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Abstract. Multiple Hermite polynomials are an extension of the classical Hermite polynomials for which
orthogonality conditions are imposed with respect to r > 1 normal (Gaussian) weights wj(x) = e−x2+cjx

with different means cj/2, 1 ≤ j ≤ r. These polynomials have a number of properties such as a Rodrigues
formula, recurrence relations (connecting polynomials with nearest neighbor multi-indices), a differential equation,
etc. The asymptotic distribution of the (scaled) zeros is investigated, and an interesting new feature is observed:
depending on the distance between the cj , 1 ≤ j ≤ r, the zeros may accumulate on s disjoint intervals, where
1 ≤ s ≤ r. We will use the zeros of these multiple Hermite polynomials to approximate integrals of the form∫ ∞
−∞

f(x) exp(−x2 + cjx) dx simultaneously for 1 ≤ j ≤ r for the case r = 3 and the situation when the zeros

accumulate on three disjoint intervals. We also give some properties of the corresponding quadrature weights.
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1. Simultaneous Gauss quadrature. Let w1, . . . , wr be r ≥ 1 weight functions on R
and f : R→ R. Simultaneous quadrature is a numerical method to approximate r integrals

∫

R
f(x)wj(x) dx, 1 ≤ j ≤ r,

by sums

N∑

k=1

λ
(j)
k,Nf(xk,N )

at the same N points {xk,N , 1 ≤ k ≤ N} but with weights {λ(j)k,N , 1 ≤ k ≤ N} which
depend on j. This was described by Borges [3] in 1994 but was originally suggested by Aurel
Angelescu [1] in 1918, whose work seems to have gone unnoticed. The past few decades, it
became clear that this is closely related to multiple orthogonal polynomials in a similar way as
Gaussian quadrature is related to orthogonal polynomials. The motivation in [3] involved a
color signal f , which can be transmitted using three colors: red-green-blue (RGB). For this
we need the amount of R-G-B in f given by

∫ ∞

−∞
f(x)wR(x) dx,

∫ ∞

−∞
f(x)wG(x) dx,

∫ ∞

−∞
f(x)wB(x) dx.

A natural question is whether this can be calculated with N function evaluations and a
maximum degree of accuracy. If we choose n points for each integral and then use Gaussian
quadrature, then this would require 3n function evaluations for a degree of accuracy of 2n− 1.
A better choice is to choose the zeros of the multiple orthogonal polynomials Pn,n,n for the
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weights (wR, wG, wB) and then use interpolatory quadrature. This again requires 3n function
evaluations, but the degree of accuracy is increased to 4n− 1. We will call this method based
on the zeros of multiple orthogonal polynomials the simultaneous Gaussian quadrature method.
Some interesting research problems for simultaneous Gaussian quadrature are:

• To find the multiple orthogonal polynomials when the weights w1, . . . , wr are given.
• To study the location and computation of the zeros of the multiple orthogonal poly-

nomials.
• To study the behavior and computation of the weights λ(j)k,N .
• To investigate the convergence of the quadrature rules.

Part of this research has already been started in [4, 5, 8, 9, 13], but there is still a lot to be done
in this field.

2. Multiple orthogonal polynomials. Let us introduce multiple orthogonal polynomi-
als.

DEFINITION 2.1. Let µ1, . . . , µr be r positive measures on R, and let ~n = (n1, . . . , nr)
be a multi-index in Nr. The (type II) multiple orthogonal polynomial P~n is the monic polyno-
mial of degree |~n| = n1 + n2 + · · ·+ nr that satisfies the orthogonality conditions

∫
xkP~n(x) dµj(x) = 0, 0 ≤ k ≤ nj − 1,

for 1 ≤ j ≤ r.

Such a monic polynomial may not exist or may not be unique. One needs conditions on
(the moments of) the measures (µ1, . . . , µr). Two important cases have been introduced for
which all the multiple orthogonal polynomials exist and are unique. The measures (µ1, . . . , µr)
are an Angelesco system if supp(µj) ⊂ ∆j , where the ∆j are intervals which are pairwise
disjoint: ∆i ∩∆j = ∅ whenever i 6= j.

THEOREM 2.2 (Angelesco). For an Angelesco system the multiple orthogonal polynomi-
als exist for every multi-index ~n. Furthermore, P~n has nj simple zeros in each interval ∆j .

For a proof, see [10, Chapter 4, Proposition 3.3] or [6, Theorem 23.1.3]. The behavior of
the quadrature weights for simultaneous Gaussian quadrature is known for this case (see [10,
Chapter 4, Proposition 3.5], [8, Theorem 1.1]):

THEOREM 2.3. The quadrature weights λ(j)k,n are positive for the nj zeros on ∆j . The
remaining quadrature weights have alternating sign with those for the zeros closest to the
interval ∆j being positive.

Another important case is when the measures form an AT-system. The weight functions
(w1, . . . , wr) are an algebraic Chebyshev system (AT-system) on [a, b] if

w1, xw1, x
2w1, . . . , x

n1−1w1, w2, xw2, x
2w2, . . . , xn2−1w2, . . . ,

wr, xwr, x
2wr, . . . , x

nr−1wr

are a Chebyshev system on [a, b] for every (n1, . . . , nr) ∈ Nr.
THEOREM 2.4. For an AT-system the multiple orthogonal polynomials exist for every

multi-index (n1, . . . , nr). Furthermore, P~n has |~n| simple zeros on the interval [a, b].

For a proof, see [10, Chapter 4, Corollary of Theorem 4.3] or [6, Theorem 23.1.4].
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3. Multiple Hermite polynomials. We will consider the weight functions

wj(x) = e−x
2+cjx, x ∈ R,

with real parameters c1, . . . , cj such that ci 6= cj whenever i 6= j. These weights are
proportional to normal weights with means at cj/2 and variance σ2 = 1

2 . They form an
AT-system, and the corresponding multiple orthogonal polynomials are known as multiple
Hermite polynomials H~n. They can be obtained by using the Rodrigues formula

e−x
2

H~n(x) = (−1)|~n|2−|~n|




r∏

j=1

e−cjx
dnj

dxnj
ecjx


 e−x

2

,

from which one can find the explicit expression

H~n(x) = (−1)|~n|2−|~n|
n1∑

k1=0

· · ·
nr∑

kr=0

(
n1
k1

)
· · ·
(
nr
kr

)
cn1−k1
1 · · · cnr−kr

r (−1)|
~k|H|~k|(x);

see [6, Section 23.5]. Multiple orthogonal polynomials satisfy a system of recurrence relations
connecting the nearest neighbors. For multiple Hermite polynomials one has

xH~n(x) = H~n+~ek(x) +
ck
2
H~n(x) +

1

2

r∑

j=1

njH~n−~ej (x), 1 ≤ k ≤ r,

where ~e1 = (1, 0, 0, . . . , 0), ~e2 = (0, 1, 0, . . . , 0), . . . , ~er = (0, 0, . . . , 0, 1). They also have
interesting differential relations such as r raising operators

(
e−x

2+cjxH~n−~ej (x)
)′

= −2e−x
2+cjxH~n(x), 1 ≤ j ≤ r,

and a lowering operator

H ′~n(x) =

r∑

j=1

njH~n−~ej (x);

see [6, Equations (23.8.5)–(23.8.6)]. Combining these raising operators and the lowering
operator gives a differential equation of order r + 1,




r∏

j=1

Dj


DH~n(x) = −2




r∑

j=1

nj
∏

i 6=j

Dj


H~n(x),

where

D =
d

dx
, Dj = ex

2−cjxDe−x
2+cjx = D + (−2x+ cj)I.

From now on we deal with the case r = 3 and weights c1 = −c, c2 = 0, c3 = c:

w1(x) = e−x
2−cx, w2(x) = e−x

2

, w3(x) = e−x
2+cx.
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3.1. Zeros. Let x1,3n < . . . < x3n,3n be the zeros of Hn,n,n. First we will show that for
c large enough, the zeros of Hn,n,n lie on three disjoint intervals around −c/2, 0, and c/2.

PROPOSITION 3.1. For c sufficiently large (e.g., c > 4
√

4n+ 1) the zeros of Hn,n,n are
in three disjoint intervals I1 ∪ I2 ∪ I3, where

I1 =
[
− c

2
−
√

4n+ 1,− c
2

+
√

4n+ 1
]
, I2 =

[
−
√

4n+ 1,
√

4n+ 1
]
,

I3 =
[ c

2
−
√

4n+ 1,
c

2
+
√

4n+ 1
]
,

and each interval contains n simple zeros.
Proof. Suppose x1, x2, . . . , xm are the sign changes of Hn,n,n on I3 and that m < n. Let

πm(x) = (x− x1)(x− x2) · · · (x− xm). Then Hn,n,n(x)πm(x) does not change sign on I3.
By the multiple orthogonality one has

(3.1)
∫ ∞

−∞
Hn,n,n(x)πm(x)e−x

2+cx dx = 0.

Suppose that Hn,n,n(x)πm(x) is positive on I3. Then by the infinite-finite range inequalities
(see, e.g., [7, Chapter 4, Theorem 4.1], where we take Q(x) = x2 − cx, p = 1, t = 4n+ 1 so
that ∆t = I3), one has

∫

R\I3
|Hn,n,n(x)πm(x)|e−x2+cx dx <

∫

I3

Hn,n,n(x)πm(x)e−x
2+cx dx

so that
∫

R\I3
Hn,n,n(x)πm(x)e−x

2+cx dx > −
∫

I3

Hn,n,n(x)πm(x)e−x
2+cx dx

and
∫ ∞

−∞
Hn,n,n(x)πm(x)e−x

2+cx dx

=

∫

I3

Hn,n,n(x)πm(x)e−x
2+cx dx+

∫

R\I3
Hn,n,n(x)πm(x)e−x

2+cx dx > 0,

which is in contradiction with (3.1). This means that our assumption that m < n is false, and
hence m ≥ n. We can repeat the reasoning for I2 and I1, and since Hn,n,n, is a polynomial
of degree 3n, we must conclude that each interval contains n zeros of Hn,n,n, which are all
simple. Clearly the three intervals are disjoint when c > 4

√
4n+ 1.

This result shows that for large c, the multiple Hermite polynomials behave very much
like an Angelesco system, i.e., multiple orthogonal polynomials for which the orthogonality
conditions are on disjoint intervals. Some results for simultaneous Gauss quadrature for
Angelesco systems were proved earlier in [10, Chapter 4, Propositions 3.4 and 3.5] and [8]. In
this paper we will show that similar results are true for multiple Hermite polynomials when c
is large.

The intervals I1, I2, I3 are in fact a bit too large because they were obtained by using the
infinite-finite range inequalities for one weight only and not for the three weights simultane-
ously. In order to study the zeros in more detail, we will take the parameter c proportional to√
n and scale the zeros by a factor

√
n as well. This amounts to investigating the polynomials

Hn,n,n(
√
nx) with c =

√
nĉ. In order to find for which values of c the zeros are accumulating
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on three disjoint intervals as n→∞, we investigate the asymptotic distribution of the zeros.
Our main theorem in this section is

THEOREM 3.2. There exists a c∗ > 0 such that for the zeros of Hn,n,n with c =
√
nĉ one

has

lim
n→∞

1

3n

3n∑

j=1

f

(
xj,3n√
n

)
=

∫
f(x)v(x) dx,

where v is a probability density supported on three intervals [−b,−a] ∪ [−d, d] ∪ [a, b]
(0 < d < a < b) when ĉ > c∗, and v is supported on one interval [−b, b] when ĉ < c∗. The
numerical value is c∗ = 4.10938818.

Such a phase transition when the zeros cluster on one interval when the parameters are
close together or on two intervals when the parameters are far apart was first observed and
proved for r = 2 by Bleher and Kuijlaars [2].

FIG. 3.1. The weight functions and the zeros of H10,10,10 for c = 15 (left) and c = 5 (right).

Proof. The differential equation for y = Hn,n,n(x) becomes

y′′′′ − 6xy′′′ + (12x2 − c2 − 6)y′′+[−8x3 + (2c2 + 12)x]y′

= −2n[3y′′ − 12xy′ + (12x2 − c2 − 6)y].

The scaling amounts to studying zeros of Hn,n,n(
√
nx), and these are multiple orthogonal

polynomials for the weight functions

w1(x) = e−n(x
2+ĉx), w2(x) = e−nx

2

, w3(x) = e−n(x
2−ĉx).

Consider the rational function

Sn(z) =
1√
n

H ′n,n,n(
√
nz)

Hn,n,n(
√
nz)

=
1

n

3n∑

j=1

1

z − xj,3n√
n

=

∫
dµn(x)

z − x ,

where µn is the discrete measure with mass 1/n at each scaled zero xj,3n/
√
n:

µn =
1

n

3n∑

j=1

δxj,3n/
√
n.
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The sequence (Sn)n∈N is a family of analytic functions which is uniformly bounded on every
compact subset of C \ R, hence by Montel’s theorem there exists a subsequence (Snk

)k that
converges uniformly on compact subsets of C \ R to an analytic function S, and also its
derivatives converge uniformly on these compact subsets:

Snk
→ S, S′nk

→ S′, S′′nk
→ S′′, S′′′nk

→ S′′′.

Since each Sn is a Stieltjes transform of a positive measure (with total mass 3), the limit is of
the form

S(z) = 3

∫
dµ(x)

z − x dx

with µ a probability measure on R that describes the asymptotic distribution of the scaled
zeros, and µn converges weakly to the measure 3µ for the chosen subsequence. This function
S may depend on the selected subsequence (nk)k, but we will show that every convergent
subsequence has the same limit S. Observe that

H ′n,n,n(
√
nz) =

√
nSnHn,n,n(

√
nz),

from which we can find

H ′′n,n,n(
√
nz) = (S′n + nS2

n)Hn,n,n(
√
nz),

H ′′′n,n,n(
√
nz) =

1√
n

(S′′n + 3nS′nSn + n2S3
n)Hn,n,n(

√
nz),

H ′′′′n,n,n(
√
nz) =

1

n
(S′′′n + 4nS′′nSn + 3n(S′n)2 + 6n2S2

nS
′
n + n3S4

n)Hn,n,n(
√
nz).

Put this into the differential equation (with x =
√
nz and c =

√
nĉ). Then as n = nk →∞

one finds

(3.2) S4 − 6zS3 + (12z2 − ĉ2 + 6)S2 + (−8z3 + 2ĉ2z − 24z)S + 2(12z2 − ĉ2) = 0.

This is an algebraic equation of order 4, and hence it has four solutions S(1), S(2), S(3), S(4).
A careful analysis of these solutions and equation (3.2) near infinity shows that for z →∞,

S(1)(z) =
3

z
+O(

1

z2
), S(2)(z) = 2z + ĉ+O(

1

z
),

S(3)(z) = 2z +O(
1

z
), S(4)(z) = 2z − ĉ+O(

1

z
).

We are therefore interested in S(1)(z) since it gives the required Stieltjes transform

S(1)(z) = S(z) = 3

∫
dµ(x)

z − x dx.

The algebraic equation is independent of the selected subsequence, which implies that every
subsequence (Snk

)k has the same limit, which in turn implies that the full sequence (Sn)n
converges to this limit S. The measure µ can be retrieved by using the Stieltjes-Perron
inversion theorem

µ((a, b)) +
1

2
µ({a}) + µ({b}) = lim

ε→0+

1

2πi

∫ b

a

S(x− iε)− S(x+ iε)

3
dx.
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If µ has no mass points, then the density v of µ is given by

v(x) =
1

2πi
lim
ε→0+

S(x− iε)− S(x+ iε)

3
.

Hence the support of the density v is given by the set on R where S has a jump discontinuity.
This can be analyzed by investigating the discriminant of the algebraic expression

256ĉ6z6 − 128ĉ4(ĉ4 + 18ĉ2 − 18)z4

+ 16ĉ2(ĉ8 + 12ĉ6 + 240ĉ4 − 1008ĉ2 + 432)z2

− 32ĉ2(ĉ2 + 4ĉ+ 6)2(ĉ2 − 4ĉ+ 6)2.

(3.3)

This is a polynomial of degree 6 in the variable z. The support of v is where this poly-
nomial is negative. There is a phase transition from one interval to three intervals when
the z-polynomial (3.3) has two double roots. This happens when the discriminant of the

FIG. 3.2. The polynomial (3.3) for ĉ = 2 (left), ĉ = ĉ∗ (middle), and ĉ = 8 (right).

z-polynomial (3.3) is zero:

(ĉ2 − 4ĉ+ 6)2ĉ32(ĉ2 + 2)4(ĉ2 + 4ĉ+ 6)2(ĉ6 − 27

2
ĉ4 − 54ĉ2 − 54)6 = 0.

The only positive real zero is the positive real root of

ĉ6 − 27

2
ĉ4 − 54ĉ2 − 54 = 0,

and this is c∗ = 4.10938818.
Observe that the phase transition c∗ is at a smaller value than the one suggested by

Proposition 3.1, which would give the value 8. As mentioned before, this is because in
Proposition 3.1 we used the infinite-finite range inequalities for one single weight and not for
the three weights simultaneously.

4. Some potential theory. From now one we assume that ĉ > c∗ = 4.10938818. The
Stieltjes transform of the asymptotic zero distribution is

3

∫
v(x)

z − x dx = S(z) =

∫ −a

−b

dν1(x)

z − x +

∫ d

−d

dν2(x)

z − x +

∫ b

a

dν3(x)

z − x .

The measures ν1, ν2, ν3 are unit measures that are minimizing the expression

3∑

i=1

3∑

j=1

ci,jI(µi, µj) +

3∑

i=1

∫
Vi(x) dµi(x)
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over all unit measures µ1, µ2, µ3 supported on R, with

I(µi, µj) =

∫∫
log

1

|x− y| dµi(x) dµj(x), C = (ci,j) =




1 1/2 1/2
1/2 1 1/2
1/2 1/2 1




and

V1(x) = x2 + ĉx, V2(x) = x2, V3(x) = x2 − ĉx.

This is the vector equilibrium problem for an Angelesco system [10, Chapter 5, Section 6].
Define the logarithmic potential

U(x;µ) =

∫
log

1

|x− y| dµ(y).

The variational conditions for this vector equilibrium problem are

2U(x; ν1) + U(x; ν2) + U(x; ν3) + V1(x) = `1, x ∈ [−b,−a],(4.1)
2U(x; ν1) + U(x; ν2) + U(x; ν3) + V1(x) ≥ `1, x ∈ R \ [−b,−a],(4.2)

U(x; ν1) + 2U(x; ν2) + U(x; ν3) + V2(x) = `2, x ∈ [−d, d],(4.3)
U(x; ν1) + 2U(x; ν2) + U(x; ν3) + V2(x) ≥ `2, x ∈ R \ [−d, d],(4.4)

U(x; ν1) + U(x; ν2) + 2U(x; ν3) + V3(x) = `3, x ∈ [a, b],(4.5)
U(x; ν1) + U(x; ν2) + 2U(x; ν3) + V3(x) ≥ `3, x ∈ R \ [a, b],(4.6)

where `1, `2, `3 are constants (Lagrange multipliers). As an example, we have plotted these
functions in Figure 4.1 for ĉ = 6. The measures ν1, ν2, ν3 give the asymptotic distribution of

FIG. 4.1. 2U(x; ν1) + U(x; ν2) + U(x; ν3) + V1(x) (left), U(x; ν1) + 2U(x; ν2) + U(x; ν3) + V2(x)
(middle), U(x; ν1) + U(x; ν2) + 2U(x; ν3) + V3(x) (right).

the (scaled) zeros of Hn,n,n on the intervals [−b,−a], [−d, d], and [a, b], respectively. They
are absolutely continuous, and their densities can be found from the jumps of an algebraic
function ξ on the real line. The function ξ satisfies the algebraic equation

ξ4 − 2zĉξ3 + (6− ĉ2)ξ2 + 2ĉ2zξ − 2ĉ2 = 0,
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which has four solutions ξ1, ξ2, ξ3, ξ4, which behave near infinity as

ξ1(z) = 2z − 3

z
+O(

1

z2
), ξ2(z) = −ĉ+

1

z
+O(

1

z2
),

ξ3(z) =
1

z
+O(

1

z2
), ξ4(z) = ĉ+

1

z
+O(

1

z2
).

The densities ν′1, ν
′
2, ν
′
3 are given by

ν′1(x) = − (ξ2)+(x)− (ξ2)−(x)

2πi
, ν′2(x) = − (ξ3)+(x)− (ξ3)−(x)

2πi
,

ν′3(x) = − (ξ4)+(x)− (ξ4)−(x)

2πi
.

The relation between the algebraic function S from (3.2) is given by

S =
2

ξ
+

2

ξ + ĉ
+

2

ξ − ĉ .

The Stieltjes transforms of ν1, ν2, ν3 are related to the solutions of (3.2) by

S(1)(z) =

∫ −a

−b

dν1(x)

z − x +

∫ d

−d

dν2(x)

z − x +

∫ b

a

dν3(x)

z − x , S(3)(z) = 2z −
∫ d

−d

dν2(x)

z − x ,

S(2)(z) = 2z + ĉ−
∫ −a

−b

dν1(x)

z − x , S(4)(z) = 2z − ĉ−
∫ b

a

dν3(x)

z − x .

5. The quadrature weights. Recall that for polynomials f of degree ≤ 4n− 1

∫ ∞

−∞
f(x)e−n(x

2+ĉx) dx =

3n∑

k=1

λ
(1)
k,3nf(xk,3n),(5.1)

∫ ∞

−∞
f(x)e−nx

2

dx =

3n∑

k=1

λ
(2)
k,3nf(xk,3n),(5.2)

∫ ∞

−∞
f(x)e−n(x

2−ĉx) dx =

3n∑

k=1

λ
(3)
k,3nf(xk,3n).(5.3)

Here xk,3n are the zeros of Hn,n,n(x) = pn(x)qn(x)rn(x), where pn has its zeros on
[−b,−a], qn on [−d, d], and rn on [a, b]. Take f(x) = π2n−1(x)qn(x)rn(x) with π2n−1
of degree ≤ 2n− 1. Then (5.1) gives

∫ ∞

−∞
π2n−1(x)qn(x)rn(x)e−n(x

2+ĉx) dx =

n∑

k=1

λ
(1)
k,3nqn(xk)rn(xk)π2n−1(xk).

This is the Gaussian quadrature formula for the weight function qn(x)rn(x)e−n(x
2+ĉx) with

quadrature nodes at the zeros of pn. So we have
LEMMA 5.1. The first n quadrature weights for the first integral (5.1) are

λ
(1)
k,3nqn(xk,3n)rn(xk,3n) = λk,n(qnrn dµ1), 1 ≤ k ≤ n,

where λk,n(qnrn dµ1) are the usual Christoffel numbers of Gaussian quadrature for the
weight qn(x)pn(x)e−n(x

2+ĉx) on R.
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For the middle n quadrature weights and the last n quadrature weights, we have a
weaker statement. By taking f(x) = πn−1(x)p2n(x)rn(x) with πn−1 of degree ≤ n− 1, the
quadrature formula (5.1) gives

∫ ∞

−∞
πn−1(x)p2n(x)rn(x)e−n(x

2+ĉx) dx =

2n∑

k=n+1

λ
(1)
k,3np

2
n(xk)rn(xk)πn−1(xk).

This is not a Gaussian quadrature rule but the Lagrange interpolatory rule for the weight
function p2n(x)rn(x)e−n(x

2+ĉx) with quadrature nodes at the zeros of qn. So now we have
the result:

LEMMA 5.2. The middle n quadrature weights for the first integral are

λ
(1)
k,3np

2
n(xk,3n)rn(xk,3n) = wk,n(qn), n+ 1 ≤ k ≤ 2n,

where wk,n(qn) are the quadrature weights for the Lagrange interpolatory quadrature at the
zeros of qn and the weight function p2n(x)rn(x)e−n(x

2+ĉx).
In a similar way, we take f(x) = πn−1(x)p2n(x)qn(x) with πn−1 of degree ≤ n− 1 so

that (5.1) becomes

∫ ∞

−∞
πn−1(x)p2n(x)qn(x)e−n(x

2+ĉx) dx =

3n∑

k=2n+1

λ
(1)
k,3np

2
n(xk)qn(xk)πn−1(xk).

We then have:
LEMMA 5.3. The last n quadrature weights for the first integral are

λ
(1)
k,3np

2
n(xk,3n)qn(xk,3n) = wk,n(rn), 2n+ 1 ≤ k ≤ 3n,

where wk,n(rn) are the quadrature weights for the Lagrange interpolatory quadrature at the
zeros of rn and the weight function p2n(x)qn(x)e−n(x

2+ĉx).
Of course similar results are true for the quadrature weights λ(2)k,3n for the second inte-

gral (5.2) and the quadrature weights λ(3)k,3n for the third integral (5.3).

The weight function qn(x)rn(x)e−n(x
2+ĉx) is not a positive weight on the whole real line,

but it is positive on [−b,−a] since the zeros of qn and rn are on [−d, d] and [a, b], respectively,
at least when n is large. We can prove the following result.

THEOREM 5.4. Let ĉ be sufficiently large.1 For the quadrature weights of the first
integral (5.1), one has

λ
(1)
k,3n > 0, 1 ≤ k ≤ n,

and

sign λ(1)k,3n = (−1)k−n+1, n+ 1 ≤ k ≤ 3n.

Proof. For the first n weights we use f(x) = p2n(x)qn(x)rn(x)/(x− xk,3n)2 in (5.1) to
find (we write xk = xk,3n)

λ
(1)
k,3n[p′n(xk)]2qn(xk)rn(xk) =

∫ ∞

−∞

p2n(x)

(x− xk)2
qn(x)rn(x)e−n(x

2+ĉx) dx.

1ĉ > 8 certainly works, but we conjecture that ĉ > c∗ is sufficient.
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Clearly [p′n(xk)]2qn(xk)rn(xk) > 0 since xk ∈ [−b,−a] and the zeros of qn and rn are
on [−d, d] and [a, b], respectively. So we need to prove that the integral is positive. Let
I1 = [− ĉ

2 −
√

4 + 1/n,− ĉ
2 +

√
4 + 1/n]. Then by Proposition 3.1 all the zeros of pn are

in I1, and hence [−b,−a] ⊂ I1. If ĉ is large enough, then qnrn is positive on I1, and by the
infinite-finite range inequality (see Proposition 3.1)
∫

R\I1

p2n(x)

(x− xk)2
|qn(x)rn(x)|e−n(x2+ĉx) dx >

∫

I1

p2n(x)

(x− xk)2
qn(x)rn(x)e−n(x

2+ĉx) dx,

so that
∫ ∞

−∞

p2n(x)

(x− xk)2
qn(x)rn(x)e−n(x

2+ĉx) dx

=

∫

I1

p2n(x)qn(x)rn(x)

(x− xk)2
e−n(x

2+ĉx) dx+

∫

R\I1

p2n(x)qn(x)rn(x)

(x− xk)2
e−n(x

2+ĉx) dx > 0.

For the middle n quadrature weights we use Lemma 5.2. Clearly p2n(xk) > 0 and
sign rn(xk) = (−1)n since all the zeros of rn are on the interval [a, b] and xk ∈ [−d, d] for
n+ 1 ≤ k ≤ 2n. Furthermore for the Lagrange quadrature nodes one has

wk,n(qn) =

∫ ∞

−∞

qn(x)

(x− xk)q′n(xk)
p2n(x)rn(x)e−n(x

2+ĉx) dx,

where sign q′n(xk) = (−1)k−2n. Observe that for a large enough parameter ĉ one obtains
sign qn(x)/(x− xk) = (−1)n−1 on I1 since all the zeros of qn are on [−d, d] and also
sign rn(x) = (−1)n on I1 since all the zeros of rn are on [a, b]. By the infinite-finite range
inequality one has
∫

R\I1

|qn(x)|
|x− xk|

p2n(x)|rn(x)|e−n(x2+ĉx) dx < −
∫

I1

qn(x)

x− xk
p2n(x)rn(x)e−n(x

2+ĉx) dx

so that
∫ ∞

−∞

qn(x)

(x− xk)
p2n(x)rn(x)e−n(x

2+ĉx) dx < 0.

This gives sign λ(1)k,3n = (−1)k−n+1 for n+ 1 ≤ k ≤ 2n. In a similar way one finds the sign

of λ(1)k,3n for 2n+ 1 ≤ k ≤ 3n by using Lemma 5.3.

For the quadrature weights λ(2)k,3n one has a similar result, which we state without proof.
THEOREM 5.5. Let ĉ be sufficiently large. For the quadrature weights of the second

integral (5.2) one has

λ
(2)
k,3n > 0, n+ 1 ≤ k ≤ 2n,

and

sign λ(2)k,3n =

{
(−1)k−n, 1 ≤ k ≤ n,
(−1)k+1, 2n+ 1 ≤ k ≤ 3n.

Observe that the quadrature weights for the nodes outside [−d, d] are alternating, but the
weights for the nodes closest to [−d, d] are positive.
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FIG. 5.1. The quadrature weights λ(1)k,30 for the first integral (ĉ = 4.7434).

For the quadrature nodes λ(3)k,3n one has the following result:
THEOREM 5.6. Let ĉ be sufficiently large. For the quadrature weights of the third

integral (5.3) one has

λ
(3)
k,3n > 0, 2n+ 1 ≤ k ≤ 3n,

and

sign λ(3)k,3n = (−1)k, 1 ≤ k ≤ 2n.

Having positive quadrature weights is a nice property, as is well known for Gaussian
quadrature. The alternating quadrature weights are not so nice, but we can show that they are
exponentially small.

THEOREM 5.7. Suppose ĉ is sufficiently large (see the footnote in Theorem 5.4). For the
positive quadrature weights one has

(5.4) lim sup
n→∞

(
λ
(1)
k,3n

)1/n
≤ e−V1(x),

whenever xk → x ∈ (−b,−a). For the quadrature weights with alternating sign, it holds that

(5.5) lim sup
n→∞

|λ(1)k,3n|1/n ≤ exp (2U(x; ν1) + U(x; ν2) + U(x; ν3)− `1)

whenever xk,3n → x ∈ (−d, d) ∪ (a, b).
Proof. Let x ∈ (−b,−a). We use Lemma 5.1 to see that λ(1)k,3nqn(xk)rn(xk) = λk,n,

where λk,n are the Gaussian quadrature weights for the weight function qn(x)rn(x)e−nV1(x).
We can use the Chebyshev-Markov-Stieltjes inequalities [12, Section 3.41] for the Gaussian
quadrature weights to find

λ
(1)
k,3nqn(xk)rn(xk) ≤

∫ xk+1

xk−1

qn(x)rn(x)e−nV1(x) dx.
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By the mean value theorem, we have
∫ xk+1

xk−1

qn(x)rn(x)e−n(x
2+ĉx) dx = (xk+1 − xk−1)qn(ξn)rn(ξn)e−nV1(ξn),

for some ξn ∈ (xk−1, xk+1). Then, since xk+1 − xk−1 ≤ b− a, we find

lim sup
n→∞

(
λ
(1)
k,3n

)1/n
≤ e−V1(x)

whenever xk → x ∈ (−b,−a) since

lim
n→∞

|qn(xk)|1/n = exp
(
−U(x; ν2)

)
= lim
n→∞

|qn(ξn)|1/n,

and

lim
n→∞

|rn(xk)|1/n = exp
(
−U(x; ν3)

)
= lim
n→∞

|rn(ξn)|1/n.

Let x ∈ (−d, d). We use Lemma 5.2 to find

|λ(1)k,3n| =
1

p2n(xk)|rn(xk)||q′n(xk)|

∣∣∣∣
∫ ∞

−∞

qn(x)

x− xk
p2n(x)rn(x)e−n(x

2+ĉx) dx

∣∣∣∣ .

For the polynomials pn and rn one has

lim
n→∞

|pn(x)|1/n = exp
(
−U(x; ν1)

)
, lim

n→∞
|rn(x)| = exp

(
−U(x; ν3)

)

uniformly in x ∈ [−d, d], which already gives

lim
n→∞

1

p2n(xk)|rn(xk)| = exp
(
2U(x; ν1) + U(x;µ3)

)
.

For the integral we use the infinite-finite range inequality (see Proposition 3.1) to find
∣∣∣∣
∫ ∞

−∞

qn(x)

x− xk
p2n(x)rn(x)e−n(x

2+ĉx) dx

∣∣∣∣ ≤ 2

∫

−I1

|qn(x)|
|x− xk|

p2n(x)|rn(x)|e−n(x2+ĉx) dx.

For ĉ sufficiently large the intervals I1, [−d, d], and [a, b] are disjoint, hence for x ∈ I1 and
xk ∈ [−d, d] we have |x− xk| > dist(I1, [−d, d]) = δ1. We thus obtain
∣∣∣∣
∫ ∞

−∞

qn(x)

x− xk
p2n(x)rn(x)e−n(x

2+ĉx) dx

∣∣∣∣ ≤
2

δ1

∫

I1

|qn(x)|p2n(x)|rn(x)|e−n(x2+ĉx) dx.

Observe that the integrand is

p2n(x)|qn(x)rn(x)|e−n(x2+ĉx) = exp
(
−n
(
2U(x; ν1) + U(x; ν2) + U(x; ν3) + V1(x)

))
,

and as n → ∞, the nth root thus converges to exp(−`1) when x ∈ [−b,−a] or to a value
less than or equal to exp(−`1) when x /∈ [−b,−a]. We thus have (see the third Corollary [10,
p. 199] for an Angelesco system)

lim sup
n→∞

(
2

δ1

∫

I1

|qn(x)|p2n(x)|rn(x)|e−n(x2+ĉx) dx

)1/n

≤ e−`1 .
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The behavior of the nth root of |q′n(xk)| is more difficult because we evaluate q′n at a
point in (−d, d), which is in the support of ν2 where the zeros of qn are dense. Clearly q′n
has n− 1 zeros between the zeros of qn, and the asymptotic distribution of the zeros of q′n is
the same as that of qn, hence |q′n(x)|1/n converges to exp

(
−U(x; ν2)

)
whenever x /∈ [−d, d].

When xk → x ∈ (−d, d) one can use the principle of descent [11, Theorem 6.8 in Chapter I]
to find

(5.6) lim sup
n→∞

|q′n(xk)|1/n ≤ exp
(
−U(x; ν2)

)
, x ∈ (−d, d).

To prove the inequality in the other direction, we look at the quadrature weights λ(2)k,3n for the
second integral (5.2) corresponding to the nodes on [−d, d] (the zeros of qn). These nodes are
positive and related to the Gaussian quadrature nodes for the orthogonal polynomials with the
weight function pn(x)rn(x)e−nx

2

; see Theorem 5.5. The result corresponding to (5.4) is

lim sup
n→∞

(
λ
(2)
k,3n

)1/n
≤ e−V2(x).

On the other hand, by taking f(x) = pn(x)q2n(x)rn(x)/(x − xk)2 in (5.2), we see that the
quadrature weight λ(2)k,3n satisfies

λ
(2)
k,3npn(xk)rn(xk)[q′n(xk)]2 =

∫ ∞

−∞

pn(x)q2n(x)rn(x)

(x− xk)2
e−nx

2

dx.

Observe that the sign of rn(x) on [−d, d] is (−1)n. Hence by the infinite-finite range inequali-
ties, one finds

(−1)nλ
(2)
k,3npn(xk)rn(xk)[q′n(xk)]2 = (1 + rn)

∫

I2

pn(x)q2n(x)rn(x)

(x− xk)2
e−nx

2

dx,

where |rn| < 1. On I2 we have that |x− xk| ≤ δ2, where δ2 is the length of I2, hence

(−1)nλ
(2)
k,3npn(xk)rn(xk)[q′n(xk)]2 ≥ 1 + rn

δ22

∫

I2

|pn(x)|q2n(x)|rn(x)|e−nx2

dx,

from which we find

|q′n(xk)|2 ≥ 1 + rn
δ22

1

λ
(2)
k,3n|pn(xk)rn(xk)|

∫

I2

|pn(x)|q2n(x)|rn(x)|e−nx2

dx.

By taking the nth root and by using the same reasoning as before, we thus find

lim inf
n→∞

|q′n(xk)|2/n ≥ exp
(
V2(x) + U(x; ν1) + U(x; ν3)− `2

)
.

Since x ∈ (−d, d), it follows from (4.3) that the right-hand side is exp
(
−2U(x; ν2)

)
. Com-

bined with (5.6) we then have

lim
n→∞

|q′n(xk)|1/n = e−U(x;ν2)

whenever xk → x ∈ (−d, d). Combining all these results gives (5.5) for xk,3n → x ∈ (−d, d).
The proof for xk,3n → x ∈ (a, b) is obtained similarly using Lemma 5.3.

The results corresponding to the quadrature weights for the second integral (5.2) and the
third integral (5.3) are as follows:
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THEOREM 5.8. Suppose ĉ is sufficiently large (see the footnote of Theorem 5.4). For the
positive quadrature weights one has

lim sup
n→∞

(
λ
(2)
k,3n

)1/n
≤ e−V2(x)

whenever xk → x ∈ (−d, d). For the quadrature weights with alternating sign, it holds that

lim sup
n→∞

|λ(2)k,3n|1/n ≤ exp (U(x; ν1) + 2U(x; ν2) + U(x; ν3)− `2)

whenever xk,3n → x ∈ (−b,−a) ∪ (a, b).
THEOREM 5.9. Suppose ĉ is sufficiently large (see the footnote of Theorem 5.4). For the

positive quadrature weights one has

lim sup
n→∞

(
λ
(3)
k,3n

)1/n
≤ e−V3(x)

whenever xk → x ∈ (a, b). For the quadrature weights with alternating sign, it holds that

lim sup
n→∞

|λ(3)k,3n|1/n ≤ exp (U(x; ν1) + U(x; ν2) + 2U(x; ν3)− `3)

whenever xk,3n → x ∈ (−b,−a) ∪ (−d, d).
CHAPTER 4. VECTOR POTENTIAL THEORY 38

(a) U
(
y; ν

(100)
1

)
(b) U

(
y; ν

(100)
2

)
(c) U

(
y; ν

(100)
3

)

Figure 4.1: Plots of logarithmic potentials of the zero counting measures ν
(100)
j .

In Figure 4.1, we have plotted the potentials for the measures ν
(100)
j , with c1 = c2 = 6.

Since ν
(100)
j → νj for j = 1, 2, 3, we expect the plots in this figure to be close to the

potentials of ν1, ν2 and ν3. Of course, when evaluating for example U
(
y; ν

(100)
1

)
in xj,3n

with j = 1, . . . , n, then the result is∞. Due to the large number of zeros used, this is not
really visible in Figure 4.1.

The easiest problem in potential theory is to find the minimizer of the logarithmic energy
on a compact set K, meaning that we want to minimize

I(µ) =

∫ ∫
log

1

|x− y|dµ(x)dµ(y) =

∫
U(y;µ)dµ(y)

over all probability measures with supp(µ) ⊆ K. Here however, we want to minimize
energy potentials over multiple sets, so first of all, we introduce the mutual energy of two
measures µ and ν:

I(µ, ν) =

∫ ∫
log

1

|x− y|dµ(x)dν(y) =

∫
U(y;µ)dν(y) =

∫
U(x; ν)dµ(x)

One important result about this logarithmic energy is the following, see for example [14,
Lemma 1.8]

Lemma 4.1.2. Let µ, ν be measures with support on some compact K with finite loga-
rithmic energy and µ(K) = ν(K), then I(µ − ν) ≥ 0 and equality holds if and only if
µ = ν.

Next, we define capacity for closed sets:

Definition 4.1.3. For a closed subset ∆ ⊂ C, define the Robin’s constant of ∆ (denoted
by V (∆)) as

V (∆) = inf
µ
I(µ),

where the infimum is taking over all probability measures µ with supp(µ) ⊂ ∆. The
capacity of ∆ is defined as

Cap(∆) = e−V (∆).

FIG. 5.2. The potentials U(x; ν1), U(x; ν2), U(x; ν3) approximated by using the zeros of H100,100,100.

All the upper bounds in Theorems 5.7–5.9 depend on the logarithmic potentials U(x; ν1),
U(x; ν2), U(x; ν3), and in particular on the linear combination of them that appears in the
variational conditions (4.1)–(4.6). Observe that by combining (4.3) with (5.5) we find

lim sup
n→∞

|λ(1)k,3n|1/n ≤ e−V2(x) exp
(
`2 − U(x; ν2)− `1 + U(x; ν1)

)

whenever xk → x ∈ (−d, d), and by using (4.5) we find

lim sup
n→∞

|λ(1)k,3n|1/n ≤ e−V3(x) exp
(
`3 − U(x; ν3)− `1 + U(x; ν1)

)

whenever xk → x ∈ (a, b). Hence, on (−d, d) the quadrature weights are bounded from
above by e−V2(x) times a factor which is small since `2 − U(x; ν2)− `1 + U(x; ν1) < 0 on
[−d, d]. On (a, b) the quadrature weights are bounded by e−V3(x) times an even smaller factor
since `3 = `1 (by symmetry) and U(x; ν3) > U(x; ν2) > U(x; ν1) for x ∈ (a, b); see Figure
5.2. This makes the alternating quadrature weights exponentially small.
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TABLE 6.1
The quadrature weights λ(1)k,30 for the first integral (ĉ = 4.7434).

k λ
(1)
k,30

1 6.887653865 10−9

2 4.384111578 10−6

3 0.359198303 10−3

4 0.814961761 10−2

5 0.683650066 10−1

6 0.2410330694
7 0.3725933960
8 0.2452710131
9 0.604113561 10−1

10 0.380909885 10−2

11 6.755525278 10−6

12 −5.189883715 10−6

13 3.848392520 10−6

14 −2.434636570 10−6

15 1.261797315 10−6

k λ
(1)
k,30

16 −5.203778435 10−7

17 1.650403141 10−7

18 −3.822820686 10−8

19 5.890634594 10−9

20 −4.840551012 10−10

21 1.105332527 10−11

22 −7.562667367 10−12

23 3.793214538 10−12

24 −1.400104912 10−12

25 3.767415857 10−13

26 −7.193039657 10−14

27 9.260146442 10−15

28 −7.331498520 10−16

29 2.977117925 10−17

30 −3.903292274 10−19

6. Numerical example. In Table 6.1 and Figure 5.1 we give the quadrature weights
λ
(1)
k,3n for the zeros of H10,10,10 with c = 15, which after scaling by

√
10 corresponds to

ĉ = 4.7434. This clearly shows that the first 10 weights are positive and the remaining 20
weights are alternating in sign and very small in absolute value. The zeros and the quadrature
weights behave in a similar way as for an Angelesco system (see [8]) when ĉ is sufficiently
large. Our scaling and the use of the weight functions

w1(x) = e−n(x
2+ĉx), w2(x) = e−nx

2

, w3(x) = e−n(x
2−ĉc)x),

means that we are using the densities of normal distributions with means −ĉ/2, 0, ĉ/2 and
variance σ2 = 1/2n. In such case we can ignore the alternating weights and only use the
positive quadrature weights {λ(1)k,3n : 1 ≤ k ≤ n} to approximate the first integral (5.1). In
a similar way, when we approximate the second integral (5.2) we can ignore the alternating
weights and only use the positive weights {λ(2)k,3n : n+ 1 ≤ k ≤ 2n}, and for approximating

the third integral, one can only use {λ(3)k,3n : 2n+ 1 ≤ k ≤ 3n}.
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[12] G. SZEGŐ, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. 23, Amer. Math. Soc., Providence, 1939.
[13] W. VAN ASSCHE, Padé and Hermite-Padé approximation and orthogonality, Surv. Approx. Theory, 2 (2006),

pp. 61–91.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

