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DISTRIBUTIONS˚
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Dedicated to Walter Gautschi on the occasion of his 90th birthday

Abstract. We provide a robust and general algorithm for computing distribution functions associated to induced
orthogonal polynomial measures. We leverage several tools for orthogonal polynomials to provide a spectrally-
accurate method for a broad class of measures, encompassing those associated to classical orthogonal polynomial
families, which is stable for polynomial degrees up to at least 1000. Paired with other standard tools such as a
numerical root-finding algorithm and inverse transform sampling, this provides a methodology for generating random
samples from an induced orthogonal polynomial measure. Generating samples from this measure is one ingredient in
optimal numerical methods for certain types of multivariate polynomial approximation. For example, sampling from
induced distributions for weighted discrete least-squares approximation has recently been shown to yield convergence
guarantees with a minimal number of samples. We also provide publicly-available code that implements the algorithms
in this paper for sampling from induced distributions.
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1. Introduction. Let µ be a probability measure on R such that a family of L2
dµ-

orthonormal polynomials tpnu
8

n“0 can be defined.1 The non-decreasing function

Fnpxq “

ż x

´8

p2
nptqdµptq, x P R,

is a probability distribution function on R since p2
n has unit µ-integral over R. This paper

is chiefly concerned with developing algorithms for drawing random samples of a random
variable whose cumulative distribution function is Fn. The high-level algorithmic idea is
straightforward: develop robust algorithms for evaluating Fn, and subsequently use a standard
root-finding approach to compute F´1

n pUq where U is a continuous uniform random variable
on r0, 1s. (This is colloquially called “inverse transform sampling".) The challenge that this
paper addresses is in the computational evaluation of Fnpxq for any n P N0 and for relatively
general µ. Borrowing terminology from [8], we call Fn the order-n distribution induced by µ.

In our algorithmic development, we focus on three classes of continuous measures µ
from which induced distributions spring: (1) Jacobi distributions on r´1, 1s, (2) Freud (i.e.,
exponential) distributions on R, and (3) “Half-line" Freud distributions on r0,8q. These
measures encompass a relatively broad selection of continuous measures µ onR, including
all measures associated with classical orthogonal polynomial families. Our algorithm applies
directly to the measure classes identified in Table 1.1.

The utility of sampling from univariate induced distributions has recently come into light:
The authors in various papers [11, 19, 3] note that additive mixtures of induced distributions
are optimal sampling distributions for constructing multivariate polynomial approximations of
functions using weighted discrete least-squares from independent and identically-distributed
random samples. “Optimal" means that these distributions define a sampling strategy which
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TABLE 1.1
Classes of measures considered in this paper. Γp¨q is the Euler Gamma function, and Bp¨q is the Beta function.

Jacobi dµ
pα,βq
J pxq “ 1

c
pα,βq
J

p1´ xqαp1` xqβ x P r´1, 1s
α ą ´1

β ą ´1
c
pα,βq
J “ 2α`β`1Bpβ ` 1, α` 1q

Half-line Freud dµ
pα,ρq
HF pxq “ 1

c
pα,ρq
HF

xρ exp p´xαq x ě 0
α ą 0

ρ ą ´1
c
pα,ρq
HF “ 1

αΓ
`

ρ`1
α

˘

Freud dµ
pα,ρq
F pxq “ 1

c
pα,ρq
F

|x|ρ exp p´|x|αq x P R
α ą 0

ρ ą ´1
c
pα,ρq
F “ 2

αΓ
`

ρ`1
α

˘

provides stability and accuracy guarantees with a sample complexity that is currently thought
to be the best (smallest). This distribution also arises in related settings [12]. The ability to
sample from an induced distribution, which this paper addresses, therefore has significant
importance for multivariate applied approximation problems.

Induced distributions can also help provide insight for more theoretical problems. The
weighted pluripotential equilibrium measure is a multivariate probability measure that de-
scribes asymptotic distributions of optimal sampling points [1, 19]. However, an explicit form
for this measure is not known in general. The authors in [19] make conjectures about the
Lebesgue density associated to equilibrium measure in one case when its explicit form is
currently unknown. While these conjectures remain unproven, univariate induced distributions
can be used to simulate samples from the equilibrium measure. Hence, sampling from induced
distributions can be used to provide supporting evidence for the theoretical conjectures in [19].

The outline of this paper is as follows: in Section 2 we review many standard properties
of general orthogonal polynomial systems that are exploited for computing induced distribu-
tions. Section 3 contains a detailed discussion of our novel approach for computing Fnpxq
for three classes of measures; this section also utilizes potential theory results in order to
approximate F´1

n p0.5q. Section 4 uses the previous section’s algorithms in order to formu-
late an algorithmic strategy for computing F´1

n puq, u P r0, 1s. Finally, Section 5 discusses
the above-mentioned applications of multivariate polynomial approximation using discrete
least-squares, and investigating conjectures for a weighted equilibrium measure.

Code that reproduces many of the plots in this paper is available for download [17].
The code contains routines for accomplishing almost all of the procedures in this paper
including evaluation and inversion of induced distributions (for many of the distributions in
Table 1.1), inverse transform sampling for multivariate sampling from additive mixtures of
induced distributions, and fast versions of all codes that utilize approximate monotone spline
interpolants for fast evaluation and inversion of distribution functions. The code also contains
routines that reproduce Figure 1.1 (left, center), Figure 2.1 (right), Figure 3.1 (center, right),
Figure 3.2 (left), Figure 3.3 (left), and Figure 5.1 (left).

1.1. A simple example. The main algorithmic novelties of this paper revolve around
evaluation of Fnpxq. In Figure 1.1 we show one example of the integrand p2

npxqdµpxq
and the associated Fn. One suspects that packaged integration routines should be able to
perform relatively well in order to compute integrals for such a problem. In our experience
this is frequently true, but comes at a price of increased computational effort and time, and
decreased robustness. The right-hand pane in Figure 1.1 shows timings for Matlab’s built-in
integral routine versus the algorithms developed in this paper. We see that the algorithms
in this paper are much faster, usually resulting in around an order of magnitude savings when
compared against integral. We caution that such tests compare an adaptive numerical
integration method, Matlab’s integral, against a tailored and optimized integration method,
the algorithm of this paper. Therefore, an adaptive version of our algorithm is likely to be
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FIG. 1.1. Left: The induced distribution integrand p2
npxqdµpxq for the Jacobi measure µpα,βqJ in Table 1.1

with parameters α “ ´0.8, β “
?

101, and n “ 13. Center: The associated distribution function Fnpxq. Right:
Computational timings for evaluation of Fnp¨q (averaged over 100 runs) using Matlab’s built-in integral routine
compared to the algorithms developed in this paper. Timings were performed in Matlab (2015b) on a single-core 1.7
GHz Intel i5 processor with 4GB of RAM.

less efficient than reported here, and the non-adaptive version in this paper is naturally very
specialized and therefore less useful for general integration problems.

Our experimentation (using Matlab’s integral) also reveals the following advantages
of using the specialized algorithm in this paper:

‚ The results from our algorithm appear to be more accurate compared to standard
routines, and use significantly less computation. This conclusion is based on our
testing with integral, and is true even if one modifies algorithm tolerances in
integral.

‚ We have occasionally observed integral return non-monotonic evaluations for
the distribution Fn. This typically happens when most of the mass of the integrand is
concentrated far from the boundary of the support of µ. Non-monotonic behavior
causes problems in performing inverse transform sampling.

‚ When dµpxq has a singularity at boundaries of the support of µ, then integral
frequently complains about singularities and failure to achieve error tolerances.

Similar results and conclusions hold when the algorithm of this paper is tested against Mat-
lab’s quadgk routine, another built-in integration function. We also note that the integrand
p2
nptqdµptq can be highly oscillatory for large n, which suggests that asymptotics for this

integrand along with techniques from oscillatory quadrature can be effective in computing
these integrals. This paper does not investigate such approaches and instead focuses on ex-
ploiting properties of orthogonal polynomials. However, we believe that tools for oscillatory
quadrature can be effective for this problem.

1.2. Historical discussion. The distribution function of the arcsine or “Chebyshev"
measure is

F pxq “
1

π

ż x

´1

1
?

1´ t2
dt “

1

2
`

1

π
arcsinpxq, x P r´1, 1s.

It was shown in [20] that if µ belongs to the Nevai class of measures, then Fnpxq Ñ F pxq
pointwise for all x P r´1, 1s. Further refinements on this statement were made in [23] which
generalized the class of measures for which convergence holds. Generating polynomials or-
thogonal with respect to the measure associated to Fn is considered in [8] with a generalization
given in [13].

The authors in [11] proposed sampling from an additive mixture of induced distributions
using a Markov Chain Monte Carlo method for the purposes of computing polynomial
approximations of functions via discrete least-squares; the work in [19] investigates sampling
from the n-asymptotic limit of these additive mixtures. The authors in [3] leverage the additive
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mixture property to sample from this distribution using a monotone spline interpolant. At the
very least this latter method requires multiple evaluations of Fnpxq. To our knowledge there
has been essentially no investigation into robust algorithms for the evaluation of Fn for broad
classes of measures, which is the subject of this paper.

2. Background.

2.1. Orthogonal polynomials. This section contains classical knowledge, most of which
is available from any seminal reference on orthogonal polynomials [24, 4, 20, 6].

Let µ be a Lebesgue-Stieltjes probability measure onR, i.e., the distribution function

F pxq “

ż x

´8

dµptq,

is non-decreasing and right-continuous on R, with F p´8q “ 0 and F p8q “ 1. For any
distribution F we use the notation F cpxq :“ 1´ F pxq for its complementary function.

We assume that µ has an infinite number of points of increase, and has finite polynomial
moments of all orders, i.e.,

ˇ

ˇ

ˇ

ˇ

ż

R

xndµpxq

ˇ

ˇ

ˇ

ˇ

ă 8, n “ 0, 1, . . . .

Under these assumptions, a sequence of orthonormal polynomials tpnu
8

n“0 exists, with
deg pj “ j, satisfying

ż

R

pjpxqpkpxqdµpxq “ δk,j ,

where δk,j is the Kronecker delta function. We will write pnp¨q “ pnp¨;µq to denote explicit
dependence of pn on µ when necessary. Such a family can be mechanically generated by
iterative application of a three-term recurrence relation:

xpnpxq “
a

bnpn´1pxq ` anpnpxq `
a

bn`1pn`1pxq,(2.1)

where the recurrence coefficients an and bn are functions of the moments of µ. The initial
conditions p´1 ” 0 and p0 ” 1 are used to seed the recurrence. With pn defined in this way,
the (positive) leading coefficient of pn has value

γn :“
n
ź

j“0

1
a

bj
, pnpxq “ γnx

n ` ¨ ¨ ¨ .

The polynomial pn has n real-valued, distinct roots; when µ has a Lebesgue density with
support given by a finite union of intervals, then the roots lie inside the convex hull of the
support of µ. These roots txku

n
k“1 are nodes for the Gaussian quadrature rule,

ż

R

fpxqdµpxq “
n
ÿ

k“1

wkfpxkq, f P span
 

1, x, x2, . . . , x2n´1
(

,

where the weights wk are unique and positive. These nodes and weights can be computed
having knowledge only of the recurrence coefficients ak and bk; numerous modern algorithms
accomplish this, with a historically significant procedure given in [10].
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2.2. Induced orthogonal polynomials and measures. With tpnu8n“0 the orthonormal
polynomial family with respect to µ, the collection of polynomials orthogonal with respect to
the weighted distribution p2

npxqdµpxq with n fixed are called induced orthogonal polynomials.
We adopt this terminology from [8].

Define the Lebesgue-Stieltjes measure µn and its associated distribution function Fn by

Fn px;µq “ Fnpxq :“

ż x

´8

dµnptq :“

ż x

´8

p2
nptqdµptq,(2.2)

with tpnp¨qun “ tpnp¨;µqun the orthonormal family for µ. Note that µn ! µ, and Fnp8q “
µn pRq “ 1 so that µn is also a probability measure. The measure µn has its own three-
term recurrence coefficients aj,n and bj,n for j “ 0, . . . , that define a new set of L2

µn pRq-
orthonormal polynomials, which can be generated through the corresponding version of the
mechanical procedure (2.1). One such procedure for generating these coefficients is given
in [8].

We will call the measure µn the (order-n) induced measure for µ, and Fn the correspond-
ing (order-n) induced distribution function.

Our main computational goal is, given u P r0, 1s, the evaluation of F´1
n puq for various

measures µ. The overall algorithm for accomplishing this is a root-finding method, e.g.,
bisection or Newton’s method. Thus, the goal of finding F´1

n puq also involves the evaluation
of Fnpxq, which is the focus of Section 3. A good root-finding algorithm also requires a
reasonable initial guess for the solution. This initial guess is provided by the methodology in
Section 4.1.

2.3. Measure modifications. Our algorithms rely on the ability to compute polynomial
measure modifications. That is, given the three-term coefficients an and bn for µ, to compute
the coefficients ran and rbn for rµ defined as

drµpxq “ ppxqdµpxq,

where ppxq is a polynomial, non-negative on the support of µ. This is a well-studied problem [9,
5, 6, 18]. In particular, one may reduce the problem to iterating over modifications by linear
and quadratic polynomials. We describe in detail how to accomplish linear and quadratic
modifications in the appendix, with the particular goal of structuring computations to avoid
numerical under- and over-flow when n is large.

The following computational tasks described in the Appendix are used to accomplish
measure modifications.

1. (Appendix A.1) Evaluation of rn, the ratio of successive polynomials in the orthogo-
nal sequence:

rjpxq :“
pjpxq

pj´1pxq
.

Above, we require x to lie outside the zero set of pj´1.
2. (Appendix A.2) Evaluation of a normalized or weighted degree-n polynomial:

Cnpxq :“
pnpxq

b

řn´1
j“0 p

2
j pxq

, n ą 0, x P R.

Note that Cnpxq{rnpxq „ 1 for large enough |x|.
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FIG. 2.1. Left: A visual description of the high-level algorithm given by equation (3.1). Shaded regions indicate
definite integral values pFn and pF cn computed by the algorithms in this paper. Right: Illustration of exact values of
F´1
n p0.5q versus the approximate medians x0pnq derived in (3.4) and (3.13b) for Jacobi and Half-Freud weights,

respectively. The values of x0pnq are designed to be proximal to F´1
n p0.5q.

3. (Appendix B) Polynomial measure modifications: given µ and its associated three-
term recurrence coefficients an and bn, computation of the three-term recurrence
coefficients associated with the measures rµ and r

rµ, defined as

drµpxq “ ˘ px´ y0qdµpxq, y0 R suppµ,

drrµpxq “ px´ z0q
2

dµpxq, z0 P R.

The ˘ sign in rµ is chosen so that rµ is a positive measure.

3. Evaluation of Fn. This section develops computational algorithms for the evaluation
of the induced distribution Fn defined in (2.2). These algorithms depend fairly heavily on
the form of a Lebesgue density dµpxq (i.e., a positive weight function) for the measure µ on
R, but the ideas can be generalized to various measures. We consider the classes of weights
enumerated in Table 1.1:

‚ (Jacobi weights) dµJpxq “ p1 ´ xqαp1 ` xqβ for x P r´1, 1s with parameters
α, β ą ´1.

‚ (Freud weights) dµF pxq “ |x|ρ exp p´|x|αq for x P R with parameters α ą 0,
ρ ą ´1.

‚ (half-line Freud weights) dµHF pxq “ xρ exp p´xαq for x P r0,8q with parameters
α ą 0, ρ ą ´1.

The induced distribution Fn for Freud weights can actually be written explicitly in terms of
the corresponding induced distribution for half-line Freud weights, so most of the algorithm
development concentrates on the Jacobi and half-line Freud cases. The strategy for these
two latter cases is essentially the same: with µ in one of the classes above and n fixed, we
divide the computation into one of two approximations, depending on the value of x. Each
approximation is accurate for its corresponding values of x. Formally, the algorithm is

Fn pxq “

#

pFnpxq, x ď x0 pµ, nq ,

1´ pF cnpxq, x ą x0 pµ, nq ,
(3.1)

where pFnpxq and pF cnpxq represent computational approximations to Fnpxq and F cnpxq, respec-
tively, and are the outputs from the algorithms that we will develop. A pictorial description of
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this is given in Figure 2.1 (left). We choose to seek a value of x0 such that F´1
n p0.5q. This is a

heuristic choice that we observe works well in practice across all the measures we consider. It
is likely that other choices for x0 can also produce effective algorithms, but we have found our
choice to be simple and amenable to direct computation. However, we cannot know this value
F´1
n p0.5q a priori, so we use potential-theoretic arguments to compute a value x0 “ x0 pµ, nq

approximating the median of Fn,

Fn px0q «
1

2
.(3.2)

For our choice of x0, we can provide no estimates for this approximate equality, but empirical
evidence in Figure 2.1 (right) shows that our choices are very close to the real median,
uniformly in n. The coming sections concentrate on, for each class of µ mentioned above,
specifying x0 and detailing algorithms for pFn and pF cn.

3.1. Jacobi weights. We consider computing induced distribution functions for Jacobi
measures µpα,βqJ as defined in Table 1.1. When circumstances are clear, we will write µpα,βqJ “

µ to avoid notational clutter. We seek the distribution function of the induced measure,

µ
pα,βq
J,n pr´1, xsq “ µn pr´1, xsq “ Fnpxq :“

ż x

´1

p2
nptqdµptq.(3.3)

To compute Fn, we specify an approximate median x0 “ x0 pµ, nq satisfying (3.2), and
construct algorithmic procedures to evaluate pFnpxq « Fnpxq (for x ď x0) and pF cnpxq «
F cnpxq (for x ą x0). Having specified these, we use (3.1) to compute our approximation to
Fn.

3.1.1. Computation of x0pnq. With α, β ą ´1 and n P N fixed, consider the measure
µ
pα{2n,β{2nq
J . Note that this measure is still a Jacobi measure since α

2n ą ´1 and β
2n ą ´1.

Since

dµ
pα,βq
J ptq9p1´ tqαp1` tqβ “

”

p1´ tqα{2np1` tqβ{2n
ı2n

9

´

dµ
pα{2n,β{2nq
J ptq

¯2n

,

the integrand in (3.3) satisfies

p2
nptqdµ

pα,βq
J ptq9

”

pnptq
´

dµ
pα{2n,β{2nq
J ptq

¯nı2

.

The quantity under the square brackets on the right-hand side is, in the language of potential
theory, a weighted polynomial of degree n. One result in potential theory characterizes the
“essential" support of this weighted polynomial; in particular, the weighted polynomial decays
quickly outside this support. The essential support is an interval, and we take the median x0

of the induced measure µn to be the centroid of this interval.
The essential support of the weighted polynomial above is demarcated by the Mhaskar-

Rakhmanov-Saff numbers for the asymmetric weight dµ
pα{2n,β{2nq
J on r´1, 1s. These numbers

for this weight are computed explicitly in [22, pp 206-207]. When α, β ě 0, the support
interval is rθ ´∆, θ `∆s, with

θ “
β2 ´ α2

p2n` α` βq
2 , ∆ “

4
a

npn` α` βqpn` αqpn` βq

p2n` α` βq2
.
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Since this is the interval where most of the “mass" of the integral in (3.3) lies, we set x0 to be
the centroid θ of this interval:

x0

´

µpα,βq, n
¯

“
β2 ´ α2

p2n` α` βq
2 , α, β ą ´1, n ą 0.(3.4)

Note that the definitions of θ and ∆ require α and β to be non-negative. Without mathematical
justification, we extend usage of the formula (3.4) to valid negative values of α, β as well.
Figure 2.1 compares x0 and F´1

n p0.5q for certain choices of α and β.

3.1.2. Computation of pFnpxq. First assume that x ď x0, with x0 defined in (3.4), and
define A P N0 as

A :“ t|α|u ùñ α´A P p´1, 1q,

where t¨u is the floor function. We transform the integral (3.3) over r´1, xs onto the standard
interval r´1, 1s via the substitution u “ 2

x`1 pt` 1q ´ 1:

Fnpxq “
1

c
pα,βq
J

ż x

´1

p2
n ptq p1´ tq

αp1` tqβdt

“

ˆ

x` 1

2

˙β`1
c
p0,βq
J

c
pα,βq
J

ż 1

´1

ˆ

2´
1

2
pu` 1qpx` 1q

˙α´A

U2n`Apuqdµ
p0,βqpuq,

where U2n`Apuq is a degree-p2n`Aq polynomial given by

U2n`Apuq “ p2
n

ˆ

1

2
pu` 1qpx` 1q ´ 1

˙ˆ

2´
1

2
pu` 1qpx` 1q

˙A

(3.5)

“ γ2
n

ˆ

x` 1

2

˙2n`A A
ź

k“1

„ˆ

3´ x

1` x

˙

´ u



looooooooooomooooooooooon

paq

n
ź

j“1

ˆ

u´

ˆ

2

x` 1
pxj,n ` 1q ´ 1

˙˙2

looooooooooooooooooooooomooooooooooooooooooooooon

pbq

,

where txj,nu
n
j“1 are the n zeros of pnp¨q. Since we explicitly know the polynomial roots

of U2n`A, we can absorb the factor marked paq into the measure dµp0,βqpuq via A linear
modifications, and we can likewise absorb the factor pbq via n quadratic modifications. (See
Appendix B.) Thus, define

drµnpuq “ U2n`Apuqdµ
p0,βqpuq,(3.6)

which is a modified measure whose recurrence coefficients can be computed via successive
application of the linear and quadratic modification methods in Appendix B. Thus,

Fnpxq “

ˆ

x` 1

2

˙β`1
c
p0,βq
J

c
pα,βq
J

ż 1

´1

ˆ

2´
1

2
pu` 1qpx` 1q

˙α´A

drµnpuq.(3.7)

The integrand above has a root (α ą 0) or singularity (α ă 0) at u “ 3´x
x`1 “ 1` 2 1´x

1`x ě 1`

2 1´x0

1`x0
; this root is far outside the interval r´1, 1s unless β is very large and both n and α are

small. The integrand is therefore a positive, monotonic, smooth function on r´1, 1s, taking
values between 1´x and 2; we use an order-M rµn-Gaussian quadrature to efficiently evaluate
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it. With prum, rwmq
M
m“1 denoting the nodes and weights, respectively, of this quadrature rule,

we compute

Ipxq :“
M
ÿ

m“1

rwm

ˆ

2´
1

2
prum ` 1q px` 1q

˙α´A

,(3.8)

pFnpxq “

ˆ

x` 1

2

˙β`1
Ipxq

2apβ ` 1qBpβ ` 1, α` 1q
.(3.9)

The entire procedure is summarized in Algorithm 1.
In order to compute pF cnpxq for x ą x0, we use symmetry. Since xÐ ´x interchanges

the parameters α and β, then

pF pα,βq,cn pxq “

ż 1

x

”

ppα,βqn ptq
ı2

dµpα,βqptq “

ż ´x

´1

”

ppβ,αqn ptq
ı2

dµpβ,αqptq “ pF pβ,αqn p´xq.

Note that if x ą x0

`

µpα,βq, n
˘

, then ´x ă x0

`

µpβ,αq, n
˘

. Thus, pF cn can be computed via
the same algorithm for pFn, but with different values for α, β, and x. This is also shown in
Algorithm 1.

Algorithm 1: Computation of pFnpxq, approximating Fnpxq for µ corresponding to a Jacobi
polynomial measure.

input :α, β ą ´1: Jacobi polynomial parameters.
input :n P N0 and x P r´1, 1s: Order of induced polynomial and measure µn and

value x.
input :M P N: Quadrature order for approximate computation of Fnpxq.
output : pFn

`

x;µpα,βq
˘

.

1 If x ą x0 pµpα, βq, nq, return 1´ pFnp´x;µpβ,αqq.
2 Compute n zeros, txj,nu

n
j“1 of pn “ pn

`

¨;µpα,βq
˘

, and leading coefficient γn of pn.
3 Compute recurrence coefficients aj and bj associated to µp0,βq for

0 ď j ďM `A` 2n.
4 for j “ 1, . . . , n do
5 Quadratic measure modification (B.1b): update an, bn for

n “ 0, . . . ,M `A` 2pn´ jq with modification factor
´

u´
´

2
x`1 pxj,n ` 1q ´ 1

¯¯2

.

6 end
7 for k “ 1, . . . , A do
8 Use linear modification (B.1a) to update an, bn for n “ 0, . . . ,M ` pA´ kq with

modification factor
´

u´
´

3´x
1`x

¯¯

.

9 end
10 b0 Ð b0

`

x`1
2

˘2n`A
γ2
n (Cf. the leading coefficient of the polynomial U2n`A in (3.5).)

11 Compute M -point Gauss quadrature prum, rwmq
M
m“1 associated with measure rµn via

tpaj , bjqu
M
j“0.

12 Compute the integral I in (3.8), and return pFn
`

x;µpα,βq
˘

given by (3.9).

THEOREM 3.1. With µpα,βq, n P N, and x P r´1, 1s all given, assume that x ď x0 with
x0 as in (3.4). Then the output pFnpxq from Algorithm 1 using an M -point quadrature rule
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satisfies

ˇ

ˇ

ˇ
Fnpxq ´ pFnpxq

ˇ

ˇ

ˇ
ď Cpα, β, n,Mq

M
ź

j“0

bj prµnq ,(3.10)

where bj prµnq are the bj three-term recurrence coefficients associated to the x-dependent
measure rµn defined in (3.6). The constant C is

Cpα, β, n,Mq “
2β`1´A

pβ ` 1qBpβ ` 1, α` 1q

ˆ

x0pnq ` 1

4

˙2M`β`1

.

Note that Cpα, β, n,Mq on the right-hand side of (3.10) is explicitly computable once α,
β, M , and n are fixed, and only the product involving bj prµnq depends on x. Furthermore, the
bj prµnq factors are explicitly computed in Algorithm 1, so that a rigorous error estimate for
the algorithm can be computed before its termination.

Since x0`1
4 ă 1

2 , then the estimate (3.10) also hints at exponential convergence of the
quadrature rule strategy, assuming that the factors bj prµnq can be bounded or controlled. We
cannot provide these bounds, although we do know the asymptotic behavior bj prµnq Ñ 1

4
as j Ñ 8 [20, Remark 3.1.10]. Also, since x0 P r´1, 1s for any n ą 0 then, uniformly in
n ą 0, Cpα, β, n,Mq ď C 1pα, βq4´M . Thus, for a fixed x we expect that the estimate in
Theorem 3.1 behaves like

ˇ

ˇ

ˇ
Fnpxq ´ pFnpxq

ˇ

ˇ

ˇ
ď Cpα, β, n,Mq

M
ź

j“0

bj prµnq À C2pα, β, xq4´2M ,

showing exponential convergence with respect to M . However, we cannot prove this latter
statement.

Proof of Theorem 3.1. The result is a relatively straightforward application of known error
estimates for Gaussian quadrature with respect to non-classical weights. We use the notation
of Algorithm 1: rum and rwm denote the M -point rµn-Gaussian quadrature nodes and weights,
respectively. We start with the Corollary to Theorem 1.48 in [6], stating that if fp¨q is infinitely
differentiable on r´1, 1s, then

ˇ

ˇ

ˇ

ˇ

ˇ

ż 1

´1

fpuqdrµnpuq ´
M
ÿ

j“1

rwmf prumq

ˇ

ˇ

ˇ

ˇ

ˇ

“
f p2Mqpτq

p2Mq!

ż 1

´1

M
ź

j“1

pu´ rumq
2

drµnpuq

for some τ P p´1, 1q. Noting that since rum are the zeros of the degree-M rµn-orthogonal
polynomial, then

ż 1

´1

M
ź

j“1

pu´ rumq
2

drµnpuq “
M
ź

j“0

bj prµnq

ż 1

´1

p2
M pu; rµnqdrµnpuq “

M
ź

j“0

bj prµnq .

From (3.7), the integral that we would like to approximate has the integrand
fpuq “

`

2´ 1
2 pu` 1qpx` 1q

˘α´A
. Then for any τ P p´1, 1q and any x ď x0,

ˇ

ˇ

ˇ
f p2Mqpτq

ˇ

ˇ

ˇ
“

ˆ

x` 1

2

˙2M ˆ

2´
1

2
px` 1qpτ ` 1q

˙α´A´2M 2M´1
ź

j“0

|α´A´ j|

ď

ˆ

x0 ` 1

2

˙2M

2α´A´2M
2M´1
ź

j“0

|α´A´ j| “ 2α´A
ˆ

x0 ` 1

4

˙2M 2M´1
ź

j“0

|α´A´ j|.
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FIG. 3.1. Color plot of log10

ˇ

ˇ

ˇ
Fnpxq ´ pFnpxq

ˇ

ˇ

ˇ
for Jacobi measures with certain choices of the order n and

various quadrature size M . Left: pα, β, nq “
`

e,´ 1
3
, 2
˘

. Center: pα, β, nq “
`

´ 1
π
, 100π, 875

˘

. In the left and
center figures the vertical dashed black line indicates x0pnq. Right: A subset of errors in the center figure plotted
with M on the horizontal axis, demonstrating spectral convergence. For these test cases, we obtain more than 10
digits of accuracy with only M “ 10, uniformly in x.

Then

ˇ

ˇ

ˇ
Fnpxq ´ pFnpxq

ˇ

ˇ

ˇ
“

ˆ

x` 1

2

˙β`1
c
p0,βq
J

c
pα,βq
J

ˇ

ˇ

ˇ

ˇ

ˇ

ż 1

´1

fpuqdrµnpuq ´
M
ÿ

j“1

rwmf prumq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˆ

x` 1

2

˙β`1
c
p0,βq
J

c
pα,βq
J

2α´A
ˆ

x0 ` 1

4

˙2M
ś2M´1
j“0 |α´A´ j|

p2Mq!

M
ź

j“0

bj prµnq .

Since α´A P p´1, 1q, then

ˇ

ˇ

ˇ
Fnpxq ´ pFnpxq

ˇ

ˇ

ˇ
ď 2α`β`1´A c

p0,βq
J

c
pα,βq
J

ˆ

x0 ` 1

4

˙2M`β`1 M
ź

j“0

bj prµnq .

The result follows by direct computation of 2α`β`1´A c
p0,βq
J

c
pα,βq
J

. l

We verify spectral convergence of the scheme empirically in Figure 3.1, which also
illustrates that for the test cases shown, one could choose M to bound errors uniformly in x.
The figure also shows that qualitative error behavior is uniform even for extremely large values
of n and/or α or β. Based on these results, taking M “ 10 appears sufficient uniformly over
all pα, β, nq.2 Finally, extending the estimate in (3.10) to the case x ą x0 can be accomplished
by permuting α and β as is done for that case in Algorithm 1.

3.2. Half-line Freud weights. In this section we consider the half-line Freud measure
µ
pα,ρq
HF as defined in Table 1.1. These algorithms require the recurrence coefficients for µHF ;

these coefficients are in general not easy to compute when α ‰ 1. We show in Appendix C
that these recurrence coefficients can be determined from the recurrence coefficients for Freud
weights, but recurrence coefficients for Freud weights are themselves relatively difficult to
tabulate [15, 25]. In our computations we use the methodology of [7] to compute Freud weight
recurrence coefficients (and hence half-line Freud coefficients). We note that the methodology
of [7] is computationally onerous: For a fixed α and ρ, it required a day-long computation to
obtain 500 recurrence coefficients.

Again in this subsection we write µpα,ρqHF “ µ and similarly for µn, F , Fn, etc. We restore
these super- and subscripts when ambiguity arises without them.

2Not shown: we have verified this for numerous values of pα, β, nq.
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We accomplish computation of Fn for this measure with largely the same procedure
as for Jacobi measures. Like in the Jacobi case, the details of the procedure we use differ
depending on whether x is closer to the left-hand end of suppµ (which is x “ 0 here), or to
the right-hand end of the suppµ (which is x “ 8). We determine this delineation again by
means of potential theory.

3.2.1. Computation of x0. As with the Jacobi case, we take x0 to be the midpoint of
the “essential" support for p2

npxqdµ
pα,ρq
HF , the latter of which is approximately the support of

the weighted equilibrium measure associated to
”

dµ
pα,ρq
HF

ı1{2n

. However, directly computing
the support of this equilibrium measure is difficult. Thus, we resort to a more ad hoc approach.

To derive our approach, we first compute the exact support of special cases of our Half-line
Freud measures.

‚ The support of the weighted equilibrium measure associated to the measure

dµpxq “ xs expp´λxq, x P r0,8q, s ě 0, λ ą 0,(3.11)

is the interval rθ ´∆, θ `∆s, with these values given by [22]

θ “
s` 1

λ
, ∆ “

?
2s` 1

λ
.

This interval is the “essential" support for any function of the form pnpxq pdµpxqq
n

where pn is a degree-n polynomial.
‚ The second special case is for arbitrary α, but ρ “ 0. The support of the weighted

equilibrium measure for
b

dµ
pα,0q
HF in this case is the interval r0, knpαqs, where

kn pαq “ kn :“ n1{α

˜

2
?
πΓpαq

Γ
`

α` 1
2

˘

¸1{α

are the Mhaskar-Rakhmanov-Saff numbers for
b

µ
pα,0q
HF (see [16]).

We now derive our approximation for the case of general α, ρ. To approximate where

pn

b

dµ
pα,ρq
HF is supported, consider

pnpxq
´

dµ
pα,ρq
HF pxq

¯1{2

9pnpxq

„

xρ{2n exp

ˆ

´
1

2n
xα

˙n

u“xα
“ p

´

u1{α
¯

„

uρ{2nα exp

ˆ

´
1

2n
u

˙n

“ qn{αpuq
”

uρ{2n exp
´

´
α

2n
u
¯ın{α

,

where we have introduced qn{α, which is a “polynomial" of “degree" n{α.3 Note that in the
variable u, the weight function under square brackets in the last expression is of the form (3.11).
Concepts in potential theory extend to generalized notions of polynomial degree, and so we
may apply our formulas for θ and ∆ with s “ ρ

2n and λ “ α
2n . These formulas imply that the

“essential" support for the u variable is

θ ´∆ ď u “ xα ď θ `∆.

3More formally, it is a potential with “mass" n{α.
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FIG. 3.2. Depiction of the interval F´1
n pr0.01, 0.99sq containing “most" of the support of Fnpxq, for various

n in the Half-Freud case. This interval is compared against the potential-theoretic demarcations (3.13a). Good
agreement indicates that a˘ defined in (3.13) are reasonably accurate approximations for the bulk support of Fn.

Therefore, to obtain appropriate limits on the variable x, we raise the endpoints θ ˘ ∆ to
the 1{α power. However, we now require a correction factor. To see why, we compute the
right-hand side of our computed support interval when ρ “ 0

pθ `∆q
1{α

“

´

2n` 2
?
n2
¯1{α

“ 22{αn1{α,(3.12)

and compare this with the exact value knpαq computed above. We note that while knpαq „
n1{α matches the n-behavior of (3.12), the constant is wrong. We thus multiply the endpoints
pθ ˘∆q

1{α by the appropriate constant to match the ρ “ 0 behavior of knpαq. The net result
then, for arbitrary α, ρ, is the approximation

a˘ pn, α, ρq :“

˜ ?
πΓpαq

2Γ
`

α` 1
2

˘

¸1{α
´

ρ` 2n˘ 2
a

n2 ` nρ
¯1{α

,(3.13a)

x0

´

n;µ
pα,ρq
HF

¯

:“
1

2
pa´ pn, α, ρq ` a` pn, α, ρqq .(3.13b)

Figure 3.2 compares the intervals demarcated by a´ and a` versus F´1
n pr0.01, 0.99sq, the

latter of which contains “most" of the support of Fn.

3.2.2. Computation of pFnpxq. First assume that x ď x0. Then

Fnpxq “
1

c
pα,ρq
HF

ż x

0

p2
nptqt

ρ exp p´tαqdt

u“ 2t
x ´1
“

´x

2

¯ρ`1 1

c
pα,ρq
HF

ż 1

´1

exp
´

´

´x

2

¯α

pu` 1q
α
¯

p2
n

´x

2
p1` uq

¯

p1` uqρdu.
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We recognize a portion of the integrand as a Jacobi measure, and use successive measure
modifications to define rµn:

drµnpuq :“ p2
n

´x

2
p1` uq

¯

dµ
p0,ρq
J ,

Ipxq :“
M
ÿ

m“1

rwm exp
´

´

´x

2

¯α

pum ` 1q
α
¯

,(3.14a)

pFnpxq “
´x

2

¯ρ`1 c
p0,ρq
J

c
pα,ρq
HF

Ipxq.(3.14b)

The recurrence coefficients of rµn can be computed via polynomial measure modifications on
the roots uj,n “

2xj,n
x ´ 1, where xj,n are the roots of pn p¨q. A detailed algorithm is given in

Algorithm 2.

Algorithm 2: Computation of Fnpxq for µ “ µ
pα,ρq
HF corresponding to a half-line Freud

weight.
input :α ą 1

2 , ρ ą ´1: half-line Freud weight parameters.
input :n P N0 and x ě 0: Order of induced measure µn and value x.
input :M P N: Quadrature order for approximate computation of Fnpxq.
output : pFnpxq.

1 Compute n zeros, txj,nu
n
j“1 of pn “ pn

`

¨;µpa,ρq
˘

, and leading coefficient γn of pn.

2 Compute recurrence coefficients aj and bj associated to µp0,ρqJ for 0 ď j ďM ` 2n.
3 for j “ 1, . . . , n do
4 Quadratic measure modification (B.1b): update an and bn for

n “ 0, . . . ,M ` 2pn´ jq with modification factor
´

u´
´

2xj,n
x ´ 1

¯¯2

.

5 Scale b0 Ð b0 exp
`

1
n log γ2

n

˘

.
6 end
7 Compute M -point Gauss quadrature prum, rwmq

M
m“1 associated with measure rµn via

tpaj , bjqu
M
j“0.

8 Compute the integral I in (3.14a), and return pFn
`

x;µpα,ρq
˘

given by (3.14b).

Now assume that x ě x0. We compute F cn directly in a similar fashion as we did for Fn.
We have

F cnpxq “
1

c
pα,ρq
HF

ż 8

x

p2
n ptq t

ρ exp p´tαqdt

u“t´x
“

1

c
pα,ρq
HF

ż 8

0

p2
n pu` xq pu` xq

ρ
exp p´ pu` xq

α
qdu

“ expp´xαq
c
pα,0q
HF

c
pα,ρq
HF

ż 8

0

p2
n pu` xq pu` xq

ρ
exp puα ` xα ´ pu` xq

α
q expp´uαqdu.

We again use this to define a new measure rµn and an associated M -point Gauss quadrature
pum, wmq

M
m“1. The recurrence coefficients for rµn are computable via polynomial measure
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modifications. This results in the approximation

drµnpuq :“ p2
n pu` xqdµ

pα,0q
HF ,

Ipxq “
M
ÿ

m“1

rwm pum ` xq
ρ

exp puαm ` x
α ´ pum ` xq

αq ,(3.15)

pF cnpxq “ expp´xαq
c
pα,0q
HF

c
pα,ρq
HF

Ipxq.(3.16)

A more detailed algorithm is given in Algorithm 3. Of course, once F cn is computed we may
compute Fnpxq “ 1´ F cnpxq.

Algorithm 3: Computation of pF cnpxq for µpα,ρqHF corresponding to a half-line Freud weight.
input :α ą 1

2 , ρ ą ´1: generalized Freud weight parameters.
input :n P N0 and x ě 0: Order of induced polynomial and measure µn and value x.
input :M P N: Quadrature order for approximate computation of F cnpxq.
output : pF cnpxq.

1 Compute n zeros, txj,nu
n
j“1 of pn “ pn

`

¨;µpa,ρq
˘

, and leading coefficient γn of pn.

2 Compute recurrence coefficients aj and bj associated to µpα,0qHF for 0 ď j ďM ` 2n.
3 for j “ 1, . . . , n do
4 Quadratic measure modification (B.1b): update an, bn for

n “ 0, . . . ,M `A` 2pn´ jq with modification factor pu´ pxj,n ´ xqq
2.

5 Scale b0 Ð b0 exp
`

1
n log γ2

n

˘

.
6 end
7 Compute M -point Gauss quadrature prum, rwmq

M
m“1 associated with measure rµn via

tpaj , bjqu
M
j“0.

8 Compute the integral I in (3.15), and return pF cn
`

x;µpα,ρq
˘

given by (3.16).

Differences between Fn and computational approximations pFn are shown in Figure 3.3.
We see that we require a much larger value of M in order to achieve accurate approximations
compared to the Jacobi case. We believe this to be the case due to the function exppuα`xα´
pu` xqαq appearing in the integral Ipxq. Note that for α “ 1 this function becomes unity and
so does not adversely affect the integral; this results in the much more favorable error plot on
the left in Figure 3.3.

The different behavior for α “ 1 leads us to make customized choices in this case: we
choose M “ 25 for all values of n and ρ, and we take x0pnq ” 50. Whereas for α ‰ 1 our
tests suggest that M “ n` 10 is sufficient to achieve good accuracy, and we take x0 as the
average of a˘ as given in (3.13).

3.3. Freud weights. Finally, consider the Freud measure µpα,ρqF defined in Table 1.1. An
especially important case occurs for α “ 2, ρ “ 0, corresponding to the classical Hermite
polynomials. Note that the recurrence coefficients for general values of a and ρ are not known
explicitly, but their asymptotic behavior has been established [14].

It is well-known that Freud weights are essentially half-line Freud weights in disguise
under a quadratic map. It is not surprising then that we may express primitives of induced
polynomial measures for Freud weights in terms of the associated half-line Freud primitives.
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FIG. 3.3. Color plot of log10

ˇ

ˇ

ˇ
Fnpxq ´ pFnpxq

ˇ

ˇ

ˇ
for half-line Freud measures with certain choices of the order

n and various quadrature size M . Left: pα, ρ, nq “
`

1,
?

1001, 595
˘

. Right: pα, ρ, nq “ p2, 0, 70q. Much larger
values of M are needed when compared against the Jacobi case in Figure 3.1.

THEOREM 3.2. Let the parameters pα, ρq define a Freud weight and associated measure
µ
pα,ρq
F . Then for x ď 0,

Fn

´

x;µ
pα,ρq
F

¯

“

$

&

%

1
2F

c
n{2

´

x2;µ
pα{2,pρ´1q{2q
HF

¯

, n even,

1
2F

c
pn´1q{2

´

x2;µ
pα{2,pρ`1q{2q
HF

¯

, n odd.
(3.17)

For x ě 0, we have

Fn

´

x;µ
pα,ρq
F

¯

“ 1´ Fn

´

´x;µ
pα,ρq
F

¯

.(3.18)

Note that with expressions (3.17) and (3.18), an algorithm for computing Fn p¨;µF q is
straightforward to devise utilizing Algorithm 3 for F cn p¨;µHF q.

The result (3.18) follows easily from the fact that the integrand in (2.2) defining Fn is
an even function. To prove the main portion of the theorem, expression (3.17), we require
the following result relating Freud orthonormal polynomials to half-line Freud orthonormal
polynomials.

LEMMA 3.3. Let ρ ą ´1 and α ą 1 be parameters that define a Freud measure µpα,ρqF

with associated orthonormal polynomial family pnpxq “ pn

´

x;µ
pα,ρq
F

¯

. Define two sets of

half-line Freud parameters pα˚, ρ˚q and pα˚˚, ρ˚˚q and the corresponding half-line Freud
measures and polynomials:

α˚ :“
α

2
, ρ˚ :“

ρ´ 1

2
, p˚,npxq :“ pn

´

x;µ
pα˚,ρ˚q
HF

¯

,(3.19a)

α˚˚ :“
α

2
, ρ˚˚ :“

ρ` 1

2
, p˚˚,npxq :“ pn

´

x;µ
pα˚˚,ρ˚˚q
HF

¯

.(3.19b)

Also define the constant

h2 “ h2pα, ρq :“
Γ
`

ρ`1
α

˘

Γ
`

ρ`3
α

˘ .(3.20)

Then, for all n ě 0,

p2n pxq “ p˚,n
`

x2
˘

,

p2n`1 pxq “ hxp˚˚,n
`

x2
˘

.
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Proof. The following equalities may be verified via direct computation using the defini-
tions (3.19) and (3.20) along with the expressions in Table 1.1:

c
pα,ρq
F “ c

pα˚,ρ˚q
HF , c

pα,ρq
F “ h2c

pα˚˚,ρ˚˚q
HF .(3.21)

The proof of this lemma relies on the change of measure t ÞÑ x2. We have

δm,n “

ż 8

0

p˚,nptqp˚,mptqdµ
pα˚,ρ˚q
HF ptq “

1

c
pα˚,ρ˚q
HF

ż 8

0

p˚,nptqp˚,mptqt
ρ˚ exp p´tα˚qdt

“
2

c
pα˚,ρ˚q
HF

ż 8

0

p˚,n
`

x2
˘

p˚,m
`

x2
˘

x2ρ˚`1 exp
`

´x2α˚
˘

dx

“
1

c
pα,ρq
F

ż 8

´8

p˚,n
`

x2
˘

p˚,m
`

x2
˘

|x|
2ρ˚`1

exp
´

´ |x|
2α˚

¯

dx

“

ż 8

´8

p˚,n
`

x2
˘

p˚,m
`

x2
˘

dµ
pα,ρq
F pxq.

This relation shows that the family
 

p˚,n
`

x2
˘(8

n“0
are polynomials of degree 2n that are

orthonormal under a Freud weight with parameters α “ 2α˚ and ρ “ 2ρ˚ ` 1. Using nearly
the same arguments, but with the family tp˚˚,nun, yields the relation

δm,n “

ż 8

0

p˚˚,nptqp˚˚,mptqdµ
pα˚˚,ρ˚˚q
HF ptq

“
1

c
pα˚˚,ρ˚˚q
HF

ż 8

0

p˚˚,nptqp˚˚,mptqt
ρ˚˚ exp p´tα˚˚qdt

“
2

c
pα˚˚,ρ˚˚q
HF

ż 8

0

p˚˚,n
`

x2
˘

p˚˚,m
`

x2
˘

x2ρ˚˚`1 exp
`

´x2α˚˚
˘

dt

“
h2

c
pα,ρq
F

ż 8

´8

xp˚˚,n
`

x2
˘

xp˚˚,m
`

x2
˘

|x|
2ρ˚˚´1

exp
´

´ |x|
2α˚˚

¯

dt

“ h2

ż 8

´8

xp˚˚,n
`

x2
˘

xp˚˚,m
`

x2
˘

dµ
pα,ρq
F pxq.

This relation shows that the family
 

hxp˚˚,n
`

x2
˘(8

n“0
are polynomials of degree 2n` 1 that

are orthonormal under the same Freud having parameters α “ 2α˚˚ and ρ “ 2ρ˚˚ ´ 1. We
also have that xp˚˚,n

`

x2
˘

is orthogonal to p˚,m
`

x2
˘

under a(ny) Freud weight for any n,m
because of even-odd symmetry. Thus, define

Pnpxq “

#

p˚,n{2
`

x2
˘

, n even,

hxp˚˚,pn´1q{2

`

x2
˘

, n odd.

Then tPnu
8

n“0 is a family of degree-n polynomials (with positive leading coefficient) orthonor-
mal under a pα, ρq Freud weight. Therefore, Pn ” pn. l

We can now give the proof of Theorem 3.2.
Proof of Theorem 3.2. Assume x ď 0. Then

Fn

´

x;µ
pα,ρq
F

¯

“
1

c
pa,ρq
F

ż x

´8

p2
n ptq |t|

ρ exp p´|t|αqdt,

u“t2
“

1

2c
pa,ρq
F

ż 8

x2

p2
n

`

´
?
u
˘

|u|ρ˚ exp p´|u|α˚qdu,
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where pα˚, ρ˚q are as defined in (3.19a). By Lemma 3.3,

p2
np´

?
uq “

#

p2
˚,n{2 puq , n even,

h2up2
˚˚,pn´1q{2 puq , n odd,

where pα˚˚, ρ˚˚q are defined in (3.19b). Then if n is even, we have

Fn

´

x;µ
pα˚,ρ˚q
F

¯

“
1

2c
pα˚,ρ˚q
HF

ż 8

x2

p2
˚,n{2puq|u|

ρ˚ exp p´|u|α˚qdu

“
1

2
F cn{2

´

x2;µ
pα˚,ρ˚q
HF

¯

,

where we recall the equalities (3.21) related cF to cF˚. Similarly, if n is odd we have

Fn

´

x;µ
pα,ρq
F

¯

“
h2

2c
pα,ρq
F

ż 8

x2

up2
˚˚,pn´1q{2puq|u|

ρ˚ exp p´|u|α˚qdu

“
1

2c
pα˚˚,ρ˚˚q
HF

ż 8

x2

p2
˚˚,pn´1q{2puq|u|

ρ˚˚ exp p´|u|α˚˚qdu

“
1

2
F cpn´1q{2

´

x2;µ
pα˚˚,ρ˚˚q
HF

¯

.

The combination of these results proves (3.17). l

4. Inverting induced distributions. We have discussed at length in previous sections
algorithms for computing Fnpxq defined in (2.2) for various Lebesgue-continuous measures
µ. The central application of these algorithms we investigate in this paper is actually in the
evaluation of F´1

n puq for u P r0, 1s. We accomplish this by solving for x in the equation

Fnpxq ´ u “ 0, u P r0, 1s,(4.1)

using a root-finding method. Our first step involves providing an initial guess for x.

4.1. Computing an initial interval. We use s˘ to denote the (possibly infinite) end-
points of the support of µ:

´8 ď s´ :“ inf psuppµq , s` :“ sup psuppµq ď 8.

Now let u P r0, 1s. Our first step in finding F´1
n puq is to compute two values x´ and x`, such

that

x´ ď F´1
n puq ď x`.(4.2)

Our procedure for identifying an initial interval containing F´1
n puq leverages the Markov-

Stieltjes inequalities for orthogonal polynomials. These inequalities state that empirical
probability distributions of Gauss quadrature rules generated from a measure bound the
distribution function for this measure. Precisely:

LEMMA 4.1 (Markov-Stieltjes Inequalities, [24]). Let µ be a probability measure on
R with an associated orthogonal polynomial family. For any N P N, let txk,N , wk,Nu

N
k“1

denote the N µ-Gaussian quadrature nodes and weights, respectively. Then:

m´1
ÿ

k“1

wk,N ďF pxm,N q ď
m
ÿ

k“1

wk,N , 1 ď m ď N.
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Let tpj,nu
8

j“0 denote the sequence of polynomial orthonormal under the induced measure

µn. Given N P N, let tzk,N , vk,Nu
N
k“1 denote the N -point µn-Gaussian quadrature rule, i.e.,

zk,N are the N ordered zeros of pN,npxq, with vk,N the associated weights. Since µn is a
probability measure, then

řN
k“1 vk,N “ 1. As such, given u P r0, 1s we can always find some

m P t1, . . . , Nu, such that

m´1
ÿ

k“1

vk,N ď u ď
m
ÿ

k“1

vk,N .(4.3)

Then, defining z0,N ” s´ and zN`1,N ” s` for all N and n, we have

Fn pzm´1,N q ď

m´1
ÿ

k“1

vk,N ď u ď
m
ÿ

k“1

vk,N ď Fn pzm`1,N q .

Since Fn is non-decreasing, this is equivalently,

zm´1,N ď F´1
n puq ď zm`1,N .

Thus, if we find an m such that (4.3) holds, then (4.2) holds with

x´ “ zm´1,N , x` “ zm`1,N .(4.4)

When supp µ is bounded, the N -asymptotic density of orthogonal polynomial zeros on
supp µ guarantees that we can find a bounding interval with endpoints x˘ of arbitrarily small
width by taking N sufficiently large. The difficulty is that we therefore require the zeros zk,N
and the quadrature weights vk,N of the induced measure, which in turn require knowledge of
the three-term recurrence coefficients associated to µn. These can be easily computed from
the coefficients associated to µ; since

dµnpxq “ p2
npxqdµpxq “ γ2

n

n
ź

j“1

px´ xj,nq
2

dµpxq,(4.5)

then we may again iteratively utilize the quadratic modification algorithm given by (B.1b) to
compute these recurrence coefficients, which are iteratively quadratic modifications of the
µ-coefficients. (Note that this is precisely the procedure proposed in [8] for computing these
coefficients.)

4.2. Bisection. For simplicity, the root-finding method we employ to solve (4.1) is
the bisection approach. More sophisticated methods may be used, with the caveat that the
derivative of the function, F 1pxq “ p2

npxqdµpxq, vanishes wherever pn has a root. We have
found that a naive application of Newton’s method for root-finding often runs into trouble,
even with a very accurate initial guess.

The bisection method for root-finding applied to (4.1) starts with an initial guess for an
interval rx´, x`s containing the root x, and iteratively updates this interval via

x´ Ð
1

2
px´ ` x`q if Fn

ˆ

1

2
px´ ` x`q

˙

ď u,

x` Ð
1

2
px´ ` x`q if Fn

ˆ

1

2
px´ ` x`q

˙

ą u.

After a sufficient number of iterations so that x` ´ x´ and/or |F px´q ´ F px`q| is smaller
than a tunable tolerance parameter, one can confidently claim to have found the root x to
within this tolerance. A good initial guess for x˘ lessens the number of evaluations of Fn in a
bisection approach and thus accelerates overall evaluation of F´1

n .
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4.3. Algorithm summary. The overall algorithm for solving (4.1) is to (i) compute the
recurrence coefficients associated with µn in (4.5) via quadratic measure modifications, (ii)
compute order-N µn-Gaussian quadrature nodes and weights zj,N and vj,N , respectively, (iii)
identify m such that (4.3) holds so that x˘ may be computed in (4.4), and (iv) iteratively apply
the bisection algorithm with the initial interval defined by x˘ using the evaluation procedures
for Fn outlined in Section 3.

5. Applications. This section discusses two applications of sampling from univariate
induced measures. Both these applications consider multivariate scenarios, and are based
on the fact that many “interesting" multivariate sampling measures are additive mixtures of
tensorized univariate induced measures. Our first task is to introduce notation for tensorized
orthogonal polynomials.

We will write d-variate polynomials using multi-index notation: λ P Nd0 denotes a multi-
index with components λ “ pλ1, . . . , λdq and magnitude |λ| “

řd
j“1 λj . A point x P Rd has

components x “ px1, . . . , xdq, and xλ “
śd
j“1 x

λj
j . A collection of multi-indices will be

denoted Λ Ă Nd0; we will assume that N “ |Λ| is finite.
Let µ be a tensorial measure onRd such that each of its d marginal univariate measures

µpjq, j “ 1, . . . , d admits a µpjq-orthonormal polynomial family tpj,nu
8

n“0 onR, satisfying
ż

R

pj,n pxjq pj,m pxjqdµpjq pxjq “ δm,n, n,m P N0, j “ 1, . . . , d.

A tensorial µ allows us to explicitly construct an orthonormal polynomial family for µ from
univariate polynomials,

pλpxq :“
d
ź

j“1

pj,λj pxjq .

These polynomials are an L2
dµ-orthonormal basis for the subspace PΛ, defined as

PΛ “ span tpλ | λ P Λu .

Under the additional assumption that the index set Λ is downward-closed, then PΛ “

span
 

xλ | λ P Λ
(

.
We extend our definition of induced polynomials to this tensorial multivariate situation.

For any λ P Λ, the order-λ induced measure µλ is defined as

dµλpxq :“ p2
λpxqdµpxq “

d
ź

j“1

p2
j,λj pxjqdµpjqpxq “

d
ź

j“1

dµ
pjq
λj
,

where dµ
pjq
λj

is the (univariate) order-λj induced measure for µpjq according to the defini-
tion (2.2). Thus, µλ is also a tensorial measure.

5.1. Optimal polynomial discrete least-squares. The goal of this section is to describe
a procedure utilizing the algorithms above for performing discrete least-squares recovery in
a polynomial subspace using the optimal (fewest) number of samples. The procedure we
discuss was proposed in [3] and is based on the foundational matrix concentration estimates
for least-squares derived in [2].

Let f : Rd Ñ R be a d-variate function. Given (i) a tensorial probability measure µ
admitting an orthonormal polynomial family, and (ii) a dimension-N polynomial subspace
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PΛ, we are interested in approximating the L2
dµ-orthogonal projection of f onto PΛ. This

projection is given explicitly by

ΠΛf “
ÿ

λPΛ

c˚λpλpxq, c˚λ “

ż

Rd

fpxqpλpxqdµpxq.

One way to approximate the integral defining the coefficients c˚λ is via a Monte Carlo least-
squares procedure using M collocation samples of the function fpxq. Let tXmu

M
m“1 denote a

collection of M independent and identically distributed random variables onRd, where we
leave the distribution of Xm unspecified for the moment. A weighted discrete least-squares
recovery procedure approximates c˚λ with cλ, computed as

tcλuλPΛ “ argmin
dλPR

1

M

M
ÿ

m“1

wm

«

fpXmq ´
ÿ

λPΛ

dλpλpXmq

ff2

,(5.1)

where wm are positive weights. One supposes that if the distribution of Xm and the weights
wm are chosen intelligently, then it is possible to recover theN coefficients cλ with a relatively
small number of samples M ; ideally, M should be close to N . The analysis in [2] codifies
conditions on a required sample count M so that the minimization procedure above is stable,
and so that the recovered coefficients cλ are “close" to c˚λ; these conditions depend on the
distribution of Xm, on wm, on µ, and on PΛ. Since µ and PΛ are specified, the goal here is
identification of an appropriate distribution for Xm and weight wm.

Using ideas proposed in [19, 11] the results in [3] show that, in the context of the analysis
in [2], the optimal choice of probability measure µX for sampling Xm and weights wm that
achieves a minimal sample count M are

µX “ µΛ “
1

N

ÿ

λPΛ

µλ, wm “
N

ř

λPΛ p
2
λ pXmq

.(5.2)

The precise quantification of the sample count and error estimates can be formulated using
an algebraic characterization of (5.1). Define matrices V P RMˆN and W P RMˆM , and
vectors c P RN and f P RM as follows:

pV qm,n “ pλpnq pXmq , pW qj,k “ wjδj,k,

pcqn “ cλpnq, pfqm “ f pXmq ,

where λp1q, . . . , λpNq represents any enumeration of elements in Λ. We use }¨} on matrices to
denote the induced `2 norm. The algebraic version of (5.1) is then to compute c that minimizes
the the least-squares residual of

?
WV c “

?
Wf . The following result holds.

THEOREM 5.1 ([2, 3]). Let 0 ă δ ă 1 and r ą 0 be given, and define cδ :“ p1 `

δq logp1` δq ´ δ P p0, 1q. Draw M iid samples tXmu
M
m“1 from µX , and let the coefficients

cλ be those recovered from (5.1). If

M

logM
ě N

1` r

cδ
,(5.3)

then

Pr
”
›

›

›
V TWV ´ I

›

›

›
ą δ

ı

ď 2M´r,

E

›

›

›

›

›

f ´ TL

˜

ÿ

λPΛ

cλpλp¨q

¸
›

›

›

›

›

L2
dµ

ď

„

1`
4cδ

p1` rq logM



}f ´ΠΛf}L2
dµ

` 8 }f}L8psuppµqM
´r.
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The free parameter r is a tunable oversampling rate; δ represents the guaranteeable
proximity of V TWV to I . We emphasize that by choosing µX “ µΛ with the weights
defined as in W , then the size of M as required by (5.3) depends only on the the cardinality
N of Λ, and not on its shape. Furthermore, the criterion M{ logM Á N is optimal up to the
logarithmic factor. Also, the statements above hold uniformly over all multivariate µ.

Note that the optimal sampling measure µX is an additive mixture of induced measures
and can be easily sampled, assuming that µλ can be sampled. Sampling from µX defined above
is fairly straightforward given the algorithms in this paper: (1) given Λ choose an element λ
randomly using the uniform probability law, (2) generate d independent, uniform, continuous
random variables Uj , j “ 1, . . . , d, each on the interval r0, 1s, (3) compute X P Rd as

X “

´

F´1
λ1

´

U1;µp1q
¯

, F´1
λ2

´

U2;µp2q
¯

, . . . , F´1
λd

´

Ud;µ
pdq

¯¯

.

Then X is a sample from the probability measure µX . Note that the work required to sample
X requires only d samples from a univariate induced measure. The procedure above is
essentially as described by the authors in [3]; this paper gives a concrete computational
method to sample from µΛ for a relatively general class of measures µ (i.e., those formed by
arbitrary finite tensor products of Jacobi, half-line Freud, and/or Freud univariate measures).
Thus, the algorithms in this paper along with the specifications (5.2) allow one to perform
optimal discrete least-squares using Monte Carlo sampling for approximation with multivariate
polynomials.

5.2. Weighted equilibrium measures. On Rd, consider the special case dµpxq “
expp´}x}2q, where } ¨ } is the Euclidean norm onRd. The weighted equilibrium measure µ˚

is a probability measure that is the weak limit of the summations

lim
nÑ8

ÿ

|λ|ďn

p2
λ

´

x{
?

2n
¯

dµpx{
?

2nq ñ dµ˚pxq,(5.4)

whereñ denotes weak (distributional) convergence. The form for µ˚ is not currently known,
but the authors in [19] conjecture that µ˚ has support on the unit ball with density

dµ˚pxq
?
“ gdp}x}q “ Cd

´

1´ }x}
2
¯d{2

, }x} ď 1,(5.5)

where Cd “ pπq
´pd`1q{2

Γ
`

d`1
2

˘

. If X on Rd is distributed according to gd, then the
cumulative distribution function associated to }X} is

Gdprq :“ Pr r}X} ď rs “ K

ż r

0

gdpxqr
d´1dx,(5.6)

where the rd´1 factor in the integrand is the Rd Jacobian factor for integration in spherical
coordinates, and K is the associated normalization constant. Note that the cumulative distribu-
tion function Gd is a mapped (normalized) incomplete Beta function with parameters a “ d{2
and b “ 1` d{2,

Gdprq “
1

B
`

d
2 , 1`

d
2

˘

ż r2

0

td{2p1´ tq1`d{2dt,

where Bp¨, ¨q is the Beta function. With d “ 1, the veracity of this limit is known [22,
Theorem 5.1]. Using the algorithms in this paper, we can empirically test the conjecture.
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FIG. 5.1. Weighted equilibrium measure distribution conjecture (5.6) versus empirical distribution function of
M iid samples of }X}{

?
2n, where X is drawn from the induced measure µΛn . Left: pd, nq “ p2, 100q. Middle:

pd, nq “ p5, 300q. Right: pd, nq “ p10, 500q. That these distribution functions visually match gives credence to the
conjecture (5.5) first formulated in [19].

Precisely, defining Λn :“
 

λ P Nd0 | |λ| ď n
(

, the conjecture for (5.4) reads

lim
nÑ8

ÿ

|λ|ďn

p2
λ

´

x{
?

2n
¯

dµpx{
?

2nq “ lim
nÑ8

µΛnpx{
?

2nq
?
ñ Cd

´

1´ }x}
2
¯d{2

.

Our procedure for testing this conjecture is as follows: for a fixed d and large n, we generate
M iid samples tXmu

M
m“1 distributed according to µΛn , and compute the empirical distribution

function associated with the ensemble of scalars
 

}Xm} {
?

2n
(M

m“1
. We show in Figure 5.1

that indeed for large n that empirical distributions associated with these ensembles match very
closely with the distribution function Gdprq, giving evidence that supports, but does not prove,
the conjecture (5.5).

6. Conclusions. We have developed a robust algorithm for the evaluation of induced
polynomial distribution functions associated with a relatively wide class of continuous uni-
variate measures. Our algorithms cover all classical orthogonal polynomial measures, and are
equally applicable on bounded or unbounded domains. The algorithm leverages several prop-
erties of orthogonal polynomials in order to attain stability and accuracy, even for extremely
large values of parameters defining the measure or polynomial degree. All computations
have been tested up to degree n “ 1000 and were found to be stable. The ability to evaluate
induced distributions allows the possibility to exactly sample from additive mixtures of these
measures. Such additive mixtures define sampling densities that are known to be optimal
for multivariate discrete least-squares polynomial approximation algorithms, and allow us
to provide supporting empirical evidence for an asymptotic conjecture involving weighted
pluripotential equilibrium measures.

Appendix A. Auxiliary recurrences.
For some algorithmic tasks that we consider, the three-term recurrence (2.1) for the pn

does not provide a suitable computational procedure due to floating-point under- and over-flow.
This happens in two particular cases:

‚ If x is far outside the convex hull of suppµ, then pnpxq becomes very large and
causes numerical overflow (the quantity grows like xn). We will need to evaluate
pnpxq{pn´1pxq for large x and potentially large n. (When suppµ is infinite, one can
interpret “far outside suppµ" to be defined using the potential-theoretic Mhaskar-
Rakhmanov-Saff numbers for

a

dµpxq.)
‚ When x is inside the convex hull of suppµ, we need to evaluate p2

npxq{
řn´1
j“0 p

2
j pxq.

For large enough n, direct computation causes numerical overflow.
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We emphasize that (2.1) is quite stable and sufficient for most practical computations requiring
evaluations of orthogonal polynomials. The situations we describe above (which occur in this
paper) are relatively pathological.

A.1. Ratio evaluations. We consider the first case described above. With n fixed,
suppose that either x ą max p´1

n´1p0q, or x ă min p´1
n´1p0q. Then by the interlacing properties

of orthogonal polynomial zeros, pjpxq ‰ 0 for all j “ 0, . . . n´ 1. In this case, the ratio

rjpxq :“
pjpxq

pj´1pxq
, 1 ď j ă n,(A.1)

is well-defined, with r0 :“ p0. A straightforward manipulation of (2.1) yields

a

bjrjpxq “ x´ aj´1 ´

a

bj´1

rj´1pxq
, 1 ď j ă n.(A.2)

The recurrence (A.2) is a more stable way to compute rnpxq when x is very large. In practice
we can computationally verify that x lies outside the zero set of pn´1 with Opnq effort
(e.g., [21, equation (11)] for a crude but general estimate). In the context of this paper, we
require linear modifications only on line 8 of Algorithm 1. Here, µ “ µ

pα,βq
J whose support

is r´1, 1s, and in the algorithm x P r´1, 1s, so the root p3´ xq{p1` xq has magnitude 1 or
greater. Thus, the root is always outside the zero set of pn´1 and rn is always well-defined.

A.2. Normalized polynomials. In the second case, consider a different normalization
of pn:

Cnpxq :“
pnpxq

b

řn´1
j“0 p

2
j pxq

, n ą 0, x P R,(A.3)

with C0 ” p0 “
a

1{b0. A manipulation of the three-term recurrence relation (2.1) yields the
following recurrence for Cn:

C0pxq “
1
?
b0
,

(A.4a)

C1pxq “
1
?
b1
px´ a0q ,

(A.4b)

C2pxq “
1

?
b2
a

1` C2
1 pxq

”

px´ a1qC1pxq ´
a

b1

ı

,

(A.4c)

Cn`1pxq “
1

a

bn`1

a

1` C2
npxq

»

–px´ anqCnpxq ´
a

bn
Cn´1pxq

b

1` C2
n´1pxq

fi

fl , n ě 2.

(A.4d)

Note that Cnpxq essentially behaves like rn outside a compact interval containing the zero set
of pn; however, Cn is well-defined and well-behaved inside this compact interval, unlike rn.
The polynomials pn may be reproduced from knowledge of Cn:

pnpxq “ C0Cnpxq
n´1
ź

j“1

b

1` C2
j pxq, n ą 0.(A.5)
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To see the veracity of the above, note that

1` C2
j pxq “

řj
k“0 p

2
kpxq

řj´1
k“0 p

2
kpxq

,

and use this to show that
śn´1
j“1

b

1` C2
j pxq is a telescoping product, verifying that (A.5) is

equivalent to (A.3).

Appendix B. Polynomial measure modifications.
We will need to compute recurrence coefficients for the modified measures with densities

drµpxq “ ˘ px´ y0qdµpxq, y0 R supp µ,

drrµpxq “ px´ z0q
2

dµpxq, z0 P R,

where we assume that the recurrence coefficients of µ are available to us. Here, both y0 and
z0 are some fixed real-valued numbers. In the first case (a linear modification) we assume
y0 R suppµ and choose the sign to ensure that drµpxq is positive for x P suppµ. Assuming the
recurrence coefficients an and bn for µ are known, the problems of computing the recurrence

coefficients ran and rbn for rµ, and of computing the recurrence coefficients rran and rrbn for rrµ, are
well-studied and have constructive computational solutions [9].

We use the auxiliary variables defined in Appendix A to accomplish measure modifications.
The linear and quadratic modification recurrence coefficients have the following forms (cf. [18,
Section 4]):

ran “ an ` Ă∆an, rbn “ bnĂ∆bn,(B.1a)

r

ran “ an`1 `
Ă

Ă∆an,
r

rbn “ bn`1
Ă

Ă∆bn.(B.1b)

The correction factors for n ą 0 are given by

Ă∆an “

a

bn`1

rn`1 py0q
´

?
bn

rn py0q
, Ă∆bn “

a

bn`1rn`1 py0q
?
bnrn py0q

,

Ă

Ă∆an “
a

bn`2
Cn`2 py0qCn`1 py0q
b

1` C2
n`1 py0q

´
a

bn`1
Cn`1 py0qCn py0q
a

1` C2
n py0q

,
Ă

Ă∆bn“
1` C2

n`1 py0q

1` C2
n py0q

.

For n “ 0 they take the special forms

Ă∆a0 “

?
b1

r1 py0q
, Ă∆b0 “

a

b1r1 py0q ,

Ă

Ă∆a0 “
a

b2
C2 py0qC1 py0q
a

1` C2
1 py0q

´
a

b1
C1 py0qC0 py0q
a

1` C2
0 py0q

,
Ă

Ă∆b0 “
1` C2

1 py0q

C2
0

.

Above, rnpxq “ rn px;µq and Cnpxq “ Cn px;µq are the functions associated with the
measure µ and so may be readily evaluated using (A.2) and (A.4).

Note that if we only have a finite number of recurrence coefficients, tan, bnu
M
n“0 for µ,

then a linear modification can only compute modified coefficients up to index M ´ 1, and a
quadratic modification can only compute coefficients up to index M ´ 2.

Appendix C. Freud and half-line Freud recurrence coefficients. For both cases of
Freud measures with α “ 2 (generalized Hermite polynomials), and generalized Freud
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measures with α “ 1 (generalized Laguerre polynomials), explicit forms for the recurrence
coefficients are known. However, the situation is more complicated for other values of α.

We give an extension of Lemma 3.3: Recurrence coefficients of generalized Freud weights
may be computed from those of Freud weights.

LEMMA C.1. Let parameters pα, ρq define a Freud weight having recurrence coefficients
tbnu

8

n“0. (The an coefficients vanish because the weight is even.) Define pα˚, ρ˚q and
pα˚˚, ρ˚˚q as in (3.19), along with the associated generalized Freud measures µpα˚,ρ˚qF˚

and µpα˚˚,ρ˚˚qF˚ and their recurrence coefficients tpa˚,n, b˚,nqu
8

n“0 and tpa˚˚,n, b˚˚,nqu
8

n“0,
respectively. Then, for all n:

a˚,0 “ b1, b˚,0 “ b0,(C.1a)
a˚,n “ b2n ` b2n`1, b˚,n “ b2nb2n´1, n ě 1.(C.1b)

Furthermore,

b0 “ b˚,0, b1 “ a˚,0,(C.2a)
b2n “ b˚,n{b2n´1, b2n`1 “ a˚,n ´ b2n, n ě 1.(C.2b)

This result implies that one may either use Freud weight recurrence coefficients to compute
half-line Freud weight recurrence coefficients, or vice versa. The proof is a result of Lemma 3.3
along with manipulations of the three-term recurrence relation (2.1).
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