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ISOGEOMETRIC SCHWARZ PRECONDITIONERS
FOR THE BIHARMONIC PROBLEM∗

D. CHO†, L. F. PAVARINO‡, AND S. SCACCHI§

Abstract. A scalable overlapping Schwarz preconditioner for the biharmonic Dirichlet problem discretized by
isogeometric analysis is constructed, and its convergence rate is analyzed. The proposed preconditioner is based on
solving local biharmonic problems on overlapping subdomains that form a partition of the CAD domain of the problem
and on solving an additional coarse biharmonic problem associated with the subdomain coarse mesh. An h-analysis
of the preconditioner shows an optimal convergence rate bound that is scalable in the number of subdomains and is
cubic in the ratio between subdomain and overlap sizes. Numerical results in 2D and 3D confirm this analysis and
also illustrate the good convergence properties of the preconditioner with respect to the isogeometric polynomial
degree p and regularity k.
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1. Introduction. In the present paper, we construct and analyze overlapping additive
Schwarz (OAS) preconditioners for the isogeometric discretization of the following biharmonic
problem (see [15, Chapter 5.9]) arising, e.g., in the theory of thin elastic plates, in fluid
dynamics when the steady Stokes flow is written in terms of a stream function, or in PDE-
constrained optimization (see [33, 39]):

(1.1) ∆2u = f in Ω, u =
∂u

∂n
= 0 on ∂Ω,

where Ω ⊂ Rd is a bounded and connected CAD (computer-aided design) domain.
Typical conforming finite elements for the biharmonic problem need to be H2-confor-

ming, and therefore they require C1-continuous piecewise polynomial basis functions leading
to complex elements that are more difficult to implement than H1-conforming finite elements.
The nonconforming finite element alternatives that have been proposed for the biharmonic
problem are also known to be quite complex to construct and implement efficiently; see,
e.g., [15]. Isogeometric analysis (IGA), introduced more than a decade ago by Hughes
et al. [30, 21], employs spline basis functions of degree p and regularity up to Cp−1, and
therefore is well suited for approximating higher-order PDEs such as the biharmonic problem;
see, e.g., [40]. The biharmonic equation can also be written in mixed formulation; see,
e.g., [19, 34] and the references therein. In this paper we confine ourselves to the biharmonic
primal formulation.

The novelty of this paper is the extension of overlapping Schwarz preconditioners to the
isogeometric discretization of the biharmonic equation. Our two-level OAS preconditioner is
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based on decomposing the computational domain Ω into overlapping subdomains Ωi (which
are the images of overlapping sub-patches of the reference domain), solving in parallel
local biharmonic problems on each Ωi and a coarse biharmonic problem on a coarse mesh
associated with the subdomain partition of Ω. Our theoretical analysis shows that the resulting
preconditioned biharmonic operator satisfies a condition number bound that is scalable in the
number of subdomains and is dominated by a

(
1 + H3

γ3

)
-term, where H is the characteristic

subdomain size and γ is an overlap parameter related to the size of the overlapping region
between subdomains. This cubic bound has also been obtained for discontinuous Galerkin
finite element discretizations of the biharmonic equation; see [16, 17, 27]. Our theoretical result
is confirmed by several numerical experiments on parametric and deformed domains defined
by Non-Uniform Rational B-Splines (NURBS) parametrizations, showing additionally a good
performance of the biharmonic OAS preconditioner with respect to the spline polynomial
degree, regularity, and domain deformation.

Previous works on overlapping domain decomposition for isogeometric discretizations
have focused on second-order elliptic problems such as scalar problems with variable coeffi-
cients [6, 9], elasticity problems, and second-order saddle-point problems such as the mixed
formulation of almost incompressible elasticity and Stokes systems [6, 8]. Other works on
IGA preconditioners have focused on nonoverlapping preconditioners of FETI-type for scalar
problems [32] and Stokes systems [36], BDDC [7] and BDDC deluxe [11, 12], BPX [18],
and multigrid methods [29, 23]. A multipatch isogeometric discretization for the biharmonic
equation has been presented in [31]. A discontinuous Galerkin isogeometric discretization of
the biharmonic equation has been studied in [35].

Before the introduction of isogeometric analysis, previous domain decomposition meth-
ods for the biharmonic equation have considered finite element discretizations [42, 43, 25],
discontinuous Galerkin discretizations [16, 17, 27], boundary integrals with a discrete wavelet
transform [2], and multilevel radial basis function [1].

This paper is organized as follows. A brief review of B-splines and the basics of NURBS
is given in Section 2 together with the isogeometric discretization of the biharmonic model
problem. In Section 3, we introduce the two-level overlapping Schwarz preconditioner, while
Section 4 presents a condition number bound for the preconditioned operator. Section 5
concludes the paper with several numerical results in 2D and 3D.

2. Isogeometric analysis discretization. We first introduce a compact notation that will
be used throughout the rest of the paper. Given two real numbers a, b we write a . b, when
a ≤ Cb for a generic constant C independent of the knot vectors (defined below), and we
write a ≈ b when a . b and b . a.

2.1. B-splines notations and spaces. We consider B-splines piecewise polynomial
curves in the plane defined as linear combinations of B-spline basis functions. A knot vector is
a set of non-decreasing real numbers representing coordinates in the parametric space of the
curve

{ξ1 = 0, . . . , ξn+p+1 = 1},

where p is the polynomial degree of the B-spline and n is the number of basis functions
(and control points) describing it. The interval (ξ1, ξn+p+1) is called a patch. A knot vector
is said to be uniform if its knots are uniformly spaced and non-uniform otherwise. The
maximum allowed knot multiplicity is p+ 1; a knot vector is said to be open if its first and
last knots have multiplicity p + 1. In the following, we always employ open knot vectors.
Basis functions formed from open knot vectors are interpolatory at the ends of the parametric
interval Î := (0, 1) but in general are not interpolatory at interior knots.
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Given a knot vector, univariate B-spline basis functions of any degree are defined recur-
sively starting from p = 0 (piecewise constants); see [37]. The general basis function Np

i of
degree p has support

Θi := supp(Np
i ) = (ξi, ξi+p+1), i = 1, 2, . . . , n.

The functions Np
i constitute a partition of unity as shown in [37]. B-spline basis functions

are Cp−1-continuous if internal knots are not repeated. If a knot has multiplicity α, then the
basis is Ck-continuous with k = p− α at that knot. In particular, when a knot has multiplicity
α = p, the basis is C0 and interpolates the control point at that location. In the following, we
will assume that for polynomial degree p ≥ 2, the maximum knot multiplicity is p− 1 so that
all considered functions will be (at least) globally C1-continuous. The spline space is defined
as

(2.1) Ŝh = span{Np
i (ξ), i = 1, . . . , n}.

Following [37, Theorem 4.41], we will use dual functionals λpj satisfying

(2.2) λpj (N
p
i ) = δij , 1 ≤ i, j ≤ n,

where δij is the Kronecker delta. We recall the following useful estimate for the functional λpj
(see [37, Theorem 4.41] for the proof).

LEMMA 2.1. If f ∈ Lq(ξj , ξj+p+1), with 1 ≤ q ≤ +∞, then

|λpj (f)| . |ξj+p+1 − ξj |−1/q‖f‖Lq(ξj ,ξj+p+1).

Let 4pi := ξi+p − ξi, for 1 ≤ i ≤ n, and 4p−1
i := ξi+p−1 − ξi, for 1 ≤ i ≤ n + 1. We

recall the formula for the derivatives of univariate B-splines of degrees p and p− 1 (see [37,
Theorem 4.16]):

(2.3)
d

dξ
Np−1
i = (p− 1)

(
Np−2
i

4p−1
i

−
Np−2
i+1

4p−1
i+1

)
,

d

dξ
Np
i = p

(
Np−1
i

4pi
−
Np−1
i+1

4pi+1

)
,

respectively.
A multi-dimensional B-spline space can be constructed by tensor products. For simplicity,

we discuss here the case of a two-dimensional space, the higher-dimensional case being
analogous. Let Ω̂ := (0, 1)× (0, 1) be the two-dimensional parametric space. Consider the
knot vectors {ξ1 = 0, . . . , ξn+p+1 = 1} and {η1 = 0, . . . , ηm+q+1 = 1} and also an n×m
net of control points Ci,j that will be used later. The one-dimensional basis functions Np

i and
Mq
j (with i = 1, . . . , n and j = 1, . . . ,m) of degree p and q, respectively, are defined by the

knot vectors. The bivariate spline basis on Ω̂ is then defined by a tensor product

Bp,qi,j (ξ, η) = Np
i (ξ)Mq

j (η).

The two knot vectors {ξ1 = 0, . . . , ξn+p+1 = 1} and {η1 = 0, . . . , ηm+q+1 = 1} generate a
mesh of rectangular elements in the parametric space in a natural way. Analogous to (2.1), we
define the spline space

Ŝh = span{Bp,qi,j (ξ, η), i = 1, . . . , n, j = 1, . . . ,m}.
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2.2. Non-Uniform Rational B-Splines (NURBS). Rational B-splines in Rd are the
projections onto the d-dimensional physical space of polynomial B-splines defined in the
(d+ 1)-dimensional homogeneous coordinate space; see, e.g., [26] for a complete discussion.
A large variety of geometrical entities can be constructed in this way, for example, all conic
sections in physical space can be obtained exactly. To obtain a NURBS curve in R2, we
introduce the NURBS basis functions of degree p

Rpi (ξ) =
Np
i (ξ)ωi∑n

î=1N
p

î
(ξ)ωî

=
Np
i (ξ)ωi
w(ξ)

,

where the denominator w(ξ) =
∑n
î=1N

p

î
(ξ)ωî ∈ Ŝh is called the weight function.

The NURBS curve is then defined by

C(ξ) =

n∑
i=1

Rpi (ξ)Ci,

where Ci ∈ R2 are control points.
Analogously to B-splines, NURBS basis functions on the two-dimensional parametric

space Ω̂ = (0, 1)× (0, 1) are defined as

(2.4) Rp,qi,j (ξ, η) =
Bp,qi,j (ξ, η)ωi,j∑n

î=1

∑m
ĵ=1B

p,q

î,ĵ
(ξ, η)ωî,ĵ

=
Bp,qi,j (ξ, η)ωi,j

w(ξ, η)
,

where ωi,j = (Cω
i,j)3 and the denominator is the weight function denoted also by w(ξ, η)

(see [30, Equations (9)–(10)] for more details). The continuity and support of NURBS basis
functions are the same as for B-splines. NURBS spaces are obtained as the span of the basis
functions (2.4) and NURBS regions are defined in terms of the same basis functions. In
particular a single-patch domain Ω is a NURBS region associated with the n × m net of
control points Ci,j , and we introduce the geometrical map F : Ω̂→ Ω given by

F(ξ, η) =

n∑
i=1

m∑
j=1

Rp,qi,j (ξ, η)Ci,j .

As in the isoparametric paradigm, the space of NURBS scalar fields on the domain Ω is
defined, component by component, as the span of the push-forward of the basis functions (2.4)

Nh := span{Rp,qi,j ◦ F
−1, with i = 1, . . . , n, j = 1, . . . ,m}.

The image of the elements in the parametric space are elements in the physical space. The
physical mesh on Ω is therefore

Th = {F((ξi, ξi+1)× (ηj , ηj+1)), with i = 1, . . . , n+ p, j = 1, . . . ,m+ q} ,

where the empty elements are not considered.

2.3. Isogeometric discretization of the biharmonic problem. We can now introduce
the isogeometric approximation of the biharmonic model problem (1.1). In order to obtain
spaces with homogeneous Dirichlet boundary conditions, it is sufficient to eliminate the first
and last two functions in each coordinate. We therefore introduce the spline space (for instance
in two dimensions) living in the parameter space

V̂ = Ŝh ∩H2
0 (Ω̂) = span{Bp,qi,j (ξ, η), i = 3, . . . , n− 2, j = 3, . . . ,m− 2},
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and the NURBS space living in physical space

V = Nh ∩H2
0 (Ω) = span{Rp,qi,j ◦ F

−1, with i = 3, . . . , n− 2, j = 3, . . . ,m− 2}.

The three-dimensional case is analogous and not discussed here.
The discrete formulation of the model problem (1.1) is then: find u ∈ V such that

(2.5) a(u, v) =

∫
Ω

fv dx ∀v ∈ V,

with the bilinear form a(u, v) =
∫

Ω
∆u∆v dx.

Throughout the paper we consider homogeneous boundary conditions only for simplicity.
Different kind of boundary conditions can be treated in a similar fashion. For instance, (i) when
dealing with mixed Dirichlet and Neumann boundary conditions, one determines the knot
spans in the parametric space Ω̂ corresponding to ΓD and ΓN and then identifies the non-
vanishing NURBS that are involved, and (ii) in case of inhomogeneous Dirichlet boundary
conditions, we can either interpolate the boundary condition in terms of the basis functions or
use quasi-interpolation operators that project the boundary condition into the NURBS space
(see [20] for IGA discretizations with inhomogeneous Dirichlet boundary conditions).

3. Overlapping additive Schwarz preconditioners. In this section, we construct an
isogeometric overlapping additive Schwarz (OAS) preconditioner for the iterative solution of
the discrete problem (2.5). For a general introduction to overlapping Schwarz methods, we
refer to, e.g., [38, 41].

3.1. Local and coarse subspaces. We start by describing the subdomain decomposition
in 1D and then extend it to the higher-dimensional case. The decomposition is first built in the
parametric space and then easily extended to the NURBS space in the physical domain. We
select from the full set of knots {ξ1 = 0, . . . , ξn+p+1 = 1} a subset {ξik , k = 1, . . . , N + 1}
of non-repeated interface knots with ξi1 = 0, ξiN+1

= 1. This subset of interface knots defines
a decomposition of the closure of the reference interval

(3.1)
(
Î
)

= [0, 1] =
( ⋃
k=1,...,N

Îk

)
, with Îk = (ξik , ξik+1

),

into N sub-intervals Îk, for k = 1, . . . , N , which we assume to have a similar characteristic
diameter H ≈ Hk = diam(Îk). The interface knots are thus given by ξik for k = 2, . . . , N .
For each of the interface knots ξik , we choose an index 3 ≤ sk ≤ n− 2, strictly increasing in
k and satisfying sk < ik < sk + p+ 1, so that the support of the basis function Np

sk
intersects

both Îk−1 and Îk. Note that at least one such sk exists; if it is not unique, then any choice can
be taken.

An overlapping decomposition of Î can then be defined as follows. Let r ∈ N be an
integer, called overlap index, counting the basis functions shared by adjacent subdomains
defined as

V̂k = span{Np
j (ξ), sk − r ≤ j ≤ sk+1 + r}, k = 1, 2, . . . , N,

with the exception that 3 ≤ j ≤ s2 + r for the space V̂1 and sN − r ≤ j ≤ n− 2 for the space
V̂N (an example is shown in Figure 3.1). These subspaces form an overlapping decomposition
of the spline space V̂ . For r = 0 we have the minimal overlap consisting of just one common
basis function between adjacent subspaces. We also define the overlap parameter

(3.2) γ = h(2r + 2),
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(a) r = 0 (b) r = 1

FIG. 3.1. Cubic basis functions associated with ξ = {0, 0, 0, 0, 1/6, 1/3, 1/2, 2/3, 5/6, 1, 1, 1, 1}. For
various r, V̂1 is the span of basis functions drawn with dash-dotted and solid lines, and V̂2 is the span of basis
functions drawn with solid and dashed lines in two subdomains Î1 = (0, 1/2) and Î2 = (1/2, 1) of Î . In particular,
the basis functions in common are those drawn with a solid line.

which is related to the width δ of the overlapping region by the following bounds

(3.3) γ = h(2r + 2) ≤ δ ≤ h(2r + p+ 1) ≤ p+ 1

2
γ,

where 2r + 1 represents the number of basis functions in common (in the univariate case)
among “adjacent” local subspaces. The extended subdomains Î ′k are defined by

(3.4) Î ′k =
⋃

Np
j ∈V̂k

supp(Np
j ) = (ξsk−r, ξsk+1+r+p+1),

with the analogous exception for Î ′1, Î ′N , and the further extended subdomains Î ′′k by

(3.5) Î ′′k =
⋃

supp(Np
j )∩Î′k 6=∅

supp(Np
j ).

In order to define a coarse space, we introduce an open coarse knot vector

ξ0 = {ξ0
1 = 0, . . . , ξ0

Nc+p+1 = 1}

corresponding to a coarse mesh determined by the subdomains Îk,

ξ0 = {ξ1, ξ2, . . . , ξp, ξi1 , ξi2 , ξi3 , . . . , ξiN−1
, ξiN , ξiN+1, ξiN+2 . . . , ξiN+p+1}

such that the distance between adjacent distinct knots is of order H ,

ξ1 = · · · = ξp = ξi1 = 0 and ξiN+1 = ξiN+2 = · · · = ξiN+p+1 = 1

and the associated coarse spline space

V̂0 := ŜH = span{N0,p
i (ξ), i = 3, . . . , Nc − 2}

has the same degree p of Ŝh and is thus a subspace of Ŝh.
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In the general higher-dimensional case, we just proceed by tensor products. For example
in 2D, we define subdomains, overlapping subdomains, and extended supports by

Îk = (ξik , ξik+1
), Îl = (ηjl , ηjl+1

), Ω̂kl = Îk × Îl,

Ω̂′kl = Î ′k × Î ′l , Ω̂′′kl = Î ′′k × Î ′′l , 1 ≤ k ≤ N, 1 ≤ l ≤M.

Moreover, we take the indexes {sk}Nk=2 associated to the knots {ξik}Nk=2 and the analogous
indexes {sl}Ml=2 associated to the knots {ηjl}Ml=2. The local and coarse subspaces are then
defined by

V̂kl = span{Bp,qi,j (ξ, η), sk − r ≤ i ≤ sk+1 + r, sl − r ≤ j ≤ sl+1 + r},

V̂0 = span{
◦
B
p,q

i,j :
◦
B
p,q

i,j (ξ, η) := N0,p
i (ξ)M0,q

j (η), i = 3, . . . , Nc − 2, j = 3, . . . ,Mc − 2},

with the usual modification for boundary subdomains and where
◦
B
p,q

i,j are the coarse basis
functions.

It is easy to extend the previous decomposition to the NURBS space V in the physical
domain. Therefore the local subspaces and the coarse space are, up to the usual modification
for the boundary subdomains,

Vkl = span{Rp,qi,j ◦ F
−1, sk − r ≤ i ≤ sk+1 + r, sl − r ≤ j ≤ sl+1 + r },

V0 = span{
◦
R
p,q

i,j ◦ F−1 := (
◦
B
p,q

i,j /w) ◦ F−1, i = 3, . . . , Nc − 2, j = 3, . . . ,Mc − 2},

where we recall that w is the weight function; see (2.4). The subdomains in the physical
space are defined as the image of the subdomains in the parameter space with respect to the
mapping F

Ωkl = F(Ω̂kl), Ω′kl = F(Ω̂′kl), Ω′′kl = F(Ω̂′′kl).

The three-dimensional case is handled analogously.

3.2. The two-level overlapping additive Schwarz operator. Given the embedding op-
erators Ikl : Vkl → V , k = 1, . . . , N , l = 1, . . . ,M , and I0 : V0 → V , we define the
projections T̃kl : V → Vkl and T̃0 : V → V0 by

a(T̃klu, v) = a(u, Iklv) ∀v ∈ Vkl, a(T̃0u, v) = a(u, I0v) ∀v ∈ V0,

and Tkl = IklT̃kl, T0 = I0T̃0. The two-level overlapping additive Schwarz (OAS) operator
is then

(3.6) TOAS := T0 +

N∑
k=1

M∑
l=1

Tkl,

and its matrix form is TOAS = BOASA, where A is the stiffness matrix and BOAS is the
additive Schwarz preconditioner

(3.7) BOAS = RT0 A
−1
0 R0 +

N∑
k=1

M∑
l=1

RTklA
−1
kl Rkl.

Here Rkl are restriction matrices with 0, 1-entries returning the coefficients of the basis
functions belonging to the local spaces Vkl, Akl are the local stiffness matrices restricted
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to the subspace Vkl, RT0 is the coarse-to-fine interpolation matrix, and A0 is the coarse
stiffness matrix associated with the coarse space V0. We also remark that RT0 and RTkl are
the matrix representations of the operators I0 and Ikl, respectively. The use of the BOAS

preconditioner (3.7) for the iterative solution of the discrete system Au = f can also be
regarded as replacing it with the preconditioned system

TOASu = g,

where g = BOASf , which can be accelerated by a Krylov subspace method. In the next
sections, we will prove a convergence rate bound for the condition number of TOAS .

4. A condition number estimate. In this section, we derive a theoretical estimate for
the condition number of the overlapping Schwarz-preconditioned operator. To prove this
estimate, we need the following two assumptions on the mesh and subdivision. The first one is
a standard assumption also found in the finite element literature, see [41], while the second
one allows us to focus on the case of main interest in applications, i.e., when the overlap region
is not excessive with respect to the mesh size:

a) the parametric mesh in each extended subdomain Ω̂′′kl is quasi-uniform, i.e., there exists
a real number h = h(Ω̂′′kl) such that all elements E in Ω̂′′kl have a diameter which is equivalent
to h up to a constant that is fixed and which is the same for all subdomains;

b) the overlap index r is bounded from above by a fixed constant.
The following theorem is the main theoretical contribution of the present work.
THEOREM 4.1. The condition number of the two-level additive Schwarz preconditioned

operator TOAS , defined in (3.6) for the isogeometric biharmonic operator, is bounded by

κ2(TOAS) ≤ C
(

1 +
H3

γ3

)
,

where γ = h(2r+2) is the overlap parameter defined in (3.2) and C is a constant independent
of h,H,N, γ (but not of p, k).

Proof. The proof follows the same steps as those of [6, Theorem 3.1], namely, the general
abstract Schwarz theory (see, e.g., [41, Chapter 2]) based on verifying three assumptions
known as stable decomposition ([41, Assumption 2.2]), strengthened Cauchy-Schwarz in-
equality ([41, Assumption 2.3]), and local stability ([41, Assumption 2.4]) that provide an
upper and lower bounds on the extreme eigenvalues of TOAS ; see [41, Theorem 2.7].

i) Since we use exact local solvers, the local stability assumption holds true with a unit
constant.

ii) By using a standard coloring argument (see [41, Chapter 2.5.1]), we obtain that the
strengthened Cauchy-Schwarz inequality holds with a constant bounded from above by the
number of colors. In the simple case where the nonoverlapping subdomains Ωij form a
structured Cartesian decomposition of the original domain and the associated overlapping
subdomains have a not too large overlap, this constant is 4 in 2D and 8 in 3D.

iii) It remains to prove a stable decomposition ([41, Assumption 2.2]) that will be ad-
dressed in the following Sections 4.1 and 4.2 (see Proposition 4.2 for details).

REMARK 4.2. As long as the geometrical map F is well-behaved in NURBS-based
isogeometric methods, an efficient preconditioner on the parametric space can be used as the
one for the problems on the physical domain (see e.g. [6, Section 4] for details), which will
be demonstrated in various numerical examples in Section 5. Therefore, in the paper we will
focus only on the stable splitting for the spline space in the parameter domain.

4.1. Stable decomposition in one dimension. In order to prove the stable decomposi-
tion result needed in the proof of Theorem 4.1, we start with some preliminary results for the
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univariate case on which the subsequent analysis will be based. Any z ∈ V̂ can be represented
as a linear combination of {Np

i }
n−2
i=3 , i.e., there exist constants cj , 3 ≤ j ≤ n− 2, such that

(4.1) z =

n−2∑
j=3

cjN
p
j .

We first focus on the case of two subdomains, where the difficulties involved in our
analysis are already present and then extend the analysis to the general case. As in Section 3.1,
we denote the two subdomains by Î1 = (0, ξi2), Î2 = (ξi2 , 1). The closure of Î is given by
[0, 1], which is the union of the closures of Î1 and Î2; see (3.1). The two associated local
spaces are

V̂1 = span{Np
i (ξ), 3 ≤ i ≤ s2 + r}, V̂2 = span{Np

i (ξ), s2 − r ≤ i ≤ n− 2},

with r ≥ 0 and s2 < i2 < s2+p+1. We can write z as in (4.1) and introduce two interpolation
operators Π̂k : V̂ → V̂k, k = 1, 2, defined as

z =

n−2∑
j=3

cjN
p
j = Π̂1z + Π̂2z ∈ V̂1 + V̂2,

where

Π̂1z =

s2−r−1∑
j=3

cjN
p
j +

s2+r∑
j=s2−r

(s2 + r + 1)− j
2r + 2

cjN
p
j ∈ V̂1,

Π̂2z =

s2+r∑
j=s2−r

(r − s2 + 1) + j

2r + 2
cjN

p
j +

n−2∑
j=s2+r+1

cjN
p
j ∈ V̂2.

We rewrite Π̂1z =
∑s2+r
j=3 c̄jN

p
j with coefficients

(4.2) c̄j = cjdj , where dj =

{
1 if 3 ≤ j ≤ s2 − r − 1,

(s2+r+1)−j
2r+2 if s2 − r ≤ j ≤ s2 + r,

so that z = Π̂1z + Π̂2z holds. Also, by definition and the derivative formula (2.3), we have

d

dξ
(Π̂1z) =

s2+r∑
j=3

c̄j
d

dξ
Np
j = p

s2+r+1∑
j=3

(c̄j − c̄j−1)
Np−1
j

4pj
,

and

d2

dξ2
(Π̂1z) = p

s2+r+1∑
j=3

c̄j − c̄j−1

4pj
d

dξ
Np−1
j

= p(p− 1)

s2+r+2∑
j=3

(
c̄j − c̄j−1

4pj
− c̄j−1 − c̄j−2

4pj−1

)
Np−2
j

4p−1
j

,

where we adopted the convention that c̄1 = c̄2 = c̄s2+r+1 = c̄s2+r+2 = 0. From (4.2),
d2

dξ2 (Π̂1z)(ξ) can be represented as a sum of four Ti-terms, i = 1, . . . , 4, as follows: for all ξ
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in Î ,

d2

dξ2
(Π̂1z)(ξ) = p(p− 1)

s2+r+2∑
j=3

[cj(dj − dj−1)]
Np−2
j (ξ)

4pj4
p−1
j

+ p(p− 1)

s2+r+2∑
j=3

[dj−1(cj − cj−1)]
Np−2
j (ξ)

4p−1
j 4pj

+ p(p− 1)

s2+r+2∑
j=3

−[cj−1(dj−1 − dj−2)]
Np−2
j (ξ)

4pj−14
p−1
j

+ p(p− 1)

s2+r+2∑
j=3

−[dj−2(cj−1 − cj−2)]
Np−2
j (ξ)

4pj−14
p−1
j

:=T1(ξ) + T2(ξ) + T3(ξ) + T4(ξ).

Next we prove some estimates on the norms of these Ti-terms that are needed in order to prove
the stable decomposition in one dimension.

LEMMA 4.1. It holds that

‖T1(ξ)‖2
L2(Î′1)

.
H3

γ3

∥∥∥∥ d2

dξ2
z

∥∥∥∥2

L2(Î′′1 )

+
H

γ3

∥∥∥∥ ddξ z
∥∥∥∥2

L2(Î′′1 )

+
1

Hγ3
||z||2

L2(Î′′1 )
,

‖T3(ξ)‖2
L2(Î′1)

.
H3

γ3

∥∥∥∥ d2

dξ2
z

∥∥∥∥2

L2(Î′′1 )

+
H

γ3

∥∥∥∥ ddξ z
∥∥∥∥2

L2(Î′′1 )

+
1

Hγ3
||z||2

L2(Î′′1 )
,

‖T2(ξ) + T4(ξ)‖2
L2(Î′1)

.

∥∥∥∥ d2

dξ2
z

∥∥∥∥2

L2(Î′′1 )

.

Proof. First, we compute the coefficients

dj − dj−1 =

{
0 if 3 ≤ j ≤ s2 − r − 1

−θ if j ≥ s2 − r,

with θ = 1
2r+2 . Due to assumption a) in Section 4, we have that 4p−1

j and 4pj−1 are all
greater than or equal to h, hence for all ξ ∈ Î ′1, it holds that

(4.3) |T1(ξ)| . 1

h2

s2+r+2∑
s2−r

θ|cj |Np−2
j .

Property (2.2) of the dual basis and the definition of z =
∑n−2
j=3 cjN

p
j imply that cj = λpj (z),

hence using Lemma 2.1 with q = +∞ yields for all s2 − r ≤ j ≤ s2 + r + 2

|cj | = |λpj (z)| . ||z||L∞(supp(T1)).

From (4.3) and the partition of unity property of the spline basis functions, this last bound
yields

(4.4) |T1(ξ)| . θ

h2
max

s2−r≤j≤s2+r+2
|cj | .

θ

h2
‖z‖L∞(supp(T1)).
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Since the support of T1 satisfies

supp(T1) :=

s2+r+2⋃
j=s2−r

supp(Np−2
j ) = (ξs2−r, ξs2+r+p+1),

by squaring both sides in (4.4) and integrating over Î ′1, we obtain∫
Î′1

|T1(ξ)|2dξ =

∫
supp(T1)

|T1(ξ)|2dξ . |ξs2+r+p+1 − ξs2−r| ‖T1‖2L∞(supp(T1))

.
θ2

h4
|ξs2+r+p+1 − ξs2−r| ‖z‖2L∞(supp(T1)).

Since by (3.2) the overlap parameter is γ = h
θ = h(2r + 2) and by (3.3), we have

|ξs2+r+p+1 − ξs2−r| . (2r + p+ 1)h . γ,

so that ∫
Î′1

|T1(ξ)|2dξ . γ−3‖z‖2L∞(supp(T1)) . γ−3‖z‖2
L∞(Î′′1 )

.

A standard scaling argument and the H2 ⊂ L∞ one-dimensional Sobolev embedding applied
to the above inequality give us the bound∫

Î′1

|T1(ξ)|2dξ .
H3

γ3

∥∥∥∥ d2

dξ2
z

∥∥∥∥2

L2(Î′′1 )

+
H

γ3

∥∥∥∥ ddξ z
∥∥∥∥2

L2(Î′′1 )

+
1

Hγ3
||z||2

L2(Î′′1 )
.

In a similar way, we derive an analogous bound for the T3-term∫
Î′1

|T3(ξ)|2dξ .
H3

γ3

∥∥∥∥ d2

dξ2
z

∥∥∥∥2

L2(Î′′1 )

+
H

γ3

∥∥∥∥ ddξ z
∥∥∥∥2

L2(Î′′1 )

+
1

Hγ3
||z||2

L2(Î′′1 )
.

We now estimate T2(ξ)+T4(ξ). For any general functionϕ =
∑n
j=3 βjN

p−2
j , Lemma 2.1

with the choice q = 2 gives

(4.5) |βj | = |λp−2
j (ϕ)| . h−1/2‖ϕ‖L2(ξj ,ξj+p−1).

The derivative formulae (2.3) applied to z =
∑n−2
j=3 cjN

p
j yield

(4.6)
d2

dξ2
z = p(p− 1)

n∑
j=3

(
cj − cj−1

4pj
− cj−1 − cj−2

4pj−1

)
Np−2
j

4p−1
j

,

and from (4.5) we obtain

(4.7) p(p− 1)

∣∣∣∣∣
(
cj − cj−1

4pj
− cj−1 − cj−2

4pj−1

)
1

4p−1
j

∣∣∣∣∣ . h−1/2

∥∥∥∥ d2

dξ2
z

∥∥∥∥
L2(ξj ,ξj+p−1)

,

(we have adopted the convention c1 = c2 = cn−1 = cn = 0). From the definition of dj , the
term T2 + T4 can be rewritten as

T2 + T4 = p(p− 1)

s2−r∑
j=3

(
cj − cj−1

4pj
− cj−1 − cj−2

4pj−1

)
Np−2
j

4p−1
j

+ p(p− 1)

s2+r+2∑
j=s2−r+1

(
dj−1(cj − cj−1)

4pj
− dj−2(cj−1 − cj−2)

4pj−1

)
Np−2
j

4p−1
j

.
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By comparing with (4.6), we note that the restriction of T2 + T4 to (0, ξs2−r+1) coincides
with d2

dξ2 z, hence,∫
Î′1

|T2(ξ) + T4(ξ)|2dξ =

∫
(0,ξs2−r+1)

|T2(ξ) + T4(ξ)|2dξ

+

∫
(ξs2−r+1,ξs2+r+p+1)

|T2(ξ) + T4(ξ)|2dξ

=

∫
(0,ξs2−r+1)

∣∣∣∣ d2

dξ2
z

∣∣∣∣2 dξ +

∫
(ξs2−r+1,ξs2+r+p+1)

|T2(ξ) + T4(ξ)|2dξ.

(4.8)

From the partition of unity property, the bound (4.7), and the definition of T2 and T4, for all
ξ ∈ supp(T2 + T4), we have

|T2(ξ) + T4(ξ)| . max
3≤j≤s2+r+2

p(p− 1)

∣∣∣∣∣(cj − cj−1

4pj
− cj−1 − cj−2

4pj−1

) 1

4p−1
j

∣∣∣∣∣
. h−1/2

∥∥∥∥ d2

dξ2
z

∥∥∥∥
L2(0,ξs2+r+p+1)

.

(4.9)

By Hölder’s inequality, (4.9), and assumptions a), b) from Section 4, and (4.8), we obtain∫
Î′1

|T2(ξ) + T4(ξ)|2dξ

.

∥∥∥∥ d2

dξ2
z

∥∥∥∥2

L2(Î1)

+ |ξs2+r+p+1 − ξs2−r+1| ‖T2 + T4‖2L∞(ξs2−r+1,ξs2+r+p+1)

.

∥∥∥∥ d2

dξ2
z

∥∥∥∥2

L2(Î1)

+ h−1|ξs2+r+p+1 − ξs2−r+1|
∥∥∥∥ d2

dξ2
z

∥∥∥∥2

L2(0,ξs2+r+p+1)

.

∥∥∥∥ d2

dξ2
z

∥∥∥∥2

L2(Î′′1 )

.

We are now in a position to show the following stability bounds for the two-subdomain
decomposition.

PROPOSITION 4.1. The operators Π̂k, k = 1, 2, satisfy the following bounds for all
z ∈ V̂ ∥∥∥∥ d2

dξ2
(Π̂kz)

∥∥∥∥2

L2(Î′k)

.
(

1 +
H3

γ3

)∥∥∥∥ d2

dξ2
z

∥∥∥∥2

L2(Î′′k )

+
H

γ3

∥∥∥∥ ddξ z
∥∥∥∥2

L2(Î′′k )

+
1

Hγ3
||z||2

L2(Î′′k )
(4.10)

‖Π̂kz‖L2(Î′k) . ‖z‖L2(Î′′k ),(4.11)

where Î ′k and Î ′′k are defined in (3.4) and (3.5), respectively.
Proof. We prove the result only for Π̂1 since the result for Π̂2 follows from the same

argument. The first bound (4.10) follows from Lemma 4.1. To prove the second bound (4.11),
consider an element e = (ξm, ξm+1) ⊂ Î ′1 of the mesh. Lemma 2.1 with q = 2, implies that
for all ξ ∈ e, we have

Π̂1z(ξ) =

m∑
j=m−p

c̄jN
p
j (ξ) ≤ max

m−p≤j≤m
|cj | . h−1/2‖z‖L2(ξm−p,ξm+p+1),
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since |c̄j | ≤ |cj | for all values of j. Hence,∫
e

|Π̂1z|2 . h−1h‖z‖2L2(ξm−p,ξm+p+1) = ‖z‖2L2(ξm−p,ξm+p+1).

The proof is completed by summing over all elements in the mesh, yielding that
‖Π̂1z‖L2(Î′1) . ‖z‖L2(Î′′1 ).

These results can be directly extended to the general case with N subdomains. If

z =

n−2∑
j=3

cjN
p
j ,

then

(4.12) z =

N∑
k=1

Π̂kz,

with the interpolation operators Π̂k : V̂ → V̂k defined by

Π̂kz =

sk+r∑
j=sk−r

(r − sk + 1) + j

2r + 2
cjN

p
j +

sk+1−r−1∑
j=sk+r+1

cjN
p
j

+

sk+1+r∑
j=sk+1−r

(sk+1 + r + 1)− j
2r + 2

cjN
p
j ,

(with the usual modification for the two boundary subdomains and where we assume the
condition sk + r + 1 ≤ sk+1 − r − 1 to avoid the overlap of non-adjacent subdomains).

Following the same arguments presented in the two-subdomain case, we obtain the
following result.

THEOREM 4.1. The operators Π̂k, k = 1, 2, . . . , N , satisfy the following bounds for all
z ∈ V̂ ∥∥∥∥ d2

dξ2
(Π̂kz)

∥∥∥∥2

L2(Î′k)

.

(
1+

H3

γ3

)∥∥∥∥ d2

dξ2
z

∥∥∥∥2

L2(Î′′k )

+
H

γ3

∥∥∥∥ ddξ z
∥∥∥∥2

L2(Î′′k )

+
1

Hγ3
||z||2

L2(Î′′k )
,(4.13)

‖Π̂kz‖L2(Î′k). ‖z‖L2(Î′′k ).(4.14)

4.2. Stable decomposition in two dimensions. We now turn to the two-dimensional
case (the three-dimensional case is analogous). By applying standard tensorization arguments,
we define the linear operators

(4.15)
Π̂kl : V̂ −→ V̂kl,

Π̂klv = Π̂k
ξ ⊗ Π̂l

η (v) ∀v ∈ V̂ ,

where Π̂k
ξ and Π̂l

η are one-dimensional operators generated by the knot vectors ξ and η in
the previous section. Define Π̂0 to be the standard spline quasi-interpolant into the space V̂0,
which is built using the dual basis functions as detailed in [37, Theorem 12.6]. Given û ∈ V̂ ,
we define

ẑ = û− û0 ∈ V̂ , û0 = Π̂0û ∈ V̂0.
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From the stability and approximation properties of the quasi-interpolant, see [37, Theo-
rem 12.7], it follows that

(4.16) ||ẑ||L2(Ω̂) +H|ẑ|H1(Ω̂) +H2|û0|H2(Ω̂) . H2|û|H2(Ω̂).

Using the tensorized definition of Π̂kl and the splitting property (4.12) of the one-dimensional
operators, we obtain

N∑
k=1

M∑
l=1

Π̂klẑ =

N∑
k=1

Π̂k
ξ

( M∑
l=1

Π̂l
η ẑ
)

=

N∑
k=1

Π̂k
ξ ẑ = ẑ,

so that denoting ûkl = Π̂klẑ we arrive at the splitting

(4.17) û = û0 +

N∑
k=1

M∑
l=1

ûkl , û0 ∈ V̂0, ûkl ∈ V̂kl.

We can now prove the stability of this splitting.
PROPOSITION 4.2. Given any û ∈ V̂ decomposed as in (4.17), we have

|û0|2H2(Ω̂)
+

N∑
k=1

M∑
l=1

|ûkl|2H2(Ω̂)
.

(
1 +

H3

γ3

)
|û|2

H2(Ω̂)
.

Proof. The bound for the coarse term û0 follows from (4.16). In order to bound the local
terms ûkl, 1 ≤ k ≤ N and 1 ≤ l ≤M , we consider only the ξ-derivative since the result for
the η-derivative will follow by the same arguments. From the tensorized definition (4.15) and
since supp(ûkl) = Ω̂′kl, we have

(4.18)
∥∥∥∥ ∂2

∂ξ2
ûkl

∥∥∥∥2

L2(Ω̂)

=

∥∥∥∥ ∂2

∂ξ2
(Π̂l

η ⊗ Π̂k
ξ)ẑ

∥∥∥∥2

L2(Ω̂′kl)

=

∥∥∥∥Π̂l
η

∂2

∂ξ2
(Π̂k

ξ ẑ)

∥∥∥∥2

L2(Ω̂′kl)

.

From the one-dimensional bound (4.14) in Theorem 4.1 and the definition of Ω̂′kl, we have
for any v ∈ V̂

(4.19) ||Π̂l
ηv ||2L2(Ω̂′kl)

=

∫
Î′k

∫
Î′l

∣∣(Π̂l
ηv)(ξ, η)

∣∣2dηdξ .
∫
Î′k

∫
Î′′l

∣∣v(ξ, η)
∣∣2dηdξ.

From (4.19), (4.18), the tensorized definition (4.15), and the one-dimensional bound (4.13),
we obtain

(4.20)

∥∥∥∥ ∂2

∂ξ2
ûkl

∥∥∥∥2

L2(Ω̂)

.
∫
Î′k

∫
Î′′l

∣∣∣ ∂2

∂ξ2
(Π̂k

ξ ẑ)(ξ, η)
∣∣∣2dηdξ =

∫
Î′′l

∫
Î′k

∣∣∣ ∂2

∂ξ2
(Π̂k

ξ ẑ)(ξ, η)
∣∣∣2dξdη

.

(
1+

H3

γ3

)∥∥∥∥ ∂2

∂ξ2
ẑ

∥∥∥∥2

L2(Ω̂′′kl)

+
H

γ3

∥∥∥∥ ∂∂ξ ẑ
∥∥∥∥2

L2(Ω̂′′kl)

+
1

Hγ3
||ẑ||2

L2(Ω̂′′kl)
.

By a standard coloring argument, the number of extended subdomains Ω̂′′kl overlapping at a
given point is uniformly bounded, hence (4.20) gives

N∑
k=1

M∑
l=1

∥∥∥∥ ∂2

∂ξ2
ûkl

∥∥∥∥2

L2(Ω̂)

.

(
1 +

H3

γ3

)∥∥∥∥ ∂2

∂ξ2
ẑ

∥∥∥∥2

L2(Ω̂)

+
H

γ3

∥∥∥∥ ∂∂ξ ẑ
∥∥∥∥2

L2(Ω̂)

+
1

Hγ3
||ẑ||2

L2(Ω̂)
,
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FIG. 5.1. Quarter-ring domain (left) and thick quarter-ring domain (right) used in the numerical tests.

which in turn, using the definition of Ω̂ and property (4.16), leads to

N∑
k=1

M∑
l=1

∥∥∥∥ ∂2

∂ξ2
ûkl

∥∥∥∥2

L2(Ω̂)

.

(
1 +

H3

γ3

)
|û|2

H2(Ω̂)
.

The stable splitting of Proposition 4.2 together with the steps of the abstract Schwarz
theory of Section 4 prove Theorem 4.1 for the case of the spline space in the parameter domain.

5. Numerical results. In this section, we report the results of several numerical tests
with our two-level overlapping Schwarz preconditioner OAS(2) (see (3.7)) applied to the
isogeometric discretization of the biharmonic model problem (1.1) in two and and three
dimensions, using the MATLAB isogeometric library GeoPDEs [22]. The isogeometric
discretization parameters are the mesh size h, the polynomial degree p, and the regularity k.
The computational domain is decomposed into N overlapping subdomains of characteristic
size H , and the overlap size is given by the overlap index r described in Section 3. The
tests are run on both parametric domains (square, cubic) and deformed domains (quarter-ring
and thick-quarter ring, see Figure 5.1). The OAS(2) preconditioner is accelerated by the
preconditioned conjugate gradient (PCG), with zero initial guess and as stopping criterion a
10−6 reduction of the relative residual.

5.1. 2D tests: OAS(2) scalability inN and optimality inH/h. The condition number
(κ2) and the iteration counts (it) of the OAS(2) preconditioner are reported in Table 5.1 for
the reference square and in Table 5.2 for a quarter-ring physical domain as a function of the
number of subdomains N and the mesh size 1/h for fixed p = 2, k = 1 splines parameter
and overlap r = 0 and r = 1. Additional results for different splines spaces p = 3, k = 2 and
p = 3, k = 1 are reported in the Tables 5.3, 5.4, 5.5, 5.6. The results show that the proposed
preconditioner is scalable since moving along the diagonal of the tables, the condition number
is bounded above by a constant independent of N ; see Figure 5.2. The results of all tables
and figures also confirm the main bound of Theorem 4.1: moving along each table row, the
condition numbers exhibit a cubic growth with the increasing ratio H/h (here for a fixed
overlap index r we have H/γ = O(H/h)); see Figure 5.3. Moreover, these numerical results
imply that the main scalability and quasi-optimality properties of our proposed preconditioner
also hold for the deformed geometry of the quarter-ring domain (Table 5.2) since the increasing
ill-conditioning of the deformed model on the quarter-ring domain yields worse iteration counts
and condition numbers, but the associated plots of Figure 5.2 show that this growth is still
confined, and the preconditioner is scalable.

5.2. 2D tests: OAS(2) dependence on p and k. We now investigate the performance
of the OAS biharmonic preconditioner for an increasing polynomial degree p = 2, . . . , 12,
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TABLE 5.1
2D OAS(2) scalability and optimality test on the unit square domain: condition number κ2 of the preconditioned

operator and PCG iteration counts (it) in brackets as a function of the number of subdomains N and mesh size 1/h.
p = 2, k = 1 B-splines.

OAS(2) prec. with r = 0, p = 2, k = 1 B-splines, square domain
1/h = 8 1/h = 16 1/h = 32 1/h = 64 1/h = 128 1/h = 256

N κ2 (it) κ2 (it) κ2 (it) κ2 (it) κ2 (it) κ2 (it)
2× 2 7.68 (6) 36.32 (10) 230.23 (14) 1.70e+3 (23) 1.34e+4 (43) 1.06e+5 (85)
4× 4 9.82 (15) 45.82 (23) 288.97 (43) 2.14e+3 (81) 1.67e+4 (162)
8× 8 10.22 (23) 44.69 (41) 274.61 (87) 2.01e+3 (212)

16× 16 10.41 (25) 43.95 (49) 264.53 (113)
32× 32 10.44 (25) 43.97 (54)
64× 64 10.45 (25)

OAS(2) prec. with r = 1, p = 2, k = 1 B-splines, square domain
1/h = 8 1/h = 16 1/h = 32 1/h = 64 1/h = 128 1/h = 256

N κ2 (it) κ2 (it) κ2 (it) κ2 (it) κ2 (it) κ2 (it)
2× 2 3.86 (4) 13.53 (10) 73.28 (13) 503.14 (19) 3.85e+3 (30) 3.04e+4 (58)
4× 4 5.92 (15) 17.25 (19) 92.31 (30) 631.11 (56) 4.82e+3 (109)
8× 8 7.39 (21) 17.38 (30) 88.92 (56) 596.84 (127)

16× 16 7.47 (22) 17.52 (33) 86.51 (70)
32× 32 7.49 (22) 17.59 (35)
64× 64 7.48 (22)

TABLE 5.2
2D OAS(2) scalability and optimality test on the quarter-ring domain: condition number of the preconditioned

operator (κ2) and PCG iteration counts (it) in brackets as a function of the number of subdomains N and mesh size
1/h. p = 2, k = 1 NURBS.

OAS(2) prec. with r = 0, p = 2, k = 1 NURBS, quarter-ring domain
1/h = 8 1/h = 16 1/h = 32 1/h = 64 1/h = 128 1/h = 256

N κ2 (it) κ2 (it) κ2 (it) κ2 (it) κ2 (it) κ2 (it)
2× 2 8.21 (11) 38.52 (18) 256.35 (33) 1.97e+3 (62) 1.57e+4 (124) 1.26e+5 (256)
4× 4 22.99 (26) 156.85 (53) 1.22e+3 (135) 9.87e+3 (317) 7.99e+4 (724)
8× 8 41.21 (41) 301.62 (99) 2.44e+3 (268) 2.00e+4 (758)

16× 16 55.76 (55) 413.02 (146) 3.38e+3 (421)
32× 32 68.22 (63) 507.10 (190)
64× 64 77.87 (73)

OAS(2) prec. with r = 1, p = 2, k = 1 NURBS, quarter-ring domain
1/h = 8 1/h = 16 1/h = 32 1/h = 64 1/h = 128 1/h = 256

N κ2 (it) κ2 (it) κ2 (it) κ2 (it) κ2 (it) κ2 (it)
2× 2 4.36 (9) 14.18 (15) 78.96 (25) 568.95 (43) 4.47e+3 (84) 3.59e+4 (171)
4× 4 11.58 (21) 48.00 (34) 349.50 (79) 2.79e+3 (195) 2.26e+4 (448)
8× 8 20.70 (29) 89.31 (58) 686.02 (151) 5.61e+3 (414)

16× 16 27.94 (39) 121.83 (83) 945.61 (230)
32× 32 33.93 (45) 149.96 (103)
64× 64 38.52 (52)

while keeping other parameters fixed, 1/h = 32, N = 2× 2, H/h = 16. Table 5.7 displays
the condition number κ2(TOAS) (and iterations in brackets) as a function of p for the maximal
regularity k = p − 1 (left columns) and the minimal regularity k = 1 (right columns) with
different levels of overlap from symmetric minimal (r = 0) to symmetric generous (r = p).
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TABLE 5.3
2D OAS(2) scalability and optimality test on the unit square domain: condition number of the preconditioned

operator (κ2) and PCG iteration counts (it) in brackets as a function of the number of subdomains N and mesh size
1/h. p = 3, k = 2 B-splines.

OAS(2) prec. with r = 0, p = 3, k = 2 B-splines, square domain
1/h = 8 1/h = 16 1/h = 32 1/h = 64 1/h = 128 1/h = 256

N κ2 (it) κ2 (it) κ2 (it) κ2 (it) κ2 (it) κ2 (it)
2× 2 5.03 (8) 8.10 (11) 30.76 (15) 181.13 (25) 1.31e+3 (45) 1.02e+4 (90)
4× 4 5.55 (14) 13.30 (20) 61.52 (32) 399.89 (72) 3.01e+3 (161)
8× 8 5.70 (15) 19.23 (26) 99.80 (53) 679.15 (117)

16× 16 6.01 (16) 23.24 (28) 128.24 (59)
32× 32 5.86 (15) 24.24 (28)
64× 64 5.81 (15)

OAS(2) prec. with r = 1, p = 3, k = 2 B-splines, square domain
1/h = 8 1/h = 16 1/h = 32 1/h = 64 1/h = 128 1/h = 256

N κ2 (it) κ2 (it) κ2 (it) κ2 (it) κ2 (it) κ2 (it)
2× 2 4.50 (9) 4.64 (11) 11.10 (14) 50.12 (19) 323.44 (31) 2.43e+3 (56)
4× 4 4.56 (15) 6.14 (16) 19.90 (24) 105.06 (43) 728.39 (94)
8× 8 4.53 (15) 7.67 (19) 30.23 (34) 173.98 (71)

16× 16 4.58 (15) 8.78 (20) 37.40 (37)
32× 32 4.59 (15) 9.02 (20)
64× 64 4.60 (15)

TABLE 5.4
2D OAS(2) scalability and optimality test on the quarter-ring domain: condition number of the preconditioned

operator (κ2) and PCG iteration counts (it) in brackets as a function of the number of subdomains N and mesh size
1/h. p = 3, k = 2 NURBS.

OAS(2) prec. with r = 0, p = 3, k = 2 NURBS, quarter-ring domain
1/h = 8 1/h = 16 1/h = 32 1/h = 64 1/h = 128 1/h = 256

N κ2 (it) κ2 (it) κ2 (it) κ2 (it) κ2 (it) κ2 (it)
2× 2 8.06 (13) 30.78 (18) 185.31 (34) 1.37e+3 (65) 1.07e+4 (138) 8.56e+4 (294)
4× 4 18.52 (24) 99.55 (47) 703.41 (114) 5.45e+3 (294) 4.34e+4 (760)
8× 8 41.61 (39) 260.55 (89) 1.96e+3 (231) 1.55e+4 (660)

16× 16 81.08 (55) 538.31 (137) 4.13e+3 (387)
32× 32 126.16 (73) 863.56 (192)
64× 64 131.40 (75)

OAS(2) prec. with r = 1, p = 3, k = 2 NURBS, quarter-ring domain
1/h = 8 1/h = 16 1/h = 32 1/h = 64 1/h = 128 1/h = 256

N κ2 (it) κ2 (it) κ2 (it) κ2 (it) κ2 (it) κ2 (it)
2× 2 5.11 (11) 10.90 (15) 50.08 (23) 331.40 (44) 2.53e+3 (85) 2.01e+4 (180)
4× 4 8.02 (18) 28.51 (30) 174.47 (62) 1.29e+3 (155) 1.02e+4 (407)
8× 8 15.81 (26) 67.93 (49) 469.36 (121) 3.63e+3 (333)

16× 16 30.15 (36) 135.93 (76) 981.02 (197)
32× 32 46.00 (46) 215.36 (98)
64× 64 47.84 (47)

First, we remark that the unpreconditioned problem is extremely ill-conditioned, reaching, for
p = 12, values aroundO(1010) for k = p−1 andO(1011) for k = 1. In spite of this, the OAS
preconditioner performs quite well in the case of generous overlap r = p since the condition
numbers decrease (unexpectedly) below 5 and the iteration counts stabilize around 18. When
the overlap is minimal, the performance suffers but still seems to be independent of p for
k = 1, while it becomes quite irregular for k = p− 1, showing an initial decrease of both κ2
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TABLE 5.5
2D OAS(2) scalability and optimality test on the unit square domain: condition number of the preconditioned

operator (κ2) and PCG iteration counts (it) in brackets as a function of the number of subdomains N and mesh size
1/h. p = 3, k = 1 B-splines.

OAS(2) prec. with r = 0, p = 3, k = 1 B-splines, square domain
1/h = 8 1/h = 16 1/h = 32 1/h = 64 1/h = 128 1/h = 256

N κ2 (it) κ2 (it) κ2 (it) κ2 (it) κ2 (it) κ2 (it)
2× 2 6.01 (10) 19.56 (13) 106.37 (21) 747.17 (39) 5.77e+3 (76) 4.57e+4 (164)
4× 4 6.73 (17) 20.19 (26) 105.69 (52) 732.71 (120) 5.64e+3 (281)
8× 8 7.26 (19) 21.53 (32) 108.47 (69) 744.56 (159)

16× 16 7.35 (19) 22.81 (31) 116.89 (73)
32× 32 7.34 (19) 23.17 (33)
64× 64 7.31 (19)

OAS(2) prec. with r = 1, p = 3, k = 1 B-splines, square domain
1/h = 8 1/h = 16 1/h = 32 1/h = 64 1/h = 128 1/h = 256

N κ2 (it) κ2 (it) κ2 (it) κ2 (it) κ2 (it) κ2 (it)
2× 2 4.17 (10) 5.98 (12) 19.49 (16) 106.01 (24) 746.44 (42) 5.77e+3 (79)
4× 4 4.68 (16) 6.75 (19) 20.17 (28) 105.59 (54) 732.22 (125)
8× 8 4.81 (16) 7.30 (20) 21.56 (35) 108.44 (72)

16× 16 4.81 (16) 7.40 (21) 22.86 (34)
32× 32 4.81 (16) 7.40 (21)
64× 64 4.80 (16)

TABLE 5.6
2D OAS(2) scalability and optimality test on the quarter-ring domain: condition number of the preconditioned

operator (κ2) and PCG iteration counts (it) in brackets as a function of the number of subdomains N and mesh size
1/h. p = 3, k = 1 NURBS.

OAS(2) prec. with r = 0, p = 3, k = 1 B-splines, quarter-ring domain
1/h = 8 1/h = 16 1/h = 32 1/h = 64 1/h = 128 1/h = 256

N κ2 (it) κ2 (it) κ2 (it) κ2 (it) κ2 (it) κ2 (it)
2× 2 20.16 (17) 108.59 (29) 773.26 (57) 6.03e+3 (116) 4.81e+4 (247) 3.85e+5 (577)
4× 4 29.07 (34) 171.07 (71) 1.27e+3 (183) 1.00e+4 (491) 8.02e+4 (1347)
8× 8 36.43 (43) 224.68 (107) 1.70e+3 (288) 1.35e+4 (824)

16× 16 42.32 (50) 279.17 (133) 2.17e+3 (371)
32× 32 46.75 (53) 325.98 (142)
64× 64 50.40 (56)

OAS(2) prec. with r = 1, p = 3, k = 1 B-splines, quarter-ring domain
1/h = 8 1/h = 16 1/h = 32 1/h = 64 1/h = 128 1/h = 256

N κ2 (it) κ2 (it) κ2 (it) κ2 (it) κ2 (it) κ2 (it)
2× 2 6.78 (13) 20.22 (19) 108.33 (30) 771.55 (60) 6.02e+3 (121) 4.80e+4 (254)
4× 4 8.32 (21) 29.22 (36) 170.64 (74) 1.26e+3 (194) 1.00e+4 (529)
8× 8 9.68 (23) 36.51 (45) 224.00 (111) 1.69e+3 (305)

16× 16 10.83 (26) 42.62 (53) 277.79 (140)
32× 32 11.66 (27) 47.08 (58)
64× 64 12.23 (28)

and iteration counts followed by a strong increase with p, particularly for odd values.

5.3. 3D tests: OAS(2) weak scalability. Table 5.8 displays the results of a 3D weak
scalability test on a cubic domain (left columns) and a thick quarter-ring domain (right
columns) for two levels of overlap r = 0, 1. We fix H/h = 4 and p = 2, k = 1 (top table)
or p = 3, k = 2 (bottom table), increasing the number of subdomains N . The results show
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FIG. 5.2. Scalability plots of κ2(TOAS) for increasing N from the diagonals (H/h = 4) of Tables 5.1–5.6.
Square domain (left) and quarter-ring domain (right).
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FIG. 5.3. Quasi-optimality plots of κ2(TOAS) for increasing H/h from the the first rows (N = 2 × 2) of
Tables 5.1–5.6. Square domain (left) and quarter-ring domain (right).
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TABLE 5.7
OAS(2) dependence on p and k on the quarter-ring domain: condition number of the preconditioned operator

(κ2) and PCG iteration counts (it) in brackets as a function of polynomial degree p for maximal regularity k = p− 1
(left) and minimal regularity k = 1 (right), with different levels of overlap from symmetric minimal (r = 0) to
symmetric generous (r = p). Fixed 1/h = 32, N = 2× 2, H/h = 16.

k = p− 1 k = 1
no prec. OAS(2) prec. no prec. OAS(2) prec.

p r = 0 r = p r = 0 r = p
κ2 (it) κ2 (it) κ2 (it) κ2 (it)

2 5.6e+4 256.35 (33) - 5.6e+4 256.35 (33) 36.51 (19)
3 2.2e+4 185.31 (34) 50.08 (23) 4.1e+4 773.26 (57) 20.24 (20)
4 3.2e+4 72.75 (26) 29.13 (21) 1.5e+6 403.61 (54) 8.52 (19)
5 4.9e+4 50.64 (26) 9.84 (17) 4.2e+6 288.73 (57) 5.85 (18)
6 7.8e+4 23.25 (22) 7.74 (17) 9.9e+6 242.31 (62) 5.02 (19)
7 3.1e+5 33.02 (27) 5.41 (16) 1.9e+7 222.70 (63) 4.95 (18)
8 3.4e+6 11.74 (19) 5.06 (15) 4.5e+7 215.00 (65) 4.91 (18)
9 3.5e+7 133.50 (45) 5.96 (17) 1.8e+8 213.30 (65) 4.94 (18)

10 3.6e+8 12.30 (22) 4.86 (15) 2.0e+9 214.81 (58) 4.95 (18)
11 3.5e+9 802.55 (76) 6.79 (18) 2.6e+10 195.21 (64) 4.94 (18)
12 3.6e+10 75.88 (37) 4.96 (16) 4.1e+11 222.12 (67) 4.92 (18)

TABLE 5.8
3D OAS(2) weak scalability test on a cubic domain (left) and thick quarter-ring domain (right): condition

numbers of the preconditioned operator (κ2) and PCG iteration counts (it) as a function of the number of subdomains
N , for overlap r = 0 and r = 1. Fixed H/h = 4 and p = 2, k = 1 (top table), p = 3, k = 2 (bottom table).

cubic domain thick quarter-ring
r = 0 r = 1 r = 0 r = 1

N κ2 it κ2 it κ2 it κ2 it
2× 2× 2 11.53 13 8.00 11 12.75 17 7.97 13
3× 3× 3 14.62 18 9.58 18 24.14 24 12.57 22

p = 2 4× 4× 4 18.61 23 11.55 21 42.30 31 16.49 27
k = 1 5× 5× 5 18.78 26 11.41 23 56.06 38 21.71 29

6× 6× 6 19.74 29 12.44 25 78.36 46 30.29 33
7× 7× 7 20.03 30 12.48 25 89.21 50 34.62 36
2× 2× 2 14.64 16 9.15 15 15.63 19 8.70 14
3× 3× 3 16.14 19 9.50 21 37.97 29 12.17 23

p = 3 4× 4× 4 16.98 24 10.25 23 45.23 35 14.74 25
k = 2 5× 5× 5 17.23 23 10.25 23 92.98 46 25.53 31

6× 6× 6 17.63 25 10.36 23 85.55 50 24.55 30

the scalability of our OAS biharmonic preconditioner since the condition numbers κ2(TOAS)
and iteration counts are clearly bounded from above as N increases; see also Figure 5.4.
For the thick quarter-ring, the performance of the OAS preconditioner suffers from a worse
conditioning due to the domain deformation, but the results still seem to approach the scalable
regime (we could not further increase the number of subdomains due to memory constraints).
For both domains, the preconditioner performance improves when the overlap size is increased.

6. Conclusions. We have constructed a two-level additive Schwarz preconditioner for
conforming isogeometric discretizations of the biharmonic equation in two and three spatial
dimensions. We have proved that the resulting algorithm is scalable and quasi-optimal.
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Extensive numerical tests have validated the theoretical results and have investigated the
behavior of the preconditioner with respect to the polynomial degree and global regularity of
the spline functions.

A limitation of the present paper is that we have considered subdomain partitions con-
structed via only the reference patch. Future works should be devoted to the extension of
the proposed additive Schwarz method to multipatch isogeometric discretizations of the
biharmonic problem and to other H2-problems such as Kirchhoff-Love plates and shells.
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