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PROBLEMS∗
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Abstract. We propose a restarted Arnoldi’s method with Faber polynomials and discuss its use for comput-
ing the rightmost eigenvalues of large non hermitian matrices. We illustrate, with the help of some practical test
problems, the benefit obtained from the Faber acceleration by comparing this method with the Chebyshev based
acceleration. A comparison with the implicitly restarted Arnoldi method is also reported.
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1. Introduction. The Arnoldi-Chebyshev method [29, 14, 16, 31, 17] constitutes one
of the more attractive acceleration techniques for computing the right-most eigenvalues of
large matrices. The idea behind this technique is to start with the popular Arnoldi method [1]
which approximates the outermost part of the spectrum of the matrix [28], and then restart
the Arnoldi process, after a small number of iterations, using polynomials that amplify the
components of the required eigendirections while dumping those in the unwanted ones.

The algorithms discussed in the above mentioned references assume that the unwanted
eigenvalues lie in an ellipse symmetric with respect to the real axis if the matrix is real as in
[29, 14, 16, 31] or an ellipse oblique in the general complex non hermitian case as in [17]. The
assumption that the unwanted eigenvalues lie in an ellipse is not without drawbacks since, as
pointed out by Saad [30, p. 239], “... the choice of ellipses as enclosing regions in Chebyshev
acceleration may be overly restrictive and ineffective if the shape of the convex hull of the
unwanted eigenvalues bears little resemblance with an ellipse”. He proposed the use of the
least squares polynomials on some polygonal domains [30].

This paper is concerned with the computation of a few right-most eigenvalues and the
corresponding eigenvectors of a large complex non hermitian matrixA. As in [30], we con-
struct a polygon that contains the unwanted eigenvalues approximated by Arnoldi’s process,
but the computation of the polynomials is different. We use the Faber polynomials [7] for
restarting the method.

This work is inspired by the contribution of Starke and Varga [33] who used Faber poly-
nomials in the context of linear systems and who showed the nearly optimal properties that
the Faber polynomials possess, and by the work of Trefethen [34] on the Schwarz-Christoffel
mapping function, a powerful tool for constructing the Faber polynomials.

2. Arnoldi-Faber method for computing eigenvalues.From a starting vectorv1 with
‖v1‖2 = 1, the Arnoldi process generates an orthonormal basisVm = [v1, . . . , vm] of the
Krylov spaceKm ≡ Km(A, v1) = {p(A)v1 ; p ∈ Pm−1} wherePm−1 is the set of polyno-
mials of degree less or equal tom − 1 and a Hessenberg matrixHm = V ∗mAVm of orderm
such that

AVm = VmHm + hm+1,mvm+1e
∗
m.(2.1)

For more details on this algorithm, we refer to [30].
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Let us assume that the right-most eigenvalueλ, we are interested in, is semi-simple and
let P denote the corresponding spectral projector. IfPv1 6= 0, thenu = Pv1/‖Pv1‖2 is an
eigenvector ofA associated withλ. Let us define the vectory = (I − P )v1/‖(I − P )v1‖2 if
(I − P )v1 6= 0 andy = 0 otherwise. Then we have the following proposition

PROPOSITION2.1. The angleθ(u,Km) betweenu and the spaceKm satisfies

sin θ(u,Km) ≤ min
p ∈ Pm−1

p(λ) = 1

‖p(A)y‖2 tan θ(u, v1),(2.2)

whereθ(u, v1) is the angle betweenu and the starting vectorv1.
Proof. The vectorv1 can be written asv1 = α (u+βy), with α 6= 0 andβ = tan θ(u, v1).
Let q ∈ Pm−1 with q(λ) = 1, then the vectorv := 1

αq(A)v1 ∈ Km and can be written
asv = q(A)(u + βy) = u + β q(A)y. Hence

sin θ(u, v) = inf
γ∈C
‖u− γ v‖2 ≤ |β| ‖q(A)y‖2.(2.3)

We point out that similar result is given in [30, p.204] assuming that the matrix is diago-
nalizable. Proposition 2.1 essentially means that the spaceKm will contain enough informa-
tion on the eigenvectoru ( i.e. sin θ(u,Km)→ 0) if we can choose a polynomialp such that
p ∈ Pm−1, p(λ) = 1 and‖p(A)y‖ as small as possible. IfA is diagonalizable, this will be
possible if the polynomialp realizes the minimax problem

γm−1(Ω) := min
p ∈ Pm−1

p(λ) = 1

max
z∈Ω
|p(z)|,(2.4)

whereΩ ⊂ C is a compact set which contains the spectrum ofA exceptλ.
We will now focus on the solution of the minimax problem (2.4). Let us assume that

Ωc := C \Ω, the complement ofΩ with respect to the extended complex planeC = C ∪{∞}
is simply connected. Then the Riemann mapping theorem [22, p. 8] ensures the existence of
a functionw = Φ(z) which mapsΩc conformally ontoDc := C \D, the exterior of the unit
diskD := {w ∈ C , |w| ≤ 1}, and which satisfies the conditions

Φ(∞) =∞ and 0 < lim
z→∞

Φ(z)
z

<∞.(2.5)

As a consequence, the Laurent expansion ofΦ(z), at infinity, has the form

Φ(z) = αz + α0 +
α1

z
+

α2

z2
+ · · · with α > 0.(2.6)

The polynomial part

Fk(z) = α
(k)
k zk + α

(k)
k−1z

k−1 + . . . + α
(k)
0(2.7)

of the Laurent expansion of

(Φ(z))k = α
(k)
k zk + α

(k)
k−1z

k−1 + . . . + α
(k)
0 +

α
(k)
1

z
+ . . .(2.8)

is called the Faber polynomial of degreek associated withΩ.
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In the sequel, the Faber polynomials of degreek generated byΩ will be denoted by
Fk,Ω(z) or simplyFk(z) if there are no ambiguities.

Now let Ψ(w) be the inverse of the functionΦ(z) given in (2.5). It can be shown [22,
p. 106] thatΨ(w) has a Laurent expansion of the form

Ψ(w) = βw + β0 +
β1

w
+

β2

w2
+ . . . with β =

1
α

.(2.9)

Considering the Laurent expansion (2.9), the Faber polynomials can now directly be
computed recursively from

F0(z) = 1,(2.10)

F1(z) = (z − β0)/β,(2.11)

Fk(z) = (zFk−1(z)− (β0Fk−1(z) + . . . +
βk−1F0(z))− (k − 1)βk−1) /β, k ≥ 2.

(2.12)

2.1. The case whereΩ is a disk or an ellipse. Let us consider the particular case where
Ω is the closed diskD(c, ρ) = {z ∈ C : |z − c| ≤ ρ} of centerc and radiusρ. Then the map

Ψ(w) = ρw + c, |w| > 1,(2.13)

transformsDc onto the exterior ofD(c, ρ). Comparing (2.13) with (2.9) and (2.10)-(2.12),
the Faber polynomials can be written in this case as:

Fk(z) =
(

z − c

ρ

)k
, k ≥ 0.(2.14)

Now, assume that the domainΩ is the closed interior of the ellipseE(c, e, a) of centerc,
foci c + e, c− e, major semi-axisa and minor semi-axis b. Then the mapΨ is the Joukowski
transformation [21, p. 197] fromDc onto the the exterior ofE(c, e, a) given by

ψ(w) = γ1w + c +
γ−1

w
, |w| > 1,(2.15)

with γ1 = e(|a|+|b|)
2|e| andγ−1 = e|e|

2(|a|+|b|) . Comparing (2.15) with (2.9) and (2.10)-(2.12), the
Faber polynomials can be written in this case

F0(z) = 1,(2.16)

F1(z) = (z − c)/γ1,(2.17)

F2(z) =
(z − c)2

γ2
1

− 2
γ−1

γ1
(2.18)

Fk(z) = [(z − c)Fk−1(z)− γ−1Fk−2(z)]/γ1, k ≥ 2.(2.19)

Thus, if we define the polynomialsTk by

T0(z) = 1,(2.20)

Tk(z) =
1
2

( |a|+ |b|
|e|

)k
Fk(ez + c), k ≥ 1,(2.21)
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we easily see that the polynomialsTk satisfy the three term recurrence of Chebyshev polyno-
mials

Tk(z) = 2zTk−1(z)− Tk−2(z), k ≥ 2,(2.22)

with T0(z) = 1 andT1(z) = z.
It is known that whenΩ is a circle [25], the normalized polynomialFm−1(z)

Fm−1(λ) where
Fm(z) is given in (2.14), solves the minimax problem (2.4). WhenΩ is an ellipse [9], the
Chebyshev polynomial sequence given in (2.22), is asymptotically optimal with respect to

the problem (2.4). That is, for largem the normalized Chebyshev polynomialTm−1( z−ce )

Tm−1(λ−ce )
is

closed to the optimal polynomial (see also the discussion in§4).

2.2. The case whereΩ is a polygon. For our purpose, the hope is that Faber polynomi-
als have analogous properties for more general domain. The following result, due to Starke
and Varga [33], shows that this is indeed the case at least whenΩ is convex.

THEOREM 2.2. Assume thatΩ is convex withλ 6∈ Ω. Then the normalized Faber
polynomialsF̃k(z) := Fk(z)/Fk(λ) satisfy,

γk(Ω) ≤ max
z∈Ω
|F̃k(z)| < 2

|Φ(λ)|k − 1
≤ 2

1− 1
|Φ(λ)|k

γk(Ω) (k ≥ 1).(2.23)

Since |Φ(λ)| > 1, theorem 2.2 shows that the normalized Faber polynomialsFk lie
asymptotically betweenγk(Ω) and2 γk(Ω), and this explains their near optimality. In section
4 we give a numerical illustration of theorem (2.2).

For at least sufficiently largek, the constraint on the convexity ofΩ can be relaxed by
assuming thatΩ is only of bounded boundary rotation [33].

In the context of linear systems, the conditionλ 6∈ Ω is replaced by the condition0 6∈
Ω whereΩ is a domain that contains the spectrum ofA. It is known that the convexity
assumption onΩ and the condition0 6∈ Ω are difficult to reconcile. The situation appears to
be favorable in the context of the eigenvalue problem that interests us because the setΩ is a
polygon constructed as the convex hull of the spectrum of the matrixHm and excluding the
right-most valueλ, so that the conditionλ 6∈ Ω cannot prevent the setΩ from being convex.

Besides the importance of theorem (2.2), there are at least three reasons to believe that
this approach is acceptable. First, as we have already mentioned, the polygon, contrary to the
ellipse, can better fit the shape of the distribution of the unwanted eigenvalues. Second, the
polygon will be constructed from the outermost eigenvalues ofHm and it is known that this
part of the spectrum is what Arnoldi’s method approximates first [30]. Third, if a Faber poly-
nomialp solves the problem (2.4) in a domainΩ, thenp will also be small on neighborhoods
of the boundary ofΩ [33], and this gives some freedom in the construction of the polygon as
will be discussed in section 3.

3. Computation of Faber polynomials for polygons by the Schwarz-Christoffel
transformation.

3.1. The Schwarz-Christoffel transformation. We assume from now on thatΩ is a
polygon with verticesz1, z2, . . . , zp given in counter-clockwise order and interior angles
α1π, α2π, . . . , αpπ with 0 < αj < 2, j = 1, . . . , p and

∑p
j=1 αj = p− 2.

The Schwarz-Christoffel transformation [22, p.331] allows us to express the conformal
mapΨ through a formula that involves parameters depending only on the geometry ofΩ. The
Faber polynomials are then computed using these parameters.
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THEOREM 3.1. Let a1 = eiθ1 , . . . , ap = eiθp , with 0 ≤ θ1 < . . . < θp < 2π. The
conformal mapΨ1, mappingD ontoΩc, and satisfyingΨ1(ak) = zk, k = 1, . . . , p is given
by

Ψ1(w) = CΨ1

∫ w

w̃

p∏
j=1

(t− aj)αj−1 dt

t2
+ Ψ1(w̃), w ∈ D,(3.1)

wherew = 0 is the inverse of the point at infinity,̃w ∈ D andCΨ1 ∈ C .
Proof. See [22, p. 331].
As a consequence, the conformal mapΨ, mappingDc ontoΩc, and satisfyingΨ(āk) =

zk, k = 1, . . . , p is given by

Ψ(w) = CΨ

∫ w

w0

p∏
j=1

(1− āj
t

)αj−1dt + Ψ(w0), w ∈ Dc,(3.2)

with w0 = 1
w̃ andCψ = −CΨ1

∏p
j=1 a

αj−1
j , wherew̃ andCΨ1 are defined in theorem 3.1.

3.2. Parameter determination in the Schwarz-Christoffel transformation. For ar-
bitrary values of the parametersCΨ,a1, · · · , ap, known as the accessory parameters, the
representation (3.2) ofΨ, guarantees that the image of the unit circle respects the interior
angles of the polygonΩ in the sense that the interior angles corresponding to the vertices
zj = Ψ(āj), j = 1, . . . , p, are precisely given byαj , j = 1, . . . , p. However,Ψ will in gen-
eral fail to reproduce correctly the side lengths ofΩ. Consequently, for a given polygonΩ,
we need to determine the accessory parametersCΨ,a1, · · · , ap, in order to obtain an explicit
expression ofΨ.

This problem, called the accessory parameter problem, and its numerical treatment, have
been studied by several authors [34, 15, 10, 3, 4]. In our work, we have adopted the ap-
proach due to Trefethen [34]. Trefethen’s package SCPACK [35] implements in Fortran 77
the Schwarz-Christoffel transformations fromD onto the interior ofΩ, and needs therefore to
be modified for our purpose. The Matlab toolbox for the Schwarz-Christoffel mapping devel-
oped by Driscoll [4] solves the accessory parameter problem for various Schwarz-Christoffel
transformations, among which, the conformal mapΨ1 used in (3.1) that carriesD into Ωc.
To achieve good performances, we have adapted this Matlab implementation to Fortran 77,
using the backbone routines of SCPACK.

In what follows, we briefly describe the implemented scheme and some necessary
choices related to its implementation.

We would like to finda1 = eiθ1 , . . . , ap = eiθp such that

Ψ(āk) ≡ Ψ1(ak) = zk, k = 1, . . . , p.(3.3)

SinceΨ1 is defined such that the originw = 0 is mapped onto the point at infinity, an arbitrary
choice of one of thea′ks determines uniquely the mapΨ1. We imposeap = 1. The accessory
parameters to be determined are thereforea1, · · · , ap−1 andCΨ1 ≡ −CΨ/

∏p−1
j=1 a

αj−1
j . This

amounts to determiningp + 1 real variables.
As explained in [34] and implemented in [4], by considering the side lengths ofΩ, we

obtain thep− 3 real conditions

|Ψ1(ak+1)−Ψ1(ak)|
|Ψ1(a2)−Ψ1(a1)| =

|
∫ ak+1

ak

p∏
j=1

(t− aj)αj−1 dt
t2 |

|
∫ a2

a1

p∏
j=1

(t− aj)αj−1 dt
t2 |

=
|zk+1 − zk|
|z2 − z1|

k = 2, · · · , p− 2.(3.4)
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If Res(Ψ′,∞) denotes the residue at infinity ofΨ′, from (2.9) we have

Res(Ψ′,∞) = 0,(3.5)

or equivalently

Res(Ψ′1, 0) = 0.(3.6)

Note that0 is the unique pole ofΨ′1 in D. Now if we insist that the integral in (3.1) is path-
independent, then form (3.6) and the residue theorem applied to (3.1) we obtain the two real
conditions

p∑
j=1

αj − 1
aj

= 0.(3.7)

The accessory parametersa1, · · · , ap−1 are therefore determined by solving the following
non-linear system of p-1 real equations

(S-C)


|
R ak+1
ak

pQ

j=1
(t−aj)αj−1 dt

t2
|

|
R
a2
a1

pQ

j=1
(t−aj)αj−1 dt

t2
|

= |zk+1−zk|
|z2−z1| k = 2, · · · , p− 2,

∑p
j=1

αj−1
aj

= 0.

The parameterCΨ1 is then determined using for example the expression

CΨ1 =
z2 − z1∫ a2

a1

p∏
j=1

(t− aj)αj−1 dt
t2

.(3.8)

As in SCPACK [35], we use the Powell library routine NS01A [27] for solving the un-
constrained non-linear system (S-C). This routine makes use of a steepest descent search in
early iterations if necessary, followed by a variant of the Newton method.

The evaluation of the Schwarz-Christoffel integrals in the non-linear system (S-C) is
the most consuming computational task. The first decision concerns the path of integration.
Because of the path-independency, the simplest path of integration seems to be the straight
line segments of the formak ak+1. However the neighborhood of the polew = 0 will be
avoided by splitting these segments into two segments with endpoints on the unit circle.

We omit some important details discussed in [34] on the use of the compound Gauss-
Jacobi quadrature for computing the integrals in (S-C) and on the change of variable

yj = log
θj − θj−1

θj+1 − θj
1 ≤ j < p− 1, with θ0 = 0, θp = p,(3.9)

that eliminates the constraints (see theorem 3.1)

0 < θj < θj+1 for j = 1, · · · , p− 1,(3.10)

in the non-linear system (S-C).
In our application, it is not possible to know in advance the shape and localization of

the considered polygon since this method is intended to be used in the context of iterative
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methods. This may lead to the most troublesome aspect of numerical Schwarz-Christoffel
mapping, the so-calledcrowding phenomenon[15, p.428]. An almost uniform distribution
for the vertices of the polygon may indeed yield a highly nonuniform distribution for the pre-
vertices, such that, some of them may become indistinguishable in finite precision arithmetic.
Typically, this phenomenon appears for domains that are elongated in one or more directions
and/or have small-angled corners [26, 24, 18].

To partly circumvent this difficulty we impose for each polygon a filtering process whose
main objective is to suppress clustered vertices. Letzk and zk+1 be two vertices of the
considered polygon. If the ratio of the distance between this two vertices through the length of
the longest side of the polygon is lower thanrmin = 5.10−2, then both vertices are suppressed
and replaced by12 (zk + zk+1), and this process is repeated until all the ratios exceedrmin.
The resulting polygon is taken to be the convex hull of the remaining vertices.

This process has the advantage of reducing the numberp of vertices and therefore the
CPU time necessary to solve the parameter problem which is estimated in [34] to be of order
O(p3). Moreover it is theoretically validated in that the polynomialsF̃k defined in theorem
2.2 are also nearly optimal in the neighborhood of the polygonΩ.

3.3. Construction of Faber polynomials.We assume in this subsection that the acces-
sory parametersCΨ,a1,a2, · · · , ap are known and we address the problem of computing the
Faber polynomialFk given in the recurrence (2.10)-(2.12). We clearly need the coefficients
β,β0, · · · , βk−1 of the Laurent expansion (2.9) ofΨ.

As in the approach adopted in [33], using the derivative of the two expressions ofΨ(w)
given in (2.9) and (3.2), we get

β −
∞∑
l=2

(l − 1)βl−1

wl
= Cψ

 p∏
j=1

( ∞∑
l=0

γjl

(
1
w

)l) .(3.11)

Comparing corresponding powers ofw in (3.11), we obtainβ,β1, · · · , βk−1 as



β
0
−β1

−2β2

...
−(k − 1)βk−1


= CΨ

p∏
j=1



1

γj1
...

γj2 γj1
...

...
...

...
...

... · · · ...
γjk γj2 γj1 1





1
0
...

...
0


,(3.12)

where

γjl =
(

αj − 1
l

)(
−1
aj

)l
.(3.13)

Now from the equalitieszj = Ψ(āj), j = 1, . . . , p, we obtain the approximations

zj ≈ βāj + β0 +
k−1∑
l=1

βl
ālj

for j = 1, . . . , p.

Hence an approximation ofβ0:

β0 ≈
1
p

p∑
j=1

[
zj −

(
βāj +

k−1∑
l=1

βl
ālj

)]
.(3.14)
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In the Figures 4.2, 4.3 and 4.4,γk(Ω), max
z∈Ω
|F̃k(z)|, 2

|φ(λ)|k−1
and 2

1− 1
|φ(λ)|k

are respectively

represented with dashed lines, solid lines, dash-dot lines and dotted lines.

4. Numerical results. The numerical experiments have been carried out on a SUN
UltraSPARC workstation with IEEE double precision. The first point we would like to il-
lustrate is the numerical behavior of the inequalities (2.23) given in theorem 2.2, for dif-
ferent values of the degreek of the polynomialF̃k and for different normalization points
λ. We assume thatΩ is the convex polygon (see figure 4.1) consisting of the vertices:
(0,−2),(−1,−1),(0, 3),(4, 2) and (5,−1). We consider three situations corresponding to
λ = 10 in figure 4.2,λ = 5 in figure 4.3 andλ = 4.7 in figure 4.4.

The computations ofγk(Ω) is carried out with the Matlab package COCA.2 (COm-
plex linear Chebyshev Approximation) developed by Fisher and Modersitzki [8]. The imple-
mented scheme is based on a reformulation of the minimax problem (2.4) as a semi-infinite
optimization problem [11, 13]. The discretization of the boundary ofΩ and the connection
between the primal and the dual reformulation of the problem lead to a low dimensional
optimization problem whose size depends only on the degree of the searched polynomial.
Moreover, upper and lower bounds forγk(Ω) are available at any step of the algorithm. In
order to attain the precision required for our comparisons, we set the number of discretization
points of the boundary tonc = 10000 and impose that the difference between the upper and
the lower bounds ofγk(Ω) must be less thanεc = 10−10. We consider polynomials of degree
less or equal tokmax = 19, since for polynomial degrees exceeding this value, we encounter
some numerical instabilities due to near singular systems.

The Faber polynomialsFk(z) andΦ(λ) are computed using the package SC-TOOLBOX
1.3 [4]. Similarly to COCA.2, we change the default tolerance toεsc = 10−14 in our computa-
tion. For the computation ofmax

z∈Ω
|F̃k(z)|, we discretize the boundary ofΩ with nΩ = 100000

points.
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The curves in figures 4.2, 4.3 and 4.4 show the behavior of the quantities involved in
the inequalities (2.23). i.e.,γk(Ω), max

z∈Ω
|F̃k(z)|, 2

|φ(λ)|k−1 and 2
1− 1
|φ(λ)|k

. The curves clearly

show the expected fact that the upper bounds in (2.23) give better approximation of the er-
ror norm when the degreek of the approximant increases. Furthermore these upper bounds
greatly depend on the location of the normalization pointλ which can easily be seen consid-
ering the denominator of both last parts of the inequalities (2.23).

We notice from figure 4.4 the bad approximation ofmax
z∈Ω
|F̃k(z)| to γk(Ω), due to the

closeness ofλ to the boundary ofΩ, and that the error appears to tends towards0 for large
degreek as predicted by the theory.

An analogy with the work by Fischer and Freund [9] can be made at this point. The
authors of [9] have proved that the result due to Clayton [2] concerning the optimality of
Chebyshev polynomials with respect to the ellipse, is not true in general. They showed the
non optimality by considering normalization points near enough to the considered ellipse [9,
Th.1(b)].

Now, we would like to show the benefit that can be obtained from the Faber polynomial
acceleration when combined with Arnoldi’s method for computing eigenvalues. But first let
us mention some important points in our algorithm. The Arnoldi algorithm that we have
implemented is a block version of Arnoldi, implemented in the same spirit as in [31]. We
use an implicit deflation technique which may briefly summarized as follows: every time an
eigenvector converges, it is put, after orthonormalization, at the beginning of the basisVk so
that all subsequent constructed vectors are orthogonalized against it, the algorithm continues
then with a reduced block size. In the remaining of this section we call BAD this deflated
version of the block Arnoldi method. As we have already mentioned, the unconstrained non-
linear system (S-C) is solved by using the Powell library routine NS01A [27].

A computed eigenpair(µ, x) is considered as convergent if the associated residualAx−
µx satisfies the condition

‖Ax− µx‖2 ≤ tol ‖A‖F ,(4.1)

where‖A‖F is the Frobenius norm ofA andtol is a tolerance parameter indicated for each
test example. We also indicate, for each test example, the numbermmax which is the total
number of vectors built at each iteration of BAD, the block sizenb, the number of eigenvalues
nval and the parametermaxit which is an upper bound on the number of iterations (i.e: the
number of restarts). The algorithm terminates whenmaxit is exceeded.

Our aim is to compare our deflated block-Arnoldi Faber algorithm with the deflated
block-Arnoldi Chebyshev version that has been developed in [17]. In what follows, the nota-
tions BADC and BADF respectively stand for the deflated block Arnoldi Chebyshev and the
deflated block Arnoldi Faber methods. The notation BADF20, for example, means that the
method BADF is used with a Faber polynomial of degree20.

For each test problems we have furthermore considered the computation of the solution
using the package ARPACK [20] which is available in Netlib. This package implements the
implicitly restarted Arnoldi method of Sorensen [32]. Contrary to our approach, which uses
an explicit restart, the degree of the considered acceleration polynomial, in ARPACK, de-
pends directly on the size of the Krylov subspace. This difference as well as the difference in
the deflation strategies, used in ARPACK and in our approach make the comparisons, under
the same memory and/or CPU requirements, very difficult and sometimes unfair. Neverthe-
less, we present some results concerning ARPACK for illustration purposes, not for a true
benchmarking.
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FIG. 4.5.Spectrum of the Orr-Sommerfeld matrix

We consider the Orr-Sommerfeld operator [19] defined by

1
αR

L2y − i(ULy − U
′′
y)− λLy = 0,(4.2)

whereα andR are positive parameters,λ is a spectral parameter number,U = 1−x2, y
is a function defined on[−1, +1] with y(±1) = y

′
(±1) = 0 andL = d2

dx2 − α2.
Discretizing this operator using the following simple approximation

xi = −1 + ih, h =
2

n + 1
,

Lh =
1
h2

Tridiag (1,−2− α2h2, 1),

Uh = diag(1− x2
1, . . . , 1− x2

n),

gives rise to the eigenvalue problem

Au = λu with A =
1

αR
Lh − iL−1

h (UhLh + 2In).(4.3)

Taking α = 1, R = 5000, n = 2000 yields a complex non hermitian matrixA (order
n = 2000, ‖A‖F = 21929) containing4.00e + 06 nonzero elements. Its spectrum is plotted
in Figure 4.5.

We compute the four rightmost eigenpairs of the Orr-Sommerfeld matrix using the dif-
ferent methods BAD, BADC and BADF. Table 4.1 shows the results obtained for several
values of the degree of the Faber and Chebyshev polynomials. Clearly the Faber polynomials
considerably improve the results of BADC.

It is important to notice that formmax = 60 neither BAD nor BADC20 achieve the
convergence of the four eigenvalues while the convergence was obtained within130 iterations
with BADF20. The best result, regarding the CPU time, was obtained with BADF20 and
mmax = 80. Figure 4.6 (left) shows its convergence behavior. For the sake of clarity, we
show in Figure 4.6 (right) a comparison of the convergence behavior of the third and fourth
eigenvalues for BADF20 and BADC20 withmmax = 80. The convergence using ARPACK
occurs in 89 iterations (824 sec.) formmax = 80 and was achieved for 2 eigenvalues in 85
iterations (610 sec.) withmmax = 60.
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Method mmax Matrix-vector Iterations Time(sec) # of converged
multiplications eigenpairs

BAD 60 12000 200 581.2 0
BADF20 60 13904 130 644.9 4
BADC20 60 27656 200 1001.4 1

BAD 80 15978 200 971.3 1
BADF15 80 11599 99 627.2 4
BADC15 80 26361 195 1270.3 4
BADF20 80 9592 65 445.0 4
BADC20 80 28798 187 1314.6 4
BADF25 80 15490 104 728.3 4
BADC25 80 27038 175 1225.4 4

TABLE 4.1
Computation of the four rightmost eigenvalues of the Orr-Sommerfeld matrix with different methods.nb =

nval = 4, itmax = 200, tol = 1.00e− 7
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FIG. 4.6. Convergence behavior of the four rightmost eigenpairs with BADF20 (left) and comparison of
convergence behavior for the third and fourth eigenpairs with BADF20 and BADC20 (right). (Orr-Sommerfeld
matrix)

The second test matrix is the matrix Young1c taken from the Harwell-Boeing collection
of test matrices [5]. This matrix arises when modeling the acoustic scattering phenomenon.
It is complex ( ordern = 841, ‖A‖F = 6448) and contains4089 nonzero elements. Its
spectrum is plotted in Figure 4.7.
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FIG. 4.7.Spectrum of the matrix Young1c

We compute, in Table 4.2, the eleventh rightmost eigenpairs of the matrix Young1c us-
ing the different methods BAD, BADC and BADF. Similarly to the Orr-Sommerfeld case, the
method BAD has difficulties for computing all the wanted eigenpairs. The results obtained
with the method BADF are always better than those with BADC. Again the best result is
obtained with BADF20. Figure 4.8 (left) shows the convergence behavior of the two first and
the two last computed rightmost eigenpairs with the method BADF20. Similarly to the previ-
ous examples, the plot, in figure 4.8 (right) shows a comparison of the convergence behavior
of the tenth and eleventh eigenpairs with the methods BADF20 and BADC20. ARPACK
computed the sought eigenpairs within 18 iterations (15 sec.).

Method Matrix-vector Iterations of Time(sec) # of converged
multiplications eigenpairs

BAD 3488 100 56.2 10
BADF15 1914 16 15.2 11
BADC15 2551 20 26.6 11
BADF20 1926 12 13.4 11
BADC20 3893 22 38.4 11
BADF25 2333 13 18.2 11
BADC25 5104 22 47.8 11

TABLE 4.2
Computation of the twelve rightmost eigenvalues of the matrix Young1c with different methods.mmax =

36, nb = 12, nval = 11, itmax = 100, tol = 1.00e− 10

Finally let us give an idea of the percentage of the overall execution time spent in the
main steps of our block Arnoldi Faber method. The version BADF20 gave the best results
and will therefore be used for this task. The main steps in BADF20 can be summarized as
follows:

1. the matrix vector multiplication involved in Arnoldi’s iteration,
2. the orthogonalization among the constructed Arnoldi’s vectors,
3. the Schwarz-Christoffel transformation, i.e.: construction of the polygon,
4. the Faber polynomial acceleration. i.e. : matrix vector multiplication involved at

each restart.
In Table 4.3, we give the time and the percentage of time spent in each of the above steps. The
dominating parts are, as usual, the matrix-vector multiplications and the orthogonalization



ETNA
Kent State University 
etna@mcs.kent.edu

74

0 5 10 15
−10

−9

−8

−7

−6

−5

−4

−3

−2

Iterations

Lo
g1

0(
Re

sid
ua

l)

Faber20 / 11 Eigenvalues /Krylov36 

....  Eig1
−− Eig2
−.  Eig10
−   Eig11

0 10 20 30
−10

−9

−8

−7

−6

−5

−4

−3

−2

Iterations
Lo

g1
0(

Re
sid

ua
l)

Faber20−Cheby20 / Krylov36 

....  Eig10 (BADF20)
−   Eig11 (BADF20)
−− Eig10 (BADC20)
−.  Eig11 (BADC20)

FIG. 4.8. Convergence behavior of the first, second, tenth and eleventh right-most eigenpairs with BADF20
(left) and comparison of convergence behavior for the tenth and eleventh eigenpairs with BADF20 and BADC20
(right). (Young1c matrix)

process. The time required for the Schwarz-Christoffel transformation is negligible for the
matrix Young1c and equivalent to the time required for the Faber acceleration for the matrix
Orr-Sommerfeld.

step Orr-Sommerfeld Young1c
Matrix-vector 138.9 31.2 % 1.3 9.6 %

Orthogonalization 166.0 37.3 % 3.3 24.5 %
Schwarz-Christoffel 65.0 14.6 % 1.0 7.5 %
Faber acceleration 66.2 14.9 % 6.1 45.7 %

TABLE 4.3
Time(sec) and percentage of time for the main steps in algorithm BADF20

5. Conclusion. We have proposed a Faber polynomial acceleration for computing
eigenvalues of large non hermitian matrices. The nice properties of this method is that the
convex polygonΩ constructed from the outermost unwanted eigenvalues approximated by
Arnoldi’s method is always feasible, and that the associated Faber polynomial is asymptoti-
cally optimal even in the neighborhood of the the boundary ofΩ. The numerical tests show
that the method performs well and overcomes the acceleration based on Chebyshev polyno-
mials.
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