that the resulting maxima of
the convergence factor are given by maxk |ρ| = 1−C(GminL)δ for the overlapping case with
δ = 1, 1/2, 1/3, 1/5 and maxk |ρ| = 1− C(Gmin/kmax)δ for the nonoverlapping case with
δ = 1, 1/2, 1/4. Thus, we conclude that the transmission conditions obtained in our analysis
perform better than those obtained from the infinite domain decomposition analysis. Moreover,
from the fact that ((coth(

√
η + k2a) + coth(

√
η + k2b))/2)γ decreases monotonically to 1

as γ → 0, we conclude that the subdomain parameters have more influence on the optimized
Schwarz methods with δ large than those with δ small. Note that the subdomain parameters
a, b enter the functionG (defined in Lemma 2.2) as exponential powers; the influence increases
exponentially in the subdomain size parameters when they tend to zero, which shows that
if a subdomain size is very small, then one has to take this into account in the transmission
conditions.

Next, we show that balancing the domain decomposition provides a benefit for the
optimized Schwarz method. To this end, we consider Ω = {(x, y)|x ∈ (−c, c), y ∈ (−d, d)}
a rectangular domain, and assume c > d, which means the domain is a flat strip. We have
two ways of decomposing the domain: choosing the interface vertically to be at x = 0,

the corresponding function G is given by Gv = 1
4

√
π2

d2 + 4η/(1 − exp(−2c
√

π2

d2 + 4η)).
Choosing the interface horizontally at y = 0, which means making even two flatter strip-

shaped subdomains, G is given by Gh = 1
4

√
π2

c2 + 4η/(1 − exp(−2d
√

π2

c2 + 4η)). Since
c > d, we have Gv > Gh. Our asymptotic convergence factor estimates then show that
decomposing a flat strip into even flatter strips is not a good idea for all the Schwarz methods
we considered here; it is better to cut the strip into two shorter, more square-shaped pieces.

Finally, we note that the asymmetry of the domain decomposition can have more influence
on the optimized two-sided Robin transmission conditions. In [21] we have shown that
in the large subdomain using the small parameter and in the small subdomain using the
large parameter can improve the performance of the optimized two-sided Robin transmission
condition compared to the reverse order.

5. Numerical examples. We now present some numerical examples to illustrate our
analysis. We consider the model problem

(4− 2)u = f, in Ω

u|∂Ω = 0
(5.1)

with Ω = (−a, b)× (0, 1) decomposed into Ω1 = (−a, L)× (0, 1) and Ω2 = (0, b)× (0, 1),
b = 0.5. We discretize (5.1) with the classical five-point finite difference scheme on a uniform
mesh with mesh parameter h and simulate directly the error equations, i.e., f = 0. The
initial vector of the interface is chosen randomly so that all frequencies are present. We count
the number of iterations required to reach a relative error reduction of 1e-6 and compare
the results obtained with our parameters to those obtained with parameters from the infinite
domain decomposition analysis (see [14]) denoted by the subscript “Inf”. We present in
Table 5.1, for the overlap L = h, the number of iterations required by the Schwarz method
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TABLE 5.1
Number of iterations required by the Schwarz algorithms with different transmission conditions with an overlap

of one mesh size and varying domain size parameter a.

h 1/100 1/200 1/400 1/800
a 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2

Classical 52 78 104 101 153 205 198 304 407 392 605 816
T0 9 11 14 11 15 19 16 21 26 23 29 38
T0Inf 23 22 21 33 30 31 45 44 43 62 61 61
OO0 7 8 9 8 9 11 10 12 14 12 15 17
OO0Inf 10 10 10 12 12 12 15 15 15 18 18 18
OO2 8 5 5 7 5 6 6 6 6 6 7 7
OO2Inf 6 5 5 7 6 6 8 7 7 9 8 8
O2s 6 7 8 8 8 9 10 10 11 10 12 13
O2sInf 8 8 8 9 9 10 11 11 11 13 13 13

TABLE 5.2
Number of iterations required by the Schwarz algorithms with different transmission conditions without overlap

and varying domain size parameter a.

h 1/100 1/200 1/400 1/800
a 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2

T0 81 142 241 158 287 466 321 579 953 640 1146 1926
T0Inf 626 612 620 1265 1298 1260 2526 2541 2538 5098 5084 5127
OO0 17 23 29 25 33 40 36 46 55 49 64 76
OO0Inf 28 28 28 40 39 39 55 55 56 77 78 79
OO2 6 7 8 7 8 9 9 10 11 10 12 13
OO2Inf 8 8 8 10 10 10 12 12 12 14 14 14
O2s 14 14 15 16 17 18 18 19 21 23 24 26
O2sInf 15 15 15 18 18 18 23 23 23 27 27 27

with transmission conditions from our analysis compared to those from the infinite domain
decomposition analysis with the subdomain size parameter a varying from 0.05 to 0.2. The
same comparison for the nonoverlapping case is given in Table 5.2. We observe that these
results illustrate our analysis well. The only exception is the second-order transmission
condition with overlap and a = 0.05, where we would need a more refined mesh to reach the
asymptotic regime. We see that our transmission conditions perform better than those from
the infinite domain decomposition analysis, especially when the subdomain parameter a is
small and the decomposition is very far from being symmetric.

Since the convergence factor estimate of each Schwarz algorithm is of the form
maxk |ρ| = 1− C(GminL)δ for the overlapping case with δ = 1, 1/2, 1/3, 1/5 and
maxk |ρ| = 1− C(Gmin/kmax)δ for the nonoverlapping case with δ = 1, 1/2, 1/4, we also
observe from the numerical results that the subdomain size influences the performance more
for large values of δ. For example, when the subdomain size parameter is doubled, the number
of iterations required by the classical Schwarz method increases by a half, whereas for the
optimized transmission condition of order 2, the number of iterations required increases very
slow when increasing the subdomain size parameter a.

We present the above results also in loglog plots in Figure 5.1. We see that all the
transmission conditions follow the predicted asymptotic convergence order very well except
for the optimized two-sided Robin transmission conditions for the case with overlap obtained

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

206 Y. XU

10
−2

10
1

10
2

10
3

10
4

h

it
e
ra

ti
o
n
s

 

 

h
−1

Classical
T0

nonovlp

T0
Inf,nonovlp

h
−1/2

Taylor 0
OO0

nonovlp

OO0
Inf,nonovlp

10
−2

10
1

h

it
e
ra

ti
o
n
s

 

 

h
−1/3

OO0
ovlp

OO0
Inf,ovlp

10
−2

10
1

h

it
e
ra

ti
o
n
s

 

 

h
−1/4

OO2
nonovlp

OO2
Inf,nonovlp

O2s
nonovlp

O2s
Inf,nonovlp

10
−2

10
1

h

it
e
ra

ti
o
n
s

 

 

h
−1/5

OO2
ovlp

OO2
Inf,ovlp

O2s
ovlp

O2s
Inf,ovlp

FIG. 5.1. Loglog plots of iteration numbers required by the Schwarz algorithms with transmission conditions
from our analysis compared to those from the infinite domain decomposition analysis subscripted by “Inf”. The
subscript “ovlp” indicates the transmission condition from the overlapping domain decomposition, while “nonovlp”
means those from the nonoverlapping one.

from both our analysis and the infinite domain decomposition analysis. Here an even finer
mesh would be required, but this problem can be solved by swapping the two parameters
directly; see [21] for more details.

We next investigate how well the continuous analysis predicts the optimal parameters to be
used in the numerical setting. To this end, we vary the parameter p in the Robin transmission
conditions for a fixed problem of mesh size h = 1/200 and count for each value of p the
number of iterations to reach a residual of 1e-6. For the optimized transmission condition of
order 2, we similarly vary the parameter pair (p, q). The results are given in Figure 5.2 for the
overlapping case and in Figure 5.3 for the nonoverlapping case. These results show that the
analysis very well predicts the optimal parameter especially for the overlapping case. For the
optimized two-sided transmission conditions, we refer to [21].

In each plot, we also compare the optimized parameters from our analysis to those from
the infinite domain decomposition analysis (see [14]), which are indicated by “o”. We see that
our optimized parameters perform better than those from the infinite domain decomposition
analysis.

Finally, we would like to test the case where both geometric parameters a and b are very
small. The number of iterations required by different transmission parameters for a = b = 0.01
are reported in Table 5.3, where we see that for each transmission condition, our new optimized
parameters involving the subdomain geometry leads to much faster algorithms for both
overlapping and nonoverlapping cases than those from the infinite domain decomposition
analysis. Noting that a Krylov acceleration generally improves the performance by about
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FIG. 5.2. With overlap of one mesh size h, the optimized parameter (∗) found by the analytical optimization
compared to the optimized parameter (◦) found by the infinite domain decomposition analysis reported in [14] and to
the performance of other values of the parameters: left for the Robin case, right for the second-order case.
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TABLE 5.3
Number of iterations required by optimized Schwarz algorithms with overlap h and without overlap (in

parentheses) for the domain parameters a = b = 0.01.

h 1/1000 1/2000 1/4000 1/8000

OO0 7(20) 9(28) 11(39) 13(54)
OO0Inf 22(88) 25(124) 31(177) 39(247)
OO2 5(7) 5(8) 6(9) 6(11)
OO2Inf 46(26) 41(22) 39(22) 35(25)
O2s 7(12) 8(14) 9(17) 11(20)
O2sInf 13(29) 15(35) 18(41) 20(49)

a square root (see [14]), we can expect that our new optimized parameters are much more
efficient than those from the infinite domain analysis in applications.

6. Conclusion. We analyzed optimized Schwarz methods for a model problem with
finite two-subdomain decomposition and investigated the influence of a domain truncation
on their performance. Similar to the circular domain decomposition, an approximate conver-
gence factor has to be introduced to accomplish this analysis. We found that not all positive
transmission parameters result in convergent Schwarz methods for asymmetric domain decom-
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positions. This result is similar to the circular domain decomposition case, but differs from
the infinite domain decomposition case, where the Schwarz methods converge for all positive
transmission parameters. We derived closed-form asymptotic formulas for the optimized
transmission parameters and found that the subdomain size parameters a and b enter the
optimized transmission parameters through a geometry function G(k, η, a, b). The asymptotic
convergence factors satisfy the estimates maxk |ρ| = 1−C(GminL)δ for the overlapping case
when the overlap L is small, with δ = 1, 1/2, 1/3, 1/5, and maxk |ρ| = 1−C(Gmin/kmax)δ

for the nonoverlapping case when kmax is large, with δ = 1, 1/2, 1/4. They perform much
better than those obtained from the infinite domain decomposition analysis especially for
the cases where the subdomains are very narrow strips. We also found that the subdomain
size parameters have more influence on the performance of the optimized Schwarz methods
with large δ than those with small δ. Finally, our analysis revealed for a two-subdomain
decomposition that one should choose a decomposition such that subdomains are closer to
squares than to flat strips for good performance.
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