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CIRCULANT PRECONDITIONERSFOR CONVOLUTION-LIKE INTEGRAL
EQUATIONSWITH HIGHER-ORDER QUADRATURE RULES*

MICHAEL K. NG!

Abstract. Inthis paper, we consider solving matrix systems arising from the discretization of convolution-like
integral equations by preconditioned conjugate gradient (PCG) methods. Circulant integral operators as precondi-
tioners have been proposed and studied. However, the discretization of these circulant preconditioned equations by
employing higher-order quadratures leads to matrix systems that cannot be solved efficiently by using fast Fourier
transforms (FFTs). The aim of this paper is to propose “inverted” circulant preconditioners for convolution-like
integral equations. The discretization of these preconditioned integral equations by higher-order quadraturesleads
to matrix systems that involve only Toeplitz, circulant and diagonal matrix-vector multiplications, and hence can
be computed efficiently by FFTs in each iteration. Numerical examples are given to illustrate the fast convergence
of the method and the improvement of the accuracy of the computed solutions with using higher-order quadratures.
We also apply our method to solve the convolution-like equation arising from the linear least squares estimation in
signal processing.

Key words. Integral equations, displacement kernel, quadratures, circulant matrices, Toeplitz matrices, fast
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1. Introduction. In this paper, we study the numerical solution of integral equation of
theform

(1) W0+ [ altseds =g, 0<t<T <o

where ¢(-) and a(-, -) are given functionsin L;[0, oo) and L1(IR) N Lo(IR) respectively. We
always assume that a(t, s) is conjugate symmetric, i.e.,

a(t,s) = a(s,t),

and a(t, s) satisfies

12) (55 + 5 ) att:5) = L0t
j=1

for some numbers «, v; and somefunctionsé;(-). Thefollowingare examples of a(t, s) with
this property .
(i) If a(-, -) isadisplacement (or convolution or Toeplitz) kernel, we have

0 0
(a—l—%)a(t—s)—(),

and a(t, s) satisfies (1.2) witha = 0.
(ii) If r(¢, s) isthe Fredholm resolvent associated with a displacement kernel a(t — s),
it has been shown in [10] that

(% T ;) (1, 5) = u(t)u(s) — o(t)o(s).
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for some functions «(-) and v(-). Therefore, »(,s) satisfies (1.2) with o = 2,
Y1 = 1, Y2 = -1, bl(t) = u(t) and bz(t) = U(t).

(iif) The kernel function «(¢, s) is given by the covariance function of the output of a

constant state-space model in the linear least squares estimation [8]:

w(t)
z(1)

where E[n(t)n(s)*] = 6(t — s) and Ewow§] = Mo. In thiscase, the covariance
function a(t, s) can be written as

Fu(t) + Gn(t), w(0) = o,
Hu(),

a(t,s) = He"O=IN(s)H*, VYt > s,

where MN(s), the covariance of w(¢) issuch that

M(t) = FO() + N F* + GG*, T(0) = Mo,

Then

0 0 _ Ftr F*s rr*
(E—I—g) a(t,s) = He' 'M(0)e" *H™,

and the covariance function a(t, s) satisfies (1.2) with
a = rank (0.

We will consider thiskind of kernel as an numerical examplein §4.

Henceforthwewill say that akernd a(t, s) which satisfies(1.2) with small «visadisplacement-
likekernel. For discussions of displacement-like kernels and their applications; see [7, §].
In thefollowing, we let 7 be the identity operator, and we let

13) A = [ ate s, 0<isn

Weawaysassumethat .4, isapositivedefiniteoperator. Theoperator equation(Z+.4; )y = ¢
(cf. (1.1)) can be solved numerically by iterative methods. We remark that conjugate gradient
methods, especially when combined with preconditioning, are known to be powerful methods
for the solution of linear systems[6]. The convergence rate of the CG method can be speeded
up by applying a preconditioner. Thusinstead of solving (1.1), we solve the preconditioned
operator equation

(1.4) (T+C)MT+Ay(t) = (ZT+C)Hg(t), 0<t<r

A good preconditioner C, isan operator that iscloseto .4, in some norm and yet the operator
equation

(1.5) (Z+Crxt)=f(t), 0<t<T,

is easier to solve than (1.1) for an given function f(¢). A class of candidates is the class of
operators of theform
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where thefunction ¢, isperiodicin [0, 7]. They are called circulant integral operatorsin [4].
The eigenfunctions and eigenval ues of the operator C, are given by

1 .
U (t) — _62mmt/7

NG :

m € 7,

and
(1.6) A (Cr) = V/T(er um)r = \/F/OT he (W un(t)dt, m € 7Z.

Therefore, (1.5) can be solved efficiently by using the Fast Fourier Transforms (FFTSs).

The paper is organized as follows. In §2, we will use circulant integral operators C,
to precondition convolution-like integral operators.4,. We will show that if the functions
b; in(1.2) arein L1(IR) N Ly(IR), the preconditioned operator equations will have clustered
spectra for sufficiently large 7. Hence the preconditioned conjugate gradient method will
converge superlinearly for sufficiently large . For the discretization, we will use higher-
order quadrature rules such as the Simpson’s rule to discretize the operator equationsin order
to obtain high order of accuracy of the solution. The corresponding discretization matrices
of the circulant integral operators are I + CD where C is a circulant matrix and D is a
diagonal matrix. We notethat they are, in general, not circulant, and thereforetheir inversion
(I+ CD)~1 cannot be computed by using FFTs. Hence the cost per iteration of the PCG
method will exceed O(nlogn) operations. In §3, we will propose and construct “inverted”
circulant matrices for the discretization of (1.4) such that only O(nlogn) operations are
required in each iteration of the PCG method even when higher-order quadrature rule is
employed. Finaly, numerical examples are given in §4 to illustrate the effectiveness of the
“inverted” circulant preconditionersand the improvement of accuracy by employing higher-
order quadrature rules. Some convolution-like equations arising from the linear | east squares
estimation in signal processing are also tested.

2. Convergence Analysisof Circulant Preconditioned Convolution-like Operators.
For the convolution-like integral equations considered in this paper, the operator equations
will be solved by preconditioned conjugate gradient method. In [5], Gohberg and Koltracht
showed that a(t, s) satisfies (1.2) if and only if it can be represented in the form

@ min{t,s}
a(t,s):bo(t—s)—l—Z’yj/o bi(t —wbj(s —u), 0<t,s<r,
Jj=1

for some functions b(-). Thus we can express the operator A, asfollows:

(2.1) A, =B 4 ZBS'j)BS'j)*’

ji=1
where B and BY are both convolution integral operators of the forms

(2.2) (B(TO))x(t):/OTbo(t—s)x(s)ds, 0<t<T,

(2.3) (BY))a(t) = /0 bi(t — s)x(s)ds, 0<t<T,
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with

. bi(t), >0,
bj(t):{ O],() t<0.

The representation in (2.1) alows one to compute A -« by a FFT. Hence assuming that only
few iterations have to be carried out, solving (1.1) by iterative methods such as conjugate
gradient (CG) methods will be less expensive than direct methods.

In[4], circulant integral operatorsare used to precondition convol utionintegral operators.
A number of different circulant integral operators are proposed there. In this paper, we only
focus on the “optimal” circulant integral operators considered in [4]. Given the integral
operator K. with kerndl function k(¢, s), the corresponding “optimal” circulant integral
operator ¢(K,) is defined to be the circulant integral operator that minimizes the Hilbert-
Schmidt norm

(2.9) 1K, = Cl)? = /OT /OT(k(t, s)—cr(t —8))k(t,s) —er(t — s))dsdt

over al circulant integral operators C,. The “optimal” circulant integral operator ¢(K;) is
given by

(25) (k0 = [ Cer(t = s)a(s)ds, O<t<r,

wherec, (1) is

T 1 T—1
(26) (1) = E‘/ k(v+t— 7 0v)dv+ —/ k(v+t,v)dv, —-7<t<rT;
T Jr—t T Jo

see[2, Lemma 1]. Inview of (2.1), (2.2) and (2.3), we may construct the circulant approxi-
mation P, to A, by

(2.7) P, = ¢(BO) + Z ¥ e(BY))e(BY),

i=0

where c(B(T] )) are the corresponding “optimal” circulant integral operators of B(T] ),

We recall the following two theorems which are useful in the analysis of the spectra of
the preconditioned operators (Z + P, )~X(Z + A, ). Their proofs can be foundin [4] and [2]
respectively.

THEOREM 2.1. Let K be a convolution integral operator with kernel function &(-) €
L1(IR) N Ly(IR). Let ¢(K,) bethe optimal circulant integral operator of K. Then for any
given ¢ > 0, there exists a positiveinteger N and a * > 0 such that for all = > *, thereis
a decomposition

K, — C(ICT) =R +&
with operators R, and £, satisfying
rank R, <N and ||&]2<e.

THEOREM 2.2. Let K be a sdlf-adjoint positive integral operator with kernel function
k(-,-) € L1(R) N La(IR). Let ¢(K,) bethe optimal circulant integral operator of K. Then
¢(K;) isa sdf-adjoint positiveintegral operator.
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We prove the following results.

THEOREM 2.3. Let A be a self-adjoint convolution-like integral operator with kernel
functiona(-, -) satisfying (1.2). Let P, bethepreconditioner for A.. Ifb;(¢) € Li(IR)NLy(IR)
for 0 < j < «, thenfor any given ¢ > 0, there exist a positiveinteger N anda 7* > 0 such
that for all = > *, there isa decomposition

Ar =Pr =R: + &
with self-adjoint operators R . and £, satisfying
rank R, <N and ||&]2<e.
Proof. Using 2.1, we have

BY B — (B )e(B)
= BUIRU L RUIBU* 4 Bl 4 gUIRU)*.

It is straightforward to see that the operators (BYRY” 4 RYIBY™Y and (BY g9 +
£49)BY)*) are both slf-adjoint with

rank (BYIRU)* 4 RUWBLUI*Y < N
and
B9 4 9Bl < o

respectively. O

THEOREM 2.4. Let .4 be a sdlf-adjoint, positive convolution-like integral operator with
kernel function a(-, -) satisfying (1.2). Let P, be the preconditioner for A,. If b;(¢) €
Li(IR) N Lo(R) for 0 < j < «, then there existsa 7* > 0 such that for all 7 > 7*, the
integral operators P, are positive. o

Proof. Since A, is positive definite, ¢(BL) + > i1 ¢(BY'BY)") is dso positive
definite. Therefore, the lemma can be proved if we can show that foreach 1 < j < «,

lim [le(BYBY) — e(BY)e(B*)l2 = 0.

T— 00

Sinceb; € L1(IR), for each givene > 0, thereisar!’) > 0 such that [5G |bj(s)|ds < . Let

e {rﬁ”nbnh 2r£”||bj||%},

1<j<a € ’ €

For simplicity, we drop the subscripts and superscripts j on functions and operators respec-
tively when their meaning is apparent. For each = > 7*, we decompose the difference
B —¢(B;)as

B — C(BT) =R, + gTa
where R and £, are convolution operators with kernel functions

—ib(t+ 1), —T<t< -7+ 1,
(28) “(t):{ 0, o ¥ <t<r
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and
0, —rT<t< T4 T,
(2.9) er(t)=< —Lb(t+7), -+ 7. <t<0,
Lb(1), 0<t<r

respectively. Using the property of circulant integral operator [2, Lemma 3], we have

(2.10) (B By) — e(Br)e(Br) = ¢(&:E7 + R-E+R7E) + c(RRY).

Next we estimate the 2-norm of the two terms on the right hand side of (2.10). For the first
term, we need estimates of ||€-||2 and ||R -||2. For ||€;]]2, we obtain

0 s Tos
el [ Zbsolas+ [ 120k
T 0 T

—T+7e

0 Te T
g/ |b(5—|—7’)|ds—|—/ §|b(s)|ds+/ |b(s)|ds < 3e.
0 Te

—T+7e

Since [|e(B-)ll2 < ||B- [|2 (see [4]), we have
IRrll2 = [|Br + ¢(Br) 4 & |2 < 2|Br [l + (€712 < 2[[b]|1 + 3e.
Thus, we get

e(E-E7 + R &7 + REE 2 < NEEF + R &7 + REE: |2
< 276% + 12||b||z¢.

For the second term, we note by (2.6) that the kernel function of ¢(R. R ;)* isgiven by
1/ T -
727(15):—/ / re(v+t—7—w)r;(v—w)dwdv+
T Jr—tJo

T—1 T
1 / / ro (v 4 £ — )i (v — w)dwdo.
T Jo 0

Using (2.8) and the fact that || |3 < ||b]|3, we can show that

[7-(0)] < Z=[|B])3, 0<t<r,
|7,(t)| = 0, ro<t<T

Therefore,
27,

R R <2 [ 180l < ZEpiB< e, forr> 7
0
The result follows. 00

Combining Theorems 2.3 and 2.4, we have our main result.

THEOREM 2.5. Let .4 be a sdlf-adjoint, positive convolution-like integral operator with
kernel function a(-, -) satisfying (1.2). Let P, be the preconditioner for A,. If b;(¢) €
Li(R)N Lo(IR) for 0 < j < «, then for any given e > 0, there exist a positiveinteger NV and
art* > 0such that for all ~ > 7, at most N eigenvalues of the operator (Z + P, )~Y%(T +
AT +P,)~Y? are at distance greater than ¢ from 1.

It follows easily from Theorem 2.5 that the conjugate gradient method, when applied to
solving preconditioned operator equation (Z + C,)~Y(Z + A;)y = (Z + C.)~1g, converges
superlinearly, see[3] and [4].
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3. Construction of “Inverted” Circulant Preconditioners. Let us see when higher-
order quadratures are applied to discretize the preconditioned equation (1.4). Suppose the
interval [0, 7] bedivided into » subintervals of equal length h, i.e.

T = hn.

Given any convolution integral operator K, defined on [0, 7] with the kernel function & (¢),
its discretization matrix will be of theform K,,D,, where K,, isaToeplitz matrix whose first
column given by

(3.1 K.ljo=hk(jh), j=01--- n-1

and D,, is a diagona matrix that depends only on the quadrature formula used. Some
quadrature formulas can befound in [1, pp.16-17]. Thus after discretization on the operators
I+ A; and I + P, the corresponding matrices are

I +A,D, =L, +B{D, +_%BY'D,B{ D,
j=1
and
L+ P.D, =L, + C¥D, + Y 5,C{'D,CY D,
j=1

respectively. Since the evaluation of the matrix-vector products (I, + P, D, )~z is costly
in each iteration of the preconditioned conjugate method, I + P, D,, is not agood choice as
amatrix preconditioner.

We consider using the inverse I — Q. of / 4+ P, to precondition (1.1). Now the
preconditioned equation becomes

For each iteration, we need to compute (7 — Q. )x(¢) for an givenfunction z(¢). We notethat
(I —0Qn)x)==x() — / q-(t — s)x(s)ds
0

where

_ lelB) + 303 P (e8P
14 A (e(B) + 52y %5 [ A (e(BE )2

eZﬂ'imt/T 0 <t<T.

bl

(33) ¢ (t)

We remark that ¢, isperiodicin [0, 7] and @ isaso acirculant integral operator. We know
from (3.1) that we only need the values of ¢.(jh) for j = 0,1,---,n in order to construct
matrix preconditioner. To approximate these values, we partition the interval [—7/2, /2]
into n equal subintervals of step size A and approximate /\m(c(B(T]))) by using quadrature
formulainto (1.6). We note that these approximate val ues of /\m(c(B(T] >)) can be computed
by using FFTsin O(nlogn) operations. Then the approximate values of ¢.(-) in (3.3) can
be calculated fromm = —n/2tom = n/2. Hence (T — Q)x(¢) can be computed efficiently
using FFTs.

The main feature of the preconditioneristhat it isalready inverted. Hence only circulant
matrix-vector products (plussome inner products) are required in each step of PCG agorithm.
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In contrast, if circulant integral operators (see[4]) are used with higher-order quadraturerules,
then one has to invert matrix of the form I + CD which, in general, has no fast inversion
formula

We see that the discretization of preconditioned equations are now given by

(34) (L, — Q.D,)(L, + BD, + > 4BY'D,BY)"D,)y = (I, — Q,Dy)g.
ji=1

Using the transformation,
§=DY% ad §=D}%,

(3.4) can be symmetrized as

[In . D}/ZQHD}/Z] I, + DY?BODY? + Y 4, DY?BY'D,BY"DY?| §
ji=1

_[r-pq,04] z

The discretized system can then solved by conjugate gradient method. In each iteration, we
only need to compute Toeplitz, circulant and diagona matrix-vector multiplications. All these
matrix-vector products can be computed by using FFTs, and hence the cost per iteration is
O(nlogn) operations.

4. Numerical Examples. In this section, we test the effectiveness of our proposed
preconditioners using the following function a(¢, s) that satisfies (1.2) with
50 -2 -0.5
bo(t) = m, b]_(t) =€ t, bz(t) =€ t,
where 1 and v, are both equal 1. We choose our right hand side function ¢(¢) such that the
corresponding solution for the equation (1.1) is

_ [ (16-1)?, 0<t <16,
x(t)_{o, 16<t<r.

The stopping criterion of the PCG algorithmis: the residua of the PCG method less than
10-8. Theinitial guessis chosen to be the zero vector.

Tables 1-3 give the numbers of iterationsrequired for convergence. The preconditioners
are discretized according to the discussion in §2.2. The symbols I and @) indicate that (1.1)
is solved without any preconditioner and with the preconditioner 7 — Q. respectively . The
discretization rule used is listed in the caption. In Table 3, the symbol P indicates that the
preconditioner 7 4+ P is discretized by using the rectangular rule. In thiscase, the inverse
of the preconditioner can be computed easily using FFTs. From the tables, we see that when
no preconditioner is used or when the preconditioner Z + P, is discretized by rectangular
rule, the method will converge very slowly especialy for large 7. However, our “inverted”
circulant preconditioner works well.

To illustrate the usefulness of higher-order quadraturerules, we givein Table 4, the error
of the numerical solutions. The error is computed as

1/2
n T 1/2
{h*zw(jh)—l‘(jhﬂz} ~ {/0 Iy(t)—l‘(tﬂzdt} ,

i=0
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=16 =32 =64 =128
n [Q 11Q 1|Q 1@ 1
512 | 8 4|19 65|8 87| 8 98
1024 | 8 45|19 66| 8 8|8 97
2048|110 50| 8 68| 8 8|8 97
409 | 8 53| 8 69| 8 8|8 99
8192 8 558 718 9|8 101
TABLE 1

The numbersof iterationsfor the rectangular rule.

=16 =32 =64 =128

n Q 1 1Q I |1 I |Q I
b12 | 8 44| 8 679 8| 8 97
1024 | 8 44|18 66| 8 8 |8 97
2048 8 46| 8 698 8|8 97
409 | 8 47|18 70| 8 87| 8 98
81928 49| 8 718 8| 8 98

TABLE 2

The numbers of iterations for the trapezoidal rule.

where {y(jh)}}_, isthe computed solutionand =(¢) is the true solution. We see from Table
4 that the error decreases like O(h), O(h?) and O(h*) for the rectangular, trapezoidal and
Simpson’srulesrespectively. The quadrature formulas we used in the test can befoundin[1,
pp.16-17].

4.1. An Examplein Signal Processing. Next we solve the convol ution-like equations
arising from the least squares estimationin signal processing. Suppose that we have observa-
tionsu(¢) of asigna process z(t) with additive white noise v(t)

u(t) = =(1) + (1),
where
Elzt)z(s) ] = a(t,s), Elz(t)v(s)*]=0 and FElo(t)v(s)"] =6(t— s).
The covariance function of the process «(-) is given by
Elu)u(s)*] = 6(t — s) + a(t, s).

In signal processing problems, it is often necessary to estimate the linear least squares filter
for the given observed process «(¢). One way to do thisisto choose /. (s) so asto minimize

Bl(z(r) = 2(n)(=(r) = 2(7))"],

where

In[7], Kailath has shown that /() isthe solution of the integral equation

(4.2 h: (1) + /OT a(t,s)h:(s)ds = a(r,t), 0<t< T
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7=16 7=32 =64 7=128
n Q P I |@Q P 1 1Q P 1 |Q P 1
512 | 8 38 4|8 47 65|9 53 8|9 56 98
10241 8 38 46| 8 47 66| 8 53 8|9 56 97
2048 9 38 50| 8 48 69| 8 52 8 |8 57 98
4096 | 8 39 51| 8 48 70| 8 53 8|8 57 99
8192 | 8 39 52| 8 47 72| 8 54 86 |8 57 98
TABLE 3
The numbers of iterations for the Smpson’srule.
T =64 T =128
n Rect. Trap. Simp. Rect. Trap. Simp.

512 | 31.8452 3.2306 0.046 60.2334 10.0034  1.4530
1024 | 174371 0.6993  0.0017 | 29.8999 2.5606 0.0411
2048 | 82301 0.1560 1.0123e-4 | 154156 0.6993 0.0018
4096 | 4.0057 0.0398 5.6782e-6 | 81231 0.1990 1.1265e-4
8192 | 19676 0.0098 7.8489%e-7 | 4.1237 0.0288 5.763%-6

TABLE 4
Error in the computed solution.

In the following, we compute the numerical solution of integral equation (4.1) and test
the covariance function «(¢, s) of the process z(¢) generated by the output of a constant
state-space model as discussed in §1. We remark that the displacement-like kernd a(t, s)
may be matrix-valued. The circulant integral operators can be constructed by matrix kernel
functions with each element being periodic functions considered in (2.7). For discussion of
preconditioned conjugate gradient methods for solving convolution integral equations with
matrix-valued kernel functions, see [9].

In the numerical test, we consider a state-space model and use thematrices F', G, H and
Mo given by

(8 S e=[2] o= [oh] me[2 2]

to test the performance of our proposed preconditioner. It is straightforward to show that

R Rl I R g B IS I

and that therefore the covariance function a(?, s) satisfies (1.2) with o = 1, v = 1 and
bi(t) = 4.01e~"—0.02te~*. Table5 showsthenumber of iterationsrequired for convergence.
We see that the number of iteration required for convergence without a preconditioner or with
the preconditioner Z + P, isgreater than that with the preconditioner Z — Q...

To conclude the paper, we remark that the accuracy of the computed solution depends
only on the quadrature rule used to discretize 7 + .A,. However, the convergence rate of
the preconditioned systems and the costs per iteration of the PCG method depend on how
we discretize the preconditioning operators. From the numerical results, we see that it is
advantageousto use a higher-order quadrature ruleto discretize the operator equati on because
of theincreased accuracy. But to speed up the convergence rate of the method and to minimize
the costs per iteration, one may need to use our proposed preconditioner.
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=16 =32 =64 =128
n Q P 1 |Q P I |@Q P 1 1Q P I
512 |7 19 27 |7 19 32| 9 21 38|11 25 42
1024 | 6 19 28| 7 19 34| 8 22 39|11 24 45
2048 | 6 18 28| 6 18 35| 8 23 41|10 27 46
409 | 6 19 29| 6 19 34 |8 23 40|10 27 47
8192 | 6 20 28| 6 19 3B |7 24 42| 9 26 46
TABLES

The numbers of iterations for the example using the Smpson’srule.
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