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BERNSTEIN FRACTAL APPROXIMATION AND FRACTAL FULL
MÜNTZ THEOREMS∗

VIJENDER NALLAPU†

Abstract. Fractal interpolation functions defined by means of suitable Iterated Function Systems provide a new
framework for the approximation of continuous functions defined on a compact real interval. Convergence is one of the
desirable properties of a good approximant. The goal of the present paper is to develop fractal approximants, namely
Bernstein α-fractal functions, which converge to the given continuous function even if the magnitude of the scaling
factors does not approach zero. We use Bernstein α-fractal functions to construct the sequence of Bernstein Müntz
fractal polynomials that converges to either f ∈ C(I) or f ∈ Lp(I), 1 ≤ p <∞. This gives a fractal analogue of
the full Müntz theorems in the aforementioned function spaces. For a given sequence {fn(x)}∞n=1 of continuous
functions that converges uniformly to a function f ∈ C(I), we develop a double sequence

{
{fαn,l(x)}

∞
l=1

}∞
n=1

of Bernstein α-fractal functions that converges uniformly to f . By establishing suitable conditions on the scaling
factors, we solve a constrained approximation problem of Bernstein α-fractal Müntz polynomials. We also study the
convergence of Bernstein fractal Chebyshev series.

Key words. Bernstein polynomials, fractal approximation, convergence, full Müntz theorems, Chebyshev series,
box dimension.
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1. Introduction. Fractal interpolation and approximation methods are more versatile
than traditional nonrecursive approximation methods. Over the last three decades, researchers’
interest in fractal functions has steadily grown [1, 3, 4, 5, 6, 7, 8, 9, 18, 19, 29, 31]. It seems
unsuitable to use traditional approximants to approximate non-smooth functions. In contrast
to traditional methods, the fractal approach provides smooth or non-smooth approximants
depending on the nature of the function to be approximated. The theory of Iterated Function
System (IFS) and the Read-Bajraktarević operator defined on suitable function spaces are the
building blocks of fractal approximants. The fractal dimension is an index that quantifies the
irregularity/fractality of the fractal approximant.

Given a continuous function f defined on a real compact interval, Barnsley in [1] and
Navascués et al. in [18, 19] have identified the suitable IFS to construct a continuous fractal
function fα that approximates the function f . All the existing fractal approximants, such as
those studied in [16, 17, 18, 19, 20, 21, 22, 23, 24], converge to the given continuous function
f provided that the magnitude of the corresponding scaling factors approaches zero. In this
paper we develop a sequence of Bernstein α-fractal functions that converges uniformly to f
even when the magnitude of the scaling factors does not approach zero. We use the Bernstein
polynomials of f as base functions to build the Bernstein α-fractal functions. The convergence
of Bernstein α-fractal functions to f follows from the convergence of Bernstein polynomials
of f to f .

Müntz [14] introduced Müntz polynomials in 1914. By including more general sequences
of exponents than just those treated by Müntz, Szász proved the original Müntz theorem
in [28]. The classical Müntz theorem was only stated for increasing sequences of nonnegative
real numbers. A general result that deals with arbitrary sequences of exponents is referred
to as the full Müntz theorem. From Müntz’s and Szász’s theorems it is clear that the origin
plays a very important role in these results, and extending them to spaces of functions defined
away from the origin was a nontrivial task. Schwartz [26] proved a full Müntz theorem for
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the space L2[a, b] of square-integrable functions. Schwartz also characterized the density of
the Müntz space in C[a, b] for 0 /∈ [a, b] and conjectured a necessary and sufficient condition
for the density of the space of Müntz polynomials in C[0, 1] with general sequences of real
numbers. A few years later Siegel [27] generalized Szász’s theorem and proved Schwartz’s
conjecture by using complex variable techniques. Borwein and Erdélyi [2] largely contributed
to research on the full Müntz theorem. The full Müntz theorem [2] establishes the condition
on the sequence {λj}∞j=1 of real numbers so that the Müntz space Span{xλj : j ∈ N}
is dense in C[0, 1], where Span{xλj : j ∈ N} denotes the collection of all finite linear
combinations of the continuous functions xλj , j ∈ N. The full Müntz theorem [2] of C[0, 1]
includes Müntz’s second theorem [10] of C[0, 1]. Similarly, the classical full Müntz theorem
of Lp[0, 1], 1 ≤ p ≤ ∞, includes Müntz’s first theorem [10] of L2[0, 1].

Navascués and Chand [22] studied the fractal version of Müntz’s first and second theorems
by assuming that the magnitude of the corresponding scaling factors tends to zero. In this
paper we provide the fractal analogues of the classical full Müntz theorems without imposing
any condition on the scaling factors.

Müntz polynomials play a vital role in economics [25] and statistics [12]. In this article,
for a given function f ∈ C(I), we construct a sequence {fαn (x)}∞n=1 of Bernstein α-fractal
functions that converges uniformly to f with respect to the supremum norm or the Lp-norm.
We use Bernstein α-fractal functions to study the density of fractal Müntz polynomials in
Lp[0, 1], 1 ≤ p < ∞, and C[0, 1]. To define Bernstein α-fractal Müntz polynomials of
xλj ∈ Lp[0, 1] and xλj /∈ C[0, 1], we use the density of C[0, 1] in Lp[0, 1]. Under suitable
hypotheses, we prove that

⋃∞
n=1 Span{fαj,n : j ∈ N} is dense in C[0, 1] and Lp[0, 1] if

Span{fj : j ∈ N} is, where fαj,n is the Bernstein α-fractal function of fj . For two given
continuous Müntz polynomials Φ and Ψ such that Φ > Ψ, obtaining a fractal approximant of
Φ that is greater than Ψ constitutes the constrained approximation problem. We address this
problem in the present paper. We also study the convergence of a fractal version of Chebyshev
series. Overall, this article can also be viewed as an attempt to blend fractal functions and
Bernstein polynomials in order to establish a Bernstein-type fractal approximation.

2. Rudiments of fractal approximation theory. To make this paper self-contained, we
shall briefly recall here the development of fractal interpolation and approximation.

2.1. Basics of fractal interpolation. Let (X, d) be a complete metric space and H(X)
be the class of all non-empty compact subsets of X . The set H(X) is a complete metric space
with respect to the Hausdorff metric h [1]. Let there be N − 1 contraction maps wi : X → X ,
i ∈ NN−1 = {1, 2, . . . , N − 1}. Then I ≡ {X;wi, i ∈ NN−1} is called an Iterated Function
System (IFS). If the map wi is a contraction with contraction factor si, for all i ∈ NN−1, then
they induce a set-valued function W : H(X) → H(X), W (E) =

⋃N−1
i=1 wi(E) which is

a contraction on H(X) with a contraction factor s = max{si : i ∈ NN−1}. By the Banach
fixed point theorem there exists a unique set A ∈ H(X) which is invariant with respect to
W , i.e., A = W (A). The set A ∈ H(X) is called the attractor of the IFS I. If I is suitably
defined, then A represents the graph of a Fractal Interpolation Function (FIF) based on the
following Proposition 2.1. Before stating the result, we recall some notation.

Let x1 < x2 < · · · < xN−1 < xN for (N > 2) be a partition of the closed interval
I = [x1, xN ], and let y1, y2, . . . , yN be a collection of real numbers. Let Li for all i ∈ NN−1

be homeomorphisms from I to Ii = [xi, xi+1] such that

(2.1) Li(x1) = xi and Li(xN ) = xi+1.

Let then K be a large enough compact subset of R. Let Fi be a function from I ×K to K,
which is continuous in the x-direction and contractive in the y-direction with a contractive
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factor |αi| ≤ κ < 1 such that

(2.2) Fi(x1, y1) = yi, Fi(xN , yN ) = yi+1, for i ∈ NN−1.

We define the mappings wi : I ×K → Ii×K for i ∈ NN−1 as wi(x, y) = (Li(x), Fi(x, y)),
for (x, y) ∈ I ×K.

PROPOSITION 2.1 ([1]). For the given IFS {I×K;wi, i ∈ NN−1}, there exists a unique
compact set A ⊂ R2 such that W (A) = A. In addition, there exists a unique continuous
function f which satisfies f(xi) = yi for all i ∈ NN = {1, 2, . . . , N}, and A is the graph of
f on I . The above function f is called a FIF associated with the IFS {I ×K;wi,∈ NN−1}.

We now recall the functional equation of f . Let

G = {g : I → R continuous | g(x1) = y1, g(xN ) = yN}.

We define a metric ρ on G as ρ(h, g) = max{|h(x) − g(x)| : x ∈ I} for h, g ∈ G. Then
(G, ρ) is a complete metric space. We define the Read-Bajraktarević operator T on (G, ρ) by

(2.3) Tg(x) = Fi(L
−1
i (x), g ◦ L−1

i (x)), for x ∈ Ii.

Using the properties of Li and (2.1) and (2.2), it can be verified that Tg is continuous on
the intervals Ii, for i ∈ NN−1, at the points x2, . . . , xN−1. Also it is easy to see that T is a
contraction map on the complete metric space (G, ρ), i.e., ρ(Tg, Th) ≤ |α|∞ρ(g, h), where
|α|∞ = max{|αi| : i ∈ NN−1} < 1. Therefore, by the Banach fixed point theorem, T
possesses a unique fixed point f∗ on G, i.e., (Tf∗)(x) = f∗(x) for all x ∈ I . From (2.3) it
follows that the FIF f∗ satisfies the functional equation f∗(x) = Fi(L

−1
i (x), f∗ ◦ L−1

i (x)),
for x ∈ Ii and for i ∈ NN−1. In the present constructions of FIFs, Li(x) and Fi(x, y) are
defined as

wi(x, y) =

[
Li(x)
Fi(x, y)

]
=

[
aix+ bi

αiy + qi(x)

]
,

where ai = xi+1−xi

xN−x1
, bi = xNxi−x1xi+1

xN−x1
, |αi| ≤ κ < 1, and the qi, for i ∈ NN−1, are suitable

continuous real-valued functions defined on I and such that (2.2) is satisfied.

2.2. α-fractal function. Barnsley [1] observed that the concept of FIFs can be used
to define a class of fractal functions associated with a given real-valued continuous func-
tion f defined on I = [x1, xN ]. Later, Navascués [19, 21] studied fractal approximations
in detail. For a given f ∈ C(I), consider a partition ∆ = {x1, x2, . . . , xN} of I satisfy-
ing x1 < x2 < · · · < xN , a continuous function b : I → R that fulfills b(x1) = f(x1),
b(xN ) = f(xN ), and b 6= f , and (N − 1) real numbers αi, for i ∈ NN−1, such that |αi| < 1.
Define an IFS through the maps

Li(x) = aix+ bi, Fi(x, y) = αiy + f(Li(x))− αib(x), for i ∈ NN−1.

The corresponding FIF, denoted by fα∆,b = fα, is referred to as α-fractal function or fractal
approximation for f with respect to a scaling vector α = (α1, α2, . . . , αN−1), a base function
b, and a partition ∆. Here the set of data points is

{(
xi, f(xi)

)
: i ∈ NN

}
. The function fα

is the fixed point of the Read-Bajraktarević (RB) operator Tα : Cf (I)→ Cf (I) defined by

(Tαg)x = αig(L−1
i (x)) + f(x)− αib(L−1

i (x)), x ∈ Ii, i ∈ NN−1,

where Cf (I) = {g ∈ C(I) : g(x1) = f(x1), g(xN ) = f(xN )}. Consequently, the fα-fractal
function corresponding to f satisfies the equation

(2.4) fα(x) = αif
α(L−1

i (x)) + f(x)− αib(L−1
i (x)), x ∈ Ii, i ∈ NN−1.
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The fractal dimension (box dimension or Hausdorff dimension) of the function fα depends on
the choice of the scaling vector α. Nasim Akhtar et al. [15] derived the box dimension of the
graph of α-fractal functions by assuming suitable conditions on the original function f and
the base function b. The following result provides the details.

PROPOSITION 2.2. Let f ∈ C(I) and b : I→R be Lipschitz functions with b(x1) = f(x1),
b(xN ) = f(xN ). Let ∆ = {x1, x2, . . . , xN} be a partition of I with x1 < x2 < · · · < xN ,
and let α = (α1, α2, . . . , αN−1). If the data points (xi, f(xi)), for i ∈ NN , are not collinear,
then the graph G of the α-fractal function fα has box dimension

dimG
B =

{
D if

∑N−1
i=1 |αi| > 1,

1 otherwise,

where D is the solution of
∑N−1
i=1 |αi|a

D−1
i = 1.

The following proposition provides sufficient conditions for the set of points of non-
differentiability of fα to be dense in I . Its proof follows from [18, Lemma 5.1] and [18,
Theorem 5.2] and is therefore omitted.

PROPOSITION 2.3. Let f, b ∈ C1(I). Let ∆ = {x1, x2, . . . , xN} be a partition of
I = [x1, xN ] satisfying x1 < x2 < · · · < xN , and let α = (α1, α2, . . . , αN−1). If f ′(x) and
b′(x) respectively do not agree with f(xN )− f(x1) and N(b(xN )− b(x1)) in a nonempty
open subinterval of I , and

∑N−1
i=1 |αi| > 1, then the set of points of non-differentiability of fα

is dense in I .

3. Bernstein α-fractal approximation. In this section, for f ∈ C(I), we develop a
sequence of Bernstein α-fractal functions that converges uniformly to f for every scaling
vector α.

From (2.4), the following bound for the uniform error in the process of α-fractal approxi-
mation can be easily deduced:

(3.1) ‖fα − f‖∞ ≤
|α|∞

1− |α|∞
‖f − b‖∞.

From (3.1) it follows that for a fixed base function b and a partition ∆, the α-fractal function
fα converges uniformly to f ∈ C(I) if |α|∞ → 0. To obtain the convergence of fα towards f
for every scaling vector α, we choose the base function b as the Bernstein polynomialBn(f, x)
of f , i.e., for all x ∈ I , n ∈ N,

b = Bn(f, x) =
1

(xN − x1)n

n∑
k=0

(
n

k

)
(x− x1)k(xN − x)n−kf

(
x1 +

k(xN − x1)

n

)
.

It is easy to verify that Bn(f, x1) = f(x1), Bn(f, xN ) = f(xN ) for all n ∈ N. Then, for
every n ∈ N, the corresponding α-fractal function fα = fαn is called Bernstein α-fractal
function of order n of f ∈ C(I), and

(3.2) fαn (x) = αif
α
n (L−1

i (x)) + f(x)− αiBn(f, L−1
i (x)), x ∈ Ii, i ∈ NN−1.

From the construction of fractal functions (see the previous section), it can be verified that for
every n ∈ N, the Bernstein α-fractal function fαn of f ∈ C(I) is obtained via the IFS defined
by

In = {I ×K, (Li(x), Fn,i(x, y)), i ∈ NN−1},
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where Fn,i(x, y) = αiy + f(Li(x))− αiBn(f, x). From (3.2) it follows that for any given
f ∈ C(I) there exists a sequence {fαn (x)}∞n=1 of Bernstein α-fractal functions. The following
theorem addresses the convergence of the sequence {fαn (x)}∞n=1 towards f ∈ C(I).

THEOREM 3.1. Let C(I) be endowed with the uniform norm ‖ · ‖∞. Let the parti-
tion ∆ = {x1, x2, . . . , xN} of I = [x1, xN ] satisfy x1 < x2 < · · · < xN , and let
α = (α1, α2, . . . , αN−1) ∈ (−1, 1)N−1. Then, for every scaling vector α, the sequence
{In}∞n=1 of IFSs determines a sequence {fαn (x)}∞n=1 of Bernstein α-fractal functions that
converges uniformly to f on I with respect to the uniform norm.

Proof. From (3.2), it follows

‖fαn − f‖∞ ≤ |α|∞‖fαn −Bn(f, ·)‖∞,≤ |α|∞(‖fαn − f‖∞ + | f −Bn(f, ·)‖∞).

Hence we obtain

(3.3) ‖fαn − f‖∞ ≤
|α|∞

1− |α|∞
‖f −Bn(f, ·)‖∞.

From classical approximation theory [11], we obtain that ‖f −Bn(f, ·)‖∞ ≤ 3
2ωf (n−1/2).

Using this inequality in (3.3), we get

(3.4) ‖fαn − f‖∞ ≤
3|α|∞

2(1− |α|∞)
ωf (n−1/2).

Since f is uniformly continuous on I , the modulus of continuity ωf (n−1/2)→ 0 as n→∞.
Hence, from (3.4) we can see that the sequence {fαn (x)}∞n=1 of Bernstein α-fractal functions
converges uniformly to f.

The next theorem discusses sufficient conditions which ensure that the box dimension of
each Bernstein α-fractal function in the sequence {fαn (x)}∞n=1 is greater than one.

THEOREM 3.2. Let f ∈ C(I) be a Lipschitz function. Let ∆ = {x1, x2, . . . , xN} be a
partition of I = [x1, xN ] satisfying x1 < x2 < · · · < xN , and let α = (α1, α2, . . . , αN−1) ∈
(−1, 1)N−1. If

∑N−1
i=1 |αi| > 1 and the data points (xi, f(xi)), for i ∈ NN , are not collinear,

then there exists a sequence {fαn (x)}∞n=1 of Bernstein α-fractal functions that converges
uniformly to f on I and whose box dimension is greater than one.

Proof. For every n ∈ N, let Bn(f, x) be the Bernstein polynomial of f . Since Bn(f, x)
is continuously differentiable, it is Lipschitz. From Proposition 2.2 it then follows that for
every n ∈ N, the box dimension dimGn

B of the graph Gn of the Bernstein α-fractal function
fαn is greater than one and is the solution to

N−1∑
i=1

|αi|a
dimGn

B −1
i = 1.

The result then follows from Theorem 3.1.
The proof of the following theorem follows from Proposition 2.3 and Theorem 3.1.
THEOREM 3.3. Let f ∈ C1(I). Let ∆ = {x1, x2, . . . , xN} be a partition of I = [x1, xN ]

satisfying x1 < x2 < · · · < xN , and let α = (α1, α2, . . . , αN−1). Suppose that f ′(x) and
B′n(f, x) do not respectively agree with f(xN )−f(x1) and N(b(xN )−b(x1)) in a nonempty
open subinterval of I . If all Bernstein α-fractal functions in the sequence {fαn (x)}∞n=1 are
obtained with the same choice of scaling factors αi, for i ∈ NN−1, such that

∑N−1
i=1 |αi| > 1,
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then all the Bernstein α-fractal functions are non-differentiable in a dense subset of I , and the
sequence {fαn (x)}∞n=1 converges uniformly to f .

REMARK 3.4. For a prescribed continuous function f , the proposed Bernstein fractal
approximation provides a way of constructing a sequence of α-fractal functions that converges
to f and has a specified box dimension.

REMARK 3.5. In the construction of fractal interpolants and approximants, the selection
of the “base function” is an important task. For instance, using a single base function,
Barnsley [1] and Navascués and Sebastián [24], respectively, constructed C0-FIFs and Cr-FIFs
(polynomial FIFs). By using a finite sequence of base functions, Viswanathan and Chand [29]
developed shape-preserving smooth rational FIFs with shape parameters. From [29] and the
results in the present paper, one can show that a finite sequence of base functions is suitable
for the construction of shape-preserving fractal splines, whereas the sequence of Bernstein
polynomials is to be preferred for the construction of α-fractal functions that converge to the
original function f for any choice of the scaling factors.

THEOREM 3.6. Let {fn(x)}∞n=1 be a sequence of continuous functions on I that con-
verges uniformly to a function f . Let ∆ = {x1, x2, . . . , xN} be a partition of I satisfying
x1 < x2 < · · · < xN , and let α = (α1, α2, . . . , αN−1) ∈ (−1, 1)N−1. Suppose that
Li : I → Ii, i ∈ NN−1 are affine maps Li(x) = aix + bi satisfying Li(x1) = xi and
Li(xN ) = xi+1, and let F †n,l,i(x, y) = αiy + fn(Li(x)) − αiBl(fn, x), for i ∈ NN−1 and
for all n, l ∈ N. For every n, l ∈ N, let fαn,l be α-fractal function determined by the IFS
I†n,l = {I × K, (Li(x), F †n,l,i(x, y)), i ∈ NN−1}. Then, for every scaling vector α, the

double sequence {{I†n,l}∞l=1}∞n=1 of IFSs determine a double sequence {{fαn,l(x)}∞l=1}∞n=1 of
Bernstein α-fractal functions that converges uniformly to f.

Proof. If α = (0, 0, . . . , 0), then it follows that fαn,l = fn, for all n ∈ N, and thus the
sequence {fn}∞n=1 converges to f . Consider now a non-zero scaling vector. Since {fn(x)}∞n=1

is a sequence of continuous functions on I converging uniformly to a function f , for a given ε
there exists N1 ∈ N such that

(3.5) ‖fn − f‖∞ <
ε

2
∀n ≥ N1.

From standard results in approximation theory, we can see that for each n ∈ N, there exists a
sequence {Bl(fn, x)}∞l=1 of Bernstein polynomials that converges uniformly to fn. Therefore,
for a given ε > 0 there exists N2 ∈ N such that

(3.6) ‖Bl(fn, ·)− fn‖∞ <
ε(1− |α|∞)

2|α|∞
∀l ≥ N2.

Since fαn,l, for n, l ∈ N, is the α-fractal function determined by the IFS I†n,l, it satisfies the
following functional equation:

fαn,l(x) = αif
α
n,l(L

−1
i (x)) + fn(x)− αiBl(fn, L−1

i (x)), x ∈ Ii, i ∈ NN−1.

Hence, we get the following inequality:

(3.7) ‖fαn,l − fn‖∞ ≤
|α|∞

1− |α|∞
‖fn −Bl(fn, ·)‖∞.

Using (3.6) in (3.7), we obtain

(3.8) ‖fαn,l − fn‖∞ <
ε

2
∀l ≥ N2,
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and from (3.5), (3.8) and the triangular inequality it follows that

‖fαn,l − f‖∞ ≤ ‖fαn,l − fn‖∞ + ‖fn − f‖∞.

For a given ε > 0, we then get

‖fαn,l − f‖∞ < ε ∀l, n ≥ N = max{N1, N2},

and thus the conclusion lim
n,l→∞

fαn,l = f .

REMARK 3.7. From Theorem 3.6 it follows that if there exists a sequence of continuous
functions that converges to f ∈ C(I), then by taking different values for the scaling factors we
can construct an infinite number of sequences of Bernstein α-fractal functions that converge to
f ∈ C(I).

THEOREM 3.8. Let C(I) be endowed with the uniform norm ‖ · ‖∞. For every n ∈ N, the
α-operator Fαn : C(I)→ C(I) defined by Fαn (f) = fαn is linear and bounded.

Proof. The linearity of Fαn follows from [16, 29] . From (3.3), we get

‖Fαn (f)‖∞ = ‖fαn ‖∞ ≤ ‖f‖∞ +
|α|∞

1− |α|∞
‖Id −Bn(·, ·)‖∞∗‖f‖∞,

where Id is the identity operator and ‖ · ‖∞∗ is the operator norm induced by ‖ · ‖∞. From
classical approximation theory, it follows that ‖Id −Bn(·, ·)‖∞∗ → 0 as n→∞, hence Fαn
is bounded.

3.1. Examples. In this section, we provide numerical examples to corroborate our
findings. For this purpose, let f(x) = sin(πx) + cos(πx) for x ∈ [0, 1]. The graph of
the function f(x) = sin(πx) + cos(πx), x ∈ [0, 1], is given in Figure 3.1(a). The Bern-
stein α-fractal functions in Figures 3.1(b)–(f) are generated with respect to the partition
∆ = {0, 0.1111, 0.2222, 0.3333, 0.4444, 0.5556, 0.6667, 0.7778, 0.8889, 1}. The Bernstein
α-fractal functions fα3 , fα7 , and fα26 in Figures 3.1(b)–(d) are generated at the third iteration
with the choice of the scaling factors αi = 0.8, for i ∈ N9. Since f(x) = sin(πx) + cos(πx)
and the Bernstein polynomial Bn(f, x) are Lipschitz, the fractal dimension (box dimension)
of the Bernstein α-fractal functions fα3 , f

α
7 , and fα26 is computed using Proposition 2.2 and

equals 1.8984 in all three cases. From Theorem 3.1 it follows that the Bernstein α-fractal
function fα26 provides a better approximation for sin(πx) + cos(πx), x ∈ [0, 1], than those
obtained by fα3 and fα7 . By observing Figures 3.1(b)–(d), one may wonder why the fractal
functions fα3 , f

α
7 , and fα26 do not display the same sort of irregularity despite having the same

fractal dimension. This is due to the following reason: the α-fractal functions fα3 and fα7
exhibit irregularity at all scales whereas the α-fractal function fα26 exhibits irregularity at small
scales only. Small scales of irregularity of the α-fractal function fα26 can be observed from
Figure 3.1(e), where we display a zoom-in of a part of fα26. From the discussion above and
Theorem 3.3, we conclude that even if the scaling factors αi for i ∈ NN−1 are chosen such that
the condition

∑N−1
i=1 |αi| > 1 is satisfied, for large n ∈ N, the Bernstein α-fractal function

fαn may not exhibit irregularity on large scales, but they can certainly do so on small scales. If
the scaling factors αi, for i ∈ NN−1, are chosen such that the condition

∑N−1
i=1 |αi| > 1 is

satisfied, then for sufficiently large n, fαn provides a good non-differentiable approximation
to the original function. Values of the uniform norms ‖Bn(f, ·) − f‖∞ and ‖fαn − f‖∞,
for n = 3, 7, 26, 141, estimated by using 7290 points in [0, 1] that are generated at the third
iteration, are given in Table 3.1. From Table 3.1 one can observe that for large n ∈ N, both
the Bernstein polynomial and the Bernstein α-fractal function fαn provide almost the same
approximation for the given function. However, the box dimension makes the difference
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(a): f(x) = sin(πx) + cos(πx), x ∈ [0, 1].
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(b): fα3 with αi = 0.8, i ∈ N9.
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(c): fα7 with αi = 0.8, i ∈ N9.
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(d): fα26 with αi = 0.8, i ∈ N9.
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(e): Zoom-in on part of fα26.
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(f): The α-fractal function (2.4) with αi = 0.8, i ∈ N9

and the base function b(x) = 1− 2x, x ∈ [0, 1].

FIG. 3.1. Bernstein α-fractal approximants of sin(πx) + cos(πx), x ∈ [0, 1].

between the Bernstein polynomial and the Bernstein α-fractal function. For a given function,
if one needs an approximant whose box dimension is greater than one, then our Bernstein
α-fractal function can be chosen. The α-fractal function fα with αi = 0.8, for i ∈ N9, and
a base function b(x) = 1 − 2x, x ∈ [0, 1], generated at the third iteration are displayed in
Figure 3.1(f). Here, ‖fα − f‖∞ = 4.4720.
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TABLE 3.1
Error in Bernstein approximation and Bernstein fractal approximation for sin(πx) + cos(πx), x ∈ [0, 1].

Error in Bernstein approximation Error in Bernstein α-fractal approximation
‖B3(f, ·)− f‖∞ = 2.4142 ‖fα3 − f‖∞ = 3.2299
‖B7(f, ·)− f‖∞ = 2.4142 ‖fα7 − f‖∞ = 2.7980
‖B26(f, ·)− f‖∞ = 2.4142 ‖fα26 − f‖∞ = 2.5200
‖B141(f, ·)− f‖∞ = 2.4142 ‖fα141 − f‖∞ = 2.4341

4. Bernstein α-fractal full Müntz theorems. In this section, we introduce Bernstein
α-fractal Müntz polynomials and the fractal version of “full Müntz theorems” in the spaces

C[0, 1] and Lp[0, 1], for 1 ≤ p < ∞. For f ∈ Lp(I), let ‖f‖Lp =
(∫ xN

x1

|f(x)|pdx
) 1

p

,

for 1 ≤ p < ∞. Next we define the α-operator on Lp(I). Since C(I) is dense in Lp(I),
1 ≤ p <∞, for every f ∈ Lp(I) there exists a sequence {gk(x)}∞k=1 in C(I) that converges
to f . We can hence define the α-operator F̂αn : Lp(I)→ Lp(I) as follows:

F̂αn (f) =

{
Fαn (f) = fαn ∀n ∈ N if f ∈ C(I) ∩ Lp(I),

lim
k→∞

Fαn (gk) = lim
k→∞

(gk)αn if f ∈ Lp(I) and f /∈ C(I),

where (gk)αn(x) = αi(gk)αn(L−1(x)) + gk(x) − αiBn(gk, L
−1(x)), x ∈ Ii, i ∈ NN−1. It

can be shown that F̂αn is linear and bounded using similar arguments to those used to prove
Theorem 3.8. Let Λ = {λj}∞j=1 be a sequence of distinct real numbers. The collection
{xλ1 , xλ2 , . . . , xλm} is called a finite Müntz system. The linear space

Πm(Λ) = Span{xλ1 , xλ2 , . . . , xλm} =


m∑
j=1

cjx
λj : cj ∈ R


is called a finite Müntz space. The set Π(Λ) =

⋃∞
m=1 Πm(Λ) = Span{xλ1 , xλ2 , . . . } is

called the infinite Müntz space pertaining to Λ. Therefore, a Müntz polynomial p in Π(Λ) takes
the form p(x) =

∑k
j=1 cjx

λj , x ∈ [0, 1], cj ∈ R. Let ∆ = {x1, x2, . . . , xN} be a partition
of I = [0, 1] satisfying 0 = x1 < x2 < · · · < xN = 1, and α = (α1, α2, . . . , αN−1) ∈
(−1, 1)N−1 be a scaling vector. Based on the partition ∆, the linearity, and the definition of
F̂αn , we obtain that

F̂αn (p(x)) = pαn(x) =

k∑
j=1

cjF̂αn (xλj ), x ∈ [0, 1], cj ∈ R, ∀n ∈ N,

where

(4.1) F̂αn (xλj ) =

{
Fαn (xλj ) = (xλj )αn if λi ≥ 0,

lim
k→∞

Fαn (hk) = lim
k→∞

(hk)αn if − 1/p < λi < 0,

(hk)αn(x) = αi(hk)αn(L−1(x)) + hk(x) − αiBn(hk, L
−1(x)), x ∈ Ii, i ∈ NN−1, and

{hk}∞k=1 is the sequence in C[0, 1] that converges to xλj for −1/p < λi < 0. It is worthwhile
to mention that xλj ∈ Lp[0, 1] if −1/p < λi < 0. Since {xλj , j = 1, 2, . . . ,m} is a linearly
independent set, it follows that {F̂αn (xλj ), j = 1, 2, . . . ,m} is also a linearly independent set,
and hence it forms a basis for the fractal Müntz space

Πα
m,n(Λ) = Span{F̂αn (xλ1), F̂αn (xλ2), . . . , F̂αn (xλm)} =

{ m∑
j=1

cjF̂αn (xλj ) : cj ∈ R
}
.
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THEOREM 4.1 (Fractal version of the full Müntz theorem in C[0, 1]). Let the partition
∆ = {x1, x2, . . . , xN} of I = [0, 1] satisfy 0 = x1 < x2 < · · · < xN = 1, and let
α = (α1, α2, . . . , αN−1) ∈ (−1, 1)N−1 be a scaling vector. Suppose that {λj}∞j=1 is a
sequence of distinct and positive real numbers. Then, for every scaling vector α, the set⋃∞
n=1 Span{1, (xλ1)αn, (x

λ2)αn, . . . , } is dense in C[0, 1] with respect to the supremum norm if∑∞
j=1

λj

λ2
j+1

=∞.
Proof. Let f ∈ C[0, 1] and ε > 0 be given. From the classical full Müntz theorem [2] in

C[0, 1],we obtain that Span{1, xλ1 , xλ2 , . . . , } is dense in C[0, 1] with respect to the supremum
norm if

∑∞
j=1

λj

λ2
j+1

=∞, where {λj}∞j=1 is a sequence of distinct and positive real numbers.

Hence, there exists a Müntz polynomial Q =
∑µ
j=1 djx

λj , dj ∈ R, such that

(4.2) ‖f −Q‖∞ <
ε

2
.

From (4.1), we get

F̂αn (Q) = Qαn =

µ∑
j=1

dj(x
λj )αn, ∀n ∈ N.

Now from Q−Qαn =
∑µ
j=1 dj(x

λj − (xλj )αn) it follows that

(4.3) ‖Q−Qαn‖∞ ≤
µ∑
j=1

|dj |‖xλj − (xλj )αn‖∞.

Using Theorem 3.1, one can observe that the sequence {(xλj )αn}∞n=1 converges uniformly to
xλj for each j = 1, 2, . . . , µ. Hence, for given ε > 0, there exists nj ∈ N such that

(4.4) ‖(xλj )αn − xλj‖∞ <
ε

2µ|dj |
∀n ≥ nj , j = 1, 2, . . . , µ.

Using (4.4) in (4.3), we get

(4.5) ‖Q−Qαn‖∞ <
ε

2
∀n ≥ max{nj , j = 1, 2, . . . , µ}.

Finally, combining (4.2) and (4.5) via the triangular inequality

‖f −Qαn‖∞ ≤ ‖f −Q‖∞ + ‖Q−Qαn‖∞ ∀n ≥ max{nj , j = 1, 2, . . . , µ},

we get ‖f −Qαn‖∞ < ε for all n ≥ max{nj , j = 1, 2, . . . , µ}. Hence, there exists a sequence
{Qαn}∞n=1 of Bernstein α-Müntz polynomials that converges uniformly to f ∈ C[0, 1] and
hence

⋃∞
n=1 Span{1, (xλ1)αn , (xλ2)αn, . . . , } is dense in C[0, 1] with respect to the supremum

norm.
The next Theorem 4.2 and Theorem 4.3 can be proved with arguments similar to those of

Theorem 4.1.
THEOREM 4.2 (Fractal version of Müntz’ second theorem in C[0, 1]). Let the partition

∆ = {x1, x2, . . . , xN} of I = [0, 1] satisfy 0 = x1 < x2 < · · · < xN = 1, and let
α = (α1, α2, . . . , αN−1) ∈ (−1, 1)N−1 be a scaling vector. Suppose that {λj}∞j=1 is a
sequence of distinct real numbers satisfying 1 ≤ λj →∞. Then, for every scaling vector α,
the set

⋃∞
n=1 Span{1, (xλ1)αn, (xλ2)αn, . . . } is dense in C[0, 1] with respect to the supremum

norm if
∑∞
j=1 λ

−1
j =∞.
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THEOREM 4.3. Let the partition ∆ = {x1, x2, . . . , xN} of I = [0, 1] satisfy
0 = x1 < x2 < · · · < xN = 1, and let α = (α1, α2, . . . , αN−1) ∈ (−1, 1)N−1 be a scal-
ing vector. If Span{fj : j ∈ N} is dense in C[0, 1], then, for every scaling vector α, the set⋃∞
n=1 Span{fαj,n : j ∈ N} also is.

THEOREM 4.4 (Fractal version of the full Müntz theorem in Lp[0, 1], 1 ≤ p <∞). Let
the partition ∆ = {x1, x2, . . . , xN} of I = [0, 1] satisfy 0 = x1 < x2 < . . . , < xN = 1, and
let α = (α1, α2, . . . , αN−1) ∈ (−1, 1)N−1 be a scaling vector. Suppose that {λj}∞j=1 is a
sequence of distinct real numbers greater than −1/p. Then, for every scaling vector α, the
set
⋃∞
n=1 Span{F̂αn (xλ1), F̂αn (xλ2), . . . } is dense in Lp[0, 1] with respect to the Lp-norm if∑∞

j=1(λj + 1)/((λj + 1
p )2 + 1) =∞.

Proof. Let f ∈ Lp[0, 1], and let ε > 0 be given. From the classical full Müntz theorem
[2] in Lp[0, 1], we obtain that Span{xλ1 , xλ2 , . . . , } is dense in Lp[0, 1] if

∞∑
j=1

λj + 1

(λj + 1
p )2 + 1

=∞,

where {λj}∞j=1 is a sequence of distinct real numbers greater than −1
p . Hence, there exists a

Müntz polynomial Q ∈ Span{xλ1 , xλ2 , . . . , } such that

(4.6) ‖f −Q‖∞ <
ε

2
.

Next, using (4.1), we get F̂αn (Q) = Qαn for all n ∈ N.
Following the same steps as in the proof of Theorem 4.1 yields

(4.7) ‖Q−Qαn‖∞ <
ε

2
.

Finally, combining (4.6) with (4.7) via the triangular inequality gives

‖f −Qαn‖∞ ≤ ‖f −Q‖∞ + ‖Q−Qαn‖∞,

and hence we get ‖f − Qαn‖∞ < ε. That is, there exists a double sequence {Qαn}∞n=1

of Bernstein α-Müntz polynomials which converges to f ∈ Lp[0, 1], and hence the space⋃∞
n=1 Span {F̂αn (xλ1), F̂αn (xλ2), . . . , } is dense in Lp[0, 1].

The next theorem can be proved with arguments similar to those of the previous theorem.
THEOREM 4.5 (Fractal version of Müntz’ first theorem in Lp[0, 1]). Let the partition

∆ = {x1, x2, . . . , xN} of I = [0, 1] satisfy 0 = x1 < x2 < · · · < xN = 1, and let
α = (α1, α2, . . . , αN−1) ∈ (−1, 1)N−1 be a scaling vector. Suppose that {λj}∞j=1 is a
sequence of distinct and positive real numbers satisfying −1/2 < λj → ∞. Then, for
every scaling vector α, the set

⋃∞
n=1 Span{F̂αn (xλ1), F̂αn (xλ2), . . . } is dense in Lp[0, 1] with

respect to the supremum norm if
∑∞
j=1 λ

−1
j =∞.

In the next theorem, we investigate the constrained approximation problem of Müntz
polynomials using the result of [30].

THEOREM 4.6. Let Φ and Ψ be continuous Müntz polynomials on [0, 1] such that
Φ(x) > Ψ(x) for all x ∈ [0, 1]. Let ∆ = {x1, x2, . . . , xN} be a partition of [0, 1] satisfying
0 = x1 < x2 < · · · < xN = 1. For n ∈ N, let Φαn be the Bernstein α-fractal function of
Φ corresponding to the IFS In. For each n ∈ N, Φαn(x) ≥ Ψ(x) for all x ∈ [0, 1], and the
sequence {Φαn}∞n=1 of Bernstein α-Müntz polynomials converges uniformly to Φ if the scaling
factors are such that

0 ≤ αi < min
{ m(Φ−Ψ, i)

Mn(Φ)−m(Ψ)
, 1
}
, i ∈ NN−1,
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whereMn(Φ) = max
x∈I

Bn(Φ, x),m(Φ−Ψ, i) = min
x∈I

(Φ−Ψ)(Li(x)), andm(Ψ) = min
x∈I

Ψ(x).

Proof. Since Φ(x) ≥ Ψ(x) for all x ∈ [0, 1] and Bn(Φ, x) interpolates Φ at x1 and xN , it
is easy to verify that Mn(Φ)−m(Ψ) > 0 and m(Φ−Ψ, i) > 0 for all i ∈ NN−1. From (3.2),
we notice that the Bernstein α-fractal function Φαn obeys the following functional equation:

Φαn(Li(x)) = αiΦ
α
n(x) + Φ(Li(x))− αiBn(Φ, x), x ∈ I, i ∈ NN−1.

For each n ∈ N this yields the values of Φαn at (N − 1)p+2 + 1 distinct points in I at the
(p+ 1)st iteration by using the values of Φαn at (N − 1)p+1 + 1 distinct points in I computed
at the p-th iteration. Since Φ(x) > Ψ(x) for all x ∈ I , it is straightforward to see that
Φαn(xi) = Φ(xi) > Ψ(xi) for i ∈ NN−1. Therefore, to prove Φαn(z) > Ψ(z) for all z ∈ I ,
it is enough to show that Φαn(x) > Ψ(x) for x ∈ I implies that Φαn(Li(x)) > Ψ(Li(x)) for
x ∈ I and for all i ∈ NN−1. Assume that Φαn(x) > Ψ(x) for x ∈ I . We have to show that

(4.8) αiΦ
α
n(x) + Φ(Li(x))− αiBn(Φ, x)−Ψ(Li(x)) > 0, x ∈ I.

Since αi ≥ 0, i ∈ NN−1, from the definitions of Mn(Φ) and m(Ψ), it is easy to show that

αiΦ
α
n(x) + Φ(Li(x))− αiBn(Φ, x)−Ψ(Li(x)) ≥ αi

(
m(Ψ)−Mn(Φ)

)
+m(Φ−Ψ, i).

From (4.8), we can then infer that αi <
m(Φ−Ψ,i)

Mn(Φ)−m(Ψ) ensures (4.8) and thus the conclusion.

5. Bernstein α-fractal Chebyshev series. In this section, we establish the fractal ana-
logue of the Chebyshev series.

We consider C[−1, 1] equipped with the inner product

〈f, g〉 =
2

π

∫ 1

−1

f(x)g(x)
1√

1− x2
dx.

The Chebyshev system {T0(x)√
2
, T1(x), T2(x), . . . }, where

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 2,

is orthonormal with respect to the aforementioned inner product. The Chebyshev series of
f ∈ C[−1, 1] is given by

f(x) ∼
∞∑
j=0

djTj(x), where dj =
2

π

∫ 1

−1

f(x)Tj(x)
1√

1− x2
dx.

Let us define the Chebyshev sum of order m as

Sm(x) =

m∑
j=0

djTj(x), ∀x ∈ [−1, 1].

Now, we define the operator Um : C[−1, 1]→ Span
{
T0(x)√

2
, T1(x), T2(x), . . .

}
as

Um(f)(x) = Sm(x), ∀x ∈ [−1, 1].

We obtain from [13] that

(5.1) ‖Umf − f‖∞ ≤
CK logm

m
.
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Let ∆ = {x1, x2, . . . , xN} be a partition of [−1, 1] with−1 = x1 < x2 < · · · < xN = 1. Let
Uαm,n = Fαn ◦ Um be an operator such that Uαm,n(f) = Fαn (Um(f)) = (Um(f))αn. Now,

‖Uαm,n(f)− Um(f)‖∞ ≤
m∑
j=0

|dj | ‖Fαn (Tj)− Tj‖∞.

Using the definition of Fαn (Tj) in the previous equation, we obtain

(5.2) ‖Uαm,n(f)− Um(f)‖∞ ≤
m∑
j=0

|dj | ‖(Tj)αn − Tj‖∞.

Using Theorem 3.1, one can observe that the sequence {(Tj)αn}∞n=1 converges uniformly to
Tj for each j = 1, 2, . . . ,m. Hence, for given ε > 0, there exists nj ∈ N such that

(5.3) ‖(Tj)αn − Tj‖∞ <
ε

2(m+ 1)|dj |
, ∀n ≥ nj , j = 0, 1, 2, . . . ,m.

Using (5.3) in (5.2), we get

(5.4) ‖Uαm,n(f)− Um(f)‖∞ <
ε

2
∀n ≥ max{nj : j = 0, 1, 2, . . . ,m}.

Finally, using (5.1) and (5.4) in the triangular inequality

‖Uαm,n(f)− f‖∞ ≤ ‖Uαm,n(f)− Umf‖∞ + ‖Umf − f‖∞

we get ‖Uαm,n(f)− f‖∞ < ε+ CK logm
m . This proves the following theorem.

THEOREM 5.1. Let f ∈ C[−1, 1]. Then for every scaling vector α, the fractal Chebyshev
series of f converges uniformly to f as m→∞ and n→∞, where m,n ∈ N.

6. Conclusion. In this paper, using Bernstein polynomials and the theory of α-fractal
functions as major components, we have presented the Bernstein α-fractal functions as a tool
to approximate univariate continuous functions defined on a real compact interval. In our
approach, the convergence of Bernstein α-fractal functions does not require any condition
on the scaling factors. For the sequence {fn(x)}∞n=1 of continuous functions that converges
uniformly to a continuous function f , we have identified the double sequence {{I†n,l}∞l=1}∞n=1

of IFSs so that the corresponding double sequence {{fαn,l(x)}∞l=1}∞n=1 of α-fractal functions
converges to f . We have also studied the approximation properties of Bernstein α-fractal
functions in the space of continuous functions and Lp-spaces. The results are based on the
analysis of the norm estimates for the associated α-operator Fαn , which maps a function f to
its n-th Bernstein α-fractal function fαn . These estimates are applied to the particular case of
Müntz polynomials to obtain the fractal analogue of (i) the full Müntz theorems and (ii) Müntz’
first and second theorems in the space of continuous functions and Lp spaces. Without
imposing any condition on the scaling factors, we proved that

⋃∞
n=1 Span{fαj,n : j ∈ N} is

dense in the space of continuous functions and in Lp if Span{fj : j ∈ N} is dense in the
above function spaces. We have solved the constrained approximation problem of Müntz
polynomials. Finally, we have developed the Bernstein α-fractal Chebyshev series.
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