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ADDITIVE AVERAGE SCHWARZ WITH ADAPTIVE COARSE SPACES:
SCALABLE ALGORITHMS FOR MULTISCALE PROBLEMS∗

LESZEK MARCINKOWSKI† AND TALAL RAHMAN‡

Abstract. We present an analysis of the additive average Schwarz preconditioner with two newly proposed
adaptively enriched coarse spaces, which were presented at the twenty-third international conference on domain
decomposition methods in Korea, for solving second-order elliptic problems with highly varying and discontinuous
coefficients. It is shown that the condition number of the preconditioned system is bounded independently of the
variations and the jumps in the coefficient while depending only on a prescribed threshold for the eigenvalues of
the coarse space, and it depends linearly on the mesh parameter ratio H/h that is the ratio between the subdomain
size and the mesh size thereby retaining the same optimality and scalability of the original additive average Schwarz
preconditioner.
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1. Introduction. Additive Schwarz methods are considered among the most effective
preconditioners for solving algebraic systems arising from the discretization of elliptic partial
differential equations. They generate algorithms that are easy to implement, inherently parallel,
scalable, and fast. With proper enrichment of the coarse spaces, the methodology has recently
been quite successfully applied to multiscale problems with highly heterogeneous and varying
coefficients, the class of problems which most standard iterative solvers have difficulty to
solve efficiently. Additive average Schwarz is one of the simplest of all additive Schwarz
preconditioners because it is easy to construct and quite straightforward to analyze. Unlike
most additive Schwarz preconditioners, its local subspaces are defined on non-overlapping
subdomains, and it requires no explicit coarse grid as its coarse space is simply defined as the
range of an averaging operator. By enriching its coarse space with functions corresponding to
the bad eigenvalues of the local stiffness matrix, it has been shown numerically in a recent
presentation, cf. [28], that the method can be made both scalable and robust with respect to
any variation and jump in the coefficient when solving multiscale problems. The purpose of
this paper is to give a complete analysis of the method presented in that paper.

The additive average Schwarz method in its original form was first introduced for second-
order elliptic problems in [3], where the method was applied to and analyzed for problems
with constant coefficients in each subdomain and jumps only across subdomain boundaries.
The method was further extended to non-matching grids using the mortar discretization in
[2, 32, 33] and to fourth-order problems in [15]. For multiscale problems where the coefficient
may be highly varying and discontinuous also inside subdomains, the method has been
analyzed in [12], where it has been shown that the condition number of the preconditioned
system depends linearly on the jumps of the coefficient in the layers of the subdomains and
quadratically on the ratio of the coarse to the fine mesh parameters. The method has very
recently been extended to the Crouzeix-Raviart finite volume discretization, cf. [25, 26],
showing similar results. All these results on the additive average Schwarz method, however,
suggest that the method by itself cannot be robust for multiscale problems unless some form
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of enrichment of the coarse space is made. This eventually led the research to the approach
recently presented at the twenty-third international conference on domain decomposition,
cf. [28], where adaptively chosen eigenfunctions of certain local eigenvalue problems extended
by zero to the rest of the domain, are added to the standard average Schwarz coarse space.
This idea of enriching the coarse space with eigenfunctions for improved convergence goes
back several years; cf., e.g., the paper [4, 5] on a substructuring domain decomposition method
and [9] on an algebraic multigrid method.

A systematic study of the performance of domain decomposition preconditioners for
multiscale partial differential equations with respect to the contrast in the coefficients was
started in [1, 19]. There the use of some multiscale finite element method for the coarse
problem was introduced, but the coarse space was not enriched. Using the idea of enrichment
to solve multiscale problems started only very recently with the papers [16, 17, 29]. Since
then, a number of other works have emerged proposing algorithms based on solving different
eigenvalue problems; see, e.g., [10, 11, 13, 14, 18, 36] for those using the additive Schwarz
framework for their algorithms and [8, 20, 21, 22, 23, 24, 27, 30, 31, 35] for those using the
FETI-DP or the BDDC framework for their algorithms.

Throughout this paper, we use the following notations: x . y and w & z denote that
there exist positive constants c and C independent of the mesh parameters h and H and the
jump of the coefficients such that x ≤ cy and w ≥ Cz, respectively.

The remainder of the paper is organized as follows: we state the discrete problem in
Section 2, the additive Schwarz method in Section 3, and the coarse spaces in Section 4. In
Section 5 a condition number bound is given and proved. Some numerical results are then
presented in Section 6.

2. Discrete problem. Let Ω be a polygonal domain in the plane. We consider a model
multiscale elliptic problem: Find u∗ ∈ H1

0 (Ω) such that

(2.1) a(u∗, v) =

∫
Ω

fv dx, v ∈ H1
0 (Ω),

where

a(u, v) =

∫
Ω

α(x)∇u∇v dx,

f ∈ L2(Ω), and α ∈ L∞(Ω) is a positive coefficient function. We assume that there exists an
α0 > 0 such that α(x) ≥ α0 in Ω. Since we can scale the problem by α−1

0 , we can further
assume that α0 = 1.

We introduce the triangulation Th(Ω) = Th = {τ} consisting of the triangles τ and
assume that this triangulation is quasi-uniform in the sense of [6, 7]. Let V h be the discrete
finite element space consisting of continuous piecewise linear functions with zero on the
boundary ∂Ω, i.e.,

V h = {v ∈ C(Ω) : v|τ ∈ P1(τ), τ ∈ Th, v = 0 on ∂Ω},

where P1(τ) is the space of linear polynomials over the triangle τ ∈ Th. Each v ∈ V h can
be represented in the standard nodal basis as v =

∑
x∈Nh v(x)φx, where Nh is the set of the

nodal points, i.e., all vertices of triangles in Th which are not on ∂Ω.
The corresponding discrete problem is then to find u∗h ∈ V h such that

a(u∗h, v) =

∫
Ω

fv dx, v ∈ V h.
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The Lax-Milgram theorem yields that this problem has a unique solution.
Note that for u, v ∈ V h, their gradients are constant over each triangle τ ∈ Th. Thus we

see that
∫
τ
α(x)∇u∇v dx = (∇u|τ )(∇v|τ )

∫
τ
α(x) dx. Hence without any loss of generality,

we may assume that α is piecewise constant over the triangles of the triangulation Th.
Further we assume that we have a coarse partition of Ω into open connected polygonal

subdomains {Ωk}Nk=1 such that Ω =
⋃N
k=1 Ωk, where each Ωk is a sum of some closed

triangles of Th. Let H = maxk=1,...,N diam(Ωk) be the coarse mesh parameter and Γ the
interface defined as Γ =

⋃N
k=1 ∂Ωk \ ∂Ω.

Ωk

Ωδk

FIG. 2.1. Ωδk is the layer corresponding to the subdomain Ωk and consisting of elements (triangles) of Th(Ωk)
touching the subdomain boundary ∂Ωk .

Each subdomain inherits its triangulation Th(Ωk) = {τ ∈ Th : τ ⊂ Ωk} from Th(Ω).
Consequently, we define the local finite element space V h(Ωk) as the space of functions of
V h restricted to Ωk and

V h0 (Ωk) = V h(Ωk) ∩H1
0 (Ωk).

Let Ωδk ⊂ Ωk, k = 1, . . . , N , be the open discrete layers, where each Ωδk is defined as the
interior of the sum of all closed triangles τ ∈ Th(Ωk) such that ∂τ ∩ ∂Ωk 6= ∅; cf. Figure 2.1.
We introduce the local maxima and minima of the coefficients over a subdomain and its layer
as

αk := min
x∈Ωk

α, αk := max
x∈Ωk

α,

αk,δ := min
x∈Ωδk

α, αk,δ := max
x∈Ωδk

α.
(2.2)

Let also Ωh, ∂Ωh, Ωk,h, ∂Ωk,h, and Γh denote the sets of nodal points which are on the
respective sets Ω, ∂Ω,Ωk, ∂Ωk, and Γ.

3. Additive Schwarz method. The method (cf. [28]) is constructed using the abstract
scheme of the additive Schwarz method (ASM); cf., e.g., [34, 37]. Accordingly, for each local
subproblem, the subspace corresponding to the subdomain Ωk, Vk ⊂ V h, is defined as the
space of functions of V h0 (Ωk) extended by zero to the rest of Ω, i.e.,

Vk = {u ∈ V h : u(x) = 0 x 6∈ Ωk}, k = 1, . . . , N.

For the coarse problem we propose two different coarse spaces for the Schwarz method,
V TYPE

0 ⊂ V h where TYPE is either II or I defined below in Section 4; cf. (4.4). The corresponding
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projections Pk : V h → Vk are defined as

a(Pku, v) = a(u, v), v ∈ Vk, k = 1, . . . , N,

and P TYPE
0 : V h → V TYPE

0 as

a(P TYPE
0 u, v) = a(u, v), v ∈ V TYPE

0 , TYPE ∈ {II, I}.

Now following the Schwarz scheme we write the additive Schwarz operator P TYPE : V h→V h

as

(3.1) P TYPEu = P TYPE
0 u+

N∑
k=1

Pku, TYPE ∈ {II, I}.

We may replace the original problem (2.1) with the following problem; cf., e.g., [34, 37]:

(3.2) P TYPEu∗h = gTYPE, TYPE ∈ {II, I},

where gTYPE = gTYPE
0 +

∑
k gk with gTYPE

0 = P TYPE
0 u∗h and gk = Pku

∗
h. The function on the

right-hand side of (3.2) can be computed without knowing u∗h; cf. [34, 37]. The condition
number bounds for P TYPE are given in Theorem 5.1 in Section 5.

4. Coarse spaces and interpolation operators. We start by introducing two coarse
spaces (cf. [28]) for the additive average Schwarz method; they correspond to TYPE = I
and TYPE = II. Basically, both have the same classical additive average Schwarz coarse
space which is defined as the range of the average interpolation operator I0 : V h → V h

(cf. [3, 12, 26]),

(4.1) I0u(x) =

{
u(x) x ∈ Γh,
uk x ∈ Ωk,h,

k = 1, . . . , N,

where uk = 1
nk

∑
x∈∂Ωk,h

u(x) with nk being the number of nodal points in ∂Ωk,h, in other
words, the discrete average of u over the boundary of the subdomain. This space is then
enriched with functions that are adaptively selected eigenfunctions of a specially constructed
generalized eigenvalue problem (cf. (4.2)) defined locally in each subdomain and extended
by zero to the rest of the domain. This local generalized eigenvalue problem is of either
TYPE = I or TYPE = II differing in the bilinear form bTYPE

k (·, ·) used in (4.2). The resulting
coarse space in either case is then the classical additive average Schwarz coarse space I0V h

enriched with the corresponding functions; cf. (4.2)–(4.4) below.
Here is how the generalized eigenvalue problem is defined locally in each subdomain Ωk.

Find all eigenpairs: (λk,TYPE

j , ψk,TYPE

j ) ∈ (R, V h0 (Ωk)) such that

ak(ψk,TYPE

j , v) = λk,TYPE

j bTYPE
k (ψk,TYPE

j , v), v ∈ V h0 (Ωk),

bTYPE
k (ψk,TYPE

j , ψk,TYPE

j ) = 1,
(4.2)

where ak(·, ·) and bTYPE
k (·, ·) for TYPE ∈ {I, II} are symmetric bilinear forms defined as

ak(u, v) :=

∫
Ωk

α∇u∇v dx

and

bI
k(u, v) :=

∫
Ωk

αk∇u∇v dx,

bII
k(u, v) :=

∫
Ωδk

αk,δ∇u∇v dx+

∫
Ωk\Ωδk

α∇u∇v dx.
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Note that if two eigenvalues are different, then their respective eigenspaces and eigenfunctions
are both ak(·, ·)- and bTYPE

k (·, ·)-orthogonal to each other. In case of an eigenvalue of multiplicity
larger than one, we consider all its eigenfunctions as one. We also order the eigenvalues in
decreasing order as λk,TYPE

1 ≥ λk,TYPE
2 ≥ . . . , λk,TYPE

Nk
> 0, where Nk is the dimension of

V h0 (Ωk).
REMARK 4.1. We see that 1 ≤ λk,Ij ≤

αk
αk

and 1 ≤ λk,IIj ≤
αk,δ
αk,δ

. Thus, when α is constant
in Ωk, all eigenvalues of both eigenvalue problems are equal to one, and when α is constant in
the layer Ωδk, all eigenvalues λk,IIj are equal to one.

For further use, we extend ψk,TYPE

j by zero to the rest of the domain Ω denoting the
extended function by the same symbol. Now let

(4.3) W TYPE
k := Span(ψk,TYPE

j )
MTYPE
k

j=1 , TYPE ∈ {II, I},

where 0 ≤ M TYPE
k < Nk is a number either preset by the user or chosen adaptively (it is the

number of eigenvalues whose magnitudes are smaller than or equal to a given threshold).
We assume that if an eigenvalue which has been selected to be included has multiplicity
larger than one, then all its eigenfunctions will be included in the W TYPE

k . Consequently,
λTYPE
MTYPE
k +1

< λTYPE
MTYPE
k

. Thus M TYPE
k = 0 means enrichment is not required in the subdomain Ωk.

Our coarse spaces are then defined as

(4.4) V TYPE
0 = I0V

h +

N∑
k=1

W TYPE
k , TYPE ∈ {II, I}.

The two operators that we need for the analysis are defined here. The first one being a
bTYPE
k (·, ·)-orthogonal projection operator ΠTYPE

k : V h0 (Ωk)→ V h0 (Ωk) given by

(4.5) ΠTYPE
k v =

MTYPE
k∑
j=1

bTYPE
k (v, ψk,TYPE

j )ψk,TYPE

j , TYPE ∈ {II, I},

where (ψk,TYPE

j )j form the bTYPE
k (·, ·)-orthonormal eigenbasis of V h0 (Ωk); cf. (4.2). The second

operator is defined in the following paragraph.
We note that for any u ∈ V h, the function w = u − I0u ∈ V h equals zero on ∂Ωk for

each k, thus the projection ΠTYPE
k (u − I0u)|Ωk , TYPE ∈ {II, I}, is properly defined; cf. (4.5).

It is then further extended by zero to the rest of the domain obtaining a function in W TYPE
k ;

cf. (4.3). Further, the extended projection ΠTYPE
k (u − I0u)|Ωk will be denoted by the same

symbol. Then, ITYPE
0 : V h → V TYPE

0 is defined as follows:

(4.6) ITYPE
0 = I0u+

N∑
k=1

ΠTYPE
k (u− I0u), TYPE ∈ {II, I}.

5. Condition number bound. We present our main theoretical result here, cf. Theo-
rem 5.1, which gives an upper bound for the condition number of the preconditioned sys-
tem (3.2).

THEOREM 5.1. Let P TYPE be the additive Schwarz operator, where TYPE ∈ {II, I}, as
defined in (3.1). Then for all u ∈ V h(

min
k

1

λTYPE
MTYPE
k +1

)
h

H
a(u, u) . a(P TYPEu, u) . a(u, u), TYPE ∈ {II, I},
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where H = maxk=1,...,N diam(Ωk) and λTYPE
MTYPE
k +1

is the M TYPE+1
k -st eigenvalue of (4.2)

(cf. also (4.3)).
Proof. The proof follows from the theory of the abstract Schwarz framework which

requires that three key assumptions are satisfied; see, e.g., [34, 37]. The first assumption is
the existence of a stable splitting (cf., e.g., [37, Assumption 2.2]), which will be proved in
Lemma 5.5 below. It is straightforward to verify the other two assumptions. The local stability
assumption is satisfied with the stability constant being equal to one since only the exact
bilinear form is used for the local bilinear forms. While the assumption on the Cauchy-Schwarz
relationship between the local subspaces is satisfied with the spectral radius of the matrix of
constants of the strengthened Cauchy-Schwarz inequalities being equal to one since the local
subspaces are orthogonal to each other.

We prove the stability assumption needed in the proof of Theorem 5.1 in Lemma 5.5. In
order for that, we require a few estimates which we state first.

A spectral estimate. A well-known spectral estimate which is used in our analysis is
presented here. Let V be a finite-dimensional space with a symmetric positive definite bilinear
form b(u, v) and a symmetric non-negative definite form a(u, v). We say that λ ∈ R is
an eigenvalue of the following eigenvalue problem if there exists a non-zero eigenfunction
φλ ∈ V such that

(5.1) a(φλ, v) = λb(φλ, v), v ∈ V.

Now let Vλ be the eigenspace associated with the eigenvalue λ, and let Πµ, for µ > 0, be the
b(·, ·)-orthogonal projection onto the space

Wµ =
∑
λ>µ

Vλ,

where the sum is taken over all eigenvalues greater than µ (a threshold). Then, we have the
following lemma.

LEMMA 5.2. For u ∈ V , it holds that

‖u−Πµu‖2a ≤ µ‖u‖2b ,

where ‖u‖b = b(u, u) and ‖u‖a = a(u, u).
Proof. The proof is quite standard, yet, for the completeness we give it here. If λk and

λl are two distinct eigenvalues, then Vλk are Vλl are orthogonal to each other with respect to
both a(·, ·) and b(·, ·). Let u ∈ V , then since V =

∑
λ Vλ and the eigenspaces are both b(·, ·)-

and a(·, ·)-orthogonal, we can uniquely write u =
∑
λ ψλ with ψλ ∈ Vλ. Now using (5.1),

we have

‖u‖2b =
∑
λ

‖ψλ‖2b ‖u‖2a =
∑
λ

‖ψλ‖2a =
∑
λ

λ‖ψλ‖2b .

Using the above and noting that u−Πµu = u−
∑
λ>µ ψλ =

∑
λ≤µ ψλ, we immediately get

‖u−Πµu‖2a =
∑
λ≤µ

‖ψλ‖2a =
∑
λ≤µ

λ‖ψλ‖2b ≤
∑
λ≤µ

µ‖ψλ‖2b ≤
∑
λ

µ‖ψλ‖2b = µ‖u‖2b ,

which ends the proof.
Now, applying the above lemma to the operator ΠTYPE

k , for TYPE ∈ {II, I}, and taking
µ = λTYPE

MTYPE
k +1

, we get the following estimate for the operator:

(5.2) ak(u−ΠTYPE
k u, u−ΠTYPE

k u) ≤ λTYPE
MTYPE
k +1b

TYPE
k (u, u), TYPE ∈ {II, I}.
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An estimate of the coarse interpolation operator. What we need first is an estimate of
the average interpolation operator I0 in the norms induced by the two local bilinear forms
bTYPE
k (·, ·) for TYPE ∈ {II, I}.

LEMMA 5.3. Let I0 be the average interpolation operator as defined in (4.1). Then for
all u ∈ V h

bTYPE
k (u− I0u, u− I0u) .

H

h
ak(u, u), TYPE ∈ {II, I}.

Proof. In case of TYPE=I, the proof follows from [3] (see also [26]). Namely, we get

bI
k(u− I0u, u− I0u) = αk‖∇(u− I0u)‖2L2(Ωk) . αk

H

h
‖∇u‖2L2(Ωk) ≤

H

h
ak(u, u).

For the first inequality above we refer to [3] while the second inequality follows from the
definition of αk; cf. (2.2).

In the case of TYPE=II we have∇(u− I0u) = ∇u on each fine triangle τ ∈ Th(Ωk) that
is not inside Ωδk, since I0u is constant there; cf. (4.1). Hence,

bII
k(u− I0u, u− I0u) = ‖α1/2

k ∇(u− I0u)‖2L2(Ωk\Ωδk) + αk,δ‖∇(u− I0u)‖2L2(Ωδk)

= ‖α1/2
k ∇u‖

2
L2(Ωk\Ωδk) + αk,δ‖∇(u− I0u)‖2L2(Ωδk)

≤ ‖α1/2
k ∇u‖

2
L2(Ωk) + αk,δ‖∇(u− I0u)‖2L2(Ωδk)

= ak(u, u) + αk,δ‖∇(u− I0u)‖2L2(Ωδk).

To estimate the second term above, we utilize a triangle inequality and (2.2), giving

αk,δ‖∇(u− I0u)‖2L2(Ωδk) . αk,δ‖∇u‖2L2(Ωδk) + αk,δ‖∇I0u‖2L2(Ωδk)

≤ ak(u, u) + αk,δ‖∇I0u‖2L2(Ωδk).(5.3)

Again, to estimate the second term in (5.3), we proceed analogously to the lines of the proof
of Lemma 4.4 in [26], however, for the sake of completeness we provide a short proof here.

Note that for a triangle τ ∈ Th we have the following equivalence,

|∇u|2L2(τ) .
∑

i,j∈{1,2,3}

|u(xi)− u(xj)|2 . |∇u|2L2(τ),

where the sum is taken over all pairs of vertices of τ . Using this and the discrete equivalence
of the L2-norm over a 1D element, we get

‖∇(I0u)‖2L2(Ωδk) =
∑
τ⊂Ωδk

‖∇I0u‖2L2(τ) .
∑

x∈∂Ωk,h

(u(x)− uk)2

. h−1‖u− uk‖2L2(∂Ωk).

By a trace theorem, the Poincaré inequality, and a scaling argument, we get

h−1‖u− uk‖2L2(∂Ωk) .
H

h
‖∇u‖2L2(Ωk).

Now using the last two estimates and (2.2), the second term on the right-hand side of (5.3) can
be bounded as

αk,δ‖∇(I0u)‖2L2(Ωδk) . αk,δ
H

h
‖∇u‖2L2(Ωk) ≤

H

h
ak(u, u),

which ends the proof.
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The following lemma gives a stability estimate for the coarse operator ITYPE
0 (cf. (4.6)),

where TYPE ∈ {I, II}.
LEMMA 5.4. Let ITYPE

0 be a coarse operator defined in (4.6). Then for u ∈ V h

a(u− ITYPE
0 u, u− ITYPE

0 u) . max
k

λTYPE
MTYPE
k +1

H

h
a(u, u), TYPE ∈ {II, I},

for any u ∈ V h. Here λTYPE
MTYPE
k +1

is as in Theorem 5.1.
Proof. Define w = u− I0u. Clearly, w is equal to zero on the interface Γ. Note that

u− ITYPE
0 u =

∑
k

(I −ΠTYPE
k )w,

which is also equal to zero on the interface Γ. Then

a(u− ITYPE
0 u, u− ITYPE

0 u) =
∑
k

ak((I −ΠTYPE
k )w, (I −ΠTYPE

k )w).

Using (5.2) and Lemma 5.3, we get

ak((I −ΠTYPE
k )w, (I −ΠTYPE

k )w) . λTYPE
MTYPE
k +1b

TYPE
k (w,w) . λTYPE

MTYPE
k +1

H

h
ak(u, u).

Summing over all subdomains ends the proof.
We are now ready to give a proof of the stability assumption of the splitting needed for

the proof in Theorem 5.1.
LEMMA 5.5 (Stable Splitting). For u ∈ V h, let u0 = ITYPE

0 u ∈ V TYPE
0 , for TYPE ∈ {II, I},

and let uk ∈ Vk, for k = 1, . . . , N , equal to (u− u0)|Ωk extended by zero to the rest of the
domain. Then u = u0 +

∑N
k=1 ui, and

a(u0, u0) +

N∑
k=1

a(uk, uk) . max
k

λTYPE
MTYPE
k +1

H

h
a(u, u), TYPE ∈ {II, I}.

Proof. It is not difficult to see that the splitting u = u0 +
∑N
k=1 ui is valid following the

definition of uk. We prove the stability of this splitting as follows. Using a triangle inequality
we get

(5.4) a(u0, u0) . a(u, u) + a(u− ITYPE
0 u, u− ITYPE

0 u).

Noting that

a(uk, uk) = ak(uk, uk) = ak(u− ITYPE
0 u, u− ITYPE

0 u), k = 1, . . . , N,

we have

(5.5)
N∑
k=1

a(uk, uk) =

N∑
k=1

ak(u− ITYPE
0 u, u− ITYPE

0 u) = a(u− ITYPE
0 u, u− ITYPE

0 u).

Now, combining (5.4) and (5.5) and then applying Lemma 5.4, we obtain the proof.
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6. Numerical experiments. We present some simple numerical experiments to validate
our theory. The problem is considered on a unit square with homogeneous boundary conditions
and the right-hand side function f(x) = 2π2 sin(πx) sin(πy). We chose the following
distribution of the coefficient α for the experiment: it consists of a background, channels
crossing inside subdomains and stretching out of subdomains (continuous across) or stopping
at subdomain boundaries (discontinuous across), and inclusions along subdomain boundaries
(placed at the corners); see Figure 6.1 for an illustration with 3× 3 subdomains. α is equal
to αb in the background, αc in the crossing channels, and αi in the inclusions placed at the
corners. Experiments have been performed using the proposed methods as preconditioners
with a conjugate gradients iteration and stopping the iterations when the residual norm in each
case is reduced by the factor 5e-6. The multiplicative version (cf. [32]) of the preconditioner
has also been used, the results of which are reported for comparison. As expected, cf., e.g.,
[32], the multiplicative version converges twice as fast as the additive version in terms of the
number of iterations, its condition number being one-fourth of that of the additive version. For
an efficient implementation of the multiplicative algorithm, we refer to the same paper.

FIG. 6.1. On the left, a domain comprising of 3 × 3 subdomains with one inclusion (shaded green) placed at a
subdomain corner and a pair of channels (shaded red) crossing each other inside a subdomain, and they are both
either continuous or discontinuous across the subdomain’s boundary. On the right, a finite element triangulation
of the domain showing the corresponding channels and the inclusion in the triangulation. α is equal to αb in the
background, αc in the crossing channels, and αi in the inclusions.

In our first experiment, we study the convergence behavior of the proposed method as
we vary the mesh size parameters H and h and the jump in the coefficient α, while for the
enrichment, we include only those eigenfunctions whose eigenvalues are greater than a given
threshold (adaptive enrichment). We refer to Table 6.1, where the number of iterations required
to converge and a condition number estimate (in parentheses) for each experiment are given
for the TYPE = II algorithm.

The results of TYPE = I algorithm have been very similar to those of TYPE = II, however,
there has been a significant difference in the number of eigenfunctions included between the
two, which we will discuss later; cf. Figure 6.2. The threshold for the eigenvalues has been set
to 100.
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TABLE 6.1
The number of iterations and a condition number estimate (in parentheses) for varying H and h. The left

block of results correspond to the additive version (ADD) while the right block corresponds to the multiplicative
version (MLT) of the average Schwarz method. The first three rows correspond to the coefficient distribution αb = 1,
αc = 1e2, and αi = 1e4, and the last three rows correspond to the coefficient distribution αb = 1, αc = 1e4, and
αi = 1e6.

Additive (ADD) Multiplicative (MLT)
H
HHHHh

H
1/3 1/6 1/9 1/3 1/6 1/9

1/18 34 (5.84e1) 17 (1.49e1)
1/36 56 (1.35e2) 52 (5.71e1) 28 (3.40e1) 26 (1.45e1)
1/54 70 (2.13e2) 67 (9.32e1) 58 (6.03e1) 35 (5.34e1) 34 (2.36e1) 29 (1.53e1)
1/18 37 (5.80e1) 19 (1.48e1)
1/36 53 (1.34e2) 53 (5.60e1) 27 (3.36e1) 26 (1.43e1)
1/54 67 (2.12e2) 68 (9.19e1) 59 (5.94e1) 33 (5.33e1) 34 (2.32e1) 29 (1.51e1)

TABLE 6.2
The number of iterations and a condition number estimate (in parentheses) for a fixed number of eigenfunctions

for the enrichment (respectively, 0, 2, 4, 5, 6, 7 of eigenfunctions in each subdomain). The first line (ADD) of results
correspond to the additive version while the second line (MLT) corresponds to the multiplicative version of the method.
Here H = 1/6, h = 1/36, αb = 1, αc = 1e4, and αi = 1e6.

0 2 4 5 6 7
ADD 508 (3.09e6) 431 (1.08e6) 186 (1.98e4) 61 (4.62e2) 49 (4.78e1) 48 (4.71e1)
MLT 259 (7.73e5) 218 (2.71e5) 94 (4.96e3) 30 (1.15e3) 24 (1.22e1) 24 (1.20e1)

The columns of Table 6.1 correspond to the subdomain size H and the rows correspond
to the mesh size h. In order to have the same pattern in the distribution of α even when we
vary the size of the subdomains, that is to have crossing channels inside subdomains and
inclusions at subdomain corners as illustrated in Figure 6.1, we let the size of the channels
and the inclusions vary proportionally with H , which is somewhat artificial but inevitable
for the purpose of this experiment. We should, however, mention that they do not vary with
the mesh size h so that each column of the table corresponds to the same set of channels and
inclusions. We note that the diagonal entries of the table correspond to the same mesh size
ratio H

h . The corresponding condition number estimates as seen from the table are very close
to each other suggesting that the proposed preconditioners are scalable in the sense that the
condition number varies proportionately with the size of the subproblem, i.e., the ratio H

h . The
fact that the condition number is independent of the jumps is also evident from the table.

Following our analysis, there is a minimum number of eigenfunctions (corresponding to
the bad eigenvalues) which should be added in the enrichment for the method to be robust with
respect to the contrast. In order to see that, in our next experiment, we choose one particular
discretization (H , h) and distribution of α and run our algorithm each time with a fixed number
of eigenfunctions for all subdomains. For the experiment we have chosen H = 1/6 (i.e., 6× 6
subdomains) and h = 1/36, and the results are presented in Table 6.2. As we can see from
the table, the condition number improves as more and more eigenfunctions are included in
the enrichment but stops (or improves very slowly) once the sixth eigenfunction has been
included. So the minimum number of eigenfunctions, in this case, is six. This also agrees with
the adaptive version, cf. Table 6.1, where the same test case needed six eigenfunctions.

In our final experiment, we compare the two algorithms, corresponding to TYPE = II
and TYPE = I. Although they are very similar in their convergence behavior (their condition
number estimates are very close to each other), the former requires far less eigenvalues in order
to achieve the same level of convergence whenever there are inclusions or channels inside a
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subdomain (cf. Figure 6.2) suggesting that the TYPE = II algorithm has a clear advantage over
the other in such cases.

FIG. 6.2. The number of eigenvalues in each subdomain (36 subdomains) with values larger than 100 that
have been selected for the enrichment. Here H = 1/6 (i.e., 6 × 6 subdomains) and h = 1/36, αb = 1, αc = 1e4,
and αi = 1e6. The bar graph corresponds to TYPE = I algorithm, and the stair graph corresponds to TYPE = II
algorithm.

Acknowledgments. The first author was partially supported by Polish Scientific Grant
2016/21/B/ST1/00350.

REFERENCES

[1] J. R. AARNES AND T. Y. HOU, Multiscale domain decomposition methods for elliptic problems with high
aspect ratios, Acta Math. Appl. Sin. Engl. Ser., 18 (2002), pp. 63–76.

[2] P. E. BJØRSTAD, M. DRYJA, AND T. RAHMAN, Additive Schwarz methods for elliptic mortar finite element
problems, Numer. Math., 95 (2003), pp. 427–457.

[3] P. E. BJØRSTAD, M. DRYJA, AND E. VAINIKKO, Additive Schwarz methods without subdomain overlap and
with new coarse spaces, in Domain Decomposition Methods in Sciences and Engineering (Beijing, 1995),
R. Glowinski, J. Périaux, Z.-C. Shi, and O. Widlund, eds., Wiley, Chichester, 1997, pp. 141–157.
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