
ETNA
Kent State University and

Johann Radon Institute (RICAM)

Electronic Transactions on Numerical Analysis.
Volume 51, pp. 135–150, 2019.
Copyright c© 2019, Kent State University.
ISSN 1068–9613.
DOI: 10.1553/etna_vol51s135

A NOTE ON PARALLEL PRECONDITIONING FOR ALL-AT-ONCE
EVOLUTIONARY PDES∗

ANTHONY GODDARD† AND ANDY WATHEN†

Abstract. McDonald, Pestana, and Wathen [SIAM J. Sci. Comput., 40 (2018), pp. A1012–A1033] present a
method for preconditioning time-dependent PDEs via an approximation by a nearby time-periodic problem, that is,
they employ circulant-related matrices as preconditioners for the non-symmetric block Toeplitz matrices which arise
from an all-at-once formulation. They suggest that such an approach might be efficiently implemented in parallel. In
this short article, we present parallel numerical results for their preconditioner which exhibit strong scaling. We also
extend their preconditioner via a Neumann series approach which also allows for efficient parallel execution. Results
are shown for both parabolic and hyperbolic PDEs. Our simple implementation (in C++ and MPI) is available at the
Git repository PARALAAOMPI.1

Key words. parallel-in-time, monolithic method, preconditioning

AMS subject classifications. 65M20, 65F08, 65Y05

1. Introduction. There have been several suggestions to achieve computationally effi-
cient parallel methods for time-dependent problems. Perhaps the most common approaches
are based on the Parareal algorithm [9] and its use together with multilevel ideas [3], although
there are several other approaches; see the review by Gander [4]. A recent suggestion by
McDonald et al. [11] involves the use of circulant-related preconditioners for the block Toeplitz
matrices that arise from the approximation of initial value problems with constant time-steps.
Their approach is particularly geared to linear initial value problems for PDEs, although it can
be applied in the simpler context of ODE IVPs [10]. For PDEs, regularity of the spatial grid is
not required. We mention that Gander et al. [5] present a complementary all-at-once method
that imposes the restriction that all the time steps be distinct.

The approach requires the solution of block diagonal systems in different orderings so as
to effect the action of the preconditioner as we show below. It also allows for an extension
involving a Neumann series which we introduce in this paper. Both the extended and the
original preconditioners would appear suitable for effective parallel implementation, although
such implementation details have not been explored before. That the original preconditioner
leads to a small number of iterations, which is independent of the number of time-steps when
employed with the widely used GMRES method [12], is established in [11].

In this short article we make a preliminary exploration of the possibilities for effective
parallel implementation of these preconditioners. Our initial results using C++ and MPI show
strong scaling with up to 32 cores for the preconditioned GMRES solution of the all-at-once
(monolithic) system. This system is derived from a spatial finite element approximation and a
simple time-stepping strategy in the usual method of lines approach. We explore all-at-once
formulations for the heat equation and for the wave equation together with associated initial
and boundary conditions. In particular, literature on hyperbolic problems is currently limited,
but see [7].

In Section 2 we describe the original McDonald-Pestana-Wathen preconditioner and our
extension of it. In Section 3 we provide an analysis of the spectral properties of the matrices
associated with the all-at-once formulation of the wave equation. The details of our parallel

∗Received August 15, 2018. Accepted April 16, 2019. Published online on June 15, 2019. Recommended by
Ken Hayami. The work of A. G. was supported by the James Pantyfedwen Foundation.
†Mathematical Institute, Oxford University, UK (wathen@maths.ox.ac.uk).
1https://github.com/anthonyjamesgoddard/PARALAAOMPI

135

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://doi.org/10.1553/etna_vol51s135

ETNA
Kent State University and

Johann Radon Institute (RICAM)

136 A. J. GODDARD AND A. J. WATHEN

implementation are given in Section 4 and numerical (timing) results in Section 5 are followed
by conclusions.

We comment that for structured systems other than block Toeplitz, there has been signifi-
cant previous work on parallel preconditioning. For the important cases of block bi-diagonal
and block-banded systems, see, for example, [1, 8, 13, 14].

2. Description of the preconditioners. Consider the heat equation

∂u

∂t
=
∂2u

∂x2
on Ω× (0, T],

u = 0 for x ∈ ∂Ω,

u(0,x) = s(x).

Discretising in space with standard Galerkin finite elements, we obtain

(2.1) M
du
dt

= −Ku,

where M,K ∈ Rn×n are the mass and stiffness matrices and n is the number of nodes in the
spatial discretisation. Now we use the implicit Euler scheme to discretise the temporal domain
to obtain

(2.2) (K + τM)uk = Muk−1, k ∈ [1, `],

with τ being the constant time-step, ` the number of time-steps in the temporal discretisation,
and u0 is a projection of the initial data. The idea presented in [11] involves packaging the
approximate solutions into a so-called monolithic system. Executing this idea yields

AU =


A0

A1 A0

.
A1 A0



u1

u2

...
u`

 =


Mu0

0
...
0

 = b,

whereA0 = K+τM , A1 = −M , andA ∈ Rn`×n`. We note that the monolithic system does
not need to be formed explicitly; it is merely used as a conduit for demonstration purposes. The
McDonald-Pestana-Wathen preconditioner in its original form is the block circulant matrix

(2.3) P =


A0 A1

A1 A0

.
A1 A0

 .
We can extend the all-at-once method to non-uniform time-stepping schemes. Consider ap-

plying the implicit Euler scheme to (2.1) with variable time-steps τ1, τ2, ..., τ`. Equation (2.2)
then becomes

(K + τiM)uk = Muk−1, k ∈ [1, `].

We can package this sequence into the monolithic system

BU =


A1

0

A1 A2
0

.
A1 A`0



u1

u2

...
u`

 =


Mu0

0
...
0

 = b,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

PARALLEL PRECONDITIONING FOR EVOLUTIONARY PDES 137

where Ai0 = K + τiM and A1 = −M . While we have lost the block Toeplitz structure of the
system, this will not prevent us from applying

Q =


A1

0 A1

A1 A2
0

.
A1 A`0


as a preconditioner. The issue is that of the computational cost of the application of the
preconditioner. Using the standard Kronecker product, we can write

Q = P + σ ⊗K,

where σ is a diagonal matrix with diagonal entries given by σi = τi − τ , i ∈ [0, `], and
τ = 1/`. Assuming that ||σ ⊗K|| < 1 we can use a Neumann approximation to calculate the
inverse of Q to obtain

Q−1
i = P−1 − P−1([σ ⊗K]P−1) + P−1([σ ⊗K]P−1)2 + . . .

+ (−1)i−1P−1([σ ⊗K]P−1)i−1,
(2.4)

where i is some positive integer that we must choose.
We can also apply the all-at-once method to hyperbolic equations. We will restrict our

scope to the wave equation

∂2u

∂t2
=
∂2u

∂x2
on Ω× (0, T],

u = 0 for x ∈ ∂Ω,

∂u

∂t
(0,x) = 0,

u(0,x) = s(x).

Discretising in space we obtain

(2.5) M
d2u
dt2

= −Ku.

We can choose the central difference formula to approximate the second time derivative,
resulting in the sequence

Mun−1 + (τ2K − 2M)un +Mun+1 = 0.

Casting this sequence into a monolithic system, we obtain

CCDU =


A0 M
M A0 M

M A0
. . .

. M
M A0




u1

u2

u3

...
u`

 =


−Mu0

0
0
...
0

 = bCD,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

138 A. J. GODDARD AND A. J. WATHEN

where A0 = τ2K − 2M for this problem. We can then precondition this system with the
block circulant matrix

RCD =


A0 M M
M A0 M

M A0
. . .

. M
M M A0

 .

Alternatively, we can approximate the second time derivative as

(2.6)
d2un
dt2

≈ un−2 − 2un−1 + un
τ2

.

Expression (2.6) will be referred to as the 2-Step Backwards Difference (BD2) formula, which
is a first-order approximation. By substituting (2.6) into (2.5) and rearranging, we obtain

Mun−2 − 2Mun−1 + (M + τ2K)un = 0,

which can be compiled into a monolithic system

CBD2U =


A0

A1 A0

A2 A1 A0

.
A2 A1 A0




u1

u2

u3

...
u`

 =


(M + τ2K)u0

−Mu0

0
...
0

 = bBD2,

where A0 = M + τ2K,A1 = −2M , and A2 = M for the problem arising from the wave
equation. We will precondition the above system with

RBD2 =


A0 A2 A1

A1 A0 A2

A2 A1 A0

.
A2 A1 A0

 .

We can also use a second-order backwards difference formula

(2.7)
d2un
dt2

≈ −un−3 + 4un−2 − 5un−1 + 2un
τ2

,

which is a second-order method and will be referred to as the 4-Step Backwards Difference
(BD4) formula. By substituting (2.7) into (2.5), we obtain

(2M + τ2K)un − 5Mun−1 + 4Mun−2 −Mun−3 = 0.

As a consequence of using a 4-step method we have to approximate u1 and u2 using sub-4-step
methods. In this case we can use BD2 and the initial conditions. This results in the monolithic

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

PARALLEL PRECONDITIONING FOR EVOLUTIONARY PDES 139

system

CBD4 =



B
C B
A2 A1 A0

A3 A2 A1 A0

A3 A2 A1 A0

.

.
A3 A2 A1 A0





u1

u2

u3

u4

u5

...

...
u`


=



Bu0

−Mu0

Mu0

0
0
...

...
0


= bBD4,

whereB = M+τ2K,C = −2M,A0 = 2M+τ2K,A1 = −5M,A2 = 4M , andA3 = −M .
We precondition this formulation of the wave equation system in a slightly different way.
Previously, we have preconditioned the Toeplitz system with its corresponding circulant.
In this instance, we do not have a Toeplitz structure to begin with. To overcome this, we
precondition the system with the circulant matrix that would result if we had a Toeplitz system.
That is, we precondition the system with

RBD4 =



A0 A3 A2 A1

A1 A0 A3 A2

A2 A1 A0 A3

A3 A2 A1 A0

A3 A2 A1 A0

.

.
A3 A2 A1 A0


.

We will not pursue non-uniform temporal domains for this application since there is less
interest in using non-uniform time-steps for the wave equation.

3. Preliminary analysis. We begin this section with a theorem that partially describes
the spectrum of the preconditioned system associated with the backwards difference formu-
lation of the wave equation, then conclude with a discussion of the ramifications of such a
theorem. Related results for the heat equation are given by [11].

Define Ei = ei ⊗ In, where ei is a vector of zeros except in the i-th position, which is
equal to 1 and In is the n× n identity matrix.

THEOREM 3.1. The preconditioned systemR−1
BD2CBD2 has at least (`− 2)n eigenvalues

equal to 1.
Proof. We can writeRBD2 = CBD2 + UWV , where

U =
[
E1 E2 E1

]
, W =

A2

A2

A1

 , V =

ET`−1

ET`
ET`

 .
Applying the Sherman-Morrison-Woodbury formula to this expression forRBD2, we obtain

R−1
BD2CBD2 = Inl − C−1

BD2U(W−1 + VC−1
BD2U)−1V.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

140 A. J. GODDARD AND A. J. WATHEN

We can write X =W−1 + VC−1
BD2U and denote the entries of the 3n-by-3n matrix X−1 by

X−1
i,j , i, j ∈ [1, 3]. Therefore, we have

(3.1)

R−1
BD2CBD2 = Inl − C−1

BD2


X−1

1,1 +X−1
3,1 X−1

1,2 +X−1
1,3 +X−1

3,2 +X−1
3,3

X−1
2,1 X−1

2,2 +X−1
2,3

 .

As CBD2 is block Toeplitz and block lower triangular, so is C−1
BD2. Therefore we can write the

inverse of CBD2 in the form

(3.2) C−1
BD2 =


(C−1
BD2)1

(C−1
BD2)2 (C−1

BD2)1
...

. . .
(C−1
BD2)` (C−1

BD2)1

 .
If we substitute (3.2) into (3.1), then we obtain a matrix of the form

(3.3) R−1
BD2CBD2 =


In D1 F1

. . .
...

...
In D`−2 F`−2

In +D`−1 F`−1

D` In + F`

 ,

where the matrices Di, Fi are linear combinations of X−1
i,j and (C−1

CD)i. Using the formula

det

[
A B
C D

]
= det(A) det(D−CA−1B)

with

A =

In(1− λ)
. . .

In(1− λ)

 ,

B =

 D1 F1

...
...

D`−2 F`−2

 , C =

0 0
...

...
0 0


T

, D =

[
In(1− λ) +D`−1 F`−1

D` In(1− λ) + F`

]
,

we see that at least (`− 2)n eigenvalues of the matrix (3.3) are equal to 1.
The above theorem shows us that most of the eigenvalues of the preconditioned system

associated with the BD2 formulation of the wave equation are equal to 1. Figure 3.1 is a
plot of the eigenvalues that are not described by the above theorem. In the case displayed in
Figure 3.1, the majority of the remaining eigenvalues are clustered around 1 or are indeed
equal to 1.

We can not guarantee that this eigenvalue spectrum will affect the performance of GMRES.
It is discussed in [2] that even if a preconditioner exhibits a favourable spectrum (e.g., most

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

PARALLEL PRECONDITIONING FOR EVOLUTIONARY PDES 141

FIG. 3.1. The first 2n = 192 eigenvalues of R−1
BD2CBD2, n,m = 96. The remaining eigenvalues are equal to 1.

eigenvalues are clustered around 1) it could be the case that it will perform worse than a
preconditioner with a less favourable spectrum. More precise statements of such results can
be found, for example, in [6].

Despite this, it is generally observed that, when GMRES is applied to systems with
eigenvalue profiles like that of the system associated with the BD2 formulation of the wave
equation, GMRES converges within a relatively small number of iterations.

4. Parallel implementation. Throughout our implementation we keep all matrices on
the master process and broadcast them when necessary. Vectors, on the other hand, are defined
on all processes. To understand the reasoning for this, consider the fact that our dense block
U requires O(`2) memory and our sparse blocks (linear combinations of M and K) each
require O(n) memory. Since there are ` sparse blocks, the total memory cost is O(`2 + n`).
Further, since a vector requires O(n`) memory, if each one of p processes has a copy of the
vector, then we are using O(n`p) memory. In the complexity analysis below, we consider the
situation where ` processes are available. Using ` processes would significantly increase the
memory requirements of our implementation with this memory management scheme. In our
case, p << `, and so the vector storage cost almost matches that of the matrix storage cost.
Even in the case where p ∼ `, the reduction in communication cost that results from this type
of memory management is likely to be significant.

In order to see how (2.3) can be applied in parallel we follow [11] in writing it in the form

(4.1) P = I` ⊗A0 + Σ⊗A1,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

142 A. J. GODDARD AND A. J. WATHEN

where

Σ =


1

1
1

. . .
1

 ∈ Rn×n.

The key property of circulant matrices is that they can be unitarily diagonalised by a Fourier
basis. That is, we can write Σ = UΛU∗, where Uk,j = e((k−1)(j−1)πi)/n/

√
n and the

diagonal entries of Λ are the roots of unity for the “downshift” matrix Σ. Hence, again
following [11], (4.1) can be written as

P = (U ⊗ In)[I` ⊗A0 + Λ⊗A1](U∗ ⊗ In).

Inverting P , we obtain

P−1 = (U ⊗ In)[I` ⊗A0 + Λ⊗A1]−1(U∗ ⊗ In).

The application of (U ⊗ In) to a vector can be carried out in parallel. To see this, consider
the explicit representation of (U ⊗ In) given by

(U ⊗ In) =

U11In . . . U1`In
...

. . .
...

U`1In . . . U``In

 .
First, we broadcast each row of U to a process. Then we can evaluate

yi =
[
Ui1In . . . Ui`In

] z1...
z`


on each process, where zi ∈ Rn is a chunk of the n`-vector z and i is an integer such that
i ∈ [1, `]. This can be done in O(n`). The local resultants of each of the calculations carried
out on each process yi can then be reduced to yield the final resultant of the calculation
(U ⊗ In)z.

The only other implementation-specific issue that we need to be concerned with is the
inversion of the block-tridiagonal matrix I` ⊗ A0 + Λ⊗ A1. This can easily be carried out
in parallel by assigning each tridiagonal block to a process and then applying the Thomas
algorithm to each block, which would incur a cost of O(n) over ` processes. Therefore, the
total complexity of this implementation is O(n`) over ` processes. As in [11], multilevel
iterations can be applied as approximate solvers for the spatial operators when there is more
than one spatial dimension.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

PARALLEL PRECONDITIONING FOR EVOLUTIONARY PDES 143

An alternative method involves the use of the Fast Fourier Transform (FFT). In order to
see how the FFT can be applied in this case, we can write

(U ⊗ In)z =

U11In . . . U1`In
...

. . .
...

U`1In . . . U``In


z1...
z`


=

U . . .
U


x1

...
xn


= (In ⊗ U)x,

where (xi)k = (zk)i, xi ∈ R`, for i ∈ [1, n], are the chunks of x, and k ∈ [1, `]. This
transformation is called a vector transpose and can be carried out in O(n) over ` processes.2

Therefore, we can form

yi = Uxi,

where i is an integer such that i ∈ [1, n]. According to [15], the cost of applying U to a
vector using the FFT is O(` log `). Before we can progress with the calculation, we will have
to apply the vector transpose again to [y1, ...,yn]T . Consequently, the complexity of this
implementation now becomes O(` log `+ n2) over max(n, `) processes.

The timing results in the next section were obtained using the first method of evaluating
(U ⊗ In), not the FFT method. The reason for this is that the extra communication required to
perform the transpose operator multiple times significantly reduced the performance of the
all-at-once implementation. However, the functionality to implement both routines is provided
in the GitHub repository.

From an inspection of the operations we can see that the most expensive component of a
GMRES iteration is the application of the preconditioner. If we consider applying the above
ideology to Q−1

i BU = Q−1
i b, then for us to increase i from 1 to 2 we have to take into

account the cost of one extra preconditioner application as well as communication. That is,
for us to consider the Neumann method effective, we must expect the number of GMRES
iterations that are needed to solve the problem to reduce by more than half.

5. Numerical results. All parallel results were generated on the nightcrawler worksta-
tion at Oxford University. This machine is equipped with 2× 18 core Intel(R) Xeon(R) Gold
6140 CPU @ 2.30GHz processors, 768GB RAM, and 4600GB in scratch disk capacity. Care
was taken to access the machine when the workload was low so as to maintain consistent
results.

In [11] we see that the idea of preconditioning a block Toeplitz system with a block
circulant matrix yields very good theoretical results. Table 1 of [11] shows that few iterations
are required when computing the solution of such preconditioned Toeplitz systems. It was
suggested in [11] that the all-at-once method can be executed in parallel. Timing results for
the heat equation on a uniform temporal domain with initial condition

us10 (x) = x(1− x)

are given in Table 5.1.

2See VectorTranspose of ParallelRoutines.cpp in the Git repository.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

144 A. J. GODDARD AND A. J. WATHEN

TABLE 5.1
Timed results (in seconds) for solving the system P−1AU = P−1b using GMRES with tolerance set to 10−5.

The iteration count remained at a constant value of 2 for all values of n and ` tested. p is the number of processes
used in the calculations.

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32

n = 320 77.72 29.26 15.32 8.95 5.11 3.34
` = 768 n = 512 152.64 57.54 32.71 17.52 11.54 6.69

n = 768 245.47 97.77 50.81 30.71 16.66 9.65
n = 320 146.67 54.68 28.40 17.059 10.35 6.07

` = 1024 n = 512 265.22 107.07 60.86 34.13 20.40 11.75
n = 768 459.12 198.94 101.23 55.85 28.55 16.12
n = 320 325.14 124.67 63.64 39.78 22.74 13.06

` = 1440 n = 512 646.81 239.65 123.44 72.44 40.95 22.50
n = 768 979.85 432.46 215.77 114.99 59.80 32.41

` = 1440 n = 1568 2119.91 815.93 431.13 218.24 118.62 63.30

Referring to Table 5.1, we can see that increasing the number of processes from 1 to
32 results in a significant reduction in the time taken to solve the preconditioned system
associated with the heat equation. The most significant speed-up is achieved when ` = 1440
and n = 1568: the time taken to solve the system reduces from ∼ 35 minutes to ∼ 1 minute.
Observe that, for all values of n and `, the time taken to solve the problem reduces by more
than half as a result of increasing p from 1 to 2. We suspect that this is because half of the
problem better fits in local memory than the entire problem does.

While the data presented in Table 5.1 is very useful for highlighting the speed-up achieved
by distributing the calculation across multiple processes, it would be desirable to quantify how
efficiently the processes are being used. To see this, we consider the parallel efficiency of p
processes defined by

P peff =
Time Taken on 1 Process

p× Time Taken on p Processes
.

The parallel efficiency results are shown in Figure 5.1. The suspected reason for the jump
in going from P 1

eff to P 2
eff is that, as noted above, the problem better fits in local memory

over two processes. The parallel efficiency falls as we increase the number of processes
used in the calculation, which is to be expected. This is a consequence of the number of
communications taking place between processes. We note that, as we increase the number of
degrees of freedom, P 32

eff also increases, particularly for the values n = 1440 and ` = 1568,
P 32
eff > 1. That is, our metric for measuring parallel efficiency implies that the all-at-once

implementation is more efficient on 32 processes than it is on a single process.
In Section 2 we have introduced an extension to the all-at-once method that enables us to

consider problems that are non-uniformly discretised in time. The key behind the extension
is the Neumann approximation of the preconditioner Q−1 given by (2.4). The non-uniform
temporal discretisation that was used to obtain the numerical results associated with the system
Q−1
i BU = Q−1

i b is given by

tj =


0, j = 0,
1
n (j + δ(Rand(0,1,j)− 0.5)), j ∈ [1, `− 1],

1, j = `,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

PARALLEL PRECONDITIONING FOR EVOLUTIONARY PDES 145

1 2 4 8 16 32
Number of Processes Used

0.7

0.8

0.9

1.0

1.1

1.2

1.3
P
ar
al
le
l
E
ffi
ci
en
cy

n = 320, ℓ = 768

n = 512, ℓ = 768

n = 768, ℓ = 768

n = 320, ℓ = 1024

n = 512, ℓ = 1024

n = 768, ℓ = 1024

n = 320, ℓ = 1440

n = 512, ℓ = 1440

n = 768, ℓ = 1440

n = 1440, ℓ = 1568

FIG. 5.1. The parallel efficiency of our implementation of GMRES used to solve the all-at-once formulation of
the preconditioned heat equation system P−1AU = P−1b.

where j is an integer, δ is a real number such that δ ∈ (0, 1), and Rand(0,1,j) is a
random real number between 0 and 1. Larger values of δ clearly tend to give more irregular
time-steps τj = tj − tj−1. Table 5.2 displays the GMRES iteration counts required to solve
Q−1
i BU = Q−1

i b for increasing values of i. We also display the difference between the time
taken to solve the problem with i = 2 and the time taken to solve the problem with i = 1,
∆2,1. That is, a positive value of ∆2,1 indicates that it took longer to solve the problem with
i = 2 than it did with i = 1.

Firstly, ∆2,1 > 0 for all values of n, `, and δ tested. This somewhat validates the claim we
made in the previous section according to which the iteration count would need to reduce by
more than half for any improvements to be observed in the timed results. For n = 768, ` = 768,
and δ = 0.7, the iteration count reduced by a half as a result of increasing i from 1 to 2; in
this case ∆2,1 = 21.68, which is quite significant. On a positive note, Table 5.2 highlights
the robustness of the all-at-once formulation in the presence of temporal perturbations. For
instance, increasing δ from 0.1 to 0.9 increases the iteration count by 2 for all values of n and
` tested. Increasing i beyond 2 does halve the iteration count in some cases, but since the cost
incurred by communication is going to be increased further, there will be no advantage in
doing so.

In Section 2 we have introduced an all-at-once formulation of the wave equation. Three
formulas were considered as candidates to approximate the time derivative. The central

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

146 A. J. GODDARD AND A. J. WATHEN

TABLE 5.2
GMRES iteration count for Q−1

i BU = Q−1
i b. The tolerance was set to 10−5. The values of n and ` for each

table are given as (a) n = 320, ` = 768, (b) n = 512, ` = 768, (c) n = 768, ` = 768, (d) n = 512, ` = 1024,
(e) n = 768, ` = 1024, (f) n = 1024, ` = 1024. ∆2,1 is the difference between the time taken to solve the problem
with i = 2 and the time taken to solve the problem using i = 1. In this particular experiment, 16 processes were
utilised.

(a) i = 1 i = 2 i = 3 ∆2,1 (b) i = 1 i = 2 i = 3 ∆2,1

δ = 0.9 6 4 3 9.32 δ = 0.9 6 5 3 25.28
δ = 0.8 6 4 2 9.36 δ = 0.8 6 5 2 29.73
δ = 0.7 4 4 2 12.83 δ = 0.7 4 4 2 20.83
δ = 0.6 4 4 2 12.38 δ = 0.6 4 3 2 21.38
δ = 0.5 4 4 2 11.75 δ = 0.5 4 3 2 16.75
δ = 0.4 4 4 2 10.33 δ = 0.4 4 3 2 15.33
δ = 0.3 4 3 2 7.90 δ = 0.3 4 3 2 14.90
δ = 0.2 4 3 2 5.61 δ = 0.2 4 3 2 15.61
δ = 0.1 4 3 2 4.32 δ = 0.1 4 3 2 15.32

(c) i = 1 i = 2 i = 3 ∆2,1 (d) i = 1 i = 2 i = 3 ∆2,1

δ = 0.9 6 4 3 34.13 δ = 0.9 6 5 3 62.65
δ = 0.8 6 4 2 33.75 δ = 0.8 6 4 3 51.10
δ = 0.7 6 3 2 21.68 δ = 0.7 4 4 3 59.12
δ = 0.6 4 3 2 31.87 δ = 0.6 4 4 3 58.01
δ = 0.5 4 3 2 33.43 δ = 0.5 4 3 2 43.71
δ = 0.4 4 3 2 32.42 δ = 0.4 4 3 2 42.33
δ = 0.3 4 3 2 31.31 δ = 0.3 4 3 2 43.51
δ = 0.2 4 3 2 31.91 δ = 0.2 4 3 2 42.51
δ = 0.1 4 3 2 32.36 δ = 0.1 4 3 2 44.32

(e) i = 1 i = 2 i = 3 ∆2,1 (f) i = 1 i = 2 i = 3 ∆2,1

δ = 0.9 6 4 3 59.11 δ = 0.9 6 4 3 82.11
δ = 0.8 6 4 3 58.12 δ = 0.8 4 4 3 103.12
δ = 0.7 4 3 3 63.22 δ = 0.7 4 4 2 102.18
δ = 0.6 4 3 2 65.26 δ = 0.6 4 3 2 80.31
δ = 0.5 4 3 2 63.31 δ = 0.5 4 3 2 75.42
δ = 0.4 4 3 2 64.23 δ = 0.4 4 3 2 74.15
δ = 0.3 4 3 2 67.53 δ = 0.3 4 3 2 78.13
δ = 0.2 4 3 2 64.21 δ = 0.2 4 3 2 74.21
δ = 0.1 4 3 2 65.26 δ = 0.1 4 3 2 75.26

differences formulation performed poorly by selecting the smooth initial condition

us20 = sin(2πx),

and GMRES failed to converge to a solution by selecting the non-smooth initial condition

uns0 (x) =

{
cos2 4π

(
x− 1

2

)
, x ∈

(
3
8 ,

5
8

)
,

0, x ∈ [0, 1]\
(
3
8 ,

5
8

)
,

when applied to the systemR−1
CDCCDU = R−1

CDbCD. Central differences performed poorly
on us20 in the sense that the solution displays aggressive numerical dissipation regardless of
how large n and ` are chosen to be. However, the number of GMRES iterations required to

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

PARALLEL PRECONDITIONING FOR EVOLUTIONARY PDES 147

TABLE 5.3
GMRES iteration counts k required to solve the wave equation system. v is the wave speed of the approximate

solution. The wave speed of the exact solution is 1. Tolerance was set to 10−5. (a) R−1
BD2CBD2U = R−1

BD2bBD2,
(b) R−1

BD4CBD4U = R−1
BD4bBD4.

(a) k v (b) k v

n = 32 5 1.03 n = 32 60 1.03
` = 32 n = 64 5 1.01 ` = 32 n = 64 100 1.01

n = 96 5 1.01 n = 96 180 0.67
n = 32 6 2.06 n = 32 80 1.03

` = 64 n = 64 6 1.01 ` = 64 n = 64 120 1.01
n = 96 6 1.34 n = 96 200 0.67
n = 32 6 3.09 n = 32 140 3.10

` = 96 n = 64 8 1.52 ` = 96 n = 64 180 1.52
n = 96 6 1.01 n = 96 9216 1.01

TABLE 5.4
GMRES iteration counts k required to solve R−1

BD2CBD2U = R−1
BD2bBD2 for larger values of n and `.

Tolerance was set to 10−5.

k

n = 320 8
` = 768 n = 512 8

n = 768 8
n = 320 8

` = 1024 n = 512 8
n = 768 8
n = 320 8

` = 1440 n = 512 8
n = 768 8

solve the systemR−1
CDCCDU = R−1

CDbCD with the smooth initial condition remained at 2 for
all values of n and ` tested. This sensitivity to initial conditions may be related to the spectrum
of the matrix associated with the CD formulation of the wave equation, which was discussed
in Section 3. For these reasons, the central differences formulation will not be considered
further.

Iteration counts for BD2 and BD4 are provided in Table 5.3 and Table 5.4. Plots of the
solution of the wave equation, obtained using the corresponding all-at-once formulations,
are displayed in Figure 5.2. All of these results were obtained with the non-smooth initial
condition uns0 . Iteration counts for BD2 are low and the wave speeds are largely conserved.
The drawback of BD2 is the introduction of numerical dissipation in the solution, as seen in
Figure 5.2 (a), although the dissipation is very subtle compared to that observed in the solution
of the central differences formulation. BD4 rectifies this drawback, but iteration counts are
much higher. Similarly to the central difference approximation, when the smooth initial
condition was used, the number of GMRES iterations required to solve the problem remained
fixed at 2 for both BD2 and BD4 formulations. Our observations indicate that the all-at-once
method formulation of the wave equation is sensitive to the choice of initial conditions.

Timed results for the solution of the wave equation using the all-at-once formulation
are provided in Table 5.5 and parallel efficiency results are displayed in Figure 5.3. The
system associated with the wave equation resulting from using BD2 is less sparse than the one

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

148 A. J. GODDARD AND A. J. WATHEN

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
u

(a)

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

u

(b)

FIG. 5.2. Solution profiles for the wave equation. The profiles were taken at equally spaced time intervals
and the non-smooth initial condition uns

0 was used. n = ` = 128. (a) R−1
BD2CBD2U = R−1

BD2bBD2 (b)
R−1

BD4CBD4U = R−1
BD4bBD4.

TABLE 5.5
The timed results (in seconds) for solving the system R−1

BD2CBD2U = R−1
BD2bBD2 using GMRES with

tolerance set to 10−5. The iteration count remained at a constant value of 2 for all values of n and ` tested. p is the
number of processes used in the calculations. The smooth initial condition us2

0 was used.

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32

n = 320 79.07 31.29 16.20 9.53 6.11 4.36
` = 768 n = 512 163.68 61.33 34.33 19.76 11.54 7.09

n = 768 251.37 100.99 53.14 27.31 14.64 11.09
n = 320 153.37 53.39 30.47 20.99 12.38 7.39

` = 1024 n = 512 287.23 119.72 65.84 39.81 23.23 12.08
n = 768 497.12 222.93 115.24 60.84 32.46 18.01
n = 320 328.17 125.71 65.64 41.70 23.32 14.21

` = 1440 n = 512 680.15 243.53 124.65 73.92 41.42 24.51
n = 768 960.33 434.46 211.01 115.95 60.54 35.12

` = 1440 n = 1568 2211.97 820.21 444.31 230.42 122.63 68.10

associated with the heat equation, and so we would expect the computations to take longer.
Also, note that we have a reduction in parallel efficiency for all values of n and ` tested.
However, the parallel efficiency does seem to increase with the number of degrees of freedom.
This trend was observed in the parallel efficiency results for the heat equation.

6. Conclusions. We have provided a parallel implementation of the all-at-once method
of [11]. This was achieved using MPI and C++ and is a proof-of-concept software that
supports the claims made in [11], namely, that the all-at-once method with the McDonald
et al. preconditioner is parallelisable. We have also provided new applications for the all-at-
once method, namely, applications to non-uniform temporal discretisation and to hyperbolic
equations. Problems in one spatial dimension were considered throughout. To apply the all-at-
once method to higher-dimensional problems, some alterations to the implementation provided
in this paper are required. An alternative suggested in [11] would be to apply Algebraic
Multigrid in parallel instead of the parallel Thomas algorithm for the blocks representing
spatial approximation.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

PARALLEL PRECONDITIONING FOR EVOLUTIONARY PDES 149

1 2 4 8 16 32
Number of Processes Used

0.6

0.8

1.0

1.2

1.4
P
ar
al
le
l
E
ffi
ci
en
cy

n = 320, ℓ = 768

n = 512, ℓ = 768

n = 768, ℓ = 768

n = 320, ℓ = 1024

n = 512, ℓ = 1024

n = 768, ℓ = 1024

n = 320, ℓ = 1440

n = 512, ℓ = 1440

n = 768, ℓ = 1440

n = 1440, ℓ = 1568

FIG. 5.3. The parallel efficiency of our implementation of GMRES used to solve the all-at-once formulation of
the preconditioned wave equation system R−1

BD2CBD2U = R−1
BD2bBD2. The smooth initial condition us2

0 was
used.

REFERENCES

[1] O. AXELSSON AND J. KARÁTSON, Preconditioning of block tridiagonal matrices, Oberwolfach Preprints
2008-05, Oberwolfach, 2008. DOI: 10.14760/OWP-2008-05.

[2] I. DUFF AND H. VAN DER VORST, Preconditioning and parallel Preconditioning, Tech. Report TR/PA/98/23,
CERFACS, Toulouse, 1998.

[3] R. D. FALGOUT, S. FRIEDHOFF, T. V. KOLEV, S. P. MACLACHLAN, AND J. B. SCHRODER, Parallel time
integration with multigrid, SIAM J. Sci. Comput., 36 (2014), pp. C635–C661.

[4] M. J. GANDER, 50 years of time parallel time integration, in Multiple Shooting and Time Domain Decomposi-
tion Methods, T. Carraro, M. Geiger, S. Körkel, and R. Rannachev, eds., vol. 9 of Contrib. Math. Comput.
Sci., Springer, Cham, 2015, pp. 69–113.

[5] M. J. GANDER, L. HALPERN, J. RYAN, AND T. T. B. TRAN, A direct solver for time parallelization, in
Domain Decomposition Methods in Science and Engineering XXII, T. Dickopf, M. J. Gander, L. Halpern,
R. Krause and L. F. Pavarino, eds., vol. 104 of Lect. Notes Comput. Sci. Eng., Springer, Cham, 2016,
pp. 491–499.

[6] A. GREENBAUM, V. PTÁK, AND Z. STRAKOŠ, Any nonincreasing convergence curve is possible for GMRES,
SIAM J. Matrix Anal. Appl., 17 (1996), pp. 465–469.

[7] A. J. HOWSE, H. DE STERCK, R. D. FALGOUT, S. MACLACHLAN, AND J. SCHRODER, Parallel-in-time
multigrid with adaptive spatial coarsening for the linear advection and inviscid Burgers equations, SIAM
J. Sci. Comput., 41 (2019), pp. A538–A565.

[8] M. H. KOULAEI AND F. TOUTOUNIAN, On computing of block ILU preconditioner for block tridiagonal
systems, J. Comput. Appl. Math., 202 (2007), pp. 248–257.

[9] J.-L. LIONS, Y. MADAY, AND G. TURINICI, Résolution d’EDP par un schéma en temps “pararéel”, C. R.
Acad. Sci. Paris Sér. I Math., 332 (2001), pp. 661–668.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

150 A. J. GODDARD AND A. J. WATHEN

[10] E. MCDONALD, S. HON, J. PESTANA, AND A. WATHEN, Preconditioning for nonsymmetry and time-
dependence in Domain Decomposition Methods in Science and Engineering XXIII, C.-O. Lee, X.-C. Cai,
D. E. Keyes, H. H. Kim, A. Klawonn, E.-J. Park, and O. B. Widlund, eds., Lect. Notes Comput. Sci. Eng.
116, Springer, Cham, 2017, pp. 81–91.

[11] E. MCDONALD, J. PESTANA, AND A. WATHEN, Preconditioning and iterative solution of all-at-once systems
for evolutionary partial differential equations, SIAM J. Sci. Comput., 40 (2018), pp. A1012–A1033.

[12] Y. SAAD AND M. H. SCHULTZ, GMRES: a generalized minimal residual algorithm for solving nonsymmetric
linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.

[13] D. K. SALKUYEH, On the preconditioning of the block tridiagonal linear system of equations, J. Appl. Math.
Comput., 28 (2008), pp. 133–146.

[14] H. A. VAN DER VORST, Large tridiagonal and block tridiagonal linear systems on vector and parallel
computers, Parallel Comput., 5 (1987), pp. 45–54.

[15] C. VAN LOAN, Computational Frameworks for the Fast Fourier Transform, SIAM, Philadelphia, 1992.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

