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ON A CONVERSE OF LAGUERRE’S THEOREM �

THOMAS CRAVEN AND GEORGE CSORDASy

Abstract. The problem of characterizing all real sequences f
kg
1

k=0 with the property that if p(x) =Pn

k=0
akx

k is any real polynomial, then
Pn

k=0

kakx

k has no more nonreal zeros than p(x), remains open.
Recently, the authors solved this problem under the additional assumption that the sequences f
kg1k=0, with the
aforementioned property, can be interpolated by polynomials. The purpose of this paper is to extend this result to
certain transcendental entire functions. In particular, the main result establishes a converse of a classical theorem of
Laguerre for these transcendental entire functions.
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1. Introduction. In the theory of distribution of zeros of polynomials, the following
open problem is of central interest. Let D be a subset of the complex plane. Characterize the
linear transformations, T , taking complex polynomials into complex polynomials such that
if p is a polynomial (either arbitrary or restricted to a certain class of polynomials), then the
polynomial T [p] has at least as many zeros in D as p has zeros in D. There is an analogous
problem for transcendental entire functions. For special linear transformations, a complete
characterization is given in [3] for the case when D is a convex region containing the origin.
(For related questions and results see, for example, [2], [7, Ch. 2, Ch. 4], [8], [9, Ch. 7], [12,
Ch. 3–5] and [14, Ch. 1–2].) In the classical setting (D = IR) the problem (solved by Pólya
and Schur [17]) is to characterize all real sequences T = f
kg1k=0; 
k 2 IR, such that if a real
polynomial p(x) =

Pn
k=0 akx

k has only real zeros, then the polynomial

T [p(x)] = T

"
nX

k=0

akx
k

#
:=

nX
k=0


kakx
k;(1.1)

also has only real zeros (see (2.2) and (2.3) below). The purpose of this paper is to continue
our investigation in [5] of the followingmore general problem. Characterize all real sequences
T = f
kg1k=0; 
k 2 IR, such that if p(x) is any real polynomial, then

Zc(T [p(x)]) � Zc(p(x));(1.2)

where Zc(p(x)) denotes the number of nonreal zeros of p(x), counting multiplicities. In
order to facilitate the description of our results, in Section 2 we first recall some definitions
and terminology, and review some facts that will be needed in the sequel. The new results
(Theorem 3.6, Theorem 3.9 and Theorem 3.10), which establish a converse of Laguerre’s
theorem for certain transcendental entire functions, are proved in Section 3. The techniques
used in the proofs hinge on the properties of multiplier sequences (Definition 2.2),�-sequences
(Definition 2.8) and Schoenberg’s celebrated theorem (see Theorem 3.3) on the representation
of the reciprocal of functions in the Laguerre-Pólya class (Definition 2.1).

2. Background information and a review of previous results. Functions in the
Laguerre-Pólya class are defined as follows.
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DEFINITION 2.1. A real entire function�(x) :=
P
1

k=0

k
k! x

k is said to be in the Laguerre-
Pólya class, denoted �(x) 2 L� P, if �(x) can be expressed in the form

�(x) = cxne��x
2
+�x

1Y
k=1

�
1 +

x

xk

�
e
�

x
xk ;(2.1)

where c; �; xk 2 IR, c; xk 6= 0, � � 0, n is a nonnegative integer and
P
1

k=1 1=x2
k < 1. If

�1 � a < b � 1 and if �(x) 2 L� P has all its zeros in (a; b) (or [a; b]), then we will use
the notation � 2 L� P(a; b) (or � 2 L� P[a; b]). If 
k � 0 (or (�1)k
k � 0 or �
k � 0)
for all k = 0; 1; 2 : : :, then � 2 L� P is said to be of type I in the Laguerre-Pólya class, and
we will write � 2 L� PI. We will also write � 2 L� PI+, if � 2 L� PI and if 
k � 0
for all k = 0; 1; 2 : : :.

In order to clarify the terminology above, we remark that if � 2 L� PI, then � 2
L� P(�1; 0] or � 2 L� P[0;1), but that an entire function in L� P(�1; 0] need not
belong to L� PI. Indeed, if �(x) = 1

Γ(x) , where Γ(x) denotes the gamma function, then
�(x) 2 L� P(�1; 0], but �(x) 62 L� PI. This can be seen, for example, by noting that
functions in L� PI are of exponential type, whereas 1

Γ(x) is an entire function of order one
of maximal type (see [1, p. 8] or [11, Chapter 2] for the definition of the “type” of an entire
function). Also, it is easy to see that L� PI+ = L� PI(�1; 0].

DEFINITION 2.2. A sequence T = f
kg1k=0 of real numbers is called a multipliersequence
if, whenever the real polynomial p(x) =

Pn
k=0 akx

k has only real zeros, the polynomial
T [p(x)] =

Pn
k=0 
kakx

k also has only real zeros.

The following are well-known characterizations of multiplier sequences (cf. [17], [16,
pp. 100–124] or [14, pp. 29–47]). A sequence T = f
kg1k=0 is a multiplier sequence if and
only if

�(x) = T [ex] :=
1X
k=0


k

k!
xk 2 L� PI:(2.2)

Moreover, the algebraic characterization of multiplier sequences asserts that a sequence
T = f
kg1k=0 is a multiplier sequence if and only if

gn(x) :=
nX
j=0

�
n

j

�

jx

j 2 L� PI for all n = 1; 2; 3 : : : :(2.3)

DEFINITION 2.3. We say that a sequence f
kg1k=0 is a complex zero decreasing sequence
(CZDS), if

Zc

 
nX

k=0


kakx
k

!
� Zc

 
nX

k=0

akx
k

!
;(2.4)

for any real polynomial
Pn

k=0 akx
k. (The acronym CZDS will also be used in the plural.)

Now it follows from (2.4) that any complex zero decreasing sequence is also a multiplier
sequence. If T = f
kg1k=0 is a sequence of nonzero real numbers, then inequality (2.4) is
equivalent to the statement that for any polynomial p(x) =

Pn

k=0 akx
k, T [p] has at least as

many real zeros as p has. There are, however, CZDS which have zero terms (cf. [5, Section
3]) and consequently it may happen that degT [p] < deg p. When counting the real zeros of
p, the number generally increases with the application of T , but may in fact decrease due to a
decrease in the degree of the polynomial. For this reason, we count nonreal zeros rather than
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real ones. The existence of a nontrivial CZDS is a consequence of the following theorem
proved by Laguerre and extended by Pólya (see Pólya [15] or [16, pp. 314-321]).

THEOREM 2.4. (Laguerre [14, Satz 3.2])
1. Let f(x) =

Pn
k=0 akx

k be an arbitrary real polynomial of degree n and let h(x)
be a polynomial with only real zeros, none of which lie in the interval (0; n). Then
Zc(
Pn

k=0 h(k)akx
k) � Zc(f(x)).

2. Let f(x) =
Pn

k=0 akx
k be an arbitrary real polynomial of degree n, let � 2 L� P

and suppose that none of the zeros of � lie in the interval (0; n). Then the inequality
Zc(
Pn

k=0 �(k)akx
k) � Zc(f(x)) holds.

3. Let � 2 L� P(�1; 0], then the sequence f�(k)g1k=0 is a complex zero decreasing
sequence.

REMARK 2.5. (a) We remark that part (2) of Theorem 2.4 follows from (1) by a limiting
argument. (b) For several analogues and extensions of Theorem 2.4, we refer the reader
to S. Karlin [9, pp. 379–383], M. Marden [12, pp. 60–74], N. Obreschkoff [14, pp. 6–8,
42–47] and L. Weisner [20].

One of the key results in [5] is the following converse of Laguerre’s theorem in the case
when � (see part (3) of Theorem 2.4 above) is a polynomial.

THEOREM 2.6. ([5, Theorem 2.13]) Let h(x) be a real polynomial. The sequence
T = fh(k)g1k=0 is a complex zero decreasing sequence (CZDS) if and only if either

1. h(0) 6= 0 and all the zeros of h are real and negative, or
2. h(0) = 0 and the polynomial h(x) has the form

h(x) = x(x� 1)(x� 2) � � � (x�m + 1)
pY
i=1

(x� bi);(2.5)

where m is a positive integer and bi < m for each i = 1; : : : ; p.
Thus, Theorem 2.6 characterizes the class of all polynomials which interpolate CZDS.

In contrast, the converse of Laguerre’s theorem fails, in general, for transcendental entire
functions, as the following example shows.

EXAMPLE 2.7. Let p(x) be a polynomial in L� P(�1; 0) (so that the sequence
fp(k)g1k=0 is a CZDS). Then

�1(x) :=
1

Γ(�x)
+ p(x) and �2(x) := sin(�x) + p(x)

are transcendental entire functions which interpolate the same sequence fp(k)g1k=0, but these
entire functions are not in L� P. Thus, in the transcendental case additional hypotheses are
required in order that the converse of Laguerre’s theorem should hold.

Our main result (Theorem 3.10) shows that that the converse of Laguerre’s theorem is
valid for (transcendental) entire functions of the form �(x)p(x), where �(x) 2 L� PI+ and
p(x) is a real polynomial which has no nonreal zeros in the left half-plane.

A sequence f
kg1k=0 which can be interpolated by a function � 2 L� P(�1; 0), that
is, �(k) = 
k for k = 0; 1; 2 � � �, will be called a Laguerre multiplier sequence or a Laguerre
sequence. It follows from Theorem 2.4 that a Laguerre sequence is a CZDS, and in particular,
a multiplier sequence. The reciprocals of Laguerre sequences are examples of sequences
which are termed in the literature (cf. Iliev [7, Ch. 4] or Kostova [10]) as �-sequences and
are defined as follows.

DEFINITION 2.8. A sequence of nonzero real numbers, Λ = f�kg
1

k=0, is called a �-
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sequence, if

Λ[p(x)] = Λ

"
nX

k=0

akx
k

#
:=

nX
k=0

�kakx
k > 0 for all x 2 IR;(2.6)

whenever p(x) =
Pn

k=0 akx
k > 0 for all x 2 IR.

REMARK 2.9. (1) We remark that if Λ is a sequence of nonzero real numbers and if Λ[e�x]
is an entire function, then a necessary condition for Λ to be a �-sequence, is that Λ[e�x] � 0
for all real x. (Indeed, if Λ[e�x] < 0 for x = x0, then continuity considerations show that
there is a positive integer n such that Λ[(1� x

2n)
2n + 1

n
] < 0 for x = x0.)

(2) In [7, Ch. 4] (see also [10]) it was pointed out by Iliev that �-sequences are precisely the
positive definite sequences. (There are several known characterizations of positive definite
sequences (see, for example, [13, Ch. 8] and [19, Ch. 3]).)

The importance of �-sequences in our investigation stems from the fact that a necessary
condition for a sequence T = f
kg1k=0; 
k > 0, to be a CZDS is that the sequence of
reciprocals Λ = f 1


k
g1k=0 be a �-sequence. Thus, for example, the reciprocal of a Laguerre

multiplier sequence is a �-sequence. On the other hand, there are multiplier sequences whose
reciprocals are not �-sequences. For example, in [5, Example 1.8] we have demonstrated
that the sequence T := f1 + k + k2g1k=0 is a multiplier sequence, but that the sequence of
reciprocals, f 1

1+k+k2g1k=0 is not a �-sequence.

3. A converse of Laguerre’s theorem for transcendental entire functions. It follows
from Example 2.7 that Theorem 2.6 does not hold, in general, for transcendental entire
functions. Here we will restrict our attention to entire functions of the form �(x)p(x), where
�(x) 2 L� PI+ and p(x) is a real polynomial. Our goal is to show that if p(x) has no
nonreal zeros in the left half-plane<z < 0, then the sequence T = fp(k)�(k)g1k=0 is a CZDS
if and only if p(x) has only real negative zeros. To this end, we will state and prove several
preliminary results.

PROPOSITION 3.1. Let � 2 IR and let p(x) be a real polynomial. If p(0) 6= 0, then the
sequence fp(k)e�kg1k=0 is a CZDS if and only if p(x) has only real negative zeros.

Proof. If p(x) has only real negative zeros, then T = fp(k)e�kg1k=0 is a CZDS by
Laguerre’s theorem (see part (3) of Theorem 2.4). To prove the converse, we first note that
if fakg1k=0 and fbkg1k=0 (ak; bk > 0) are two CZDS, then their Hadamard product, that is
fakbkg1k=0, is also a CZDS. Since fe��kg1k=0 is a CZDS and fp(k)e�kg1k=0 is a CZDS by
assumption, it follows that the sequence fp(k)g1k=0 is a CZDS. Therefore, by part (1) of
Theorem 2.6, p(x) has only real negative zeros.

In order to work with arbitrary functions in L� PI, we require some additional back-
ground information. In particular, in the proofs we will appeal to Schoenberg’s theorem
(Theorem 3.3) on the representation of the reciprocal of a function � 2 L� PI in terms of
Pólya frequency functions. These functions are defined as follows.

DEFINITION 3.2. A function K : IR ! IR is a frequency function if it is a nonnegative
measurable function such that

0 <

Z
1

�1

K(s) ds <1:

A frequency function K is said to be a Pólya frequency function if it satisfies the following
condition. For every two sets of increasing real numbers s1 < s2 < : : : < sn and t1 < t2 <
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: : : < tn (n = 1; 2; 3; : : :), the determinantal inequality

��������
K(s1 � t1) K(s1 � t2) : : : K(s1 � tn)
K(s2 � t1) K(s2 � t2) : : : K(s2 � tn)

: : :

K(sn � t1) K(sn � t2) : : : K(sn � tn)

��������
� 0

holds.
THEOREM 3.3. (Schoenberg [18, p. 354]) Suppose that �(x) 2 L� PI, �(x) > 0 if

x > 0, where �(x) is not of the form ce�x. Then the reciprocal of � can be represented in the
form

1
�(z)

=

Z
1

0
e�szK(s) ds; <z > 0;

where K(s) is a Pólya frequency function such that K(s) = 0 if s < 0 and the integral

converges up to the first pole of
1

�(z)
. Conversely, suppose that K(s) is a Pólya frequency

function such that K(s) = 0 for s < 0 and the integral converges for <z > 0. Then this
integral represents, in the half-plane <z > 0, the reciprocal of a function �(x) 2 L� PI,
where �(x) is not of the form ce�x.

For the reader’s convenience, we also include here some information concerning the
asymptotic behavior of Pólya frequency functions.

THEOREM 3.4. ([6, p. 31 and p. 108]) Suppose that �(x) 2 L� PI with �(x) > 0 if
x > 0, where �(x) is not of the form ce�x. Let K(s) denote the Pólya frequency function
corresponding to �. Then

K(s) = e�jx1jsq(s) +O(e�jrjs) (s!1);

where x1 is the largest (negative) zero of �(x), q(s) is a real polynomial and jrj > jx1j.
REMARK 3.5. In [18, p. 358], Schoenberg has also established results pertaining to the

continuity properties of the Pólya frequency kernels. In particular, Schoenberg has shown
that if �(x) 2 L� PI (�(0) 6= 0) has n � 2 nonzero roots, then the corresponding Pólya
frequency function K(s) is in Cn�2(IR). If n = 1, then K(s) is discontinuous and K(s) is
essentially of the form K(s) = e�s if s � 0 and K(s) = 0 if s < 0.

THEOREM 3.6. Let �(x) 2 L� PI+ where �(x) is not of the form ce�x, c; � 2 IR.
Let p(x) be a polynomial having only real zeros, and suppose that �(0)p(0) = 1. Then the
sequence T = f�(k)p(k)g1k=0 is a CZDS if and only if p has only real negative zeros.

Proof. If p(x) has only real negative zeros, then �(x)p(x) 2 L� PI and T is a
CZDS by Laguerre’s theorem. Conversely, suppose that T is a CZDS. Assume that p(x) has a
positive zero; we shall show that this leads to a contradiction. We may assume, without loss of
generality, that p(x)has onlypositive zeros as the negative ones can be included in�(x). Since
T is a CZDS, it is, in particular, a multiplier sequence. By [4, Theorem 3.4], the sequence must
either be of one sign or alternate in signs. Since we have �(0)p(0) = 1 and �(x)p(x) has only
finitely many positive zeros, it follows that �(k)p(k) > 0 for k = 0; 1; 2; : : :. In particular,
no nonnegative integer can be a zero of �(x)p(x). Let r1; r2; : : : ; rn denote the zeros of p(x).
The argument below together with continuity considerations will show that we may assume
that all of the zeros of p(x) are simple and so we can write 0 < r1 < r2 < : : : < rn. We may
also assume that the largest zero, rn, lies in an interval of the form (2m; 2m + 1) for some
integer m � 0; this follows from the fact that if T is a CZDS, then so is the shifted sequence



ETNA
Kent State University 
etna@mcs.kent.edu

12 On a Converse of Laguerre’s Theorem

f�(k)p(k)g1k=1 = f�(k + 1)p(k + 1)g1k=0. Since the zeros of p(x) are simple, the partial

fraction decomposition of
1

p(x)
is of the form

1
p(x)

=
1Qn

j=1(x� rj)
=

nX
j=1

Aj

x� rj
;(3.1)

where Aj =
Q

i6=j
1

rj�ri
. Note, in particular, that An > 0 since rn > ri for i < n. Now

since T is a CZDS, the sequence f 1
�(k)p(k)

g1k=0 is a �-sequence and so the application of this
sequence to the positive function e�x must give (see Remark 2.9(1))

F (x) =
1X
k=0

(�1)kxk

k!�(k)p(k)
� 0

for all x 2 IR. Since �(x) is not of the form ce�x, we may invoke Schoenberg’s theorem
(Theorem 3.3) and consequently we can write

F (x) =
1X
k=0

(�1)kxk

k!p(k)

Z
1

0
K(s)e�ks ds;(3.2)

where K(s) is a Pólya frequency function such that K(s) = 0 for s < 0. Now, by the

uniform convergence of the power series
P
1

k=0
(�1)kxk

k!p(k) (on compact subsets of IC), we may
interchange the summation with the integration, to obtain

F (x) =

Z
1

0
K(s)

1X
k=0

(�1)k(xe�s)k

k!p(k)
ds

=
Pn

j=1 Aj

Z
1

0
K(s)

 
1X
k=0

(�1)k(xe�s)k

k!(k � rj)

!
ds

=
Pn

j=1 Aj

Z
1

0
K(s)


(�rj ; xe�s)

x�rjerj s
ds;

where we have used (3.1) and where


(�; x) =
1X
k=0

(�1)kxk+�

k!(k + �)
;

for x > 0 and � 2 IC n f0;�1;�2; : : :g is a representation (via analytic continuation) of the
incomplete gamma function. For <� > 0 and x > 0, the incomplete gamma function is also
defined by 
(�; x) = Γ(�) � Γ(�; x), where Γ(�; x) =

R
1

x
e�tt��1 dt. Since all rj > 0

and rj =2 ZZ, we can express F (x), for x > 0, in the form

F (x) =
Pn

j=1 Aj

Z
1

0
K(s)

�
Γ(�rj)� Γ(�rj ; xe�s)

x�rjerj s

�
ds

= F1(x)� F2(x);
(3.3)

where

F1(x) =
nX
j=1

Ajx
rjΓ(�rj)

Z
1

0
K(s)e�rj s ds(3.4)
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and

F2(x) =
nX

j=1

Ajx
rj

Z
1

0
K(s)e�rj s

�Z
1

xe�s
e�tt�rj�1 dt

�
ds:(3.5)

We will next show that F2(x) ! 0 as x! 1. Now, the change of variables t = ue�s

in (3.5) gives

xrj e�rjs
Z
1

xe�s
e�tt�rj�1 dt = xrj

Z
1

x

e�ue
�s

u�rj�1 du

� e�xe
�s

xrj
Z
1

x

u�rj�1 du

= e�xe
�s

rj
:

(3.6)

Inequality (3.6) yields the estimate

jF2(x)j �
nX

j=1

jAjj

rj

Z
1

0
e�xe

�s

K(s) ds �
nX
j=1

jAjj

rj

Z
1

0
K(s) ds;(3.7)

and so, using (3.7) and the dominated convergence theorem, we conclude that F2(x)! 0 as
x!1. Therefore, by (3.3), (3.4) and (3.5) we can express F (x) in the form, as x!1,

F (x) = F1(x) + o(1)

= xrn

�Pn�1
j=1

AjΓ(�rj )
x
rn�rj

Z
1

0
K(s)e�rj s ds +AnΓ(�rn)

Z
1

0
K(s)e�rns ds

�
+o(1):

Since �rn 2 (�2m � 1;�2m) for some integer m � 0 and since the real entire function
1=Γ(x) is negative on the interval (�2m � 1;�2m), it follows that F (x) ! �1 as x !
1. Consequently, f 1

�(k)p(k)
g1k=0 is not a �-sequence and so we have obtained the desired

contradiction.
In the case of nonreal zeros, we need to first analyze the behavior of certain integrals

involving Pólya frequency functions. To this end, we next prove the following preparatory
result.

LEMMA 3.7. Let � = a
2 + i� and � =

p
4b�a2

2 , where a < 0; b 2 IR and 4b � a2 > 0.
Suppose that �(x) 2 L� PI, where �(x) > 0 if x > 0 and �(x) is not of the form ce�x. Let
K(s) denote the Pólya frequency function corresponding to �. For s � 0, x � 1, set

u(s; x; �) := eas=2f=[Γ(�)�Γ(�; xe�s)] cos(�s)+<[Γ(�)�Γ(�; xe�s)] sin(�s)g(3.8)

and set

E(x) :=
Z
1

0
K(s)eas=2[cos(�s)=(Γ(�; xe�s)) + sin(�s)<(Γ(�; xe�s))] ds:(3.9)

Then Z
1

0
K(s)ju(s; x; �)j ds <1(3.10)

and

lim
x!1

E(x) = 0:(3.11)
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Proof. We first note that since a < 0, we have the elementary inequality����
Z
1

0
K(s)u(s; x; �) ds

���� � 2
Z
1

0
K(s)eas=2jΓ(�)j ds+ 2

Z
1

0
K(s)eas=2jΓ(�; xe�s)j ds

= 2 jΓ(�)j
�(jaj=2) + 2

Z
1

0
K(s)eas=2jΓ(�; xe�s)j ds:

Since

jE(x)j � 2
Z
1

0
K(s)eas=2jΓ(�; xe�s)j ds;

it will suffice (for both (3.10) and (3.11)) to show that
R
1

0 K(s)eas=2jΓ(�; xe�s)j ds tends to
zero as x!1. To this end, we consider the estimatesZ

1

0

K(s)eas=2jΓ(�;xe�s)jds =

Z
1

0

K(s)eas=2

����
Z

1

xe�s

e
�t
t
��1

dt

���� ds
�

Z
1

0

K(s)eas=2

Z
1

xe�s

e
�t
t
a=2�1

dt ds

=

Z
1

0

K(s)eas=2

Z
1

x

e
�ue�s

u
a=2�1

e
�as=2+s

e
�s

du ds

�

Z
1

0

K(s)

Z
1

x

u
a=2�1

duds

= 2
jajxjaj=2

Z
1

0

K(s)ds;

(3.12)

where we have used the inequality e�ue
�s

� 1 for u > 0 and the assumption that a = �jaj <
0. Since K(s) is a Pólya frequency function, 0 <

R
1

0 K(s) ds < 1, and hence by (3.12),
both (3.10) and (3.11) follow.

PROPOSITION 3.8. Let� = a
2 +i� and � =

p
4b�a2

2 , where a < 0; b 2 IR and 4b�a2 > 0.
Suppose that �(x) 2 L� PI with �(x) > 0 if x � 0 and � is not of the form ce�x. Then the
function

F (x; a; b) =
1X
k=0

(�1)kxk

k!(k2 + ak + b)�(k)
(3.13)

changes sign infinitely often in the interval (0;1).
Proof. By assumption, � satisfies the hypotheses of Theorem 3.3 and thus there is a Pólya

frequency function K(s) such that
1

�(x)
=

Z
1

0
K(s)e�xs ds, for x � 0. (Note that since

�(0) > 0, this representation of
1

�(x)
is valid for x = 0.) Using this representation of

1
�(x)

in (3.13), for x � 1 we can express F (x; a; b) in the form

F (x; a; b) = 1
�̄��

P
1

k=0
(�1)kxk

k!

�h
1

k+�
� 1

k+�̄

i Z 1

0
K(s)e�ks ds

�

= 1
�̄��

Z
1

0
K(s)

 
1X
k=0

(�1)k(xe�s)k

k!

�
1

k + �
�

1
k + �̄

�!
ds

= � 1
�

Z
1

0
K(s)=

�

(�; xe�s)

x�e��s

�
ds;

(3.14)
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where the interchanging of the integral with the summation is justified by the uniform con-
vergence of the series in (3.13) and by (3.10) of Lemma 3.7. Now a calculation shows that
for x � 1,

=

�

(�; xe�s)

x�e��s

�
=

eas=2

xa=2
=
�
[Γ(�)� Γ(�; xe�s)]ei�(s�logx)

�
:(3.15)

Substituting (3.15) into (3.14), we obtain

F (x; a; b) = �
1

�xa=2
[I1(x; a; b) + I2(x; a; b)];(3.16)

where

I1(x; a; b) = cos(� logx)
Z
1

0
K(s)eas=2fcos(�s)=[Γ(�)� Γ(�; xe�s)]

+ sin(�s)<[Γ(�) � Γ(�; xe�s)]g ds

and

I2(x; a; b) = sin(� logx)
Z
1

0
K(s)eas=2fsin(�s)=[Γ(�) � Γ(�; xe�s)]

� cos(�s)<[Γ(�) � Γ(�; xe�s)]g ds;

where the existence of these integrals (for a < 0) follows from (3.10) of Lemma 3.7.
Next we set

A = =Γ(�)
Z
1

0
K(s)eas=2 cos(�s) ds + <Γ(�)

Z
1

0
K(s)eas=2 sin(�s) ds

and

B = =Γ(�)
Z
1

0
K(s)eas=2 sin(�s) ds �<Γ(�)

Z
1

0
K(s)eas=2 cos(�s) ds

and observe that

iA �B 6= 0:(3.17)

Indeed, since � =2 IR and <(��) = �a
2 > 0; we have

0 6=
Γ(�)
�(��)

= Γ(�)
Z
1

0
K(s)e�(��s) ds =

Z
1

0
K(s)eas=2(Γ(�)ei�s) ds = iA �B:

Now suppose that A 6= 0 and let fxng1n=1 be a sequence of positive numbers tending to
infinity such that cos(� logxn) = (�1)n. Then sin(� logxn) = 0, and so by (3.16) we obtain

F (xn; a; b) = �
1

�x
a=2
n

I1(xn; a; b) = �
(�1)n

�x
a=2
n

(A� E(xn));

where E(x) is defined by (3.9) in Lemma 3.7. Also since by Lemma 3.7, limn!1E(xn)
= 0, and since A 6= 0, we conclude that F (x; a; b) changes sign infinitely often in the interval
(0;1): If, on the other hand, A = 0, then by (3.17), B 6= 0 and the above argument, mutatis
mutandis, shows that the conclusion of the proposition remains valid in this case as well.
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16 On a Converse of Laguerre’s Theorem

THEOREM 3.9. Suppose that �(x) 2 L� PI, �(x) > 0 if x > 0, where �(x) is not of
the form ce�x. Let p(x) be a real polynomial all of whose zeros lie in the right half-plane
<z > 0. Let h(x) = p(x)�(x). If the sequence T = fh(k)g1k=0 is a CZDS, then all the zeros
of p(x) are real.

Proof. Assume the contrary so that h(x) may be expressed in the form h(x) = g̃(x)(x2+

ax + b)�(x); where x2 + ax + b = (x + �)(x + �̄) and � = a
2 + i� , � =

p
4b�a2

2 ,
4b � a2 > 0 and <� = a

2 < 0. Then the polynomial g̃(x) gives rise to the entire functionP
1

k=0
g̃(k)(�1)kxk

k! = g(x)e�x, where g(x) is a polynomial. We next approximate the entire

function g(x)e�x by means of the polynomials qn(x) = g(x)
h�

1� x
2n

�2n
+ �n

i
, where

�n > 0 and limn!1 �n = 0 (see Remark 2.9(1)). We note, in particular, that qn(x) has
exactly the same real zeros as g(x) has. Moreover, as n!1, qn(x)! g(x)e�x uniformly
on compact subsets of IC. If we set Λ = f 1

h(k)
g1k=0, then by Proposition 3.8, the function

Λ[g(x)e�x] = F (x; a; b) =
1X
k=0

(�1)kxk

k!(k2 + ak + b)�(k)

has infinitely many sign changes in the interval (0;1). Also, as n!1, fn(x) := Λ[qn(x)]
converges to F (x; a; b) uniformly on compact subsets of IC. Thus, for all sufficiently large
n, each of the approximating polynomials fn(x) has more real zeros than g(x) has. Since T
is a CZDS, Zc([T [fn(x)]) � Zc(fn(x)), and since deg qn = deg fn consequently, for all n
sufficiently large, the polynomial T [fn(x)] = T [Λ[qn(x)]] = qn(x) has more real zeros than
g(x) has. This is the desired contradiction.

THEOREM 3.10. Suppose that �(x) 2 L� PI, �(x) > 0 if x > 0. Let p(x) be a real
polynomial with no nonreal zeros in the left half-plane<z < 0. Suppose that p(0)�(0) = 1
and set h(x) = p(x)�(x). Then T = fh(k)g1k=0 is a CZDS if and only if p(x) has only real
negative zeros.

Proof. If p(x) has only real negative zeros, the theorem follows from Laguerre’s theorem.
Conversely, suppose T is a CZDS. We may assume, without loss of generality, that all the
zeros of p(x) lie in the right half-plane; indeed, by the assumption, the zeros of p(x) in the
left half-plane are all real and these may be incorporated into �(x). The case where �(x) is
of the form ce�x is covered by Proposition 3.1. Otherwise, Theorem 3.9 implies that p(x)
has only real zeros and, by Theorem 3.6, p(x) can have only real negative zeros.

The corresponding problem when the nonreal zeros of p(x) lie in the left half-plane
is still open. Note that the technique employed here was to show that the existence of
nonreal zeros in the right half-plane implied that a certain reciprocal sequence was not a
�-sequence. This is no longer true if the nonreal zeros lie in the left half-plane. There are also
specific examples which show that one does not get a CZDS in any generality. To wit, take
f(k2 + k + 1) cosh(

p
k +m)g1k=0 and apply it to (x + 1)6(x2 + x=2 + 1=5). The resulting

polynomial will have four nonreal zeros if m � 4.
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