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NUMERICAL ASSESSMENT OF TWO-LEVEL DOMAIN DECOMPOSITION
PRECONDITIONERS FOR INCOMPRESSIBLE STOKES

AND ELASTICITY EQUATIONS∗

GABRIEL R. BARRENECHEA†, MICHAŁ BOSY†‡, AND VICTORITA DOLEAN†§

Abstract. Solving the linear elasticity and Stokes equations by an optimal domain decomposition method
derived algebraically involves the use of non-standard interface conditions. The one-level domain decomposition
preconditioners are based on the solution of local problems. This has the undesired consequence that the results are
not scalable, which means that the number of iterations needed to reach convergence increases with the number of
subdomains. This is the reason why in this work we introduce, and test numerically, two-level preconditioners. Such
preconditioners use a coarse space in their construction. We consider the nearly incompressible elasticity problems
and Stokes equations, and discretise them by using two finite element methods, namely, the hybrid discontinuous
Galerkin and Taylor-Hood discretisations.

Key words. Stokes problem, nearly incompressible elasticity, Taylor-Hood, hybrid discontinuous Galerkin
methods, domain decomposition, coarse space, optimized restricted additive Schwarz methods.
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1. Introduction. In [3], one-level domain decomposition methods for Stokes equations
were introduced in conjunction with non-standard interface conditions. However, they present
a lack of scalability with respect to the number of subdomains. It means that splitting the
problem domain into a larger number of subdomains leads to an increase in size of the
plateau region in the convergence of an iterative method (see Figure 1.1) when using the
one-level domain decomposition methods. This is caused by the lack of global information,
as subdomains can only communicate with their neighbours. Hence, when the number of
subdomains increases in one direction, the length of the plateau also increases. Even in cases
where the local problems are of the same size, the iteration count grows with the increase of
the number of subdomains. This can be also observed in all the experiments in this manuscript
in the case of one-level methods.

The remedy for this is the use of a second level in the preconditioner, or a coarse space
correction, that adds the necessary global information. Two-level algorithms have been
analysed for several classes of problems in [27]. The key point of these kind of methods is
to choose an appropriate coarse space. The classical coarse space introduced by Nicolaides
in [23] for a Poisson problem is defined by vectors whose support is in each subdomain, and its
dimension is equal to the number of subdomains. Flow problems or linear elasticity in mixed
form require a construction of a different type of coarse space as seen for example in [19]. The
latter is based on a coarse grid correction and it uses the underlying properties of saddle point
problems. Another type of coarse space has been introduced in [1] by using eigenvectors of
local Dirichlet-to-Neumann maps. In a similar spirit, we introduce a spectral coarse space by
enriching the global information to be shared by the subdomains, that generalises the classical
one while allowing to attain a prescribed convergence of the two-level algorithm. As we will
see in the following, this approach can help to deal with strongly heterogeneous problems.
This idea was introduced for the first time in [5] in the case of multigrid methods. It relies
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FIG. 1.1. Increase in the size of the plateau region for an increasing number of subdomains.

on solving local generalised eigenvalue problems, allowing to choose suitable vectors for the
coarse space.

For overlapping domain decomposition preconditioners, a similar idea was introduced
in the case of Darcy equations in [13, 14]. The authors of [22] considered also the hetero-
geneous Darcy equation and presented a different generalised eigenvalue problem based on
local Dirichlet-to-Neumann maps. The method has been analysed in [11] and proved to be
very robust in the case of small overlaps. The same idea was extended numerically to the
heterogeneous Helmholtz problem in [9]. The authors of [21] apply the coarse space associ-
ated with low-frequency eigenfunctions of the subdomain Dirichlet-to-Neumann maps for the
generalisation of the optimised Schwarz methods, named 2-Lagrange multiplier methods.

The first attempt to extend this spectral approach to general symmetric positive definite
problems was made in [12] as an extension of [13, 14]. Since some of the assumptions of the
previous framework are hard to fulfil, the authors of [26] proposed a slightly different approach
for symmetric positive definite problems. Their idea of constructing a partition of unity operator
associated with the degrees of freedom allows to work with various finite element spaces. An
overview of different kinds of two-level methods can be found in [10, Chapters 5 and 7].

Despite the fact that all these approaches provide satisfactory results, there is no universal
treatment to build efficient coarse spaces in the case of non-definite problems, such as Stokes
equations. The spectral coarse spaces that we use in this work are inspired by those proposed
in [16]. The authors introduced and tested numerically symmetrised two-level preconditioners
for overlapping algorithms which use Robin interface conditions between the subdomains;
see (5.1) for details. They have applied these preconditioners to the solution of saddle point
problems, such as nearly incompressible elasticity and Stokes problems discretised by Taylor-
Hood finite elements. In our case, we use non-standard interface conditions. Therefore the use
of spectral coarse spaces could lead to an important gain.

In this work, we test this improvement in case of nearly incompressible elasticity and
Stokes equations that are discussed in Section 2. They are discretised by the Taylor-Hood [15,
Chapter II, Section 4.2] and hybrid discontinuous Galerkin methods [7, 8], presented in
Section 3. In Section 4, we introduce the two-level domain decomposition preconditioners.
Sections 5 and 6 present the two and three dimensional numerical experiments, respectively.
Finally, a summary is outlined in Section 7.

2. The differential equations. Let Ω be an open polygon in R2 or an open Lipschitz
polyhedron in R3, with Lipschitz boundary Γ := ∂Ω. The dimension of the space is denoted
by d = 2, 3. We use bold face letters for tensor or vector variables. In addition, we denote
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the normal and tangential components as un := u · n and ut := u − unn, where n is the
outward unit normal vector to the boundary Γ .

For D ⊂ Ω, we use the standard space L2(D) and the space C0(D̄), which denotes the
set of all continuous functions on the closure of a set D. Let us define the following Sobolev
spaces

Hm(D) :=
{
v ∈ L2(D) : ∀ |α| ≤ m, ∂αv ∈ L2(D)

}
for m ∈ N,

H
1
2 (∂D) :=

{
ṽ ∈ L2(∂D) : ∃v ∈ H1(D), ṽ = tr(v)

}
,

H(div,D) :=
{
v ∈ [L2(D)]d : ∇ · v ∈ L2(D)

}
,

where, for α = (α1, ..., αd) ∈ Nd and |α| =
∑d
i=1 αi, we let ∂α = ∂|α|

∂x
α1
1 ···∂x

αd
d

and

tr : H1(Ω)→ H
1
2 (∂Ω) denote the trace operator. In addition, we use the following notation

for the space including boundary and average conditions

L2
0(D) :=

{
v ∈ L2(D) :

∫
D

v dx = 0

}
,

H1
Γ̃
(D) :=

{
v ∈ H1(D) : v = 0 on Γ̃

}
,

where Γ̃ ⊂ ∂D. If Γ̃ = ∂D, then H1
Γ̃
(D) is denoted as H1

0 (D).
Now we present the two differential problems considered in this work.

2.1. Stokes equation. Let us start with the d-dimensional (d = 2, 3) Stokes problem

(2.1)

{
−ν∆u+∇p = f , in Ω,

∇ · u = 0, in Ω,

where u : Ω̄→ Rd is the velocity field, p : Ω̄→ R the pressure, ν > 0 the viscosity, which is
considered to be constant, and f ∈ [L2(Ω)]d is a given function. We define the stress tensor
σ := ν∇u−pI and the flux as σn := σ n. For uD ∈ [H

1
2 (Γ)]d and g ∈ L2(Γ) we consider

three types of boundary conditions:
• Dirichlet (non-slip)

(2.2) u = uD on Γ;

• tangential-velocity and normal-flux (TVNF)

(2.3)

{
ut = 0, on Γ,

σnn = g, on Γ;

• normal-velocity and tangential-flux (NVTF)

(2.4)

{
un = 0, on Γ,

σnt = g, on Γ.

The third type of boundary condition has already been considered for the Stokes problem
in [2].
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2.2. Nearly incompressible elasticity equation. From a mathematical point of view, the
nearly incompressible elasticity problem is very similar to the Stokes equations. The difference
is that instead of considering the gradient∇v, the symmetric gradient ε(v) := 1

2

(
∇v +∇Tv

)
is used. We want to solve the following d-dimensional (d = 2, 3) problem

(2.5)

{
−2µ∇ · ε(u) +∇p = f , in Ω,

−∇ · u = 1
λp, in Ω,

where u : Ω̄→ Rd is the displacement field, p : Ω→ R the pressure, f ∈ [L2(Ω)]d is a given
function, λ and µ are the Lamé coefficients, defined by

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
,

where E is the Young modulus and ν the Poisson ratio. We define the stress tensor as
σsym := 2µε(u) − pI and its normal component as σsym

n := σsymn. For g ∈ L2(Γ) we
consider three types of boundary conditions:

• mixed: for Γ = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅, we impose

(2.6)

{
u = 0, on ΓD,

σsym
n = 0, on ΓN ;

• tangential-displacement and normal-normal-stress (TDNNS)

(2.7)

{
ut = 0, on Γ,

σsym
nn = g, on Γ;

• normal-displacement and tangential-normal-stress (NDTNS)

(2.8)

{
un = 0, on Γ,

σsym
nt = g, on Γ.

The second type of boundary condition has already been considered for linear elasticity
equation in [24].

3. The numerical methods. Let {Th}h>0 be a regular family of triangulations of Ω̄
made of simplices. For each triangulation Th, Eh denotes the set of its facets (edges for
d = 2, faces for d = 3). In addition, for each element K ∈ Th, hK := diam(K), and we set
h := maxK∈Th hK . We define the following broken Sobolev spaces on the set of all edges in
Eh (for d = 2)

L2(Eh) :=
{
v : v|E ∈ L2(E), ∀ E ∈ Eh

}
.

Moreover, for D ⊂ Ω, Pk(D) denotes the space of polynomials of total degree smaller than
(or equal to) k on the set D.

We now present the two discretisations that will be used in the numerical experiments.

3.1. Taylor-Hood discretisation. We first consider the Taylor-Hood discretisation using
the following approximation spaces

THk
h :=

{
vh ∈ [H1(Ω)]d : vh|K ∈ [Pk(K)]d, ∀K ∈ Th

}
,

Rk−1
h :=

{
qh ∈ C0(Ω̄) : qh|K ∈ Pk−1(K), ∀K ∈ Th

}
,
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where k ≥ 2; see [15, Chapter II, Section 4.2].
If (2.1) is supplied with the homogeneous boundary conditions (2.2), then the discrete

problem reads:

Find (uh, ph) ∈
(
THk

h ∩ [H1
0 (Ω)]d

)
×
(
Rk−1
h ∩ L2

0(Ω)
)

s.t. for all (vh, qh) ∈
(
THk

h ∩ [H1
0 (Ω)]d

)
×
(
Rk−1
h ∩ L2

0(Ω)
)


∫

Ω

ν∇uh : ∇vh dx−
∫

Ω

ph∇ · vh dx =

∫
Ω

fvh dx,

−
∫

Ω

∇ · uhqh dx = 0.

In case of TVNF boundary conditions (2.3), we define Vt :=
{
v ∈ [H1(Ω)]d : vt = 0 on Γ

}
,

and the discrete problem reads:

Find (uh, ph) ∈
(
THk

h ∩ Vt
)
×Rk−1

h

s.t. for all (vh, qh) ∈
(
THk

h ∩ Vt
)
×Rk−1

h

(3.1)


∫

Ω

ν∇uh : ∇vh dx−
∫

Ω

ph∇ · vh dx =

∫
Ω

fvh dx+

∫
Γ

g (vh)t ds,

−
∫

Ω

∇ · uhqh dx = 0.

If NVTF boundary conditions (2.4) are used, then we define the space

Vn :=
{
v ∈ [H1(Ω)]d : vn = 0 on Γ

}
,

and the discrete problem reads:

Find (uh, ph) ∈
(
THk

h ∩ Vn
)
×
(
Rk−1
h ∩ L2

0(Ω)
)

s.t. for all (vh, qh) ∈
(
THk

h ∩ Vn
)
×
(
Rk−1
h ∩ L2

0(Ω)
)

(3.2)


∫

Ω

ν∇uh : ∇vh dx−
∫

Ω

ph∇ · vh dx =

∫
Ω

fvh dx+

∫
Γ

g (vh)n ds,

−
∫

Ω

∇ · uhqh dx = 0.

In a similar way, if the problem (2.5) is supplied with the boundary conditions (2.6), then
the discrete problem reads

Find (uh, ph) ∈
(
THk

h ∩ [H1
ΓD

(Ω)]d
)
×Rk−1

h

s.t. for all (vh, qh) ∈
(
THk

h ∩ [H1
ΓD

(Ω)]d
)
×Rk−1

h
∫

Ω

2µε (uh) : ε (vh) dx−
∫

Ω

ph∇ · vh dx =

∫
Ω

fvh dx,

−
∫

Ω

∇ · uhqh dx−
1

λ

∫
Ω

phqh dx = 0.

The other discrete problems associated with (2.5), equipped with either TDNNS boundary
conditions (2.7) or NDTNS boundary conditions (2.8), are similar to (3.1) or (3.2), respectively.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

46 G. R. BARRENECHEA, M. BOSY, AND V. DOLEAN

3.2. Hybrid discontinuous Galerkin discretisation. We restrict the discussion to the
two dimensional case d = 2. This method has been presented and analysed in [3]. The velocity
is approximated using the Brezzi-Douglas-Marini spaces (see [4, Section 2.3.1]) of degree k
given by

BDMk
h :=

{
vh ∈ H(div,Ω) : vh|K ∈ [Pk (K)]

2
, ∀K ∈ Th

}
,

BDMk
h,Γ̃

:=
{
vh ∈ H(div,Ω) : vh|K ∈ [Pk (K)]

2
, ∀K ∈ Th, (vh)n = 0 on Γ̃

}
,

where Γ̃ ⊂ ∂Ω. If Γ̃ = ∂Ω, thenBDMk
h,Γ̃

is denotedBDMk
h,0.

The pressure is approximated in the space

Qk−1
h :=

{
qh ∈ L2 (Ω) : qh|K ∈ Pk−1 (K) , ∀K ∈ Th

}
.

Finally, we introduce a Lagrange multiplier, aimed at approximating the tangential component
of the velocity. The space where this multiplier is sought is given by

Mk−1
h :=

{
ṽh ∈ L2 (Eh) : ṽh|E ∈ Pk−1 (E) , ∀E ∈ Eh

}
,

Mk−1

h,Γ̃
:=
{
ṽh ∈Mk−1

h : ṽh = 0 on Γ̃
}
,

where Γ̃ ⊂ ∂Ω. The latter space incorporates some boundary conditions and, if Γ̃ = ∂Ω, then
Mk−1

h,Γ̃
is denoted Mk−1

h,0 . Furthermore, we introduce for all E ∈ Eh the L2(E)-projection

Φk−1
E : L2 (E)→ Pk−1 (E), defined by∫

E

Φk−1
E (w̃)ṽh ds =

∫
E

w̃ṽh ds, ∀ṽh ∈ Pk−1 (E) ,

and we set Φk−1 : L2 (Eh)→Mk−1
h , defined as Φk−1|E := Φk−1

E for all E ∈ Eh.
If (2.1) is supplied with the homogeneous boundary conditions (2.2), then the discrete

problem reads:

Find (uh, ũh, ph) ∈ BDMk
h,0 ×M

k−1
h,0 ×

(
Qk−1
h ∩ L2

0(Ω)
)

s.t. for all (vh, ṽh, qh) ∈ BDMk
h,0 ×M

k−1
h,0 ×

(
Qk−1
h ∩ L2

0(Ω)
)
,

a ((uh, ũh) , (vh, ṽh)) + b ((vh, ṽh) , ph) =

∫
Ω

fvh dx,

b ((uh, ũh) , qh) = 0,

where

a ((wh, w̃h) , (vh, ṽh)) :=
∑
K∈Th

(∫
K

ν∇wh : ∇vh dx

−
∫
∂K

ν (∂nwh)t
(

(vh)t − ṽh
)
ds

−
∫
∂K

ν
(

(wh)t − w̃h
)

(∂nvh)t ds

+ν
τ

hK

∫
∂K

Φk−1
(

(wh)t − w̃h
)
Φk−1

(
(vh)t − ṽh

)
ds

)
,
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τ > 0 is a stabilisation parameter, and

(3.3) b ((vh, ṽh) , qh) := −
∑
K∈Th

∫
K

qh∇ · vh dx.

If TVNF boundary conditions (2.3) are used, then the discrete problem reads:

Find (uh, ũh, ph) ∈ BDMk
h ×M

k−1
h,0 ×Q

k−1
h

s.t. for all (vh, ṽh, qh) ∈ BDMk
h ×M

k−1
h,0 ×Q

k−1
h ,

(3.4)


a ((uh, ũh) , (vh, ṽh)) + b ((vh, ṽh) , ph) =

∫
Ω

fvh dx+

∫
Γ

g (vh)n ds,

b ((uh, ũh) , qh) = 0.

In case of NVTF boundary conditions (2.4), the discrete problem reads:

Find (uh, ũh, ph) ∈ BDMk
h,0 ×M

k−1
h ×

(
Qk−1
h ∩ L2

0(Ω)
)

s.t. for all (vh, ṽh, qh) ∈ BDMk
h,0 ×M

k−1
h ×

(
Qk−1
h ∩ L2

0(Ω)
)
,

(3.5)


a ((uh, ũh) , (vh, ṽh)) + b ((vh, ṽh) , ph) =

∫
Ω

fvh dx+

∫
Γ

gṽh ds,

b ((uh, ũh) , qh) = 0.

In a similar way, if the problem (2.5) is supplied with the mixed boundary conditions (2.6),
then the discrete problem reads:

Find (uh, ũh, ph) ∈ BDMk
h,ΓD

×Mk−1
h,ΓD

×Qk−1
h

s.t. for all (vh, ṽh, qh) ∈ BDMk
h,ΓD

×Mk−1
h,ΓD

×Qk−1
h ,as ((uh, ũh) , (vh, ṽh)) + b ((vh, ṽh) , ph) =

∫
Ω

fvh dx,

b ((uh, ũh) , qh) + c(ph, qh) = 0,

where

as ((wh, w̃h) , (vh, ṽh)) :=
∑
K∈Th

(∫
K

2µε(wh) : ε(vh) dx

−
∫
∂K

2µ (εn(wh))t
(

(vh)t − ṽh
)
ds

−
∫
∂K

2µ
(

(wh)t − w̃h
)

(εn(vh))t ds

+2µ
τ

hK

∫
∂K

Φk−1
(

(wh)t − w̃h
)
Φk−1

(
(vh)t − ṽh

)
ds

)
,

b is defined by (3.3), and

c(rh, qh) := − 1

λ

∫
Ω

rhqh ds.

The other discrete problems associated with (2.5), equipped with either TDNNS boundary
conditions (2.7) or NDTNS boundary conditions (2.8), are similar to (3.4) or (3.5), respectively.
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4. The domain decomposition preconditioners. Let us assume that we have to solve
the following linear system AU = F , where A is the matrix arising from the discretisation of
the Stokes or linear elasticity equation on the domain Ω, U is the vector of unknowns, and F
is the right-hand side. To accelerate the performance of an iterative Krylov method [10, Chap-
ter 3] applied to this system, we will consider domain decomposition preconditioners which
are naturally parallel. They are based on an overlapping decomposition of the computational
domain.

(a) L-shaped domain (b) T-shaped domain

FIG. 4.1. Partition of the domain for 8 subdomains by METIS.

Let {Th,i}Ni=1 be a partition of the triangulation Th; see examples in Figure 4.1. For an
integer value l ≥ 0, we set T 0

h,i = Th,i and define an overlapping decomposition {T lh,i}Ni=1

such that T lh,i is a set of all triangles from T l−1
h,i and all triangles from Th \ T l−1

h,i that have
non-empty intersection with T l−1

h,i . With this definition, the width of the overlap will be 2l.
Furthermore, if Wh stands for the finite element space associated to Th, let W l

h,i be the local
finite element space on T lh,i, which is a triangulation of Ωi.

Let N be the set of indices of degrees of freedom of Wh and N l
i the set of indices

of degrees of freedom of W l
h,i for l ≥ 0. Moreover, we define the restriction operator

Ri : Wh → W l
h,i as a rectangular matrix of size |N l

i | × |N |, such that if V is the vector of
degrees of freedom of vh ∈Wh, then RiV is the vector of degrees of freedom of W l

h,i in Ωi.
The extension operator from W l

h,i to Wh and its associated matrix are both given by RT
i . In

addition, we introduce a partition of the unity Di as a diagonal matrix of size |N l
i | × |N l

i |,
such that

Id =

N∑
i=1

RT
i DiRi,

where Id ∈ R|N |×|N| is the identity matrix.
We first recall the Modified Restricted Additive Schwarz (MRAS) preconditioner intro-

duced in [3] for the Stokes equation. This preconditioner is given by

(4.1) M−1
MRAS =

N∑
i=1

RT
i DiB

−1
i Ri,
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where Bi is the matrix associated to a discretisation of the Stokes equation (2.1) in Ωi where
we impose either TVNF (2.3) or NVTF (2.4) boundary conditions on ∂Ωi ∩ Ω. In the case
of a discretisation of the elasticity equation (2.5) in Ωi, we impose either TDNNS (2.7) or
NDTNS (2.8) boundary conditions on ∂Ωi ∩ Ω.

We now introduce a symmetrised variant of (4.1), called Symmetrised Modified Restricted
Additive Schwarz (SMRAS), given by

(4.2) M−1
SMRAS =

N∑
i=1

RT
i DiB

−1
i DiRi.

4.1. Two-level methods. A two-level version of the SMRAS and MRAS preconditioners
will be based on a spectral coarse space obtained by solving the following local generalised
eigenvalue problems

Find (V jk, λjk) ∈ (R|Nj | \ {0})× R s.t.

(4.3) ÃjV jk = λjkBjV jk .

Here, the Ãj are local matrices associated to a discretisation of a local Neumann boundary
value problem in Ωj , where the Neumann boundary conditions are imposed only on the
interface between the subdomains and not on the physical boundary. For example, in the
case of the Stokes problem (2.1) with Dirichlet boundary conditions (2.2), we consider the
following local problem 

−ν∆u+∇p = f , in Ωj ,

∇ · u = 0, in Ωj ,

u = uD, on Γ,

σn = 0, on ∂Ωj \ Γ.

Let θ > 0 be a user-defined threshold. We define ZGenEO ⊂ R|N | as the vector space spanned
by the family of vectors

(
RT
j DjV jk

)
λjk<θ

, 1 ≤ j ≤ N , corresponding to eigenvalues
smaller than θ. The value of θ is chosen such that, for a given problem and preconditioner,
the behaviour of the method is robust, in the sense that its convergence does not depend, or
depends very weakly, on the number of subdomains.

We are now ready to introduce the two-level method with coarse space ZGenEO. Let
P0 be the A-orthogonal projection onto the coarse space ZGenEO. The two-level SMRAS
preconditioner is defined as

M−1
SMRAS,2 = P0A

−1 + (Id−P0)M−1
SMRAS(Id−PT0 ).

Furthermore, if R0 is a matrix whose rows are a basis for the coarse space ZGenEO, then

P0A
−1 = RT

0

(
R0ART

0

)−1

R0.

In a similar way, we can introduce the two-level MRAS preconditioner

M−1
MRAS,2 = P0A

−1 + (Id−P0)M−1
MRAS(Id−PT0 ).
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5. Numerical results for two dimensional problems. In this section we assess the
performance of the preconditioners defined in Section 4.1. We compare the newly introduced
ones with that of ORAS and SORAS, introduced in [16]. This kind of preconditioners are
associated with the Robin interface conditions and require an optimised parameter, as it can be
seen in (5.1) below. The big advantage of the SMRAS and MRAS preconditioners from the
previous section is that they are parameter-free. We consider the partial differential equation
model for nearly incompressible elasticity and Stokes flow as problems of similar mixed
formulation. Each of these problems is discretised by using the Taylor-Hood method from
Section 3.1 and the hdG discretisation from Section 3.2.

Our experiments are based on the classical weak scaling test. This test is built as follows.
A domain Ω̄ is split into a triangulation Th. For each of element K ∈ Th, hK = diam(K),
and we denote the mesh size by h := maxK∈Th hK . Then, this triangulation is split into
overlapping subdomains of size H, in such a way that Hh remains constant. In the absence of a
second level in the preconditioner, if the number of subdomains grows then the convergence
gets slower. A coarse space provides global information and leads to more robust behaviour.

The simplest way to build a coarse space is to consider the zero energy modes. More
precisely, they are the eigenvectors associated with the zero eigenvalues of (4.3) on a floating
subdomains. Here, by a floating subdomain we mean a subdomain without Dirichlet boundary
condition on any part of the boundary. Then the matrix on the left-hand side of (4.3) is singular
and there are zero eigenvalues. These zero energy modes are the rigid body motions (three in
two dimensions, six in three dimensions) for the elasticity problem, and the constants (two in
two dimensions, three in three dimensions) for the Stokes equations. Unfortunately, for some
cases this choice is not sufficient, so we have collected the smallest M eigenvalues for each
subdomain and build a coarse space by including the eigenvectors associated to them. The
different values of M are presented in the table in brackets.

All experiments have been made by using FreeFem++ [17], which is a free software
specialised in variational discretisations of partial differential equations. We use GMRES [25]
as an iterative solver. Generalized eigenvalue problems to generate the coarse space are solved
using ARPACK [20]. The overlapping decomposition into subdomains can be uniform (Unif)
or generated by METIS (MTS) [18]. In each of the examples, we consider decompositions
with two layers of mesh size h in the overlap. Tables show the number of iterations needed to
achieve a relative l2-norm of the error smaller than 10−6, that is, ‖U−Un‖l2‖U−U0‖l2

< 10−6, where
U is the solution of the global problem produced by a direct solver, and Um denotes the mth
iteration of the iterative solver. In addition, DOF stands for number of degrees of freedom
and N for the number of subdomains in all tables.

5.1. Taylor-Hood discretisation. In this section we consider the Taylor-Hood discreti-
sation from Section 3.1, with different values of k ≥ 2 for nearly incompressible elasticity
and Stokes equations.

5.1.1. Nearly incompressible elasticity. Since we consider the preconditioners with
various interface conditions, we need to comment the way of imposing them. ORAS and
SORAS preconditioners follow [16] and use Robin interface conditions. This means that the
weak formulation of the linear elasticity problem contains the following term

(5.1)
∫
∂Ωi\Γ

σsym
n (vh)n ds+

∫
∂Ωi\Γ

2α
µ(2µ+ λ)

λ+ 3µ
uhvh ds,

where again, following [16], we choose α = 10. Fortunately, the MRAS and SMRAS
preconditioners are parameter-free. In this section, for all the associated numerical experiments
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we use the zero vector as an initial guess for the GMRES iterative solver. Moreover, the
overlapping decomposition into subdomains is generated by METIS.

ΓD

ΓN

(a) Domain and boundary (b) Discrete solution

FIG. 5.1. L-shaped domain problem.

TEST CASE 5.1 (The L-shaped domain problem). We consider the L-shaped domain
Ω = (−1, 1)2 \ {(0, 1)× (−1, 0)} clamped on the left side and partly from the top and the
bottom, as depicted in Figure 5.1(a). This example is similar to the one in [6]. The associated
boundary value problem is

(5.2)


−2µ∇ · ε(u) + ∇p = (0,−1)T , in Ω,

− ∇ · u = 1
λp, in Ω,

u(x, y) = (0, 0)T , on ΓD,
σsym
n (x, y) = (0, 0)T , on ΓN .

The physical parameters are E = 105 and ν = 0.4999, hence the problem is nearly incom-
pressible. In Figure 5.1(b) we plot the mesh of the bent domain.
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(b) NDTNS interface conditions
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(c) TDNNS interface conditions

FIG. 5.2. Eigenvalues on one of the floating subdomains in case of uniform decomposition and Taylor-Hood
discretisation (TH3

h, R
2
h)—the L-shaped domain problem.

We choose k = 3 for the Taylor-Hood discretisation. In Figure 5.2 we plot the eigenvalues
of one floating subdomain. The clustering of small eigenvalues of the generalised eigenvalue
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problem defined in (4.3) suggests the number of eigenvectors to be added to the coarse space.
The three zero eigenvalues correspond to the zero energy modes.

TABLE 5.1
Comparison of preconditioners for Taylor-Hood discretisation (TH3

h, R
2
h) - the L-shaped domain problem.

One-level
DOF N ORAS SORAS NDTNS-MRAS NDTNS-SMRAS TDNNS-MRAS TDNNS-SMRAS

124 109 4 26 60 26 60 30 59
478 027 16 57 131 69 143 65 140
933 087 32 84 180 109 221 104 211

1 899 125 64 130 293 181 362 161 312
3 750 823 128 209 412 302 568 251 510

Two-level (3 eigenvectors)
DOF N ORAS SORAS NDTNS-MRAS NDTNS-SMRAS TDNNS-MRAS TDNNS-SMRAS

124 109 4 18 40 19 36 24 41
478 027 16 37 52 40 57 46 56
933 087 32 49 57 56 67 53 66

1 899 125 64 65 64 70 75 61 74
3 750 823 128 83 64 74 77 75 72

Two-level (5 eigenvectors)
DOF N ORAS SORAS NDTNS-MRAS NDTNS-SMRAS TDNNS-MRAS TDNNS-SMRAS

124 109 4 15 32 17 35 24 37
478 027 16 31 41 31 47 42 47
933 087 32 40 48 38 52 53 51

1 899 125 64 49 51 45 53 64 56
3 750 823 128 69 54 49 54 70 53

Two-level (7 eigenvectors)
DOF N ORAS SORAS NDTNS-MRAS NDTNS-SMRAS TDNNS-MRAS TDNNS-SMRAS

124 109 4 14 33 16 30 24 35
478 027 16 26 41 25 38 42 44
933 087 32 31 43 25 42 49 46

1 899 125 64 39 47 30 39 59 50
3 750 823 128 58 49 30 43 61 50

The results of Table 5.1 show a clear improvement in the scalability of the two-level
preconditioners over the one-level ones. In fact, using five eigenvectors per subdomain, the
number of iterations is virtually unaffected by the number of subdomains. All two-level
preconditioners show a comparable performance. For this case, increasing the dimension of
the coarse space beyond 5×N eigenvectors does not seem to improve the results dramatically.

TEST CASE 5.2 (The heterogeneous beam problem). We consider a heterogeneous
beam with ten layers of steel and rubber. Five layers are made from steel, with the physical
parameters E = 210 · 109 and ν = 0.3, and five are made from rubber, with the physical
parameters E = 108 and ν = 0.4999, as depicted in Figure 5.3(a). A similar example was
considered in [16]. The computational domain is the rectangle Ω = (0, 5)× (0, 1). The beam

(a) Steel and rubber layers (b) Discrete solution

FIG. 5.3. Heterogeneous beam.
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is clamped on its left side, hence we consider the following problem

(5.3)


−2µ∇ · ε(u) + ∇p = (0,−1)T , in Ω,

− ∇ · u = 1
λp, in Ω,

u(x, y) = (0, 0)T , on ∂Ω ∩ {x = 0},
σsym
n (x, y) = (0, 0)T , on ∂Ω \ {x = 0}.

In Figure 5.3(b) we plot the mesh of the bent beam. Because of the heterogeneity of the
problem, we do not notice a clear clustering of the eigenvalues; see Figure 5.4. In such case, it
is well-known that a coarse space including only three zero energy modes is not sufficient [11].
That is why we consider a coarse space built using 5 or 7 eigenvectors per subdomain.

TABLE 5.2
Comparison of preconditioners for Taylor-Hood discretisation (TH3

h, R
2
h)—the heterogeneous beam.

One-level
DOF N ORAS SORAS NDTNS-MRAS NDTNS-SMRAS TDNNS-MRAS TDNNS-SMRAS

44 963 8 168 301 160 267 177 264
87 587 16 226 490 245 462 229 424

177 923 32 373 711 447 684 440 672
347 651 64 615 >1000 728 >1000 746 >1000
707 843 128 973 >1000 >1000 >1000 >1000 >1000

1 385 219 256 >1000 >1000 >1000 >1000 >1000 >1000
Two-level (5 eigenvectors)

DOF N ORAS SORAS NDTNS-MRAS NDTNS-SMRAS TDNNS-MRAS TDNNS-SMRAS
44 963 8 109 160 136 147 148 136
87 587 16 136 204 192 200 181 184

177 923 32 193 291 296 275 326 276
347 651 64 260 304 363 282 491 299
707 843 128 412 356 420 369 601 346

1 385 219 256 379 414 448 400 711 317
Two-level (7 eigenvectors)

DOF N ORAS SORAS NDTNS-MRAS NDTNS-SMRAS TDNNS-MRAS TDNNS-SMRAS
44 963 8 76 118 124 115 133 103
87 587 16 106 146 166 138 159 123

177 923 32 157 202 203 185 302 214
347 651 64 178 191 225 170 326 182
707 843 128 140 114 153 112 266 122

1 385 219 256 119 86 118 77 259 94
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(b) NDTNS interface conditions
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(c) TDNNS interface conditions

FIG. 5.4. Eigenvalues on one of the floating subdomains in case of METIS decomposition and Taylor-Hood
discretisation (TH3

h, R
2
h)—the heterogeneous beam.

As in the previous example, the introduction of a coarse space provides a significant
improvement in the number of iterations needed for convergence. Due to the high heterogeneity
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of this problem, more eigenvectors per subdomain are needed to obtain scalable results. We
notice an important improvement of the convergence when using two-level methods (see
Table 5.2), although we get a stable number of iterations only when considering a coarse space
which is sufficiently big.

5.1.2. Stokes equation. We now turn to the Stokes discrete problem given in Sections 3.1.
Once again in case of ORAS and SORAS we choose α = 10 as in [16] for the Robin interface
conditions (5.1). In the first case we consider a random initial guess for the GMRES iterative
solver. Later, with the second example, we will use the zero vector as initial guess.

(a) Velocity field (b) Pressure

FIG. 5.5. Numerical solution of the driven cavity problem.

TEST CASE 5.3 (The driven cavity problem). We consider the following problem on the
unit square Ω = (0, 1)2

(5.4)


−∆u + ∇p = f , in Ω,

− ∇ · u = 0, in Ω,
u(x, y) = (1, 0)T , on ∂Ω ∩ {y = 1},
u(x, y) = (0, 0)T , on ∂Ω \ {y = 1}.

In Figure 5.5 we depict the discrete velocity and pressure.
We start with two energy modes only; see Figure 5.6. This already provides some

improvement. Then, we add more eigenvectors to see if they bring a further improvement.
The conclusions remain the same as for the L-shaped domain problem for the nearly

incompressible elasticity equation discretised by Taylor-Hood method (TH3
h, R

2
h), since

Tables 5.3 and 5.1 show similar results.
TEST CASE 5.4 (The T-shaped domain problem). Finally, we consider a T-shaped domain

Ω = (0, 1.5)× (0, 1)∪ (0.5, 1)× (−1, 1), and we impose Dirichlet boundary conditions given
by

(5.5) u(x, y) =

{
(4y(1− y), 0)T , if x = 0 or x = 1.5,

(0, 0)T , otherwise.

The numerical solution of this problem is depicted in Figure 5.7. The overlapping decomposi-
tion into subdomains is generated by METIS.
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(b) NVTF interface conditions
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(c) VNF interface conditions]

FIG. 5.6. Eigenvalues on one of the floating subdomains in case of uniform decomposition and Taylor-Hood
discretisation (TH2

h, R
1
h)—the driven cavity problem.

TABLE 5.3
Comparison of preconditioners for Taylor-Hood discretisation (TH2

h, R
1
h)—the driven cavity problem.

One-level
DOF N ORAS SORAS NVTF-MRAS NVTF-SMRAS TVNF-MRAS TVNF-SMRAS

Unif MTS Unif MTS Unif MTS Unif MTS Unif MTS Unif MTS

91 003 4 12 17 24 34 22 22 34 40 22 25 30 40
362 003 16 28 35 56 67 52 53 90 106 54 53 70 84
813 003 36 39 75 92 103 85 91 165 185 91 88 118 136

1 444 003 64 53 91 120 144 120 135 254 283 132 132 169 206
2 728 003 121 80 278 180 212 182 280 412 580 199 213 251 439
5 768 003 256 >1000 >1000 271 317 303 452 917 955 322 319 397 695

Two-level (2 eigenvectors)
DOF N ORAS SORAS NVTF-MRAS NVTF-SMRAS TVNF-MRAS TVNF-SMRAS

Unif MTS Unif MTS Unif MTS Unif MTS Unif MTS Unif MTS

91 003 4 10 14 18 22 19 17 26 30 27 20 21 26
362 003 16 20 25 32 37 33 34 50 62 60 40 42 51
813 003 36 27 33 36 44 47 49 62 86 79 53 59 63

1 444 003 64 31 42 38 53 104 66 85 114 85 52 62 79
2 728 003 121 39 103 39 51 74 81 85 133 92 86 62 93
5 768 003 256 300 849 46 54 109 108 146 132 91 78 63 90

Two-level (5 eigenvectors)
DOF N ORAS SORAS NVTF-MRAS NVTF-SMRAS TVNF-MRAS TVNF-SMRAS

Unif MTS Unif MTS Unif MTS Unif MTS Unif MTS Unif MTS

91 003 4 9 12 13 16 16 15 18 20 25 20 16 18
362 003 16 16 20 21 24 27 22 28 37 56 37 26 35
813 003 36 23 27 25 26 33 30 39 40 65 41 28 37

1 444 003 64 26 36 27 29 40 34 35 45 77 45 28 42
2 728 003 121 35 41 29 32 43 38 34 48 84 72 29 47
5 768 003 256 66 60 32 33 56 41 60 49 88 61 29 44

Once again a clustering of small eigenvalues of generalised eigenvalue problem defined
in (4.3) is a motivation of the size of the coarse space; see Figure 5.8.

As in all examples for Taylor-Hood discretisation, we notice an important improvement
in the convergence when two-level methods are used, although from Table 5.4 we can see that
the coarse spaces containing five eigenvectors seem to be sufficient.

5.2. hdG discretisation. In this section we discretise the nearly incompressible elasticity
equation and the Stokes flow by using the lowest order hdG discretisation (k = 1) introduced
in Section 3.2.

5.2.1. Nearly incompressible elasticity. In case of ORAS and SORAS we consider the
Robin interface conditions as in [16], with α = 10. For all numerical experiments in this
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Velocity field u (b) Pressure p

FIG. 5.7. Numerical solution—the T-shaped problem.

TABLE 5.4
Comparison of preconditioners for Taylor-Hood discretisation (TH3

h, R
2
h)—the T-shaped problem.

One-level
DOF N ORAS SORAS NVTF-MRAS NVTF-SMRAS TVNF-MRAS TVNF-SMRAS

33 269 4 13 20 12 19 13 19
138 316 16 36 51 33 52 31 45
269 567 32 59 85 52 85 49 75
553 103 64 92 132 83 136 78 115

1 134 314 128 146 208 132 223 117 188
2 201 908 256 232 328 209 357 189 293

Two-level (2 eigenvectors)
DOF N ORAS SORAS NVTF-MRAS NVTF-SMRAS TVNF-MRAS TVNF-SMRAS

33 269 4 10 14 9 15 12 15
138 316 16 21 27 19 24 22 24
269 567 32 29 35 30 38 25 30
553 103 64 35 45 34 43 33 35

1 134 314 128 42 52 47 58 34 41
2 201 908 256 47 56 69 76 38 45

Two-level (5 eigenvectors)
DOF N ORAS SORAS NVTF-MRAS NVTF-SMRAS TVNF-MRAS TVNF-SMRAS

33 269 4 8 13 8 13 12 14
138 316 16 15 16 14 16 20 18
269 567 32 14 19 20 22 24 19
553 103 64 16 20 18 19 29 20

1 134 314 128 17 22 23 24 30 22
2 201 908 256 16 21 34 37 35 24

section we use the zero vector as an initial guess for the GMRES iterative solver. Moreover,
the overlapping decomposition into subdomains is generated by METIS.

TEST CASE 5.5 (The L-shaped domain problem). We consider the L-shaped domain for
the discrete problem (5.2).
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(a) Robin interface conditions
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(b) NVTF interface conditions
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(c) [TVNF interface conditions

FIG. 5.8. Eigenvalues on one of the floating subdomains in case of METIS decomposition and Taylor-Hood
discretisation (TH3

h, R
2
h)—the T-shaped problem.

TABLE 5.5
Comparison of preconditioners for hdG discretisation—the L-shaped domain problem.

One-level
DOF N ORAS SORAS NDTNS-MRAS NDTNS-SMRAS TDNNS-MRAS TDNNS-SMRAS

238 692 8 61 158 64 174 77 177
466 094 16 123 232 101 259 109 306
948 921 32 267 331 160 415 179 473

1 874 514 64 622 477 243 685 254 657
3 856 425 128 >1000 752 479 >1000 523 >1000

Two-level (3 eigenvectors)
DOF N ORAS SORAS NDTNS-MRAS NDTNS-SMRAS TDNNS-MRAS TDNNS-SMRAS

238 692 8 48 98 52 98 61 116
466 094 16 89 99 71 123 75 148
948 921 32 250 130 110 158 118 173

1 874 514 64 535 135 135 155 129 159
3 856 425 128 >1000 152 172 176 181 192

Two-level (5 eigenvectors)
DOF N ORAS SORAS NDTNS-MRAS NDTNS-SMRAS TDNNS-MRAS TDNNS-SMRAS

238 692 8 43 81 44 74 61 94
466 094 16 77 82 51 92 63 103
948 921 32 197 100 79 119 96 121

1 874 514 64 429 103 102 122 110 138
3 856 425 128 >1000 118 122 129 141 167

Two-level (7 eigenvectors)
DOF N ORAS SORAS NDTNS-MRAS NDTNS-SMRAS TDNNS-MRAS TDNNS-SMRAS

238 692 8 35 67 38 71 44 82
466 094 16 61 79 47 80 51 95
948 921 32 153 90 58 95 74 115

1 874 514 64 423 95 71 93 72 111
3 856 425 128 934 110 79 104 108 133

Table 5.5 shows an important improvement in the convergence that is brought by the two-
level methods. We cannot conclude that SMRAS preconditioners are much better than SORAS,
although we can note that coarse space improvement is visible for MRAS preconditioners and
not for ORAS. For symmetric preconditioners (SMRAS and SORAS), five eigenvectors seem
to lead already to satisfactory results, while for the non-symmetric ones a bigger coarse space
is required. On the other hand, we state the fact that the new preconditioners are parameter-free,
which makes them easier to use.

TEST CASE 5.6 (The heterogeneous beam problem). We consider the heterogeneous
beam with ten layers of steel and rubber defined as in the problem (5.3).

We notice an improvement only when using a coarse space that is sufficiently large;
see Table 5.6. Furthermore, we get a stable number of iterations only for the symmetric
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TABLE 5.6
Comparison of preconditioners for hdG discretisation—the heterogeneous beam.

One-level
DOF N ORAS SORAS NDTNS-MRAS NDTNS-SMRAS TDNNS-MRAS TDNNS-SMRAS

46 777 8 196 440 189 402 186 463
88 720 16 317 602 330 582 326 666

179 721 32 537 >1000 574 >1000 587 >1000
353 440 64 899 >1000 847 >1000 846 >1000
704 329 128 >1000 >1000 >1000 >1000 >1000 >1000

1 410 880 256 >1000 >1000 >1000 >1000 >1000 >1000
Two-level (5 eigenvectors)

DOF N ORAS SORAS NDTNS-MRAS NDTNS-SMRAS TDNNS-MRAS TDNNS-SMRAS

46 777 8 168 255 162 230 161 275
88 720 16 244 313 273 299 262 346

179 721 32 385 525 442 458 469 587
353 440 64 514 444 551 526 590 558
704 329 128 835 557 782 684 765 832

1 410 880 256 >1000 567 >1000 694 844 821
Two-level (7 eigenvectors)

DOF N ORAS SORAS NDTNS-MRAS NDTNS-SMRAS TDNNS-MRAS TDNNS-SMRAS

46 777 8 148 197 149 192 158 231
88 720 16 205 201 286 187 283 273

179 721 32 318 337 385 301 433 419
353 440 64 403 262 397 247 460 389
704 329 128 490 168 447 182 558 443

1 410 880 256 >1000 116 387 138 473 298

preconditioners (SMRAS and SORAS), and the coarse space improvement in case of ORAS
preconditioner is much less visible than in case of MRAS preconditioners. This may be due to
the fact we have not chosen an optimized parameter in the Robin interface conditions (5.1).

5.2.2. The Stokes equation. We now turn to the Stokes discrete problem given in
Section 3.2. Once again in case of ORAS and SORAS we choose α = 10 as in [16] for the
Robin interface conditions (5.1). In the first case, we consider a random initial guess for the
GMRES iterative solver. Later, with the second example, we will use the zero vector as initial
guess.

TEST CASE 5.7 (The driven cavity problem). We consider the driven cavity defined as in
the problem (5.4). The conclusions remain the same as in the case of the nearly incompressible
elasticity equation for the L-shaped domain, although Table 5.7 shows that the coarse spaces
containing five eigenvectors seem to decrease the number of iterations even in the case of
MRAS preconditioners that are not fully scalable.

TEST CASE 5.8 (The T-shaped domain problem). Finally, we consider a T-shaped domain
Ω = (0, 1.5)× (0, 1) ∪ (0.5, 1)× (−1, 1), and we impose mixed boundary conditions (5.5).
The numerical solution of this problem is depicted in Figure 5.7.

In this case, scalable results can only be observed for the preconditioners associated with
the non-standard interface conditions (MRAS and SMRAS), and when using a coarse space
that is sufficiently large; see Table 5.8. In the case of ORAS or SORAS, one possibility is to
choose a different parameter α, but the proof of this, as well as the question of whether this
would have a positive impact, are open problems.

6. Numerical results for three dimensional problems. In this section we again assess
the performance of the preconditioners as in Section 5, but this time in case of three di-
mensional problems. We consider the three-dimensional analogues of the Stokes and nearly
incompressible elasticity problems considered in last section. Both problems are discretised
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TABLE 5.7
Comparison of preconditioners for hdG discretisation—the driven cavity problem.

One-level
DOF N ORAS SORAS NVTF-MRAS NVTF-SMRAS TVNF-MRAS TVNF-SMRAS

Unif MTS Unif MTS Unif MTS Unif MTS Unif MTS Unif MTS

93 656 4 17 18 37 38 24 22 44 44 32 25 48 50
373 520 16 76 122 75 84 52 54 107 111 68 67 122 126
839 592 36 152 327 120 133 91 96 194 200 112 115 206 210

1 491 872 64 261 587 162 176 130 143 294 303 159 158 292 286
2 819 432 121 364 >1000 229 256 199 213 504 649 238 251 628 643
5 963 072 256 592 >1000 367 398 326 477 >1000 >1000 392 404 995 740

Two-level (2 eigenvectors)
DOF N ORAS SORAS NVTF-MRAS NVTF-SMRAS TVNF-MRAS TVNF-SMRAS

Unif MTS Unif MTS Unif MTS Unif MTS Unif MTS Unif MTS

93 656 4 12 14 30 28 18 18 33 32 40 23 38 37
373 520 16 81 80 47 57 36 40 61 73 100 49 85 82
839 592 36 236 228 61 60 57 65 97 104 132 66 112 107

1 491 872 64 395 463 67 71 79 85 139 129 142 70 128 122
2 819 432 121 840 >1000 73 86 113 127 188 178 157 86 127 139
5 963 072 256 >1000 >1000 80 87 171 179 283 287 167 108 132 148

Two-level (5 eigenvectors)
DOF N ORAS SORAS NVTF-MRAS NVTF-SMRAS TVNF-MRAS TVNF-SMRAS

Unif MTS Unif MTS Unif MTS Unif MTS Unif MTS Unif MTS

93 656 4 10 12 25 24 14 16 23 22 52 22 29 26
373 520 16 27 35 38 37 27 29 38 41 117 39 53 53
839 592 36 135 84 45 41 35 37 51 50 145 49 64 61

1 491 872 64 278 212 49 45 44 42 58 55 157 59 64 64
2 819 432 121 607 584 56 49 46 56 58 62 162 81 65 75
5 963 072 256 >1000 >1000 62 55 52 64 57 69 166 75 65 75

TABLE 5.8
Comparison of preconditioners for hdG discretisation—the T-shaped problem.

One-level
DOF N ORAS SORAS NVTF-MRAS NVTF-SMRAS TVNF-MRAS TVNF-SMRAS

38 803 4 22 45 36 49 22 51
154 606 16 111 98 83 172 83 182
311 369 32 265 144 133 262 130 266
616 772 64 568 238 212 410 195 412

1 246 136 128 >1000 494 333 665 313 602
2 451 365 256 >1000 712 464 >1000 477 889

Two-level (2 eigenvectors)
DOF N ORAS SORAS NVTF-MRAS NVTF-SMRAS TVNF-MRAS TVNF-SMRAS

38 803 4 16 35 31 37 21 38
154 606 16 113 69 73 75 38 75
311 369 32 254 99 103 176 93 162
616 772 64 510 153 171 273 121 140

1 246 136 128 >1000 221 242 252 155 138
2 451 365 256 >1000 286 343 515 189 231

Two-level (5 eigenvectors)
DOF N ORAS SORAS NVTF-MRAS NVTF-SMRAS TVNF-MRAS TVNF-SMRAS

38 803 4 14 30 27 27 28 30
154 606 16 155 54 54 45 25 44
311 369 32 159 55 72 59 29 52
616 772 64 426 88 106 83 37 76

1 246 136 128 955 113 115 99 43 72
2 451 365 256 >1000 182 138 101 54 73
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by using the Taylor-Hood methods from Section 3.1. In addition, we use the same tools as in
Section 5. For both test cases we use the zero vector as initial guess.

6.1. Taylor-Hood discretisation. In this section we consider the Taylor-Hood discreti-
sation from Section 3.1, with k = 2, for nearly incompressible elasticity and Stokes equations.

6.1.1. Nearly incompressible elasticity. In the three dimensional space, ORAS and
SORAS preconditioners also require an optimized parameter. We follow [16] and use Robin
interface conditions (5.1) with α = 10.

TEST CASE 6.1 (The homogeneous beam problem). We consider a homogeneous beam
with the physical parameters E = 108 and ν = 0.4999. The computational domain is the
rectangle Ω = (0, 5)× (0, 1)× (0, 1). The beam is clamped on one side, hence we consider
the following problem


−2µ∇ · ε(u) + ∇p = (0, 0,−1)T , in Ω,

− ∇ · u = 1
λp, in Ω,

u(x, y) = (0, 0, 0)T , on ∂Ω ∩ {x = 0},
σsym
n (x, y) = (0, 0, 0)T , on ∂Ω \ {x = 0}.

TABLE 6.1
Comparison of preconditioners for Taylor-Hood discretisation (TH2

h, R
1
h)—the homogeneous beam.

One-level
DOF N ORAS SORAS NDTNS-MRAS NDTNS-SMRAS TDNNS-MRAS TDNNS-SMRAS

32 446 8 21 45 29 36 27 37
73 548 16 31 70 38 64 26 67

139 794 32 43 99 74 94 66 91
299 433 64 55 143 161 140 149 139
549 396 128 78 192 314 192 229 199

Two-level (6 eigenvectors)
DOF N ORAS SORAS NDTNS-MRAS NDTNS-SMRAS TDNNS-MRAS TDNNS-SMRAS

32 446 8 10 17 13 18 12 17
73 548 16 11 22 16 25 16 22

139 794 32 13 26 25 28 17 26
299 433 64 15 27 19 27 24 28
549 396 128 17 28 20 25 21 26

Two-level (8 eigenvectors)
DOF N ORAS SORAS NDTNS-MRAS NDTNS-SMRAS TDNNS-MRAS TDNNS-SMRAS

32 446 8 9 16 12 17 12 16
73 548 16 10 19 15 24 14 20

139 794 32 11 21 17 23 17 21
299 433 64 14 24 17 24 21 23
549 396 128 16 27 18 23 20 22

The results of Table 6.1 show a clear improvement in the scalability of the two-level
preconditioners over the one-level ones. In fact, using only zero energy modes, the number of
iterations is virtually unaffected by the number of subdomains. All two-level preconditioners
show a comparable performance. For this case, increasing the dimension of the coarse space
beyond 6×N eigenvectors does not seem to improve the results significantly.
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6.1.2. The Stokes equation. We now turn to the Stokes discrete problem given in
Section 3.1. Once again, in the case of ORAS and SORAS we choose α = 10 as in [16] for
the Robin interface conditions (5.1).

TEST CASE 6.2 (The driven cavity problem). The test case is the three-dimensional
version of the driven cavity problem. We consider the following problem on the unit cube
Ω = (0, 1)3


−∆u + ∇p = f , in Ω,

− ∇ · u = 0, in Ω,
u(x, y) = (1, 0, 0)T , on ∂Ω ∩ {y = 1},
u(x, y) = (0, 0, 0)T , on ∂Ω \ {y = 1}.

TABLE 6.2
Comparison of preconditioners for Taylor-Hood discretisation (TH2

h, R
1
h)—the driven cavity problem.

One-level
DOF N ORAS SORAS NVTF-MRAS NVTF-SMRAS TVNF-MRAS TVNF-SMRAS

38 229 8 12 24 12 22 11 23
76 542 16 18 34 18 31 15 31

158 818 32 23 45 20 45 19 45
325 293 64 28 60 36 64 25 60
643 137 128 37 79 64 91 33 88

Two-level (3 eigenvectors)
DOF N ORAS SORAS NVTF-MRAS NVTF-SMRAS TVNF-MRAS TVNF-SMRAS

38 229 8 10 17 10 18 11 18
76 542 16 11 20 11 19 14 19

158 818 32 13 24 13 24 16 23
325 293 64 15 27 15 27 19 26
643 137 128 18 31 17 32 22 31

Two-level (7 eigenvectors)
DOF N ORAS SORAS NVTF-MRAS NVTF-SMRAS TVNF-MRAS TVNF-SMRAS

38 229 8 9 16 9 16 12 17
76 542 16 10 17 10 18 15 17

158 818 32 11 19 11 20 17 20
325 293 64 13 19 13 21 20 20
643 137 128 15 21 16 22 22 22

The conclusions remain the same as for the homogeneous beam example for the nearly
incompressible elasticity equation discretised by Taylor-Hood method (TH3

h, R
2
h), since

Tables 6.1 and 6.2 show similar results.

7. Conclusion. We tested numerically two-level preconditioners with spectral coarse
spaces for nearly incompressible elasticity and Stokes equations. We considered two finite
element methods, namely, Taylor-Hood (Section 3.1) and the hdG (Section 3.2) discretisations.

In the case of the homogeneous nearly incompressible elasticity the two-level methods
coupled with the SORAS preconditioner, defined in [16], and the SMRAS preconditioner,
defined by (4.2), allowed us to achieve good scalability results for both discretisations. Fur-
thermore, for these symmetric preconditioners coarse spaces containing only zero energy
modes seem to be sufficient for two and three dimensional problems. For the heterogeneous
problem we also achieved scalability for two-level SORAS and SMRAS preconditioners, but,
as expected, only in the case when the size of the coarse space is sufficiently large.
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The improvement in convergence, in the case of the Stokes flow, is visible only when the
coarse space contains more eigenvectors than only constants. For the Taylor-Hood discreti-
sation, taking a sufficiently large coarse space we were able to achieve good scalability for
all preconditioners. It is remarkable that these good results occur even when using the hdG
discretisation, despite the fact that the optimized parameter to be used in SORAS and ORAS
is not available.

We can conclude that the two-level preconditioners associated with non-standard interface
conditions are at least as good as the two-level ones in conjunction with Robin interface
conditions using optimised parameters. This shows an important advantage of the newly
introduced preconditioners, as they are parameter-free. This allows a more flexible use of
them, since they do not need a discretisation-based tuning. In fact, no change needs to be made
in their implementation when changing from a continuous to a discontinuous discretisation.

Numerical tests have shown that the coarse spaces bring an important improvement in the
convergence, but the size of the coarse space depends on the problem. Building as small as
possible coarse spaces is important from a computational point of view. Thus, it is necessary
to investigate what could be an optimal criterion for choosing the eigenvectors for a coarse
space.

As the authors of [16] pointed out, an appropriate theory for obtaining a user-prescribed
convergence rate when using spectral coarse spaces, in the same spirit as the one developed
for SPD problems, remains an open problem and does not seem to be an easy task. The main
theoretical arguments that apply for the latter, that is the Fictitious Space Lemma, cannot be
extended easily to saddle point problems. Our purpose was then to limit the analysis of our
preconditioner to numerical arguments by providing extensive results on different standard
test cases.
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