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Abstract. This paper summarizes recent results on weighted polynomial approximations for functions defined
on the real semiaxis. The function may grow exponentially both at 0 and at +∞. We discuss orthogonal polynomials,
polynomial inequalities, function spaces with new moduli of smoothness, estimates for the best approximation,
Gaussian rules, and Lagrange interpolation with respect to the weight w(x) = xγe−x

−α−xβ (α > 0, β > 1,
γ ≥ 0).
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1. Introduction. This paper is a short survey on weighted polynomial approximations
of functions defined on the real semiaxis. The function may grow exponentially both at 0 and
at +∞. As far as we know, this topic has received attention in the literature only recently
(see [12, 13, 14, 15, 16]). We consider weight functions of the form

(1.1) w(x) = xγe−x
−α−xβ , α > 0, β > 1, γ ≥ 0, x ∈ (0,+∞).

Even though w can be seen as a combination of a Pollaczeck-type weight e−x
−α

and a
Laguerre-type weight xγe−x

β

, one cannot investigate the problem by reducing it to a combi-
nation of a Pollaczeck-type case (on, say, [0, 1]) and a Laguerre-type case (on [1,+∞)).

We are going to present the main results concerning orthogonal polynomials, polynomial
inequalities, function spaces with new moduli of smoothness, and estimates for the best
polynomial approximation with respect to the weight w. We also pay due attention to Gaussian
rules and Lagrange interpolation in weighted L2-norms. The behaviour of the related Fourier
sums and their discrete versions, the Lagrange polynomials, in the Lp-norms remains an open
problem.

In the sequel c, C will stand for positive constants that may assume different values in each
formula, and we shall write C 6= C(a, b, . . .) when C is independent of a, b, . . . Furthermore,
A ∼ B means that if A and B are positive quantities depending on some parameters, then
there exists a positive constant C independent of these parameters such that (A/B)±1 ≤ C.
Finally, we denote by Pm the set of all algebraic polynomials of degree at most m. As usual N,
Z, R, will stand for the sets of all natural, integer, and real numbers, while Z+ and R+ denote
the sets of positive integer and positive real numbers, respectively.
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2. Orthogonal polynomials. First of all we note that the weight w defined by (1.1) can
be reduced to a weight belonging to the class F(C2+), introduced by Levin and Lubinsky
in [7, pp. 7–8], by a linear transformation. Let us recall the definition of this class for the
reader’s convenience.

Let I = (c, d) be an interval with −∞ ≤ c < 0 < d ≤ +∞, and % : I ∈ R be a weight
function with % = e−Q, Q : I ∈ [0,+∞) satisfying the following properties:

(i) Q′ is continuous in I and Q(0) = 0;
(ii) Q′′ exists and is positive in I \ {0};

(iii) limx→c+ Q(x) = limx→d− Q(x) =∞;
(iv) the function

T (x) =
xQ′(x)

Q(x)
, x ∈ I \ {0} ,

is quasi-decreasing in (c, 0) and quasi-increasing in (0, d) with

T (x) ≥ Λ > 1 , x ∈ I \ {0} ;

(v) there exist C1, C2 > 0 and a compact subinterval J ⊆ I such that

Q′′(x)

|Q′(x)|
≤ C1

|Q′(x)|
Q(x)

, a.e. x ∈ I \ {0} ,

and

Q′′(x)

|Q′(x)|
≥ C2

|Q′(x)|
Q(x)

, a.e. x ∈ I \ J .

Then we say that % ∈ F(C2+).
With the previous notation, we can state the following lemma.
LEMMA 2.1 (see [16, pp. 817–818]). Letting w be the weight in (1.1), there exists a

λ > 0 such that the weight w̃ defined as

w̃(y) = e−Q(y) , y ∈ (−λ,+∞) ,

with

Q(y) =
1

(y + λ)α
+ (y + λ)β − γ log(y + λ)− λ−α − λβ + γ log(λ) ,

belongs to the class F(C2+).
Therefore, we have that w(y) = Cw̃(y + λ), where λ is the unique positive zero of

q′(x) = −αx−α−1 + βxβ−1 − γx−1.

We can deduce the properties of the orthogonal polynomials with respect to our weight w
from the results obtained by Levin and Lubinsky using the inverse transformation. The
Mhaskar-Rakhmanov-Saff (MRS) numbers, ετ = ετ (w) and aτ = aτ (w), related to

w(x) = e−q(x), q(x) = x−α + xβ − γ log(x),

are defined by

τ =
1

π

∫ aτ

ετ

xq′(x)√
(aτ − x)(x− ετ )

dx
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and

0 =
1

π

∫ aτ

ετ

q′(x)√
(aτ − x)(x− ετ )

dx .

PROPOSITION 2.2 (see [16, pp. 820] and [7, p. 13]). For τ > 0, ετ is a decreasing
function, and aτ is an increasing function of τ , and

lim
τ→+∞

ετ = 0 , lim
τ→+∞

aτ = +∞ ,

with

ετ ∼
(√

aτ
τ

) 1
α+1/2

(2.1)

and

aτ ∼ τ1/β .(2.2)

Let us denote by {pm(w)}m∈N the sequence of orthonormal polynomials defined by

pm(w, x) = γmx
m + lower degree terms, γm = γm(w) > 0 ,

and ∫ +∞

0

pm(w, x)pn(w, x)w(x) dx = δm,n .

The zeros of pm(w) lie in the MRS interval associated with
√
w. Here and for the rest of

the paper, we use the notation ετ = ετ (
√
w) and aτ = aτ (

√
w), taking into account that, by

definition, ετ (
√
w) = ε2τ (w) and aτ (

√
w) = a2τ (w). The next proposition provides further

information concerning the distribution of these zeros.
PROPOSITION 2.3 (see [14, pp. 1656–1657] and [7, pp. 312–324]). The zeros of pm(w)

are located as

εm < x1 < x2 < · · · < xm < am ,

with

x1 − εm ∼ δm , δm ∼
(√

am
m

) 2
3 ( 2α+3

2α+1 )
∼ m−

2
3 ( 2α+3

2α+1 )(1− 1
2β ) ,

and

am − xm ∼ amm−2/3 ∼ m
1
β−

2
3 ,

where the constants in “∼” are independent of m.
The distance between two consecutive zeros ∆xk = xk+1 − xk can be estimated by

∆xk ∼ Ψm(xk) , k = 1, . . . ,m− 1,

where

Ψm(xk) =
am xk

m
√

(xk − εm)(am − xk)

and the constants in “∼” are independent of k and m.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

POLYNOMIAL APPROXIMATION WITH POLLACZECK-LAGUERRE WEIGHTS 39

Now, letting θ ∈ (0, 1) be fixed, we define two indexes j1 = j1(m) and j2 = j2(m) as

(2.3) xj1 = max
1≤k≤m

{xk : xk ≤ εθm} and xj2 = min
1≤k≤m

{xk : xk ≥ aθm} .

For the sake of completeness, if {xk : xk ≤ εθm} or {xk : xk ≥ aθm} are empty, then we
set xj1 = x1 or xj2 = xm, respectively.

From Proposition 2.3, it follows that

∆xk ∼
√
am
m

√
xk , k = j1, . . . , j2 .

Let

λm(w, x) =

(
m−1∑
k=0

p2m(w, x)

)−1
be the mth Christoffel function and

λk(w) = λm(w, xk) , k = 1, . . . ,m ,

be the Christoffel numbers related to w.
PROPOSITION 2.4 (see [7, p. 257]). We have

λm(w, x) ∼ Ψm(x)w(x) , x ∈ [εm, am] ,

where Ψm is given by

Ψm(x) =
am x

m
√

(x− εm + δm)(am − x+ amm−2/3)

and the constants in “∼” are independent of m.
In particular, for θ ∈ (0, 1), we get

λm(w, x) ∼
√
am
m

√
xw(x) , x ∈ [εθm, aθm] .

From the numerical point of view, in order to compute the zeros of pm(w) and the Christof-
fel numbers, we use a procedure given in [14] (see also [18, §4.2]) and the MATHEMATICA
package OrthogonalPolynomials (cf. [3] and [19]), which is freely downloadable from
the website: http://www.mi.sanu.ac.rs/∼gvm/.

For the sake of brevity we omit the description of the numerical procedures for the
computation of the zeros of pm(w), the Christoffel numbers, and the Mhaskar-Rahmanov-Saff
numbers εm and am. The interested reader can find all the details about these procedures in
[14, pp. 1676–1680] (cf. [15]).

The following estimates are crucial tools in order to study the convergence of several
approximation processes.

PROPOSITION 2.5 (see [7, pp. 325 and 360]). We have

sup
x∈(0,+∞)

|pm (w, x)|
√
w(x) 4

√
|(am − x)(x− εm)| ∼ 1 ,

sup
x∈(0,+∞)

|pm (w, x)|
√
w(x) ∼ m

1
6 (1− 1

2β )( 2α+3
2α+1 ) ,
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and

1

|p′m (w, xk)|
√
w(xk)

∼ ∆xk
4
√

(am − x)(x− εm),

where the constants in “∼” are independent of m.
PROPOSITION 2.6 (cf. [7, p. 25]). For the leading coefficient of pm(w), we have

γm =
1√
2π

(
4

am + εm

)m+ 1
2

exp

(
1

π

∫ am

εm

q(x)√
(am − x)(x− εm)

dx

)
(1 + o(1)) ,

where q(x) = 1
2

(
x−α + xβ − γ log x

)
.

3. Polynomial inequalities. Letting w be given by (1.1), x ∈ R+, we introduce the
weight function

(3.1) u(x) = xδ
√
w(x) , δ ∈ R .

In the sequel, by a slight abuse of notation, we denote by ‖ · ‖p the quasinorm of the Lp-spaces
for 0 < p < 1 defined in the usual way.

LEMMA 3.1 (see [16, p. 809]). Let δ ∈ R and n = m+ d|δ|e. For any Pm ∈ Pm with
0 < p ≤ ∞, we have

‖Pm u‖p ≤ C ‖Pm u‖Lp[εn,an] ,

where C 6= C(m,Pm) and εn, an are defined by (2.1) and (2.2).
On the other hand, for any s > 1, we have

‖Pm u‖Lp(R+\[εsm,asm]) ≤ Ce
−cmν ‖Pm u‖p ,

where

(3.2) ν =

(
1− 1

2β

)
2α

2α+ 1

and C and c are independent of m and Pm.
For the rest of the paper, let

ϕ(x) =
√
x .

The following lemma is of independent interest and gives rise to a useful procedure for
verifying polynomial inequalities.

LEMMA 3.2 (see [16, p. 809]). For a sufficiently large m (say m ≥ m0), there exists a
polynomial R`m ∈ P`m, with ` a fixed integer, such that

R`m(x) ∼ w(x)

and

|R′`m(x)|ϕ(x) ≤ C m
√
am

w(x)

for x ∈ [εm, am], where εm = εm(w) and am = am(w) are defined by (2.1) and (2.2). The
constants in “∼” and C are independent of m.
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By Lemmas 3.1 and 3.2 we reduce the problem for the polynomial inequalities related to
the weight u on (0,+∞) to analogous inequalities on bounded intervals with Jacobi weights.
In fact, we get:

THEOREM 3.3 (see [16, p. 810]). Let 0 < p ≤ ∞. Then, for any Pm ∈ Pm, we have

‖P ′m ϕu‖p ≤ C
m
√
am
‖Pm u‖p(3.3)

and

‖P ′m u‖p ≤ C
m

√
εmam

‖Pm u‖p ,(3.4)

where C 6= C(m,Pm) .
We want to emphasize that the presence of the algebraic factor xδ in the definition of u

allows us to iterate the Bernstein inequality (3.3) as follows:∥∥∥P (r)
m ϕru

∥∥∥
p
≤ C

(
m
√
am

)r
‖Pm u‖p ,

for 1 ≤ r ∈ Z. Also, the factor

m
√
εmam

∼
(

m
√
am

) 2α+2
2α+1

=

(
m
√
am

)1+ 1
2α+1

in the Markoff inequality (3.4) is smaller than the one appearing in the analogous inequality
(see [17])

‖P ′m wβ‖p ≤ C
(

m
√
am

)2

‖Pm wβ‖p

with the generalized Laguerre weight wβ(x) = e−x
β

on (0,+∞), whereas the factors of the
Bernstein inequalities for the weights u and wβ are the same.

Using standard arguments, the Markoff inequality (3.4) can be deduced from the Bernstein
inequality (3.3) and the Schur inequality stated in the following theorem.

THEOREM 3.4 (see [16, p. 810]). Let 0 < p ≤ ∞. Then, for any Pm ∈ Pm, we have

‖Pm u‖p ≤ C
(

m
√
am

) δ
α+1/2

‖Pm vδ u‖p ,

where vδ(x) = xδ and C 6= C(m,Pm).
In analogy with the Bernstein and Markoff inequalities, we give two versions of the

Nikolskii inequality.
THEOREM 3.5 (see [16, p. 810]). Let 0 < p < q ≤ ∞. Then, for any Pm ∈ Pm, we have∥∥∥Pm ϕ 1

p−
1
q u
∥∥∥
q
≤ C

(
m
√
am

) 1
p−

1
q

‖Pm u‖p(3.5)

and

‖Pm u‖q ≤ C
(

m
√
εmam

) 1
p−

1
q

‖Pm u‖p ,(3.6)

where C 6= C(m,Pm).
In analogy with different weighted polynomial inequalities, the factor m/

√
εmam in the

second Nikolskii inequality is the same as the one appearing in the Markoff inequality.
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4. Function spaces, K-functionals, and moduli of smoothness. Let us now define
some function spaces related to the weight u (see [13, pp. 168–172]). By Lpu, 1 ≤ p <∞, we
denote the set of all measurable functions f such that

‖f‖Lpu := ‖fu‖p =

(∫ +∞

0

|fu|p (x) dx

)1/p

<∞ ,

while, for p =∞, by a slight abuse of notation, we set

L∞u = Cu =

{
f ∈ C0(0,+∞) : lim

x→0+
f(x)u(x) = 0 = lim

x→+∞
f(x)u(x)

}
with the norm

‖f‖L∞u := ‖fu‖∞ = sup
x∈(0,+∞)

|f(x)u(x)| .

For smoother functions we introduce the Sobolev-type spaces

W p
r (u) =

{
f ∈ Lpu : f (r−1) ∈ AC(0,+∞), ‖f (r)ϕru‖p <∞

}
,

where 1 ≤ p ≤ ∞, 1 ≤ r ∈ Z+, ϕ(x) :=
√
x, and AC(0,+∞) denotes the set of all

absolutely continuous functions on (0,+∞). We equip these spaces with the norm

‖f‖Wp
r (u) = ‖fu‖p + ‖f (r)ϕru‖p .

To characterize some subspaces of Lpu, we introduce the following moduli of smoothness.
Let us consider the intervals

Ih(c) =
[
h1/(α+1/2),

c

h1/(β−1/2)

]
,

with α and β in (3.1), h > 0 sufficiently small, and c > 1 an arbitrary but fixed constant. For
any f ∈ Lpu, 1 ≤ p ≤ ∞, r ≥ 1, and t > 0 sufficiently small (say t < t0), we set

Ωrϕ(f, t)u,p = sup
0<h≤t

∥∥∆r
hϕ (f)u

∥∥
Lp(Ih(c))

,

where

∆r
hϕf(x) =

r∑
i=0

(−1)i
(
r

i

)
f (x+ (r − i)hϕ(x)) , ϕ(x) =

√
x .

Moreover, we introduce the following K-functional

K(f, tr)u,p = inf
g∈Wp

r (u)

{
‖(f − g)u‖p + tr‖g(r)ϕru‖p

}
and its main part

K̃(f, tr)u,p = sup
0<h≤t

inf
g∈Wp

r (u)

{
‖(f − g)u‖Lp(Ih(c)) + hr‖g(r)ϕru‖Lp(Ih(c))

}
.

The main part of the K-functional is equivalent to the main part of the previous modulus of
smoothness as the following lemma shows.
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LEMMA 4.1 (see [13, p. 171]). Let r ≥ 1 and 0 < t < t0 for some t0 < 1. Then, for any
f ∈ Lpu, 1 ≤ p ≤ ∞, we have

Ωrϕ(f, t)u,p ∼ K̃(f, tr)u,p ,

where the constants in “∼" are independent of f and t.
Then we define the complete rth modulus of smoothness by

ωrϕ(f, t)u,p = Ωrϕ(f, t)u,p + inf
q∈Pr−1

‖(f − q)u‖Lp(0,t1/(α+1/2)]

+ inf
q∈Pr−1

‖(f − q)u‖Lp[c t−1/(β−1/2),+∞) ,

with c > 1 a fixed constant. We emphasize that the behaviour of ωrϕ(f, t)u,p is independent
of the constant c. Moreover, the following lemma shows that this modulus of smoothness is
equivalent to the K-functional.

LEMMA 4.2 (see [13, p. 172]). Let r ≥ 1 and 0 < t < t0 for some t0 < 1. Then, for any
f ∈ Lpu, 1 ≤ p ≤ ∞, we have

ωrϕ(f, t)u,p ∼ K(f, tr)u,p ,

where the constants in “∼" are independent of f and t.
By means of the main part of the modulus of smoothness, for 1 ≤ p ≤ ∞, we can define

the Zygmund-type spaces

Zps (u) =

{
f ∈ Lpu : sup

t>0

Ωrϕ(f, t)u,p

ts
<∞, r > s

}
,

s ∈ R+, with the norm

‖f‖Zps (u) = ‖f‖Lpu + sup
t>0

Ωrϕ(f, t)u,p

ts
.

We remark that, in the definition of Zps (u), the main part of the rth modulus of smoothness
Ωrϕ(f, t)u,p can be replaced by the complete modulus ωrϕ(f, t)u,p as can be deduced from
Theorem 5.1 in next section.

5. Weighted approximation and embedding theorems.

5.1. Estimates for the best weighted approximation. Let us denote by

Em(f)u,p = inf
P∈Pm

‖(f − P )u‖p

the error of the best polynomial approximation of a function f ∈ Lpu, 1 ≤ p ≤ ∞. The
following Jackson, weak Jackson, and Stechkin inequalities hold true.

THEOREM 5.1 (see [13, p. 173]). For any f ∈ Lpu, 1 ≤ p ≤ ∞, and m > r ≥ 1, we
have

(5.1) Em(f)u,p ≤ C ωrϕ
(
f,

√
am
m

)
u,p

,

and, assuming Ωrϕ(f, t)u,p t
−1 ∈ L1[0, 1],

Em(f)u,p ≤ C
∫ √

am
m

0

Ωrϕ(f, t)u,p

t
dt , r < m .
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Finally, for any f ∈ Lpu, 1 ≤ p ≤ ∞, we get

(5.2) ωrϕ

(
f,

√
am
m

)
u,p

≤ C
(√

am
m

)r m∑
i=0

(
i
√
ai

)r
Ei(f)u,p

i
·

In any case C is independent of m and f .
In particular, for any f ∈W p

r (u), 1 ≤ p ≤ +∞, we obtain

(5.3) Em (f)u,p ≤ C
(√

am
m

)r ∥∥∥f (r)ϕru∥∥∥
p
, C 6= C(m, f) ,

whereas, for any f ∈ Zps (u), 1 ≤ p ≤ +∞, we get

(5.4) Em (f)u,p ≤ C
(√

am
m

)s
sup
t>0

Ωrϕ(f, t)u,p

ts
, r > s , C 6= C(m, f) .

From (5.1), (5.2), and (5.4) we deduce the following equivalences

lim
m
ωϕ

(
f,

√
am
m

)
u,p

= 0 ⇔ lim
m
Em(f)u,p = 0

and

‖fu‖p + sup
t>0

Ωrϕ(f, t)u,p

ts
∼ ‖fu‖p + sup

m≥1

(
m
√
am

)s
Em(f)u,p

for 1 ≤ p ≤ ∞ and r > s.

5.2. Embedding theorems. Now, using Theorem 5.1, the dyadic decomposition, the
Nikolskii inequalities (3.5) and (3.6), we can show some embedding theorems, connecting
different subspaces of Lpu.

THEOREM 5.2 (see [12, p. 159]). For any f ∈ Lpu, 1 ≤ p <∞, such that

∫ 1

0

Ωrϕ(f, t)u,p

t1+η/p
dt <∞ ,

where η = (2α+ 2)/(2α+ 1), we have

Em(f)u,∞ ≤ C
∫ √

am
m

0

Ωrϕ(f, t)u,p

t1+η/p
dt ,

Ωrϕ

(
f,

√
am
m

)
u,∞
≤ C

∫ √
am
m

0

Ωrϕ(f, t)u,p

t1+η/p
dt,

‖fu‖∞ ≤ C
{
‖fu‖p +

∫ 1

0

Ωrϕ(f, t)u,p

t1+η/p
dt

}
,

where C depends only on r.
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In the following theorem, we replace η/p by 1/p.
THEOREM 5.3 (see [12, pp. 159–160]). For any f ∈ Lpu, 1 ≤ p <∞, such that∫ 1

0

Ωrϕ(f, t)u,p

t1+1/p
dt <∞ ,

we have

Em(f)ϕ1/pu,∞ ≤ C
∫ √

am
m

0

Ωrϕ(f, t)u,p

t1+1/p
dt ,

Ωrϕ

(
f,

√
am
m

)
ϕ1/pu,∞

≤ C
∫ √

am
m

0

Ωrϕ(f, t)u,p

t1+1/p
dt,

‖fϕ1/pu‖∞ ≤ C
{
‖fu‖p +

∫ 1

0

Ωrϕ(f, t)u,p

t1+1/p
dt

}
,

where C depends only on r.
From Theorem 5.3 we can easily deduce the following corollary, which is useful in several

contexts.
COROLLARY 5.4 (see [12, p. 160]). If f ∈ Lpu, 1 ≤ p <∞, is such that∫ 1

0

Ωrϕ(f, t)u,p

t1+1/p
dt <∞ ,

then f is continuous on (0,+∞).

6. Quadrature rules and Lagrange interpolation. Here we are going to show a slight
extension of the results proved in [14] for γ = 0.

6.1. Gaussian formulas. The Gaussian rule related to the weight w(x) = xγe−x
−α−xβ

can be defined by the equality

(6.1)
∫ +∞

0

P2m−1(x)w(x) dx =

m∑
k=1

λk(w)P2m−1(xk),

where xk are the zeros of pm(w), λk(w) are the Christoffel numbers, and (6.1) has to hold
for any polynomial P2m−1 ∈ P2m−1. Thus the error of the Gaussian rule for any continuous
function f is given by

em (f) =

∫ +∞

0

f(x)w(x) dx−
m∑
k=1

λk(w)f(xk) .

Let us consider the weight

(6.2) σ(x) = (1 + x)δwa(x) , δ ≥ 0 , 0 < a ≤ 1 .

Naturally, taking also into account Lemma 3.1, the results of Sections 3 and 4 hold with u
replaced by σ. If we assume that f ∈ Cσ , then we can write∣∣∣∣∣

m∑
k=1

λk(w)f(xk)

∣∣∣∣∣ ≤ ‖fσ‖∞
m∑
k=1

λk(w)

σ(xk)
≤ C ‖fσ‖∞

∫ +∞

0

w(x)

σ(x)
dx,
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and the next proposition easily follows.
PROPOSITION 6.1 (cf. [14, p. 1660]). If w/σ ∈ L1, then, for any f ∈ Cσ , we have

(6.3) |em (f)| ≤ CE2m−1(f)σ,∞ ,

where C 6= C(m, f).
This proposition generalizes a result due to Uspensky [20], who first proved convergence

of Gaussian rules on unbounded intervals related to Laguerre and Hermite weights (see also
[9, pp. 341–345] and [11]).

Notice that the assumption w/σ ∈ L1 in Proposition 6.1 is fulfilled if a = 1 and δ > 1 or
if a < 1 and δ is arbitrary. The error estimate (6.3) implies convergence of the Gaussian rules
for any f ∈ Cσ. For a smoother function, for instance f ∈ W∞r (σ), by (6.3) and (5.3), we
obtain

|em (f)| ≤ C
(√

am
m

)r ∥∥∥f (r)ϕrσ∥∥∥
∞
,

where C 6= C(m, f) and am ∼ m1/β .
Thus, a natural question is how to establish the degree of convergence of em (f) if the

function f is infinitely differentiable, i.e., f ∈ C∞(R+). We recall that Aljarrah [1, 2] showed
estimates of em (f) related to Hermite or Freud weights for analytic functions in some domains
of the complex plane containing the quadrature nodes. For precise estimates, considering
the same class of functions and different weights, we refer to [8]. Here we consider the case
of infinitely differentiable functions on R+ with the condition that (f (m)σ)(x) is uniformly
bounded with respect to m and x. We note that the derivatives of the function can increase
exponentially for x→ 0 and x→ +∞.

THEOREM 6.2 (cf. [14, p. 1660]). Let σ be the weight in (6.2) with 0 < a < 1 and δ
arbitrary. For any infinitely differentiable function f , if K (f) := supm

∥∥f (m)σ
∥∥
∞ < +∞,

then we have

|em (f) | ≤ CK (f) Γm , lim
m

2m
√

Γm = 0 .

In order to study the behaviour of the Gaussian rule in the Sobolev spaces W 1
r (w), it is

natural to investigate whether estimates of the form

(6.4) |em (f) | ≤ C
√
am
m
‖f ′ϕw‖1 , C 6= C(m, f) , f ∈W 1

1 (w) ,

hold true. We recall that, as shown in the previous section, for the error of the best approxima-
tion,

Em (f)w,1 ≤ C
√
am
m
‖f ′ϕw‖1 , C 6= C(m, f) , f ∈W 1

1 (w) .

On the other hand, inequality (6.4) holds, mutatis mutandis, for Gaussian rules on bounded
intervals related to Jacobi weights. But, as for many exponential weights (see, e.g., [4, 5, 10,
11]), inequality (6.4) is false in the sense of the following theorem.

THEOREM 6.3 (cf. [14, p. 1661]). Let w(x) = xγe−x
−α−xβ , α > 0, β > 1, and γ ≥ 0.

Then, for any f ∈W 1
1 (w), we have

|em (f) | ≤ Cm1/3

√
am
m
‖f ′ϕw‖1,
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where C is independent of m and f . Moreover, for a sufficiently large m (say m ≥ m0), there
exists a function fm, with 0 < ‖f ′mϕw‖1 < +∞, and a constant C 6= C(m, fm) such that

|em(fm)| ≥ Cm1/3

√
am
m
‖f ′mϕw‖1.

Nevertheless, estimates of the form (6.4) are required in different contexts. To obtain this
kind of error estimates, using also an idea from [10], we are going to modify the Gaussian
rule.

With θ ∈ (0, 1) fixed, we define two indexes j1 = j1(m) and j2 = j2(m) as in (2.3).
Then, for a sufficiently large N , let P∗N denote the following subset of all polynomials of
degree at most N ,

P∗N = {P ∈ PN : P (xi) = 0 , xi < xj1 or xi > xj2} .

Naturally, pm(w) ∈ P∗N , for N ≥ m, and θ ∈ (0, 1) arbitrary. Now, in analogy with (6.1), we
define the new Gaussian rule by means of the equality

∫ +∞

0

Q2m−1(x)w(x) dx =

m∑
k=1

λk(w)Q2m−1(xk) =

j2∑
k=j1

λk(w)Q2m−1(xk) ,

which holds for every Q2m−1 ∈ P∗2m−1.
Then, for any continuous function f , the “truncated” Gaussian rule is defined as

(6.5)
∫ +∞

0

f(x)w(x) dx =

j2∑
k=j1

λk(w)f(xk) + e∗m (f) ,

whose error e∗m (f) is the difference between the integral and the quadrature sum.
Compared to the Gaussian rule (6.1), in the formula (6.5), the terms of the quadrature

sum corresponding to the zeros that are “close” to the MRS numbers are dropped. From the
numerical point of view, this fact has two consequences. First, it avoids overflow phenomena
(taking into account that, in general, the function f is exponentially increasing at the endpoints
of R+). Moreover, it produces a computational saving, which is evident in the numerical
treatment of linear functional equations (see [15]).

We are now going to study the behaviour e∗m (f) in Cσ and W 1
r (w). We will see that the

errors em (f) and e∗m (f) have essentially the same behaviour in Cσ but not in W 1
r (w) since

e∗m (f) satisfies (6.4), while em (f) does not. The behaviour of e∗m (f) in Cσ is given by the
following proposition.

PROPOSITION 6.4 (cf. [14, p. 1662]). Assume that w/σ ∈ L1. Then, for any f ∈ Cσ , we
get

(6.6) |e∗m (f)| ≤ C
{
EM (f)σ,∞ + e−cm

ν

‖fσ‖∞
}
,

where M =
⌊(

θ
θ+1

)
m
⌋

, θ ∈ (0, 1), ν is given by (3.2), C 6= C(m, f), and c 6= c(m, f).

In particular, if f ∈W∞r (σ), then the inequality (6.6) becomes

|e∗m (f)| ≤ C
(√

am
m

)r
‖f‖W∞r (σ) .
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For smoother functions, the analogue of Theorem 6.2 is given by the following statement.
THEOREM 6.5 (cf. [14, p. 1662]). If the weight σ and the function f satisfy the assumption

of Theorem 6.2, then, for any 0 < µ < α(1− 1/(2β))/(α+ 1/2) fixed, we get

|e∗m (f) | ≤ C [‖fσ‖∞ +K (f)] Γ̄m ,

where limm Γ̄
1/mµ

m = 0 and C 6= C(m, f).
For functions f ∈W 1

1 (w) or f ∈ Z1
s (w), 1 < s ∈ R+, the following theorem states the

required estimates.
THEOREM 6.6 (cf. [14, pp. 1662–1663]). For any f ∈W 1

1 (w), we have

(6.7) |e∗m (f) | ≤ C
√
am
m
‖f ′ϕw‖1 + Ce−cm

ν

‖fw‖1 .

Moreover, for any f ∈ Z1
s (w), with s > 1, we get

(6.8) |e∗m (f) | ≤ C
√
am
m

∫ √am/m
0

Ωrϕ(f, t)w,1

t2
dt+ Ce−cm

ν

‖fw‖1 ,

where r > s > 1. In both cases C and c do not depend on m and f , and ν is given by (3.2).
In conclusion, inequality (6.7) is the required estimate and, by (6.8), it can be generalized

as

|e∗m (f) | ≤ C
(√

am
m

)s
‖f‖Z1

s (w) , C 6= C(m, f) ,

for f ∈ Z1
s (w), s > 1. In particular, if s is an integer, recalling (6.7), the Zygmund norm can

be replaced by the Sobolev norm.
Finally, we emphasize that the previous estimate cannot be improved since, in these

function spaces, e∗m (f) converges to 0 with the order of the best polynomial approximation.

6.2. Lagrange interpolation in L2√
w

. Here we want to apply the results in Section 6.1
to estimate the error of the Lagrange interpolation process based on the zeros of pm(w). If
f ∈ C0(R+), then the Lagrange polynomial interpolating f at the zeros of pm(w) is defined
by

Lm(w, f, x) =

m∑
k=1

lk(w, x)f(xk), lk(w, x) =
pm(w, x)

p′m(w, xk)(x− xk)
,

and we are going to study the error ‖[f − Lm (w, f)]
√
w‖2 for different function classes.

Since

(6.9)
∥∥Lm (w, f)

√
w
∥∥2
2

=

m∑
k=1

λk(w)

w(xk)
(f
√
w)2(xk)

and we are dealing with an unbounded interval, we cannot expect an analogue of the theorem
by Erdős and Turán [6]. On the other hand, if f ∈ Cũ, with ũ(x) = (1 +x)δ

√
w(x), δ > 1/2,

then it is easily seen that∥∥[f − Lm (w, f)]
√
w
∥∥
2
≤ CEm−1 (f)ũ,∞ , C 6= C(m, f).

Nevertheless, as for the Gaussian formula, if f ∈W 2
1 (
√
w), then Lm(w, f) has not an optimal

behaviour, i.e., an estimate of the form∥∥[f − Lm (w, f)]
√
w
∥∥
2
≤ C
√
am
m

∥∥f ′ϕ√w∥∥
2
, C 6= C(m, f) ,
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does not hold. In order to overcome this gap, for any f ∈ C0(R+), we introduce the following
“truncated” Lagrange polynomial

L∗m(w, f, x) =

j2∑
k=j1

lk(w, x)f(xk) ,

where j1 and j2 are given by (2.3).
Naturally, in general L∗m(w,P ) 6= P for arbitrary polynomials P ∈ Pm−1 (for example,

Lm(w,1) 6= 1). But L∗m(w,Q) = Q for any Q ∈ P∗m−1 and L∗m(w, f) ∈ P∗m−1 for any
f ∈ C0(R+). Therefore, the operator L∗m(w) is a projector from C0(R+) into P∗m−1.

Moreover, considering the weight

(6.10) ũ(x) = (1 + x)δ
√
w(x) , δ > 0 ,

we can show that every function f ∈ Lpũ can be approximated by polynomials of P∗m. To this
aim we define

Ẽm (f)ũ,p = inf
P∈P∗m

‖(f − P ) ũ‖p , 1 ≤ p ≤ +∞ .

LEMMA 6.7 (cf. [14, p. 1664]). For any f ∈ Lpũ, where ũ is given by (6.10) and
1 ≤ p ≤ +∞, we have

Ẽm (f)ũ,p ≤ C
{
EM (f)ũ,p + e−cm

ν

‖fũ‖p
}
,

where M =
⌊(

θ
θ+1

)
m
⌋

, θ ∈ (0, 1), ν is given by (3.2), C 6= C(m, f), and c 6= c(m, f).
As an immediate consequence of the previous lemma and equality (6.9), we get the

following:
PROPOSITION 6.8 (cf. [14, p. 1664]). For any f ∈ Cũ, with ũ as (6.10), δ > 1/2, we

have ∥∥[f − L∗m (w, f)]
√
w
∥∥
2
≤ C

{
EM (f)ũ,∞ + e−cm

ν

‖fũ‖∞
}
,

where M =
⌊(

θ
θ+1

)
m
⌋

, θ ∈ (0, 1), ν is given by (3.2), C 6= C(m, f), and c 6= c(m, f).

We are going to study the behaviour of the sequence {L∗m(w)}m in the Sobolev spaces
W 2
r (
√
w), which is interesting in different contexts. We observe that, since no results concern-

ing the sequence of the Fourier sum {Sm(w)}m are known, we cannot deduce the behaviour of
{L∗m(w)}m from that of {Sm(w)}m. Therefore, we need a different approach. The following
theorem describes the behaviour of the operator L∗m(w) in different function spaces.

THEOREM 6.9 (cf. [14, p. 1664]). Assume f ∈ L2√
w

and

(6.11)
∫ 1

0

Ωrϕ(f, t)√w,2

t3/2
dt < +∞ , r ≥ 1 .

Then we have
(6.12)∥∥[f − L∗m(w, f)]

√
w
∥∥
2
≤ C

{(√
am
m

) 1
2
∫ √

am
m

0

Ωrϕ(f, t)√w,2

t3/2
dt+ e−cm

ν ∥∥f√w∥∥
2

}
,

where ν is given by (3.2) and the constants C, c are independent of m and f .
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Note that, by Corollary 5.4, assumption (6.11) implies f ∈ C0(R+). The error estimate
(6.12) has interesting consequences. Firstly, if

sup
t>0

Ωrϕ(f, t)√w,2
ts

dt < +∞ , r > s > 1/2 ,

i.e., f ∈ Z2
s (
√
w), then the order of convergence of the process isO

((√
am/m

)s)
. If, instead,

f ∈W 2
r (
√
w), with r ≥ 1 an integer, then we have

∥∥[f − L∗m (w, f)]
√
w
∥∥
2
≤ C

(√
am
m

)r
‖f‖W 2

r (
√
w) .

This means that the process converges with the error of the best approximation for the
considered classes of functions.

Secondly, we are now able to show the uniform boundedness of the sequence {L∗m(w)}
in the Sobolev spaces.

THEOREM 6.10 (cf. [14, p. 1665]). With the previous notation, for any f ∈W 2
r (
√
w),

r ≥ 1, we have

sup
m
‖L∗m (w, f)‖W 2

r (
√
w) ≤ C ‖f‖W 2

r (
√
w) , C 6= C (f) .

Moreover, for any f ∈W 2
s (
√
w), s > r, we have

‖f − L∗m (w, f)‖W 2
r (
√
w) ≤ C

(√
am
m

)s−r
‖f‖W 2

s (
√
w) , C 6= C(m, f) .

REMARK 6.11. In all the estimates for e∗m (f) and (f − L∗m(w, f)), a constant
C 6= C(m, f) appears. We have not indicated the dependence on the parameter θ ∈ (0, 1)

since θ is fixed. Nevertheless, it is useful to observe that C = C(θ) = O
(

(θ/(1− θ))2
)

. So,
it is clear that the parameter θ cannot assume the value 0 or 1, and the “truncation” is necessary
in this sense (see [14] for more details).
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