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ON A CONVERSE OF LAGUERRE'STHEOREM *

THOMAS CRAVEN AND GEORGE CSORDAS!

Abstract. The problem of characterizing all real sequences {~ };2, with the property that if p(x) =
ZZ:O aiz® is any real polynomial, then ZZ:OW axz® has no more nonreal zeros than p(x), remains open.
Recently, the authors solved this problem under the additional assumption that the sequences {~; }$2 , with the
aforementioned property, can be interpolated by polynomials. The purpose of this paper is to extend this result to
certain transcendental entire functions. In particular, the main result establishes a converse of a classical theorem of
Laguerrefor these transcendental entire functions.
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1. Introduction. In the theory of distribution of zeros of polynomias, the following
open problemis of central interest. Let 1D be asubset of the complex plane. Characterize the
linear transformations, 7', taking complex polynomialsinto complex polynomials such that
if pisapolynomia (either arbitrary or restricted to a certain class of polynomias), then the
polynomial T[p] has at least as many zerosin D as p has zerosin D. There is an anaogous
problem for transcendental entire functions. For special linear transformations, a complete
characterization isgiven in [3] for the case when D isa convex region containing the origin.
(For related questions and results see, for example, [2], [7, Ch. 2, Ch. 4],[8], [9, Ch. 7], [12,
Ch. 3-5] and [14, Ch. 1-2].) Inthe classicd setting (1 = IR) the problem (solved by Polya
and Schur [17]) isto characterize all real sequences 7" = {1 }72,, 7+ € R, suchthat if area
polynomial p(z) = >";_,ax2" hasonly rea zeros, then the polynomial

n

n
apl ] = YeQpX
k=0

k=0

(1.1) Tlp(e)] =T

also hasonly rea zeros (see (2.2) and (2.3) below). The purpose of this paper isto continue
our investigationin[5] of thefollowingmoregenerd problem. Characterizeall real sequences
T = {1 }720 7% € IR, suchthat if p(z) isany real polynomial, then

(12) Ze(Tlp(2)]) < Ze(p(2)),

where Z.(p(x)) denotes the number of nonreal zeros of p(x), counting multiplicities. In
order to facilitate the description of our results, in Section 2 we first recall some definitions
and terminology, and review some facts that will be needed in the sequel. The new results
(Theorem 3.6, Theorem 3.9 and Theorem 3.10), which establish a converse of Laguerre's
theorem for certain transcendental entire functions, are proved in Section 3. The techniques
used in the proofshinge on the properties of multiplier sequences(Definition 2.2), A-sequences
(Definition 2.8) and Schoenberg’s celebrated theorem (see Theorem 3.3) on the representation
of thereciprocal of functionsin the Laguerre-Polya class (Definition 2.1).

2. Background information and a review of previous results. Functions in the
Laguerre-Polya class are defined as follows.

* Received February 21, 1997. Accepted for publication April 5, 1997. Communicated by R. S. Varga.
t Department of Mathematics, University of Hawaii, Honolulu, HI 96822 (U.S.A.), (tom@math.hawaii.edu)
(george@math.hawaii.edu)

7



ETNA

Kent State University
etna@mcs.kent.edu

8 On a Converse of Laguerre's Theorem

DEFINITION 2.1. Areal entirefunction ¢(z) 1= 3,2, 32" issaidto beinthe Laguerre-
Polyaclass, denoted ¢(x) € £ — P, if ¢(x) can be expressed in the form

@1 o) = e I (14 2) o,

x
k=1 k

wherec, 3,z € R, ¢,z # 0, > 0, n isanonnegativeinteger and 5,7, 1/22 < co. If
—oo <a<b<ocandifg(x) € L — P hasall itszerosin (a, b) (or [, b]), then we will use
thenotationg € £ — P(a,b) (or ¢ € L — Pla,b]). Ifyx > 0(or (=1)*y; > 0or —v; > 0)
forallk =0,1,2...,then¢ € £ — P issaidto beof typel in the Laguerre-Polyaclass, and
we will write¢ € £ — PI. Wewill alsowrite¢ € £L —PIt,if¢ € £L—PIandify, >0
forallk=0,1,2...

In order to clarify the terminology above, we remark that if ¢ € £ — PI, then ¢ €
L —P(—o0,0]0r ¢ € L — P[0, c0), but that an entire function in £ — P (—o0, 0] need not
belong to £ — PI. Indeed, if ¢(x) = Tlx) where I'(#) denotes the gamma function, then
¢(x) € L. —P(—00,0], but ¢(x) ¢ £ —PI. Thiscan be seen, for example, by noting that
functionsin £ — P are of exponential type, whereas r%x isan entire function of order one
of maximal type (see[1, p. 8] or [11, Chapter 2] for the c;eﬁnition of the “type” of an entire
function). Also, itiseasy toseethat £ — PIt = £ — PI(—c0,0].

DEFINITION 2.2. Asequence’’ = {7 } ;2 Of real numbersiscalled amultiplier sequence
if, whenever the real polynomial p(z) = > ;_oaxz* has only real zeros, the polynomial
Tlp(2)] = Y7 _ovrarz® also hasonly real zeros.

The following are well-known characterizations of multiplier sequences (cf. [17], [16,
pp. 100-124] or [14, pp. 29-47]). A sequence T = {~; }72, isamultiplier sequence if and
only if

(2.2) (x) = T[e"]:= > %xk eL—PI
k=0

Moreover, the algebraic characterization of multiplier sequences asserts that a sequence
T = {7 }72o isamultiplier sequenceif and only if

(2.3) In(2) ::Z(?)erﬁ—m foraln=1,23....
j=0

DEFINITION 2.3. We say that a sequence {v; } 72, isa complex zero decreasing sequence
(CzZDS), if

(2.4) Z: (Z 'ykakxk) < Z. (Z akl‘k) ;
k=0

k=0

for any real polynomial "7 _, axz*. (The acronym CZDSwill also be used in the plural.)
Now it followsfrom (2.4) that any complex zero decreasing sequence isalso amultiplier
sequence. If T = {v; }32, is a sequence of nonzero real numbers, then inequality (2.4) is
equivalent to the statement that for any polynomial p(z) = > _,axa®, T[p] has at least as
many real zeros as p has. There are, however, CZDS which have zero terms (cf. [5, Section
3]) and consequently it may happen that deg T'[p] < degp. When counting the real zeros of
p, the number generally increases with the application of 7", but may in fact decrease dueto a
decrease in the degree of the polynomial. For this reason, we count nonreal zeros rather than
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real ones. The existence of a nontrivial CZDS is a consequence of the following theorem
proved by Laguerre and extended by Polya (see Pblya[15] or [16, pp. 314-321]).

THEOREM 2.4. (Laguerre[14, Satz 3.2)])

1. Let f(z) = > 4_oaxz" be an arbitrary real polynomial of degree n and let (x)
be a polynomial with only real zeros, none of which liein the interval (0, »). Then
Ze(S o h(k)axa®) < Zo(f(x)).

2. Let f(z) = >4 _oarx® beanarbitrary real polynomial of degree n, let ¢ € £ — P
and suppose that none of the zeros of ¢ liein theinterval (0, n). Then theinequality
Ze(S ko d(k)axa®) < Zo(f(x)) holds

3. Let¢ € L — P(—0, 0], then the sequence {¢(k) }72 4 isa complex zero decreasing
sequence.

REMARK 2.5. (8) We remark that part (2) of Theorem 2.4 followsfrom (1) by a limiting
argument.  (b) For several analogues and extensions of Theorem 2.4, we refer the reader
to S Karlin[9, pp. 379-383], M. Marden [12, pp. 60-74], N. Obreschkoff [14, pp. 6-8,
42-47] and L. Weisner [20].

One of thekey resultsin [5] isthe following converse of Laguerre's theorem in the case
when ¢ (see part (3) of Theorem 2.4 above) isapolynomial.

THEOREM 2.6. ([5, Theorem 2.13]) Let ~(z) be a real polynomial. The sequence
T = {h(k)}32, isacomplex zero decreasing sequence (CZDS) if and only if either

1. ~(0) # Oand all the zeros of h are real and negative, or

2. h(0) = 0and the polynomial A(x) hastheform

(2.5) hz)=az(z—1)(z—-2)-- x—m—l—le—b

where m isa positiveinteger andb; < mforeachi=1,...,p.
Thus, Theorem 2.6 characterizes the class of al polynomias which interpolate CZDS.
In contrast, the converse of Laguerre’s theorem fails, in genera, for transcendental entire
functions, as the following exampl e shows.
EXAMPLE 2.7. Let p(z) be a polynomial in £ —P(—o0,0) (so that the sequence
{p(k)}32oisaCzZDS). Then

$1(x) = - + p(x) and $2(z) = 9n(mz) + p(x)

aretranscendental entire functionswhich inter polatethe same sequence {p(k) } 72, but these
entire functionsare not in £ — P. Thus, in thetranscendental case additional hypotheses are
required in order that the converse of Laguerre's theorem should hold.

Our main result (Theorem 3.10) shows that that the converse of Laguerre’'s theorem is
valid for (transcendental) entirefunctionsof theform ¢(z)p(z), where ¢(z) € £L — PI+ and
p(z) isareal polynomia which has no nonreal zeros in the left half-plane.

A sequence {~y, } 2, which can be interpolated by afunction ¢ € £ — P(—o0, 0), that
is, ¢(k) =~ fork=0,1,2- -, will be caled aLaguerre multiplier sequence or a Laguerre
sequence. It followsfrom Theorem 2.4 that aLaguerre sequenceisa CZDS, and in particular,
a multiplier sequence. The reciprocals of Laguerre sequences are examples of sequences
which are termed in the literature (cf. lliev [7, Ch. 4] or Kostova[10Q]) as A-sequences and
are defined as follows.

DEFINITION 2.8. A sequence of nonzero real numbers, A = {A;}72,, iscalled a A-
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sequence, if

(26) Np(2)] = A

n n
Zakxk] = Zx\kakxk > O0forall z € IR,
k=0 k=0

whenever p(z) = ") _garz® > Oforall z € R.

REMARK 2.9. (1) Weremark that if A isa sequence of nonzero real numbersand if Afe~7]
isan entire function, then a necessary condition for A to be a A-sequence, isthat Ale=*] > 0
for all real z. (Indeed, if Ale="] < Ofor = »0, then continuity considerations show that
thereis a positiveinteger n such that A[(1 — £)%* + 1] < Ofor & = z0.)

(2) In[7, Ch. 4] (see dso[10]) it was pointed out by Iliev that A-sequences are precisdy the
positive definite sequences. (There are several known characterizations of positive definite
sequences (seg, for example, [13, Ch. 8] and [19, Ch. 3]).)

The importance of A-sequences in our investigation stems from the fact that a necessary
condition for a sequence 7' = {vx}72,, 7+ > O, to be a CZDS is that the sequence of
reciprocas A = {%}?:o be a A-sequence. Thus, for example, the reciprocal of a Laguerre
multiplier sequenceisa A-sequence. On the other hand, there are multiplier sequences whose
reciprocals are not A-sequences. For example, in [5, Example 1.8] we have demonstrated
that the sequence 7' := {1+ k + k?}52, isamultiplier sequence, but that the sequence of
reciprocals, {ﬁ}ﬁo is not a A-sequence.

3. A converse of Laguerre’stheorem for transcendental entire functions. It follows
from Example 2.7 that Theorem 2.6 does not hold, in generd, for transcendentd entire
functions. Here we will restrict our attention to entire functions of the form ¢(x)p(x), where
#(z) € L—"PI" and p(x) isarea polynomia. Our god isto show that if p(z) has no
nonreal zerosintheleft half-plane itz < O, thenthesequence " = {p(k)¢(k)}5L,isaCZDS
if and only if p(«) has only real negative zeros. To this end, we will state and prove severd
preliminary results.

PropPoSITION 3.1. Let 5 € IR and let p(«) be a real polynomial. If p(0) # O, then the
sequence {p(k)e?*}52 o isa CZDSif and only if p(x) hasonly real negative zeros.

Proof. If p(x) has only real negative zeros, then T' = {p(k)e*}5, is a CZDS by
Laguerre's theorem (see part (3) of Theorem 2.4). To prove the converse, we first note that
if {ar}izo and {b;}72, (ax, br > 0) are two CZDS, then their Hadamard product, thét is
{arbr}52,, isaso aCzZDS. Since {e=#*}%°  isaCZDS and {p(k)e’*}52 , isa CZDS by
assumption, it follows that the sequence {p(k)};2, is a CZDS. Therefore, by part (1) of
Theorem 2.6, p(x) has only real negative zeros. O

In order to work with arbitrary functionsin £ — P, we require some additional back-
ground information. In particular, in the proofs we will appeal to Schoenberg’s theorem
(Theorem 3.3) on the representation of the reciprocal of afunction ¢ € £ — P interms of
Polyafrequency functions. These functions are defined as follows.

DerNITION 3.2. Afunction K : R — IR is a frequency function if it is a nonnegative
measurable function such that

O</ K(s)ds < .

oQ

A frequency function K is said to be a Polya frequency function if it satisfies the following
condition. For every two sets of increasing real numbers sy < sp < ... < s, andi; < 2 <
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<ty (n=1,23...), thedeterminantal inequality

I((Sl — tl) I((Sl — tz) N I((Sl — tn)
]((52 — tl) ]((52 — tz) N ]((52 — tn) >0
K(sp—t1) K(sn—1t2) ... K(sp—1)

holds.

THEOREM 3.3. (Schoenberg [18, p. 354]) Supposethat ¢(z) € £ — PI, ¢(x) > 0if
z > 0, where ¢(z) isnot of the form ce”®. Then the reciprocal of ¢ can be represented in the
form

1
¢(2)

where K (s) is a Polya frequency function such that K(s) = 0if s < 0 and the integral

:/ eT** K(s)ds, Rz > 0,
0

) 1 . ,
converges up to thefirst pole of o) Conversely, supposethat A (s) is a Polya frequency
z

function such that K'(s) = 0 for s < 0 and the integral converges for %tz > 0. Then this
integral represents, in the half-plane Rz > 0, the reciprocal of a function ¢(z) € £ — P1I,
where ¢(z) isnot of the formce?”.

For the reader’s convenience, we aso include here some information concerning the
asymptotic behavior of Polyafrequency functions.

THEOREM 3.4. ([6, p. 31 and p. 108]) Supposethat ¢(z) € £ — PI with ¢(z) > Oif
z > 0, where ¢(z) is not of the form ce”®. Let K(s) denote the Polya frequency function
corresponding to ¢. Then

K(s) = e~lmlsg(s) + O(eI"l%) (s — o0),

where 1 isthelargest (negative) zero of ¢(x), ¢(s) isareal polynomial and || > |z4].

REMARK 3.5. In [18, p. 358], Schoenberg has also established results pertaining to the
continuity properties of the Polya frequency kernels. In particular, Schoenberg has shown
that if ¢(z) € £ —PI (¢(0) # 0) hasn > 2 nonzero roots, then the corresponding Polya
frequency function K (s) isin C"~%(IR). 1f n = 1, then K (s) is discontinuous and K (s) is
essentially of theform K (s) = e~ if s > Oand K (s) = 0if s < 0.

THEOREM 3.6. Let ¢(z) € L —PIT where ¢(z) is not of the form ce”, ¢, 8 € R.
Let p(x) be a polynomial having only real zeros, and suppose that ¢(0)p(0) = 1. Then the
sequence ' = {¢(k)p(k)}32, isa CZDSif and only if p has only real negative zeros.

Proof. If p(z) has only real negative zeros, then ¢(z)p(z) € L—PI and T is a
CZDS by Laguerre'stheorem. Conversely, supposethat 7' isaCZDS. Assumethat p(x) hasa
positivezero; we shall show that thisleads to a contradiction. We may assume, without |0ss of
generality, that p(x) hasonly positivezerosasthenegativeonescan beincludedin¢(x). Since
T'isaCzDS, itis, inparticular, amultiplier sequence. By [4, Theorem 3.4], the sequence must
either be of onesign or aternatein signs. Sincewehave ¢(0)p(0) = 1and ¢(x)p(x) hasonly
finitely many positive zeros, it followstha ¢(k)p(k) > Ofor k = 0,1,2,.... In particular,
no nonnegativeinteger can beazero of ¢(x)p(x). Let r1, ry, . . ., ry denotethezeros of p(z).
The argument bel ow together with continuity considerations will show that we may assume
that al of thezeros of p(«) are simpleand sowecanwrite0 < r1 < rp < ... < r,. Wemay
also assume that the largest zero, r,,, liesin an interval of the form (2m, 2m + 1) for some
integer m > 0; thisfollowsfrom the fact that if 7" isa CZDS, then so isthe shifted sequence



ETNA

Kent State University
etna@mcs.kent.edu

12 On a Converse of Laguerre's Theorem

{o0(k)p(k)}oz, = {o(k + Dp(k + 1)}32,. Since the zeros of p(x) are smple, the partial
fraction decomposition of 1 isof theform
p(x)

1
(3.1 o) - TS 1< Z Py

where 4; = [[;; 7= Note, in particular, that A, > Osincer, > r; fori < n. Now
sincel"isaCzDS, thesequence{m}kz0 isa A-sequence and so the application of this
sequence to the positive function e =% must give (see Remark 2.9(1))

B 00 (_1)kxk
2= 2 Tigta 2 °

for dl = € IR. Since ¢(x) is not of the form ce®, we may invoke Schoenberg's theorem
(Theorem 3.3) and conseguently we can write

o k k
(3.2 Z k' / K(s)e " ds,

k=0
where K(s) is a Polya frequency function such that A( ) = O0for s < 0. Now, by the
uniform convergence of the power series 37~ kl (on compact subsets of C), we may

interchange the summation with the integration, to obtal n

e« (=D (ze5)F
F(x) :/0 A(s)é%ds

" e« L (=1)F (zem)F
— zjzlAj/o K(s) (;) %) ds
_ Z?;lflj/o K(S)’V(;rj,xe—s

where we have used (3.1) and where

) ds,
—TjeTis

k k+oz

Zkk—l—a’

=0

forz >0and o €C\ {0,—1,-2,...} isarepresentation (via analytic continuation) of the
incomplete gamma function. For 8o > 0 and = > 0, the incomplete gamma functionis also
defined by (o, z) = M) — T(e, z), where I (o, z) = fxoo e~'t*=1dt. Sincedl r; > 0
andr; ¢ Z, wecan express F(z), for z > 0, intheform

_ —n ' R F(—r;)=T(=r;,ze™*) X
(33) P =k [ KO [ d
= Fy(e) — Fale),

where

(34) File) = Y Ay M) | weere
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and
(35) Fy(x) = ]Z:ij” /0 T K(s)e ( /

We will next show that F»(#) — 0 asz — oo. Now, the change of variablest = ue™*
in (3.5) gives

(o)
e~ dt) ds.

e—s

(o] (o]
[ . — -s — fq—
x’“]e"“]s/ e~ dt :x’"]/ emt Ty
xr xr

€

(3.6) <e_”_sa:’”j/ w i du

—xze™

€

T

Inequality (3.6) yieldsthe estimate
S A e A
(3.7) | Fo(a)| < — e~ K(s)ds < — K(s)ds,
S EPPy Odb<3 T8,

and so, using (3.7) and the dominated convergence theorem, we conclude that F»(z) — 0 as
© — oo. Therefore, by (3.3), (3.4) and (3.5) we can express F'(z) intheform, asz — oo,

F(e) = Fy(e) + o(1)
=z"" [Z?;ll w ; K(s)e ™ *ds + Anr(—rn)/o K(s)e™™* ds]—i—o(l).

Since —r, € (—2m — 1, —2m) for some integer m > 0 and since the real entire function
1/l (z) is negative on the interval (—2m — 1, —2m), it followsthat F'(z) — —co sz —
oo. Consequently, {m}fzo is not a A-sequence and so we have obtained the desired
contradiction. [0

In the case of nonreal zeros, we need to first analyze the behavior of certain integrals
involving Pblya frequency functions. To this end, we next prove the following preparatory
result.

LEMMA 37. Leta = & +irand 7 = ¥ 4’72_‘12, wherea < 0, b € Rand 4b — a? > 0.
Supposethat ¢(z) € £ — P11, where ¢(z) > 0if z > 0and ¢(x) isnot of theform ce””. Let
K (s) denote the Polya frequency function corresponding to ¢. For s > 0, z > 1, set

(38) (s, z, o) = ¥/ 2 (o) =T (e, ze™*)] cos(75)+R[M (o) = (e, ze*)] sin(7s)}
and set

(39 E(x):= /000 K (5)e*/?[cos(s)( (a, we™*)) + sin(ms)R(M (a, we™*))] ds.

Then

3.10 Oo(susx,oz ds < o0
(310) | EGlts )15 <
and

(3.12) lim E(z)=0.

r— 00
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Proof. Wefirst notethat since a < 0, we have the e ementary inequality

/K(aIs,x,a)ds §2/ K(s)eas/2|r(a)|d5—|—2/ K(5)e®/?|M (o, ze™*)| ds
0

0 o 0
Sy IR, /0 K(s)e* /2|1 (a, ze=*)| ds.

Since
|E(x)] < 2/ K(s)e™/2|T (o, ze™*)| ds,
0

itwill suffice (for both (3.10) and (3.11)) to show that [~ K (s)e®*/2|T (o, we™*)| ds tendsto
zero asx — oo. To thisend, we consider the estimates

/ K(s)eas/2|r(a,xe_s)| ds = / K(s)eas/2 / e~ dt| ds
0 Q xe~ S
< K(s)e‘”/2 e~ gt ds
Qo %85°
(3.12) = K(s)eas/2 eTueT g2 e mas /2= gy s
Q x
< / K(s)/ ' duds
0 o
= —|a|:r|2a|/2 K(s)ds,
where we have used theinequality e ¢~ < 1foru > Oand theassumptionthat a = —|a| <

0. Since K (s) isaPolyafrequency function, 0 < f0°° K(s)ds < oo, and hence by (3.12),
both (3.10) and (3.11) follow. O

PROPOSITION 3.8. Leta = S+iTandr = —V“bz_az,wherea <0, b€ Rand4b—a? > 0.
Supposethat ¢(z) € £ — PI with¢(z) > 0if z > 0and ¢ isnot of the form ce#*. Then the
function

(3.13) F(z,a,b)= i (-1
' U = kl(k? + ak + b)o (k)

changes sign infinitely oftenin theinterval (0, o).
Proof. By assumption, ¢ satisfiesthe hypotheses of Theorem 3.3 and thusthereisa Polya

frequency function K (s) such that % = / K(s)e™"* ds, for z > 0. (Notethat since
z 0

#(0) > 0, thisrepresentation of % isvalid for x = 0.) Using this representation of %

in (3.13), for z > 1 wecan express F'(z, a, b) intheform

[e%) —1)kgk
Ple.a) = 72 50 S92 ([ - o]

oo (S )

k=0

= —%/ K(s)S (M) ds,
0 xoée—oés
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where the interchanging of the integral with the summation is justified by the uniform con-
vergence of the seriesin (3.13) and by (3.10) of Lemma 3.7. Now a calculation shows that
forz > 1,

1 o (L) = S (i) - M w0 00).

rle—as 13(1/2\y

Substituting (3.15) into (3.14), we obtain

(3.16) F(x,a,b) = —?](;/Z[Il(x,a,b)—l—fz(x,a,b)],
where
Ii(x,a,b) = cos(rlogx) /000 K(s)e®/?{cos(rs)3[(a) — [ (cx, ze™*)]
+sn(rs)R[Me) — (e, ze™*)]} ds
and

oQ

I(z,a,b) =s€n(r |Oga:)/0 K(s)e®/2{sin(rs)S[(a) — (o, ze™*)]
—cos(rs)R[[(«) — T(er, xe™%)]} ds,

where the existence of these integrals (for « < 0) followsfrom (3.10) of Lemma 3.7.
Next we set

A =3l (a) /000 K(s)eas/z cos(s) ds + R () /000 K(s)eas/zsin(rs) ds
and
B =3l(«) /000 K(s)eas/zsin(rs) ds — Rl (&) /000 K(s)eas/z cos(7s) ds

and observe that
(3.17) iA—B#0.
Indeed, since« ¢ Rand R(—a) = —5 > 0, we have

0+ =T(a) /000 K(s)e™ (=) ds = /00 K(s)e®/?(M(«)e'™ ) ds = iA — B.

0

Now suppose that A # 0 and let {z,}>>; be a sequence of positive numbers tending to
infinity such that cos(r log«,,) = (—1)”. Thensin(r logz,) = 0, and so by (3.16) we obtain

Tp,a,b) = —ﬂ(A — FE(z,)),

2
g

F(l‘n, a, b) = —WI]_(
TEn

where E(x) is defined by (3.9) in Lemma 3.7. Also since by Lemma 3.7, lim, .o, F(z,)
= 0,andsince A # 0, we concludethat F'(z, a, b) changessign infinitely often in theinterval
(0, 20). If, on the other hand, A = 0, then by (3.17), B # 0 and the above argument, mutatis
mutandis, shows that the conclusion of the proposition remainsvalid in thiscase aswell. O
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16 On a Converse of Laguerre’s Theorem

THEOREM 3.9. Supposethat ¢(x) € £ —PI, ¢(x) > 0if z > 0, where ¢(x) is not of
the form ce””. Let p(=) be a real polynomial all of whose zeros liein the right half-plane
Rz > 0. Let h(z) = p(z)¢(z). Ifthesequence T = {h(k)}32L,isa CZDS, thenall the zeros
of p(x) arereal.

Proof. Assumethecontrary sothat h(xz) may beexpressed intheformh(z) = §(z)(22+

az + b)g(z), where 22 + ax + b = (z + a)(z + a) and o = SHar, T = 4172_(12,
4b — a®> > 0and N = 5 < 0. Then the polynomial j(x) givesrise to the entire function

> e W = g(z)e~", where g(z) isapolynomial. We next approximate the entire

function g(z)e~" by means of the polynomias ¢,(z) = g(x) [(1— %)Zn + en], where
€n > 0and lim,_ €, = 0 (see Remark 2.9(1)). We note, in particular, that ¢,(x) has
exactly the same real zeros as g(z) has. Moreover, asn — oo, ¢,(2) — g(x)e~" uniformly
on compact subsetsof C. If weset A = {le)};ozo, then by Proposition 3.8, the function

o B %] (—1)kxk
Ng(z)e™*] = F(x,a,b) = kZ:% KI(kZ+ ak + b)g(k)

has infinitely many sign changesin theinterval (0, co). Also, asn — o0, f,(2) := N[gn(2)]
converges to F'(x, a, b) uniformly on compact subsets of €. Thus, for al sufficiently large
n, each of the approximating polynomials f, (x) has morereal zerosthan g(«) has. Since T’
isaCzDS, Z.([T[fn(x)]) < Z:(fn(2)), and since deg ¢, = deg f,, consequently, for al n
sufficiently large, the polynomid T f, ()] = T[A[¢n(2)]] = ¢»(x) hasmore red zeros than
g(x) has. Thisisthe desired contradiction. O

THEOREM 3.10. Supposethat ¢(z) € L — PI, ¢(x) > Oif x > 0. Let p(x) beareal
polynomial with no nonreal zeros in the left half-plane 2 < 0. Suppose that p(0)¢(0) = 1
and set h(x) = p(x)o(x). ThenT = {h(k)};2,isa CZDSif and only if p(x) hasonly real
negative zeros.

Proof. If p(z) hasonly real negativezeros, thetheorem followsfrom Laguerre' stheorem.
Conversaly, suppose 7' is a CZDS. We may assume, without loss of generdlity, that al the
zeros of p(x) liein the right half-plane; indeed, by the assumption, the zeros of p(x) in the
left half-plane are al real and these may be incorporated into ¢(x). The case where ¢(z) is
of the form ce?® is covered by Proposition 3.1. Otherwise, Theorem 3.9 implies that p(z)
has only real zeros and, by Theorem 3.6, p(x) can have only real negative zeros. O

The corresponding problem when the nonreal zeros of p(x) lie in the left half-plane
is still open. Note that the technique employed here was to show that the existence of
nonreal zeros in the right half-plane implied that a certain reciproca sequence was not a
A-sequence. Thisisno longer trueif the nonreal zeroslieintheleft haf-plane. There are aso
specific examples which show that one does not get a CZDS in any generality. To wit, take
{(k? + k + 1) cosh(vk + m)}52 , and apply it to (= + 1)%(2? + /2 + 1/5). Theresulting
polynomia will have four nonreal zerosif m > 4.
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