
ETNA
Kent State University and

Johann Radon Institute (RICAM)

Electronic Transactions on Numerical Analysis.
Volume 50, pp. 109–128, 2018.
Copyright c© 2018, Kent State University.
ISSN 1068–9613.
DOI: 10.1553/etna_vol50s109

PROBABILITY, MINIMAX APPROXIMATION, AND NASH-EQUILIBRIUM.
ESTIMATING THE PARAMETER OF A BIASED COIN∗
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Abstract. This paper deals with the application of approximation theory techniques to study a classical problem
in probability: estimating the parameter of a biased coin. For this purpose, a minimax estimation problem is considered,
and the characterization of the optimal estimator is shown together with the weak asymptotics of such optimal choices
as the number of coin tosses approaches infinity. In addition, a number of numerical examples and graphs are provided.
At the same time, the problem is also discussed from the game theory viewpoint, as a non-cooperative, two-player
game, and the existence of a Nash-equilibrium is established. The particular case of n = 2 tosses is completely
solved.
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1. Introduction. The following problem is well known in the area of probability: a
biased coin is given, but the probability of heads is unknown. We flip it n times and get k
heads. The problem is to estimate the probability of heads. The most typical approach to solve
this problem is the maximum likelihood method; see, e.g., [13, 21]. Let p = P (heads). Then

P (k heads out of n tosses) =

(
n

k

)
pk(1− p)n−k.

Since we have absolutely no information about p, we choose an estimator p̂ ∈ [0, 1] for which
this expression is maximal, that is, p̂ = k/n. This approach has several shortcomings:

1) For small n we get unrealistic estimations. For example, if n = 1 and we get a head,
then the method gives the estimation p = 1, and if we get a tail, then the method gives p = 0.

2) the method yields the most likely value of p but does not take into account the error in
the estimation. This can be seen in the following example: suppose we flip the coin n = 4
times and get k = 2 heads; of course, p̂ = 0.5. However, while in the literature a coin is
often considered “reasonably fair” when 0.45 ≤ p ≤ 0.55, in this case it is easy to verify
that P ((|p− 0.5| > 0.05) | (n = 4, k = 2)) = 0.8137 . . ., assuming p is chosen following a
uniform distribution, and thus, the probability of dealing with a biased coin is high despite the
maximum likelihood estimator.

Another approach for estimating the probability p of a biased coin deals with Bayesian or
minimax estimation. While in the former the goal is to minimize the average risk, in the latter
the aim is to minimize the maximum risk. Nevertheless, there are other well-known methods
such as the so-called Uniform Minimum Variance Unbiased (UMVU) Estimator; see [13].
These methods require the use of a loss function, which measures the difference between the
parameter and its estimator. In the current paper, the loss function |p− ai| will be considered,
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where ai is the estimation of p if i heads are obtained after n tosses, for i = 0, . . . , n . Then,
the expected value of this loss function, commonly called risk or penalty function, is given by

(1.1) D(a0, . . . , an; p) :=

n∑
k=0

(
n

k

)
pk(1− p)n−k|p− ak|,

and our goal will be to choose the ai’s that minimize the sup-norm of D. Figure 1.1 below,
corresponding to the case of n = 5 tosses, illustrates the motivation for our analysis. It displays
the penalty functions for the maximum likelihood choice (i.e., ak = k/n, k = 0, . . . , n) and
for the choice of the ai’s that we will prove to be optimal; see Section 2. Indeed, the sup-norm
of the penalty functionD for the optimal choice is clearly smaller than the one corresponding to
the maximum likelihood approach. Moreover, Figure 1.1 shows that the optimal choice satisfies
what we call hereafter the “equimax” property. This is very similar to the characterization
of the set of interpolation nodes to reach the optimal Lebesgue function, as conjectured by
Bernstein and Erdős and proved forty years later by Kilgore [12] and de Boor-Pinkus [3]. This
similarity served as an important motivation to apply approximation theory techniques for
investigating this problem, and it will be discussed in more detail in Section 2.

FIG. 1.1. Graph of D(a0, . . . , an; p) in the case of n = 5 tosses: maximum likelihood (green), optimal choice
(red), and the maximum value of the penalty function for the optimal choice (black).

In the statistics literature, one often prefers the use of squares instead of absolute values
in (1.1), that is, the minimization of

(1.2) D̂(a0, . . . , an; p) :=

n∑
k=0

(
n

k

)
pk(1− p)n−k(p− ak)2, p ∈ [0, 1] ,

is considered because of its analytical tractability and easier computations. Indeed, for the
penalty function (1.2), the optimal (minimax) strategy {a0, . . . , an} is explicitly computed;
see [13]:

(1.3) ak =
1

2
+

√
n

1 +
√
n

(
k

n
− 1

2

)
, k = 0, . . . , n .

Of course, this is the optimal strategy when measuring the loss using the least-squares norm
but not in our “uniform” setting. In Figure 1.2 below, we augment Figure 1.1 with the plot
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FIG. 1.2. Graph of D(a0, . . . , an; p) in the case of n = 5 tosses: maximum likelihood (green), optimal choice
(red), and the quadratic optimal choice (blue).

of the penalty function D for the strategy (1.3). Figure 1.2 shows that the behavior of the
Squared Error Minimax Estimator (hereafter, SEME) is similar to the optimal choice, or even
a bit better, towards the center of the interval, but it is clearly worse close to the endpoints of
the interval. Thus, for n = 5, the sup-norm of the penalty function D for the SEME is 0.1545,
while for our Absolute Error Minimax Estimator (AEME) it is 0.131. More generally, as
mentioned above, along with the minimax estimators, the so-called Bayes estimators are also
often employed; see [13, Ch. 4]. In this setting, given a loss function R(θ, δ), some “prior”
distribution Λ for the parameter θ to be determined (in our case θ = p) is selected, and the
estimator δΛ is chosen in order to minimize the weighted average risk

(1.4) r(λ, δ) =

∫
R(θ, δ) dΛ(θ),

also called Bayes risk. As established in [13, Theorem 5.1.4] and some corollaries, in certain
situations a Bayes estimator is also a minimax estimator. This connection will be used
below (Section 4) when discussing the interpretation of our method within the framework of
game theory. Thus, roughly speaking, we can say that in this paper we are dealing with a
“multi-faceted” topic, which we investigate from the points of view of point estimation theory,
approximation theory, and game theory.

On the other hand, the problem of estimating the probability of a coin (more generally,
the parameter of a Bernoulli distribution) from a few tosses has been often considered as a
toy-model for randomization processes and for verifying the effectiveness of different methods
in statistical inference. In this sense, it is noteworthy that some recent papers have dealt with
the problem of simulating a coin with a certain prescribed probability f(p) by using a coin
whose probability is actually p; see [9, 16]. Actually, this idea comes from a seminal paper by
von Neumann [19]. In [9, 16] the authors also show, just as we do in the current paper, the
utility of techniques from approximation theory for solving problems from probability.

The paper is structured as follows. In Section 2, our minimax estimation is thoroughly
studied, and the optimal choice is established by Theorem 2.2, which represents the main
result of this paper. Some computational results are included. The asymptotic distribution
of the set of nodes corresponding to such optimal strategies, when the number of tosses
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approaches infinity, is established in Section 3. In Section 4 we discuss the problem from
the game theory standpoint, as a non-cooperative two-player game, which is described in
detail. Also, the existence of a Nash-equilibrium is established. Furthermore, in Section 5, this
Nash-equilibrium is explicitly solved for the case of n = 2 tosses. In both Sections 4 and 5,
the solution of this Nash-equilibrium problem is related to the connection between minimax
and Bayes estimators. Finally, the last section contains some further remarks and conclusions.

2. The minimax estimation. As it was discussed above, the optimal strategy we consider
is to choose a0, . . . , an ∈ [0, 1] in order to minimize the sup-norm of the penalty function
D(a0, . . . , an; p). Thus, our minimax problem has a striking resemblance with the well-
known problem of the optimization of the Lebesgue function in polynomial interpolation.
Indeed, let us consider the polynomial interpolation of a function f over a set of nodes
x0, . . . , xn ∈ [0, 1]. By the classical Lagrange formula, we know the expression for such an
interpolating polynomial:

Ln(f ;x0, . . . , xn;x) =

n∑
k=0

f(xk) lk(x0, . . . , xn;x) ,

where lk(x0, . . . , xn;x), k = 0, . . . , n, are the well-known Lagrange interpolation polyno-
mials, and they form a basis for Pn, the space of polynomials of degree less than or equal to n.
Since the norm of the projection operator from C[0, 1], the space of all continuous functions
on [0, 1], onto Pn is given by the sup-norm of the Lebesgue function

(2.1) Λ(x0, . . . , xn;x) =

n∑
k=0

|lk(x0, . . . , xn;x)| ,

the problem of finding optimal choices of nodes x0, . . . , xn ∈ [0, 1] minimizing the sup-
norm of (2.1) arises in a natural way. It is well known that if the endpoints of the interval
belong to the set of nodes, then the solution is unique. As for the characterization of the
solution, the famous Bernstein-Erdős conjecture asserted that for an optimal choice, the
corresponding Lebesgue function (2.1) must exhibit the following “equimax” property: if
the absolute maximum of Λ(x0, . . . , xn;x) on each subinterval [xi−1, xi] is denoted by
λi = λi(x0, . . . , xn), i = 1, . . . , n, then we have

λ1 = . . . = λn.

This conjecture was finally proved by Kilgore [12] (see also [3]). An algorithm to compute
the corresponding optimal nodes is given in [14, pp. 68–73].

Now, the following result shows that the above mentioned resemblance between both mini-
max problems can be extended to the characterization of optimal solutions. Let
f(p) := D(a0, . . . , an; p) be an optimal penalty function in the sense of minimizing the
sup-norm of (1.1). Then, the following result, which gathers some necessary conditions to be
satisfied for an optimal choice {a0, . . . , an}, will be useful. It will be stated without assuming
that the points are “well-ordered”, i.e., that a0 < a1 < . . . < an. Although this fact may seem
obvious, it does require a proof; see Theorem 2.2 below.
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LEMMA 2.1. Let

M(f) := {x ∈ [0, 1] : f(x) = ‖f‖∞}

be the set of absolute maxima of an optimal penalty function f . Then
(i) M(f) ∩ {a0, . . . , an} = ∅,

(ii) M(f) ∩ [0,min{ai}) 6= ∅, M(f) ∩ (max{ai}, 1] 6= ∅,
(iii) a0 ≤ 1/2 ≤ an and M(f) ∩ (a0, an) 6= ∅ .
Proof. The proof of part (i) easily follows from the fact that, from (1.1), the derivative f ′(p)

has a positive jump as p passes through ai, and thus, f(p) cannot be increasing/decreasing as
we pass through ai.

As for part (ii), suppose that M(f) ∩ [0,min{ai}) = ∅. Then,

max
[0,min{ai})

f(p) < ‖f‖∞.

Since by (i), min{ai} 6∈M(f), we have that there is a δ > 0 such that

max
[0,min{ai}+δ]

f(p) < ‖f‖∞.

But then, ‖D(a0, a1, . . . ,min{ai} + δ, . . . , an; p)‖∞ < ‖f‖∞, which contradicts the opti-
mality of f(p). The argument that M(f) ∩ [max{ai}, 1) 6= ∅ is similar.

To prove (iii) we first notice that a0 ≤ 1/2 ≤ an. Indeed, it is easily seen that
‖D(1/2, . . . , 1/2; p)‖∞ ≤ 1/2, which implies that ‖f‖∞ ≤ 1/2. Therefore, we obtain
that a0 = f(0) ≤ ‖f‖∞ ≤ 1/2. Similarly, 1− an = f(1) ≤ 1/2, and thus a0 ≤ 1/2 ≤ an.
We note that, as a consequence, we also have that min{ai} ≤ a0 ≤ 1/2 ≤ an ≤ max{ai}.

Suppose now that M(f) ∩ [a0, an] = ∅. Since ai 6∈ M(f), there is δ > 0 such that
[a0 − δ, an + δ] ∩M(f) = ∅. Using a similar argument as in the proof of (ii), we have that
for ε > 0 small enough and 0 ≤ p ≤ a0 − δ < 1/2,

D(a0 − ε, . . . , an + ε, . . . , an; p) = D(a0, . . . , an; p)− ε [(1− p)n − pn]

< D(a0, . . . , an; p).

We can also prove the same inequality for an + δ < p ≤ 1 from which we conclude that

‖D(a0 − ε, a1, . . . , an−1, an + ε; p)‖∞ < ‖D(a0, . . . , an; p)‖∞ = ‖f‖∞,

which is a contradiction to the optimality of f .
The following theorem establishes the equimax property for our minimax estimation and

represents one of the two main results of this paper. The other main result is Theorem 3.4. In
addition, the “well-ordering" of such optimal choice is also proved.

THEOREM 2.2. Suppose that

f(p) := D(a0, . . . , an; p) = D(T ; p),

is an optimal penalty function. Then the node set T satisfies a0 < a1 < · · · < an, and the
equimax property holds, that is, M(f) ∩ (ai, ai+1) 6= ∅, i = 0, . . . , n− 1.

Proof. First, we prove that for an optimal penalty function D(T ; p), the node set T
is well-ordered, i.e., ai ≤ ai+1 for all i = 0, . . . , n − 1. Indeed, suppose it is not. Then
there is an index i < n such that ai > ai+1. We will perturb the node set T to obtain a
penalty function with smaller norm. Select ε > 0 small enough so that ‖f‖ > f(p) for
p ∈ (ai − ψ, ai + ψ) ∪ (ai+1 − δ, ai+1 + δ), where

(2.2) ψ := ε (ai + ai+1)/(2− ai − ai+1), δ := ε (i+ 1)/(n− i),
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and max(ψ, δ) < (ai − ai+1)/2. Denote by Tε the node set obtained by perturbing the nodes
ai and ai+1 to ai − ψ and ai+1 + δ, respectively. Then, from (1.1) we have

D(Tε; p)−D(T ; p) = ε

(
n

i

)
pi(1− p)n−ig(p),

where

g(p) :=



− ai + ai+1

2− ai − ai+1
+

p

1− p
, p ≤ ai+1,

− ai + ai+1

2− ai − ai+1
− p

1− p
, ai+1 + δ ≤ p ≤ ai − ψ,

ai + ai+1

2− ai − ai+1
− p

1− p
, p ≥ ai ,

and using the fact that x/(1 − x) is an increasing function, it is easy to see that g(p) < 0
for all p ∈ [0, 1] \ {(ai − ψ, ai) ∪ (ai+1, ai+1 + δ)}. Additionally, as f(p) < ‖f‖ on
(ai−ψ, ai+ψ)∪ (ai+1−δ, ai+1 +δ), by selecting ε > 0 smaller if needed, we can guarantee
that ‖D(Tε; p)‖ < ‖f‖, which is a contradiction to the optimality of f . This implies that for
optimal penalty functions the node set T is well-ordered, i.e., a0 < a1 < · · · < an.

Next, we prove the equimax property. Denote the global maxima on the consecutive
subintervals by

µ−1 := max
[0,a0]

f(p), µj := max
[aj ,aj+1]

f(p), j = 0, 2, . . . , n− 1, and µn := max
[an,1]

f(p).

We want to show that µ0 = · · · = µn−1 = ‖f‖∞ (we already know from Lemma 2.1 that
µ−1 = µn = ‖f‖∞).

By contradiction, assume that for some i ∈ {0, . . . , n− 1} we have µi < ‖f‖∞. Then,
as in the first part of the proof, we will construct a perturbation Tε of the initial set of nodes,
for which the corresponding penalty function has a smaller norm.

Fix ε > 0 small enough so that µi(Tε) < ‖f‖∞, where

Tε := {a0, . . . , ai − ψ, ai+1 + δ, . . . , an},

with δ and ψ given in (2.2) (notice that now we are enlarging the original interval, while
above it was shortened). We show that µk(Tε) < µk(T ) for all k, from which we will obtain
‖D(Tε; p‖ < ‖f‖∞, which is a contradiction to the optimality of f .

Indeed, let q ∈ [ak, ak+1] be such that D(Tε; q) = µk(Tε). Then

D(Tε; q)−D(T ; q) = ε

(
n

i

)
qi(1− q)n−ih(q),

where

h(q) :=


− ai + ai+1

2− ai − ai+1
+

q

1− q
, q < ai,

ai + ai+1

2− ai − ai+1
− q

1− q
, q > ai+1 ,
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and, thus, the fact that x/(1− x) is an increasing function implies that µk(Tε) < µk ≤ ‖f‖∞
for all k 6= i. Since the choice of ε implies that µi(Tε) < ‖f‖∞, we obtain the desired
contradiction.

EXAMPLE 2.3 (The optimal penalty function for some values of n). For illustration, in
Figures 2.1–2.4 we present the computational results we obtained for the cases of n = 3, 4, 6,
and 7 tosses (the plot for n = 5 was already given in Figure 1.1). They all confirm the
conclusions of Theorem 2.2. In all of these figures, we plot the optimal choice for the penalty
function D(a0, . . . , an; p), that is, AEME (red), the maximum likelihood function (green),
and the maximum value of the optimal penalty function (black).

FIG. 2.1. The case of n = 3 tosses. FIG. 2.2. The case of n = 4 tosses.

FIG. 2.3. The case of n = 6 tosses. FIG. 2.4. The case of n = 7 tosses.

REMARK 2.4. When using the penalty function D̂ corresponding to the squared error
loss function (see (1.2)), it is shown in [13, Ch. 5] that the related minimax estimation (SEME)
given by (1.3) has a constant risk function as illustrated in Figure 2.5, where the risk function
for SEME (blue) is compared with those for AEME (red) and for the Maximum Likelihood
Estimator (hereafter, MLE).

Since a constant function obviously satisfies the equimax property, this supports our con-
jecture that this equimax characterization should hold for minimax estimators corresponding
to any convex loss function.

3. The asymptotic behavior of the minimax estimations. In this section we consider
the limiting distribution of the minimax estimations as the number of tosses n approaches
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FIG. 2.5. Graph of D̂(a0, . . . , an; p) in the case of n = 5 tosses: Maximum Likelihood Estimator (green),
Absolute Error Minimax Estimator (red), and the Squared Error Minimax Estimator (blue).

infinity.
DEFINITION 3.1. For every positive integer n let An := {a0n, a1n, . . . , ann} denote a

minimax estimations set or simply a minimax node set, namely

‖D(An, p)‖ := ‖D(a0n, . . . , ann; p)‖ = min
x0,...,xn∈[0,1]

‖D(x0, . . . , xn; ·)‖∞.

Observe that, by Theorem 2.2, the node set An is ordered. Moreover, if Bn := {k/n}nk=0

denotes the uniform node set corresponding to the maximum likelihood estimation, then

(3.1) ‖D(An, p)‖ ≤ ‖D(Bn, p)‖ = O
(

1√
n

)
−→ 0 as n→∞.

Indeed, the O(1/
√
n) estimate follows as an application of Jensen’s inequality to the convex

function f(x) = x2

D(Bn, p)
2 =

(
n∑
k=0

(
n

k

)
pk(1− p)n−k

∣∣∣∣p− k

n

∣∣∣∣
)2

≤
n∑
k=0

(
n

k

)
pk(1− p)n−k

(
p− k

n

)2

=
p(1− p)

n
≤ 1

4n
,

where we used the fact that the mean of the binomial distribution is µ = np and its variance is
σ2 = np(1− p).

We will prove that the ordering of An established in Theorem 2.2 and equation (3.1)
yields that the limiting distribution is uniform; see Theorem 3.4 below. For this purpose let us
remind the reader the definition of weak∗ convergence of a sequence of measures.

DEFINITION 3.2. Let {µn} be a sequence of measures supported on [0, 1]. We say that it
converges weakly (or weak∗) to a measure µ if

lim
n→∞

∫ 1

0

f(t) dµn(t) =

∫ 1

0

f(t) dµ(t) for all f ∈ C[0, 1],
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where C[0, 1] denotes all continuous functions on [0, 1], or equivalently,

lim
n→∞

µn([a, b]) = µ([a, b]) for all [a, b] ⊂ [0, 1].

We denote this as

µn
∗−→ µ, as n→∞.

DEFINITION 3.3. Consider a finite set Kn := {α0n, α1n, . . . , αnn}. We call the measure

δKn
:=

1

n+ 1

n∑
j=0

δαjn
,

a normalized counting measure of Kn. Here δx denotes the Dirac-delta measure at the point x.
THEOREM 3.4. Suppose that the node sets Kn := {α0n, α1n, . . . , αnn} ⊂ [0, 1],

n = 1, . . . ,∞, are well-ordered and that

(3.2) lim
n→∞

‖D(Kn, p)‖ = 0.

Then the asymptotic distribution of Kn, as n tends to infinity, is uniform, namely

(3.3) δKn

∗−→ dx, as n→∞,

where dx denotes the Lebesgue measure on the interval [0, 1].
Proof. To prove (3.3) it is sufficient to establish that for all 0 < p < 1 we have

p ≤ lim inf
n→∞

|Kn ∩ [0, p]|
n+ 1

≤ lim sup
n→∞

|Kn ∩ [0, p]|
n+ 1

≤ p.

We shall prove the third inequality, the first being similar and the second being obvious.
Suppose that there is a 0 < p < 1 for which it fails. Then there is an ε > 0 such that

lim sup
n→∞

|Kn ∩ [0, p]|
n+ 1

> p+ ε.

This implies that there is a subsequence {ni} and a number M such that

(3.4)
|Kni ∩ [0, p]|

ni + 1
> p+

ε

2
=: q for all i ≥M.

For every i, denote ki := |Kni
∩[0, p]|. Then the ordering ofKni

implies that |q−α`,ni
| > ε/2

for all ` ≤ ki, and hence,

D(Kni
, q) =

ni∑
`=0

(
ni
`

)
q`(1− q)ni−`|q − α`,ni

| ≥
ki∑
`=0

(
ni
`

)
q`(1− q)ni−`|q − α`,ni

|

>
ε

2

ki∑
`=0

(
ni
`

)
q`(1− q)ni−` >

ε

4
,

where in the last inequality we apply [10, Theorem 1] using the fact that (3.4) yields that
ki − qni > q. This contradicts (3.2), which proves the theorem.

Since the minimax node sets An are ordered, (3.1) allows us to establish the following
corollary:
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COROLLARY 3.5. The limiting distribution of the minimax node sets An is the uniform
distribution dx on [0, 1].

REMARK 3.6. Observe that Theorem 3.4 establishes that the limiting distribution is the
uniform one not just for the sequence of optimal choices, but for every sequence of “acceptable”
strategies in the sense that they are well ordered and the sup-norm of their corresponding
penalty functions approaches zero as n→∞. Thus, we see that all these acceptable estimators
are asymptotically unbiased in the sense that their limit distribution as n→∞ is the uniform
distribution—the same as for the maximum likelihood estimators, which are the unique
unbiased estimators for the parameter p.

It is also remarkable that this conclusion also holds for the sequence of Squared Error
Minimax Estimators given by (1.3), which is easy to verify.

4. A problem in game theory. Now we are going to consider our estimation problem
from the viewpoint of game theory; see, e.g., [1, 7, 20]. In particular, a non-cooperative,
two-player, zero-sum, and mixed-strategy game will be posed, as we explain below.

Indeed, we are dealing with a simple two-player game, where Player I selects a probability
p ∈ [0, 1] and creates a coin such that P (heads) = p. He tosses the coin n times and provides
the number i ∈ {0, 1, . . . , n} of heads observed to Player II. Then, based on this value,
Player II makes a guess ai ∈ [0, 1] for the value of p and he will pay a loss of |p − ai| to
Player I. Obviously, the goal of Player I is to maximize this loss, while Player II wants to
minimize it.

More generally, let us assume that both players are allowed to follow what is commonly
referred to as a “mixed strategy” in the game theory framework. That is, the choices of the
players are not deterministic (“pure strategy”), but the available actions are selected according
to certain probability distributions. Thus, let Ω denote the set of all probability distributions
on the interval [0, 1]. Suppose that when making their decisions, Player I is allowed to choose
µ ∈ Ω, and he picks p to follow the distribution dµ, and Player II picks xi to follow his
choice of dσi distributions, where σi ∈ Ω, i = 0, 1, . . . , n. Therefore, the expected penalty of
Player II is

E(σ0, . . . , σn;µ) :=

∫
· · ·
∫
D(x0, . . . , xn; p)dσ0(x0) . . . dσn(xn)dµ(p),

where D(x0, . . . , xn; p) is the penalty function given in (1.1). In these terms, the goal of
Player I will be to find

max
µ∈Ω

min
σ0,...,σn∈Ω

E(σ0, . . . , σn;µ) ,

while the second player will try to get

min
σ0,...,σn∈Ω

max
µ∈Ω

E(σ0, . . . , σn;µ ).

Using again the terminology from game theory, this is a “zero-sum” game (that is, the total
gains of players minus the total losses add up to zero). Now, we are looking for the so-called
mixed-strategy Nash-equilibrium. The basic notion of equilibrium in game theory finds its
roots in the work by Cournot (1838) but was formalized in the celebrated papers by Nash
[17, 18], where the (now called) Nash-equilibrium was established for finite games by using
Kakutani’s fixed point theorem [11]. The problem for continuous games, where the players
may choose their strategies in continuous sets (as in the present case), is more involved.

The following result, establishing the mixed-strategy Nash-equilibrium for our problem, is
a direct application of Glicksberg’s theorem [8], which makes use of an extension of Kakutani’s
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theorem to convex linear topological spaces. An alternate method of proof consists in taking
finer and finer discrete approximations of our continuous game, for which the existence
of a Nash-equilibrium was established, and then using the continuity of (1.1) and standard
arguments of weak convergence. For more information about the successive extensions of
the Nash-equilibrium problem, see for example the monographs [7, 20]. There are also many
papers about such extensions from the point of view of the applications to business; see, e.g.,
[15, 5], to only cite a few.

THEOREM 4.1.

(4.1) min
σ0,...,σn∈Ω

max
µ∈Ω

E(σ0, . . . , σn;µ) = max
µ∈Ω

min
σ0,...,σn∈Ω

E(σ0, . . . , σn;µ).

For our analysis it is important to make use of the following discretization of the proba-
bility distribution setting in (4.1) related to the second player’s strategy.

THEOREM 4.2. The minimax problem for distributions (4.1) admits the following dis-
cretization

min
σ0,...,σn∈Ω

max
µ∈Ω

E(σ0, . . . , σn;µ) = min
a0,...,an∈[0,1]

max
p∈[0,1]

D(a0, . . . , an; p)

= min
a0,...,an∈[0,1]

‖D(a0, . . . , an; ·)‖∞ .

(4.2)

Proof. Let ai :=
∫ 1

0
θ dσi(θ), i = 0, 1, . . . , n. Since

∫ 1

0

|p− θ| dσi(θ) ≥ |p− ai| , we

have that

E(σ0, . . . , σn;µ) ≥ E(a0, . . . , an;µ) .

Then, by the continuity of D(a0, . . . , an; p), we get

max
µ∈Ω

E(a0, . . . , an;µ) = ‖D(a0, . . . , an; ·)‖∞.

Hence,

(4.3) min
σ0,...,σn∈Ω

max
µ∈Ω

E(σ0, . . . , σn;µ) ≥ min
a0,...,an

max
p∈[0,1]

D(a0, . . . , an; p).

On the other hand, if for fixed points a0, . . . , an ∈ [0, 1], we take σi = δai , it is clear that

E(σ0, . . . , σn;µ) = E(a0, . . . , an;µ),

and thus,

(4.4) min
σ0,...,σn∈Ω

max
µ∈Ω

E(σ0, . . . , σn;µ) = min
a0,...,an∈[0,1]

max
µ∈Ω

E(a0, . . . , an;µ).

However, for some µ∗ ∈ Ω,

max
µ∈Ω

E(a0, . . . , an;µ) =

∫ 1

0

D(a0, . . . , an; p) dµ∗(p)

≤ max
p∈[0,1]

D(a0, . . . , an; p) = ‖D(a0, . . . , an; ·)‖∞ ,
(4.5)

and this settles the proof of (4.2).
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REMARK 4.3. The above discretization (4.2) shows that the optimal strategy for Player II
described in the previous section (Theorem 2.2) agrees with the set of Absolute Error Minimax
Estimators (AEME), using the language of point estimation theory.

Therefore, our main concern now is the optimal strategy for Player I. But in this sense,
the arguments used in the proof of Theorem 4.2 also have an important consequence for
Player I’s strategy. Indeed, if we denote by µ∗ an optimal distribution for the first player and
by suppµ∗ ⊂ [0, 1] its support, then we have the following result:

LEMMA 4.4.

(4.6) suppµ∗ ⊂M(f).

Proof. It is enough to realize that in the proof of Theorem 4.2, equations (4.3)–(4.4) show
that for an extremal measure µ∗ (for which the Nash-equilibrium (4.1) is attained), (4.5) is
actually an equality, and therefore, suppµ∗ must be contained in the set where the equality
f(p) = ‖f‖∞ = ‖D(a0, . . . , an; .)‖∞ is attained (with (a0, . . . , an) being an optimal choice
for Player II). This establishes (4.6).

Theorem 4.2 and Lemma 4.4 suggest that, from this point on, we may assume both players
follow strategies based on discrete distributions. Indeed, while a Player II’s optimal (pure)
strategy will be a choice {a0, . . . , an} ⊂ [0, 1] , an optimal (mixed) strategy for Player I will
be based on an atomic measure

µ∗ =

k∑
j=1

mj δpj ,

where {pj}kj=1 ⊂M(f) and
∑k
j=1 mj = 1 .

EXAMPLE 4.5 (The case of n = 1 toss). Because of the simplicity and the symmetry of
the problem, the method to find the strategies satisfying the Nash-equilibrium (4.1) can be
carried out easily in this simple case by using Lemmas 2.1 and 4.4 above. Therefore, we skip
the details.

The optimal discrete strategy µ of Player I is the following: choose the atomic measure

µ =

2∑
k=0

mi δpi ,

with p0 = 0, p1 = 0.5, p2 = 1 and the corresponding weights given by m0 = 0.25, m1 = 0.5,
and m2 = 0.25. Further, for a0 ∈ [0, 0.5], a1 ∈ [0.5, 1], we have E(a0, a1;µ) = 0.25 and
for any a0, a1 ∈ [0, 1] we have 0.25 ≤ E(a0, a1;µ). Thus, for any σ0, σ1 ∈ Ω we have
0.25 ≤ E(σ0, σ1;µ).

The optimal discrete strategy of Player II is the following: σ0 is the unit point mass at
a0 = 0.25, and σ1 is the unit point mass at a1 = 0.75.

The graph of f(p) = D(0.25, 0.75; p) = (1− p)|p− 0.25|+ p|p− 0.75| is displayed in
Figure 4.1. Since for all p ∈ [0, 1] we have f(p) ≤ 0.25, we conclude that for any µ ∈ Ω,
E(σ0, σ1;µ) ≤ 0.25. So the Nash-equilibrium is established, and if both players follow the
outlined strategies, then Player II pays E(a0, a1;µ) = 0.25 dollars to Player I.

REMARK 4.6. Going back to the point estimation theory approach, the results in the
previous Theorem 4.2 and Lemma 4.4 admit an interpretation in terms of the connection
between Bayes and minimax estimators, as mentioned in the introduction. Indeed, Theo-
rem 5.1.4 and especially Corollary 5.1.5 in [13] establish sufficient conditions to ensure that a
Bayes estimator is also a minimax one, namely, that the average risk (or penalty) of the Bayes
estimator δΛ for a certain prior distribution Λ agrees with the value of the maximum of that
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FIG. 4.1. Graph of f(p) in the case of n = 1 toss.

risk; see (1.4). Hence, for such distribution Λ, the risk function must be constant. If this is the
case, the prior distribution Λ is said to be a least favorable one. In this sense, our results are a
sort of converse to the ones in [13].

When the squared error loss function is used, one could see in Figure 2.5 that the risk
function for the corresponding minimax estimator is constant throughout the interval [0, 1]. In
this case, it is proven in [13, Ex. 5.1.7] that this minimax estimator is indeed a Bayes estimator
with respect to a continuous distribution supported in [0, 1], namely the Beta distribution

B
(√

n

2
,

√
n

2

)
.

Therefore, this last distribution plays the role of a least favorable one, and its corresponding
Bayes estimator is proven to be unique. Hence by [13, Theorem 5.1.4], it is also unique as
minimax estimator. Taking into account our previous results, this least favorable distribution
would represent the optimal strategy for Player I in this case.

The above connection for our absolute error loss function is more involved, and it will
be discussed in the next section, where the Nash-equilibrium for the case of n = 2 tosses is
thoroughly analyzed.

5. A constructive proof of the Nash-equilibrium for the case of n = 2 tosses. Now,
we are concerned with the existence and uniqueness of a strategy pair solving the Nash-
equilibrium (4.1) in the case of n = 2 tosses. Our method will be based on the previous
Theorem 2.2 and the Lemmas 2.1, 4.4.

Recall that the strategy of Player II is to minimize the maximum of the penalty function,
namely to determine optimal outcomes {a∗0, a∗1, a∗2} defining an optimal penalty function
f(p) := D(a∗0, a

∗
1, a
∗
2; p) such that

(5.1)
min

{a0,a1,a2}⊂[0,1]
max
p

D(a0, a1, a2; p) = min
{a0,a1,a2}⊂[0,1]

‖D(a0, a1, a2; p)‖∞ = ‖f‖∞ .

That such an f exists follows easily by a compactness argument.
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The strategy of Player I is to find a probability measure dµ∗(p) supported on [0, 1] that
maximizes the expected penalty no matter what the choice of Player II is, i.e., to determine

F := max
µ

min
{a0,a1,a2}⊂[0,1]

∫ 1

0

D(a0, a1, a2; p)dµ(p).

Clearly, for any µ ∈ Ω,∫ 1

0

D(a0, a1, a2; p)dµ(p) ≤ ‖D(a0, a1, a2; p)‖∞,

so,

min
{a0,a1,a2}⊂[0,1]

∫ 1

0

D(a0, a1, a2; p)dµ(p) ≤ ‖f‖∞,

which implies, after taking the max over all µ, that F ≤ ‖f‖∞. Then, our goal in this
section is to find an optimal strategy pair {a∗0, a∗1, a∗2} ⊂ [0, 1], µ∗ ∈ Ω, for which the Nash-
equilibrium F = ‖f‖∞, is uniquely reached. The main result in this section is stated as
follows:

THEOREM 5.1. The Nash-equilibrium is reached if the players use the following strate-
gies:

Player I: Choose p according to the distribution µ =

3∑
i=0

mi δpi , where

(5.2) p1 =
1

3

(
1 +

3

√
1 + 3

√
57− 8

3
√

1 + 3
√

57

)
≈ 0.3611

is the unique real root of the polynomial x3 − x2 + 3x− 1 and

p2 = 1− p1 ≈ 0.6389, p0 = 0, p3 = 1.

The weights mi are given by:

m1 =
0.5

p2
1 + (1− p1)2 + 1

≈ 0.325,

m0 = 0.5−m1 ≈ 0.175, m2 = m1, m3 = m0.

(5.3)

Player II: Choose the following values ai

a0 =
2p1(1− p1)2

p2
1 + (1− p1)2 + 1

≈ 0.1916, a2 = 1− a0 ≈ 0.8084, a1 = 0.5.

Furthermore, the above pair of strategies is unique in the following sense: if the choice of
distributions {σ0, σ1, σ2, µ} satisfies the Nash-equilibrium (4.1), then E(σi) = ai, i = 0, 1, 2,

and µ =

3∑
i=0

miδpi , where ai,mi, and pi are described as above.

The graph of the optimal penalty function given in Theorem 5.1, f(p) = D(a0, a1, a2; p),
is displayed in Figure 5.1. Observe that the interlacing property also holds

p0 < a0 < p1 < a1 < p2 < a2 < p3.
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For the proof of Theorem 5.1 two technical lemmas are needed.
LEMMA 5.2. The optimal choice {a0, a1, a2} satisfies

0 < a0 < 0.2 < 0.4 < a1 < 0.6 < 0.8 < a2 < 1.

In addition, a1 − a0 < 0.4 and a2 − a1 < 0.4.
Proof. It is easy to verify that for the symmetric choice {a0, a1, a2}, where a0 = 0.195,

a1 = 0.5, a2 = 1− a0 = 0.805, we have that

‖D(a0, a1, a2; p)‖∞ = 0.195 < 0.2.

Therefore, ‖f‖∞ < 0.2. Since f(0) = a0 and f(1) = 1 − a2, we immediately obtain that
a0 < 0.2 and 0.8 < a2. On the other hand, if there exists a p ∈ [0, 1] such that |p− ai| ≥ 0.2,
i = 0, 1, 2, then ‖f‖∞ ≥ mini |p− ai| ≥ 0.2, which is a contradiction. Thus,

min
i
|p− ai| < 0.2 holds for all p ∈ [0, 1].

This implies that 0 < a0 and a2 < 1 (otherwise, the Dirichlet Pigeonhole Principle implies
there exists a p such that mini |p− ai| ≥ 0.2). The fact that mini |p− ai| < 0.2 , p ∈ [0, 1] ,
also implies that a1 − a0 < 0.4 and a2 − a1 < 0.4.

To derive that 0.4 < a1 < 0.6, we only need to use the values p = 0.4 and
p = 0.6. From mini |0.4− ai| < 0.2, we must have |0.4− a1| < 0.2 or a1 < 0.6, and from
mini |0.6− ai| < 0.2, we must have |0.6− a1| < 0.2 or 0.4 < a1.

REMARK 5.3. While the “test” values used in the above proof might seem, at first glance,
quite arbitrary, their usefulness can be easily shown by a simple numerical experimentation.
In particular, for such a symmetric choice with 0 < a0 , a1 = 0.5, and a2 = 1 − a0 < 1,
we see that the restrictions of the penalty function f to the “end” subintervals [0, a0] and
[1− a0, 1] are straight lines whose respective maximum values (attained at the endpoints 0
and 1) are given by a0, and the restrictions to the “central” intervals [a0, 0.5] and [0.5, 1− a0],
are concave functions. This fact will be used again in the proof of Theorem 5.1 below.

Now, as a consequence of Lemma 5.2 we have the following result, which completes the
previous Lemma 2.1.

LEMMA 5.4. For an optimal choice {a0, a1, a2}, we have that {0, 1} ⊂M(f) .
Proof. Indeed, consider the restriction of f(p) to [0, a0]. Then,

f(p) = (a0 − 2a1 + a2)p2 − (1 + 2a0 − 2a1)p+ a0.

Since the global maximum is attained on [0, a0], and it is not at a0, the only possibility of it
not being at p = 0 is when a0 − 2a1 + a2 < 0 and the x-coordinate of the parabola’s vertex
satisfies (1/2 + a0 − a1)/(a0 − 2a1 + a2) > 0 or 1/2 + a0 − a1 < 0. This implies that
a1 − a0 > 1/2, which, as shown in Lemma 5.2, is impossible if f is the optimal solution
of (5.1). Therefore, we derive that 0 ∈M(f). In a similar fashion, one gets 1 ∈M(f).

Proof of Theorem 5.1. From Lemma 2.1, Theorem 2.2, and Lemma 4.4, we already know
that

dµ(p) = β0δ0 + β1δp + β2δq + β3δ1,

for some βi ≥ 0, β0 + β1 + β2 + β3 = 1, and p ∈ (a0, a1), q ∈ (a1, a2). Since we are in the
case of a Nash-equilibrium, the quantity

E(a0, a1, a2;µ) = E(a0, a1, a2; p, q) :=

∫ 1

0

f(r) dµ(r)

= β0f(0) + β1f(p) + β2f(q) + β3f(1)

= a0

[
β0 − β1(1− p)2 − β2(1− q)2

]
+ a1 [2β1p(1− p)− 2β2q(1− q)]

+a2

[
β1p

2 + β2q
2 − β3

]
+ β3 − β1p+ β2q + 2β1p(1− p)2 − 2β2q

3
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is a global minimum (with respect to {a0, a1, a2} ∈ (0, 1)), which implies that

∂E
∂ai

= 0, i = 0, 1, 2.

Therefore, the coefficients in front of a0, a1, and a2 vanish for the given choice of p, q, and
βi, i = 0, 1, 2, 3. Hence, the optimization problem (5.1) becomes a constrained minimization
problem

Maximize β3 − β1p+ β2q + 2β1p(1− p)2 − 2β2q
3

Subject to


β0 + β1 + β2 + β3 = 1
β0 − (1− p)2β1 − (1− q)2β2 = 0

2p(1− p)β1 − 2q(1− q)β2 = 0
p2β1 + q2β2 − β3 = 0

p, q ∈ [0, 1], βi ≥ 0.

(5.4)

Eliminating β0 and β3 we reduce (5.4) to

Maximize β1p(1− p)(1− 2p) + β2q(1− q)(1 + 2q)

Subject to

 2[1− p(1− p)]β1 + 2[1− q(1− q)]β2 = 1
p(1− p)β1 − q(1− q)β2 = 0

p, q ∈ [0, 1], βi ≥ 0.

(5.5)

Further, eliminating β2 from (5.5) we derive

Maximize 2β1p(1− p)(1− p+ q)

Subject to 2β1p(1− p)
[

1

p(1− p)
+

1

q(1− q)
− 2

]
= 1, p, q, β1 ∈ [0, 1].

Substituting 2β1p(1− p) and denoting x = 1− p, y = q, we obtain the minimization problem

(5.6) Minimize
1

x(1−x) + 1
y(1−y) − 2

x+ y
, x, y ∈ [0, 1].

Since 1/[x(1−x)] is a convex function, it is easy to see that if x+y is kept constant, then
the minimum in (5.6) is attained when x = y, which implies that q = 1− p (and subsequently
β3 = β0 and β2 = β1) is a necessary condition for a Nash-equilibrium selection. Moreover,
assuming x = y, we obtain that x must minimize the function

g(x) =
1− x+ x2

x2(1− x)
=

1

x2
+

1

1− x
.

Differentiating, we see that g′(x) = 0 has only one solution in [0, 1], which satisfies
x3 = 2(1 − x)2 or (1 − p)3 = 2p2, so p = p1, where p1 is given in (5.2). It now fo-
llows easily that β0 = m0 and β1 = m1 , where m0 and m1 are given in (5.3). Therefore, we
have proven that if p = p1 and q = 1− p1, with

0 < a0 < p1 < a1 < q = 1− p1 < a2 < 1,

then E(a0, a1, a2;µ) does not depend on a0, a1, a2, or,

E(a0, a1, a2;µ) ≡ E(p1) =
2p1(1− p1)2

p2
1 + (1− p1)2 + 1

≈ 0.1916 . . .
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Keeping in mind the results of Theorem 2.2, it follows that the optimal strategy for
Player II is given by: a0 = E(p1) ≈ 0.1916 . . ., a1 = 0.5, a2 = 1− a0 ≈ 0.8084. The graph
of f(p) = D(a0, a1, a2; p) is displayed in Figure 5.1.

FIG. 5.1. Graph of f(p) for n = 2 tosses.

Indeed, f(0) = f(1) = a0, and direct but cumbersome calculations show that f(p1) = a0

and f ′(p1) = 0, and by symmetry f(1 − p1) = a0, f ′(1 − p1) = 0. One has
f ′(0) = −f ′(1) ≈ −0.38 and f ′′(p1) = f ′′(1 − p1) ≈ −4.43. Since f is a continu-
ous piecewise-polynomial function whose restrictions to [0, a0] and to [an, 1] are straight
lines while the restrictions to [a0, a1] and [a1, a2] are concave functions, it follows that
the set of the absolute maxima of f , M(f), cannot contain more than 4 points, which are
precisely 0, p1, 1 − p1, 1. Thus, ‖f‖∞ = a0 = E(p1) = 0.1916 . . . Therefore, the Nash-
equilibrium (4.1) is established.

REMARK 5.5. The proof of Theorem 5.1 as well as Example 4.5 (the one-toss case)
show that the Nash strategy pair for Players II and I may be seen as the pair consisting of
the set of absolute error minimax estimators and the least favorable prior distribution for
which the former become Bayes estimators. However, unlike the case when the squared error
loss function is used (see Remark 4.6), in the above proof of Theorem 5.1 as well as in the
discussion of Example 4.5, it was shown that for the current absolute error loss function, given
the least favorable distribution µ, there is no unique corresponding Bayes estimator. Indeed,
we have seen that for n = 1 or 2 tosses and for µ =

∑n+1
k=0 mi,n pi,n given in Example 4.5

and Theorem 5.1, respectively, every configuration {a0, . . . , an} satisfying the interlacing
property 0 = p0 ≤ a0 ≤ p1 ≤ . . . ≤ an ≤ pn+1 = 1 is a Bayes estimator for µ. Does this
hold for n > 2? And, furthermore, in spite of the lack of uniqueness of the Bayes estimator, is
our minimax estimator unique? These issues will be taken up again in the next section.

6. Conclusions and further remarks. In this paper, minimax techniques from appro-
ximation theory have been applied to a classical problem in probability: estimating the
probability of a biased coin after a few tosses. We used minimax estimation with absolute
error loss function to solve the problem, characterizing the optimal solution, and studying the
asymptotics of the optimal estimators as the number of tosses tend to infinity. In addition, the
method employed has been described within the framework of a non-cooperative (in particular,
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zero-sum) two-player game, where both players are allowed to make use of mixed strategies,
which in turn is closely related to the connection between minimax and Bayes estimators in
point estimation theory. Our main results are Theorem 2.2, where the optimal strategy choice
for the second player is characterized by means of a property with a striking resemblance to
a well-known problem in polynomial interpolation, and Theorem 3.4 with its Corollary 3.5,
where the uniform limiting distribution of the optimal choices is established. Likewise, the
result of Theorem 5.1, where the Nash-equilibrium for the case of n = 2 tosses is uniquely
solved, is also remarkable.

In view of the results obtained, some further remarks and questions are noteworthy and
will be subject to further research.

• We have shown that the sup-norm of the penalty function for the optimal choice is
clearly smaller than the one corresponding to the Maximum Likelihood Estimator
(MLE) choice (i.e., ak = k/n , k = 0, . . . , n; see Figure 1.1), especially for small
values of n. But it is interesting to observe that for a slight modification of the
MLE, namely taking ak = (k + 1)/(n + 2) , k = 0, . . . , n, the results are much
closer to those corresponding to the optimal choice (see Figure 6.1, where the initial
Figure 1.1 has been augmented by adding the graph of the penalty function for the
modified MLE). Indeed, this modified MLE (MMLE) is much easier to compute
than the optimal choice (especially for big values of n) and seems to provide near
optimal results. In other words, if we replace the optimal selection by this MMLE, a
near Nash-equilibrium arises (also commonly referred to as an ε-Nash-equilibrium).
This is a well-known problem in game theory: since the optimal strategies are often
difficult to compute, it is customary to look for easily computable approximations
for which the deviation from equality in the “pure” Nash-equilibrium (4.1) is small
enough. From a game theory standpoint, the difference between pure and near (or ε-)
Nash-equilibria consists in the fact that while in the "pure" setting, no player has a
motivation to modify his strategy (corresponding to the optimal strategy pair), in the
near equilibrium setting there exists a small incentive to do it. Of course, our version
of the near Nash-equilibrium using the MMLE only deals with the second player’s
strategy. For more information about near Nash-equilibrium, see [6].
This difference between “pure” and near Nash-equilibrium also has a counterpart
regarding the optimality of the nodes in the sense of the Lebesgue constant in the
context of polynomial interpolation. Indeed, if the interval [−1, 1] is considered, it
is well known that the so-called extended Chebyshev nodes (that is, the zeros of the
Chebyshev polynomial Tn+1 adjusted in such a way that the first and last zero fall on
the endpoints of the interval) provide a near optimal choice of interpolating nodes;
see [2, 3, 4]. Also, for a deeper discussion on near optimal choices of nodes, see [22].

• However, Theorem 3.4 shows that, as n increases, the optimal choice as well as the
MLE and MMLE ones or any other “acceptable” choice (such as the SEME given
by (1.3)) approach the same limiting distribution in light of Remark 3.6. In other
words, the advantage of using the optimal strategy over the MLE is worthwhile only
for a small, or not very large, number of tosses.

• In the solution of the Nash-equilibrium for the case of n = 2 tosses, we found that
the interlacing property 0 = p0 < a0 < p1 < a1 < p2 < a2 < p3 = 1 was satisfied.
But what about the asymptotic distribution of the atomic measures

n+1∑
j=0

mj,n δpj,n , with
n+1∑
j=0

mj,n = 1 ,

which give the optimal strategy of the first player for each n (provided they exist)?
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FIG. 6.1. Graph of D(a0, . . . , an; p) in the case of n = 5 tosses: MLE (green), MMLE (blue), optimal choice
(AEME), (red), and the maximum value of the penalty function for the optimal choice (black).

Of course, the same question may be posed using the language of point estimation
theory, regarding the pair formed by the minimax estimator and its corresponding
least favorable prior distribution.

• As for the equimax property for the optimal choice of Player II (minimax estimation)
given in Theorem 2.2, it is necessary to point out a couple of pending questions
about the uniqueness of the solution. First, is there a unique optimal configuration
{a0, . . . , an} for each n? And secondly, Theorem 2.2 gives that the intersection
of the set of maxima M(f) with each subinterval (ai, ai+1) corresponding to an
optimal choice is nonempty. But, is there just a single absolute maximum on each
subinterval? It was only established for the case of n = 2 tosses and numerical
results seem to confirm that it also holds for larger values of n.
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