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PERTURBATION ANALYSIS FOR PALINDROMIC AND
ANTI-PALINDROMIC NONLINEAR EIGENVALUE PROBLEMS∗

SK. SAFIQUE AHMAD†

Abstract. A structured backward error analysis for an approximate eigenpair of structured nonlinear matrix
equations with T -palindromic, H-palindromic, T -anti-palindromic, and H-anti-palindromic structures is conducted.
We construct a minimal structured perturbation in the Frobenius norm such that an approximate eigenpair becomes an
exact eigenpair of an appropriately perturbed nonlinear matrix equation. The present work shows that our general
framework extends existing results in the literature on the perturbation theory of matrix polynomials.
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1. Introduction. We consider the perturbation analysis of eigenvalue problems of the
form

(1.1)

 m∑
j=0

Mjfj(c, s)

x = 0,

for some nonzero vector x ∈ Cn. Here, Mj ∈ Cn×n, for j = 0, 1, . . . ,m, and fj(c, s) are
scalar-valued functions with (c, s) ∈ C2 \ {(0, 0)}. The pair (c, s) is called an eigenvalue
of
∑m
j=0Mjfj , and x is the corresponding eigenvector. For the sake of convenience, we

write (1.1) as

(M ⊗ f(c, s))x =

 m∑
j=0

Mjfj(c, s)

x = 0, where(1.2)

M = (M0, . . . ,Mm) ∈ (Cn×n)m+1 and

f(c, s) = (f0(c, s), f1(c, s), . . . , fm(c, s)) ∈ Cm+1.

The components fj(c, s) are rational functions, where (c, s) is defined on the Riemann sphere
R := {(c, s) ∈ C2 \ {(0, 0)} : |c|2 + |s|2 = 1}. Even though the perturbation theory for
a non-homogeneous setup for matrix polynomials is well investigated [2], no literature is
available for nonlinear eigenvalue problems of the form (1.2). However, in recent years
nonlinear eigenvalue problems, more specifically palindromic eigenvalue problems, have
found application in various areas of science and engineering [16]. An illustrative example is
the vibration of fast trains [16].

The vibration of fast trains leads to a palindromic quadratic eigenvalue problem which
is given as (λ2AT + λC + A)x = 0, where A,C = CT ∈ Cn×n. In general most of the
eigenvalues of the quadratic eigenvalue problems are of the form

(λM1(ω) +M0(ω) +
1

λ
M1(ω)T )v = 0,

where M0(ω),M1(ω) are large and sparse complex matrices depending on ω such that M1(ω)
is highly rank deficient and M0(ω) is complex symmetric; see [6, 16]. The scarcity of work
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on the nonlinear eigenvalue problem has motivated us to take up this study on the perturbation
analysis for nonlinear matrix equations.

The present work deals with the palindromic rational eigenvalue problem in the homo-
geneous framework. The homogeneous framework helps to study the problem (1.2) in the
presence of the eigenvalues 0 and∞ in linear/nonlinear palindromic rational eigenvalue prob-
lems. Our framework can be applied as long as there is no pole of the rational functions fj(c, s)
in equation (1.2). A nonlinear eigenvalue problem of the form (1.2) can be converted into a
linear eigenvalue problem by the usual linearization approaches; see, e.g., [9, 10, 11, 16, 17].
However, we have not adopted this approach due to the presence of rounding errors. Bounds
for the structured backward errors are given by Li et al. in [15] for non-homogeneous palin-
dromic matrix polynomials. In this article, efforts have been made to introduce the exact
formula for the backward error such that an approximate eigenpair becomes an exact eigenpair
of an appropriately perturbed nonlinear matrix equation of the form (1.2).

In this paper, we study the perturbation analysis for the eigenvalues and eigenvectors
of matrix polynomials of degree m. A backward error analysis for perturbed nonlinear
eigenvalue problems has been developed in [6, 7, 8, 15] and the references therein. We
discuss the homogeneous framework for the construction of the nearest perturbed palindromic
nonlinear matrix equation such that an approximate eigenpair becomes an exact eigenpair of an
appropriately perturbed palindromic problem with rational coefficients. This study extends the
previous work on nonlinear eigenvalue problems with symmetric, skew-symmetric, Hermitian,
and skew-Hermitian coefficients; see [6]. Due to the presence of the eigenvalues 0 and∞
in palindromic nonlinear eigenvalue problems, we deal with the problem in a homogeneous
framework of the form (1.2), which may contains both 0 and∞ as eigenvalues. In contrast to
the previous work [3, 2], here we consider the homogeneous form (1.2), where eigenvalues
are represented as pairs (c, s) ∈ R, and c 6= 0 corresponds to finite eigenvalues λ = s/c,
while (0, 1) corresponds to the eigenvalue at∞. This leads to the delay differential equation
that generates a nonlinear matrix equation, which is further converted into palindromic/anti-
palindromic nonlinear eigenvalue problems depending on the coefficient matrices; see [16].
See [12, 13, 14] for a nonlinear eigenvalue problem that occurs in the investigation of a delay
differential equation that is converted into a quadratic matrix equation. However, due to
rounding errors we avoid this transformation, so we find the results for the case of nonlinear
eigenvalue problems and then treat the polynomial eigenvalue problem as a special case. The
present results are compared with available results. The highlights of this work are as follows:

1. Formulae are developed for the nearest perturbations of nonlinear matrix equations of
T -palindromic/T -anti-palindromic-type such that an approximate eigenpair becomes
an exact eigenpair of appropriately perturbed T -palindromic/T -anti-palindromic
nonlinear matrix equations. The above construction is also valid for the case of
T -palindromic/T -anti-palindromic matrix polynomials.

2. Formulae are developed for the nearest perturbations of nonlinear matrix equa-
tions of type (1.2) having H-palindromic/H-anti-palindromic structure such that
an approximate eigenpair becomes an exact eigenpair of appropriately perturbed
H-palindromic/H-anti-palindromic-structured nonlinear eigenvalue problems of
type (1.2). The above construction is also valid for the case of H-palindromic/H-
anti-palindromic polynomials. If (λ, µ) = (−1, 1), (1,−1) for the H-palindromic
case and (λ, µ) = (1, 1), (−1,−1) for the H-anti-palindromic case, then the struc-
tured backward error with respect to the 2-norm is equal to

√
2 times the unstructured

backward error for the case of the Frobenius norm of matrices. Also note that this is
the same for the T -palindromic/T -anti-palindromic matrix polynomial case.
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The organization of the paper is as follows: Section 2 introduces notation and preliminaries.
In Section 3, minimum structured perturbations of T -palindromic and T -anti-palindromic
eigenvalue problems are derived, and the relations between the structured backward error
and the unstructured backward error are discussed. In addition to that, minimum structured
perturbation of H-palindromic and H-anti-palindromic eigenvalue problems for nonlinear
matrix equations are derived, and the relationship between the structured backward error
and the unstructured backward error are presented. In Section 4, formulae for the case
of polynomial matrix equations and comparisons with known results in the literature are
discussed. In Section 5, we discuss structured and unstructured pseudospectra for nonlinear
matrix equations. Finally, Section 6 illustrates the pseudospectra associated with the above
problems.

2. Preliminaries. We use the following notation: let w ∈ Rm be a nonnegative vector,
and for x ∈ Cm, we define the weighted norm ‖x‖w,2 := ‖[w1x1, w2x2, . . . , wmxm]T ‖2,
where ‖ ‖2 denotes the Euclidean norm in Cm. If w is strictly positive, then this defines
a norm/seminorm. For a nonnegative vector w ∈ Rm, we define the inverse of w via
w−1 := [w−11 , w−12 , . . . , w−1m ]T , where w−1i := 0 if wi = 0. For A ∈ Cm×m, we define
AH as the conjugate transpose of A and AT as the transpose of A. I is an identity matrix.
For x ∈ Cm with xHx = 1, we define Px = I − xxH . The spectral and Frobenius norm
on Cm×m are defined by ‖A‖2 := max

‖x‖=1
‖Ax‖2 and ‖A‖F := (traceAHA)1/2, respectively.

Define the partial gradient∇i‖z‖w,2 of a map Cm \ {0} → R, z 7→ ‖z‖w,2 to be the gradient
of the map C \ {0} → R, zi 7→ ‖[z1, . . . , zm]T ‖w,2 with the variables zj(1 ≤ j ≤ n, j 6= i)
fixed as constants. The gradient of the map Cm \ {0} → R, z 7→ ‖z‖w,2, is then defined as

∇(‖z‖w,2) = [∇1‖z‖w,2,∇2‖z‖w,2, . . . ,∇m‖z‖w,2]
T ∈ Cm.

Let M ⊗ f(c, s) =
∑m
j=1 fj(c, s)Mj ,Mj ∈ Cn×n. Define

rev(MT ⊗ f) = M ⊗ f(s, c), and M? ⊗ f =

m∑
j=1

fjM
?
j , ? ∈ {T,H}.

We use the symbol ? as an abbreviation for the transpose T in the real case and the transpose
T or conjugate transpose ∗ in the complex case. For M = [M0,M1, . . . ,Mn]T , define the
norm of M with respect to the weight vector w = [w0, w1, . . . , wn]T , wi > 0, as

|||M |||w,2 = ‖(M0,M1, . . . ,Mn)‖w,2 = (w2
0‖M0‖2 + · · ·+ wn‖Mn‖2)1/2.

The following choices are considered in this paper:
1. The choice fj = γj encodes the non-homogeneous polynomial case fj(γ) = γj .
2. The choice fj = λjµm−j encodes the homogeneous polynomial case fj(λ, µ).
3. The choice fj = fj(λ) encodes the non-homogeneous case with general functions
fj .

4. The choice fj = fj(λ, µ) encodes the homogeneous case with general functions fj .
Under this assumption, a given eigenvalue (λ, µ) or (γ) can be expressed by functions

fj(λ, µ) or fj(γ), respectively, in a uniform way. Thus, we have the following structured
matrix equation of the form (1.2) that generalizes the case of matrix polynomial given in [16]:

∗-palindromic rev(M ⊗ f) = M∗ ⊗ f orMj = M∗m−j

∗-anti-palindromic rev(M ⊗ f) = −M? ⊗ f orMj = −M?
m−j
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Moreover, we often use the product notation as described in [6] in the following way:

(M ⊗ f(c, s))x = 0, (M ⊗ f(λ))x = 0,

respectively, with tuples of matrices M := (M0,M1, . . . ,Mm) ∈ (Cn×n)m+1 and functions
f(c, s) := (f0(c, s), f1(c, s), . . . , fm(c, s)) ∈ Cm+1 or f(λ) := (f0(λ), f1(λ), . . . , fm(λ))
∈ Cm+1, respectively. The smallest perturbations ∆M with respect to the 2-norm and the
Frobenius norm such that

((M + ∆M)⊗ f)x =

 m∑
j=0

(Mj + ∆Mj)fj

x = 0.

leads to the backward errors, which are defined as follows:
DEFINITION 2.1. Let M ∈ MS

m+1(Cn×n). Then the backward error of the matrix
equation (1.1) is given by

ηSw,2(f, x,M) :=min
{
|||∆M |||w,2 : ∆M ∈MS

m+1(Cn×n) : det((M + ∆M)⊗ f) = 0
}
.

The backward error for the unstructured M ∈Mm+1(Cn×n) is given by

ηw,2(f, x,M) :=min
{
|||∆M |||w,2 : ∆M ∈Mm+1(Cn×n) : det((M + ∆M)⊗ f) = 0

}
.

For a given approximate eigenpair ((λ, µ), x) or (γ, x) of M ⊗ f, a minimal perturbation
∆M ∈ (Cn×n)m+1 with respect to the Frobenius norm can be determined such that it becomes
an exact eigenpair of (M + ∆M)⊗ f. This follows from the following proposition.

PROPOSITION 2.2 ([6, Theorem 2.2]). Let M ∈Mm+1(Cn×n) be of the form (1.2). Let
fj be sufficiently smooth functions. For a given approximate eigenvalue (λ, µ) or (γ), set

Hw,2(f) =
∥∥[w1f1, . . . , wmfm]T

∥∥
2
.

Then the backward error, i.e., the size of the smallest perturbation that makes (λ, µ) or (γ) an
eigenvalue of the perturbed problem satisfies

ηw,2(f, x,M) = min
‖x‖=1

‖(M ⊗ f)x‖
Hw−1,2(f)

=
‖(M ⊗ f)−1‖−1

Hw−1,2(f)
.

DEFINITION 2.3. Let M ∈ Mm+1(Cn×n). Consider a nonlinear matrix equation of
the form (1.2). Then the structured and unstructured ε-pseudospectrum with respect to the
Frobenius norm are given by

ΛS
ε,w(M) =

{
ψ ∈ Cn+1 : ηSw,2(ψ, x,M) ≤ ε

}
, M ∈MS

m+1(Cn×n), and

Λε,w(M) =
{
ψ ∈ Cn+1 : ηw,2(ψ, x,M) ≤ ε

}
, M ∈Mm+1(Cn×n),

respectively.

2.1. Some properties of partial gradients. In this section, some properties of the func-
tions Hw,2 and Gw,2 are derived which are required for the subsequent development in our
theory. First, we provide the following proposition from [4, 5, 8]:

PROPOSITION 2.4. Consider the following map Hw,2 : Cn \ {0} → R given by
Hw,2(z) := ‖[z1, . . . , zn]T ‖w,2. Then Hw,2 is differentiable on Cn, and the partial gradient

satisfies∇jHw,2(z) =
w2
j zj

Hw,2(z)
, 1 ≤ j ≤ n. Furthermore,

m∑
j=1

zj
∇jHw,2(z)

Hw,2(z)
= 1,

m∑
j=1

w−2j |∇jHw,2(z)|2 = 1.
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Consider the nonnegative vector w = [w1, w2, . . . , wm] ∈ Rm, where wm = wm−j . Let
Hw,2 = ‖[z0, z1, . . . , zm]T ‖w,2 = (

∑m
j=0 w

2
j |zj |2)1/2, and let

(2.1) wjy
ε
j =

wjzj + εwm−jzm−j
2

, ε = ±1.

Similar to Proposition 2.4, the following function Gw,2, is needed for the perturbation theory
of palindromic structures. Define

G
ε
w,2 : Cm+1 \ {0} → R

G
ε
w,2(yε) = ‖(w0y

ε
0, w1y

ε
1, . . . , wmy

ε
m)‖w,2,(2.2)

where yε := (yε0, y
ε
1, . . . , y

ε
m) ∈ Cm+1 and the yεj are defined in equation (2.1). Now we state

the following result with the above setup.
PROPOSITION 2.5. Let

Hw,2(z) = ‖[z1, . . . , zn]T ‖w,2, and wjy
ε
j = (wjzj + εwm−jzm−j)/2,

where wj = wm−j , for 0 ≤ j ≤ m, ε = ±1. Consider

G
ε
w,2 : Cm+1 \ {0} → R

yε 7→ ‖(w0y
ε
0, w1y

ε
1, . . . , wmy

ε
m)‖w,2.

Then G
ε
w,2 is differentiable and∇jG

ε
w,2(yε) =

w2
jy
ε
j

G
ε
w,2

. Furthermore,

m∑
j=1

yεj

∇jG
ε
w,2(yε)

G
ε
w,2(yε)

= 1 and
m∑
j=1

w−2j |∇jGε w,2(yε)|2 = 1.

Proof. The proof follows from Proposition 2.4.
PROPOSITION 2.6. Consider y ∈ Cm+1 \ {0} and w ∈ Rm+1. For ε = ±1, let

G
ε
w,2(yε) = ‖(w0y

ε
0, w1y

ε
1, . . . , wmy

ε
m)‖w,2. Then

m∑
j=0

fj
∇jG

ε
w,2

G
ε
w,2

= 1,

whereHw,2 = ‖(w0f0, . . . , wmfm)‖, fj = fj(λ, µ) has no poles, and yεj = (fj + εfm−j)/2,
fj ∈ C, j = 0, 1, . . . ,m.

Proof. We have that yεj = (fj + εfm−j)/2, 0 ≤ j ≤ m.
Case I(a): let m be even and ε = +1. Then we have following identity:

m∑
j=0

fj
∇jG

ε
w,2

G
ε
w,2

=

m∑
j=0

fj
w2
jy
ε
j

(G
ε
w,2)2

= w2
0

yε0
(G
ε
w,2)2

(f0 + fm)/2+ · · ·+ fm̃
2
w2
m̃

yεm̃
(G
ε
w,2)2

+ · · ·+ w2
m

yεm
(G
ε
w,2)2

(fm + f0)/2 =

m∑
j=0

w2
j |yεj |2

(G
ε
w,2)2

= 1.
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Case I(b): Let m be even and ε = −1. Then we can write

m∑
j=0

fj
∇jG

ε
w,2

G
ε
w,2

=

m∑
j=0

fj
w2
jy
ε
j

(G
ε
w,2)2

= w2
0

yε0
(G
ε
w,2)2

(f0 − fm)/2

+ · · ·+ w2
m−j

yεm−j
(G
ε
w,2)2

(fj − fm−j)/2

+ · · ·+ w2
m

yεm
(G
ε
w,2)2

(fm − f0)/2 =

m∑
j=0

w2
j |yεj |2

(G
ε
w,2)2

= 1.

Case II: For m odd with yεj = (fj + εfm−j)/2, fj ∈ C, we have the following expressions:
Case II(a): Let m be odd and ε = +1:

m∑
j=0

fj
∇jG

ε
w,2

G
ε
w,2

=
m∑
j=0

fj
w2
jy
ε
j

(G
ε
w,2)2

=

m∑
j=0

w2
j |yεj |2

(G
ε
w,2)2

= 1.

Case II(b): Let m be odd and ε = −1:

m∑
j=0

fj
∇jG

ε
w,2

G
ε
w,2

=

m∑
j=0

fj
w2
jy
ε
j

(G
ε
w,2)2

=

m∑
j=0

w2
j |yεj |2

(G
ε
w,2)2

= 1.

3. Backward errors for the palindromic rational eigenvalue problem. In this section
we discuss the perturbation analysis of T -palindromic/T -anti-palindromic and H-palindromic/
H-anti-palindromic problems. In our construction, we find a lots of similarities in the perturba-
tion analysis when we move from palindromic problems to anti-palindromic structures. We use
the function G

ε
w,2(yε) as defined in equation (2.2), where yε := (yε0, y

ε
1, . . . , y

ε
m) ∈ Cm+1.

For ε = 1, we derive the perturbation for the symmetric case, and when ε = −1 we derive
the perturbation for the anti-palindromic case. Throughout the paper we use ZεMj

defined as
follows:

(3.1) ZεMj
:=
∇jG

ε
w−1,2(yε)

G
ε
w−1,2(yε)

=


w2
jy
ε
j

(G
ε
w−1,2(yε))2

, yεj =
fj+fm−j

2 , ε = 1,

w2
jy
ε
j

(G
ε
w−1,2(yε))2

, yεj =
fj−fm−j

2 , ε = −1,

where G
ε
w,2(yε)) = ‖(w0y

ε
0, w1y

ε
1, . . . , wmym)‖w,2, yε = (yε0, y

ε
1, . . . , y

ε
m) ∈ Cm+1, and

f = (f0, f1, . . . , fm) ∈ Cm+1.
With this result, we now derive the perturbation formula for the case of T -palindromic

and T -anti-palindromic problems. Our derivation gives a perturbation of the T -palindromic
problem when ε = 1 and a perturbation of T -anti-palindromic problem for ε = −1. For a
perturbation for homogeneous structures, we use the notation ((λ, µ), x), and similarly, for
non-homogeneous structures we use (γ, x). Here ((λ, µ), x) is an approximate eigenpair of
equation (1.2), and (γ, x) is an approximate eigenpair of equation (1.2) for s = 1.

THEOREM 3.1. Let M ∈ M(Cn×n) be a T -palindromic/T -anti-palindromic rational
eigenvalue problem of the form (1.2). Let ((λ, µ), x) or (γ, x) be an approximate eigen-
pair of (1.2). Construct τ = (τ0, . . . , τm) ∈ Cm+1, τj = fj(λ, µ) or τj = fj(γ). Set
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k = −(M ⊗ τ)x, ZεMj
as in (3.1), and Px = I − xxH(x ∈ Cn). Then we have

ηSw,F (τ, x,M) =


√√√√2‖k‖22 − |xT k|2

G
ε

2
w−1,2

, (λ, µ) is not a pole of fj .

Introduce the perturbation matrices, for j = 1, 2, . . . ,m,

∆Mj := Z
ε

Mj
xxT kxH + εZ

ε

Mm−j
PTx kx

T + Z
ε

Mj
xkTPx, ∀j.

Then there exists M ⊗ f =
∑m
j=1 fj∆Mj such that (M + ∆M)⊗ τ = 0.

Proof. Consider

∆̃Mj = UT∆MjU =

[
aj,j aTj
bj Xj

]
, bj = εam−j , ajj = εam−j,m−j , Xm−j = εXT

j ,

such that ∆̃Mm−j = ε∆̃Mj

T
(0 ≤ j ≤ m), where U =

[
x U1

]
is a unitary matrix.

Since ((M + ∆M) ⊗ τ)x = 0, it follows that (M ⊗ τ + ∆M ⊗ τ)x = 0, and hence
k = (∆M ⊗ τ)x. Now we construct a unitary matrix U which has x as its first column, i.e.,
U =

[
x U1

]
∈ Cn×n. Then U(∆̃M ⊗ τ)UH = UUT (∆M ⊗ τ)UHU = ∆M ⊗ τ, and

hence U(∆̃M ⊗ τ)UHx = (∆M ⊗ τ)x = k, which implies

(∆̃M ⊗ τ)UHx = UT k =

[
xT k
UT1 k

]
.

Then we have [
a00τ0 + a11τ1 + · · ·+ ammτm
b0τ0 + b0τ1 + · · ·+ bmτm

]
=

[
xT k
UT1 k

]
.

From the previous equation we may conclude the following equality:
m∑
j=0

(τj + ετm−j)

2
ajj

m∑
j=0

(τj + ετm−j)

2
bj

 =

[
xT k
UT1 k

]
.

Then we have

m∑
j=0

τj
2wj

wjbj + ε

m∑
j=0

τm−j
2wm−j

wm−jbm−j = UT1 k,

and

m∑
j=0

τj
2wj

wjaj,j + ε

m∑
j=0

τm−j
2wm−j

wm−jam−j,m−j = xHk,(3.2)

m∑
j=0

βj(τj + ετm−j)

2βj
ajj = xT k, βj = wjwm−j .
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Using the least-squares method, the minimum-norm solutions are given by

bj =
∇jG

ε
w−1,2

G
ε
w−1,2

UT1 k, and ajj =
∇jG

ε
w−1,2

G
ε
w−1,2

xT k.

Since we have bj = εam−j , it follows that

∆Mj = U

[
Z
ε

Mj
xT k εZMm−j (U

T
1 k)T

ZMj
UT1 k Dj,j

]
UH ,

where

∆Mm−j = ε∆MT
j , and

∆Mj = Z
ε

Mj
xxT kxH + εZMm−jxk

TPx + ZMj
PTx kx

H + U1DjjU
T
1 .

Choosing Djj = 0 we obtain

∆Mj = Z
ε

Mj
xxT kxH + εZMm−jxk

TPx + ZMjP
T
x kx

H .

Now,

((M + ∆M)⊗ τ)x = −k +

m∑
j=0

τj

[
Z
ε

Mj
xxT kxH + εZ

ε

Mj
xkTPx + Z

ε

Mj
PTx kx

H
]
x

= −k +

m∑
j=0

τj

[
Z
ε

Mj
xxT k + Z

ε

Mj
PHx k

]
= −k + xxT k + (I − xxT )k = 0.

Thus, the backward error is given by

ηSw,F (τ, x,M) = |||∆M |||2w,F =

√√√√ m∑
j=0

‖∆Mj‖2 =

√√√√2‖k‖22 − |xT k|2

G
ε

2
w−1,2

.

Similar to the previous theorem we derive formulae for the H-palindromic and H-anti-
palindromic cases. With the approximate eigenpairs we construct τ ∈ Cm+1.

THEOREM 3.2. Let M ∈Mm+1(Cn×n) be a H-palindromic/H-anti-palindromic struc-
ture of the form (1.2). Let ((λ, µ), x) or (γ, x) be an approximate eigenpair of (1.2). Construct
τ = (τ0, . . . , τm) ∈ Cm+1, where τj = fj(λ, µ) or τj = fj(γ). Let k = −(M ⊗ τ)x, ZεMj

as in (3.1), and Px = I − xxH . Introduce the perturbation matrices

∆Mj = Z
ε

Mj
xxHkxH + εZ

ε

Mm−j
PHx kx

H + Z
ε

Mj
xkHPx,

and if τj ∈ C, introduce

∆Mj = β−1j tεjxx
H + εZ

ε

Mm−j
xkHPx + ZεMj

PHx kx
H ,

where βj = w−1j w−1m−j .

Then there exists ∆M ∈Mm(Cn×n) such that ((M + ∆M)⊗ τ)x = 0. The backward
error is given by
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ηSw,F (τ, x,M) =



√√√√2‖k‖22 − |xHk|2

G
ε

2
w−1,2

for τj ∈ R,

√√√√ m∑
j=0

∣∣∣∣ tεjβj
∣∣∣∣2 +

2(‖k‖22 − |xHk|2)

G
ε

2
w−1,2

for τj ∈ C.

In this theorem, tj is a component of a vector t, where

t = T+

[
<(xHk)
=(xHk)

]
, with T :=


<(yε0)

2β0
. . .

<(yεm)

2βm
=(yε0)

2β0
. . .

=(yεm)

2βm

 , yεj =
τj + ετm−j

2
, ε = ±1.

Proof. Case I: Let τj ∈ R, then the proof follows from the previous Theorem 3.1.
Case II: If τj ∈ C. Then from (3.2) we have

m∑
j=0

τj
2wj

wjaj,j +

m∑
j=0

τm−j
2wm−j

wm−jam−j,m−j = xHk.

Hence, the identity
m∑
j=0

wm−jwj<(zj) + εwjwm−j<(τm−j)

2(wjwm−j)
ajj

m∑
j=0

wj=(τj) + εwm−j=(τm−j)

2(wjwm−j)
ajj

 =

[
<(xHk)
=(xHk)

]

shows that
m∑
j=0

βj
<(τj + ετm−j)

2βj
ajj

m∑
j=0

βj
=(τj + ετm−j)

2βj
ajj

 =

[
<(xHk)
=(xHk)

]
and


m∑
j=0

βj<(yεj)

βj
ajj

m∑
j=0

βj
=(yεj)

βj
ajj

 =

[
<(xHk)
=(xHk)

]
,

where yεj = (τj + ετm−j)/2. This implies

[
<(yε0)

2β0
. . .

<(yεm)

2βm

] β0a00
...

αmamm

 = <(xHk),(3.3)

[
=(yε0)

2β0
. . .

=(yεm)

2βm

] β0a00
...

βmamm

 = =(xHk).(3.4)

Combining equation (3.3) and equation (3.4), we get
<(yε0)

2β0
. . .

<(yεm)

2βm
=(yε0)

2β0
. . .

=(yεm)

2βm


 β0a00

...
βmamm

 =

[
<(xHk)
=(xHk)

]
.
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Solving the above equation with the least-squares method, we obtain the following: β0d00
...

βmdmm

 = T+

[
<(xHk)
=(xHk)

]
= t, where T :=


<(yε0)

2β0
. . .

<(yεm)

2βm
=(yε0)

2β0
. . .

=(yεm)

2βm

 .
Thus, we have

∆Mj = U

[
βjt

ε
j εZMε

m−j
(UH1 k)H

Z
ε

Mj
UH1 k Dj,j

]
UH .

Since ajj = am−j,m−j , it follows that ∆Mm−j = ε∆MH
j , where βj = wjwm−j and

β−1j := w−1j w−1m−j , for j = 0, 1, . . . ,m. Hence,

∆Mj = β−1j tεjxx
H + εZ

ε

Mm−j
xkHPx + Z

ε

Mj
PHx kx

H + U1DjjU
H
1 .

Choosing Djj = 0 yields

∆Mj = β−1j tεjxx
H + εZMε

m−j
xkHPx + Z

ε

Mj
PHx kx

H .

Now we can show that the above perturbation ∆Mj satisfy the following equation:

((M + ∆M)⊗ τ)x

= −k +

m∑
j=0

λm−jµj
[
β−1j tjxx

H + εZ
ε

Mm−j
xkHPx + Z

ε

Mj
PHx kx

H
]
x

= −k +

m∑
j=0

τj

[
β−1j tjx+ Z

ε

Mj
PHx k

]
= −k +

m∑
j=0

τjβ
−1
j tjx+ (I − xxH)k

=

m∑
j=0

τjβ
−1
j tjx+

m̃∑
j=0

τjx(xH∆Mjx) = 0.

Now this ∆Mj yields the perturbation for the backward error which is given by

ηSw,2(τ, x,M) =

√√√√ m∑
j=0

∣∣∣∣ tεjβj
∣∣∣∣2 +

2(‖k‖22 − |xHk|2)

G
ε

2
w−1,2

.

REMARK 3.3. Note that tεj = εtm−j for an H-anti-palindromic structure. Thus, we
have ∆Mj = ε∆MH

m−j . Also it should be noted that when βj = 0, then β−1j = 0, and
this implies wj = wm−j = 0. Hence there is no perturbation in the coefficient matrices
Aj and Am−j when βj = 0. For ∗-palindromic and ∗-anti-palindromic matrix equations of
the form (1.1), this gives rise to a relation between the structured backward error and the
unstructured backward error under certain condition which are stated in the next corollaries.

COROLLARY 3.4. Let M ∈ Mm+1(Cn×n) be ∗-palindromic of the form (1.1) with
Gw−1,2 6= 0, Hw−1,2 6= 0 at (λ, µ) ∈ C2 \ {0} or at γ ∈ C.

• If <(τjτm−j) ≥ 0, then G
ε
w−1,2≥ 1√

2
Hw−1,2 and ηSw,F (τ, x,M)≤2ηw,2(τ, x,M).

• If <(τjτm−j) ≤ 0, then G
ε
w−1,2≤ 1√

2
Hw−1,2 and ηSw,F (τ, x,M)≥2ηw,2(τ, x,M).

COROLLARY 3.5. Let M ∈Mm+1(Cn×n) be ∗-anti-palindromic of the form (1.1) with
Gw−1,2 6= 0, Hw−1,2 6= 0 at (λ, µ) ∈ C2 \ {0} or at γ ∈ C.

• If <(τjτm−j) ≤ 0, then G
ε
w−1,2≥ 1√

2
Hw−1,2 and ηSw,F (τ, x,M)≤2ηw,2(τ, x,M).

• If <(τjτm−j) ≥ 0, then G
ε
w−1,2≤ 1√

2
Hw−1,2 and ηSw,F (τ, x,M)≥2ηw,2(τ, x,M).
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TABLE 4.1
Eigenvalues and eigenvectors of palindromic matrix polynomial of the form (4.1).

S Eigenvalues Eigenpair

T -palindromic ((λ, µ), (µ, λ)) ((λ, µ), y, x), ((µ, λ), x, y)

H-palindromic ((λ, µ), (µ, λ)) ((λ, µ), y, x), ((µ, λ), x, y)

T -anti-palindromic ((λ, µ), (µ, λ)) ((λ, µ), y, x), ((µ, λ), x, y)

H-anti-palindromic ((λ, µ), (µ, λ)) ((λ, µ), y, x), ((µ, λ), x, y)

4. Backward errors for palindromic polynomial eigenvalue problems. Now we de-
rive the formulae for the case of homogeneous matrix polynomials. For this we consider
fj = cm−jsj , j = 0, 1, . . . ,m, in equation (1.2) and obtain

(4.1) M ⊗ f(c, s) =

m∑
j=0

cm−jsjMj = M(c, s).

Now we discuss the simpler case. Consider the matrix polynomial of the form (4.1). A
special case of Theorem 3.1 can be derived for homogeneous matrix polynomials. We get the
following results.

THEOREM 4.1. Let M ∈Mm+1(Cn×n) be a T -palindromic/T -anti-palindromic matrix
polynomials of the form (4.1). Let k = −M(λ, µ)x, ZεMj

as in (3.1), and Px = I − xxH .
Then we have

ηSw,F (λ, µ, x,M) =



√√√√2‖k‖22 − |xT k|2

G
ε

2
w−1,2

if


λmµm 6= −1, ∀ odd m, ∗ = T, ε = +1,

λmµm 6= 1, ∀ odd m, ∗ = −T, ε = −1,

∀ (λ, µ) with even m, ∗ = εT, ε = ±1,

√
2ηw,2(λ, µ, x,M) if

{
λmµm = −1, m-odd, ∗ = T, ε = +1,

λmµm = 1, m odd, ∗ = −T, ε = −1,

≤ 2ηw,2(λ, µ, x,M) if <(λmµm) = 0, ∗ = εT, ε = ±1, ∀ m.

Introduce the perturbation matrices

∆Mj :=



ZMε
j
xxT kxH + εZMε

m−j
PTx kx

H + Z
ε

Mj
xkTPx

if


λmµm 6= −1, ∀ odd m, ∗ = T, ε = +1,

λmµm 6= 1, ∀ odd m, ∗ = −T, ε = −1,

∀ (λ, µ) with even m, ∗ = εT, ε = ±1,

εZεMm−j
PTx kx

H + ZεMj
xkTPx

if

{
λmµm = −1, m-odd, ∗ = T, ε = +1,

λmµm = 1, m odd, ∗ = −T, ε = −1,

ZεMj
xxT kxH + εZεMm−j

PTx kx
H + ZεMj

xkTPx

if <(λmµm) = 0, ∗ = εT, ε = ±1.

Then there exists ∆M such that (M(λ, µ) + ∆M(λ, µ))x = 0.
Proof. The first part of the proof follows from the previous theorem. When m is odd, we

have the following two cases:
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Case A: (λ, µ) = (1,−1), (−1, 1) for a T -palindromic structure.
Case B: (λ, µ) = (1, 1), (−1,−1) for a T -anti-palindromic structure.
Hence the minimum-norm solution of

∑m
j=0 fjajj = xT k is ajj = 0. Similarly for∑m

j=0 fjbj = UT1 k. Then we have for j = 0, 1, . . . ,m,

∆Mj = U

[
0 εZεMm−j

(UT1 k)H

ZεMj
UT1 k Dj,j

]
UH

and ∆Mj = εZεMm−j
xkTPx + ZεMj

PTx kx
H , and the backward error is given by

ηSw,F (λ, µ, x,M) =
√

2
‖k‖

Hw−1,2
=
√

2ηw,2(λ, µ, x,M).

COROLLARY 4.2. For a T -palindromic/T -anti-palindromic matrix pencil we have the
following relations

ηSw,F (λ, µ, x,M) =



√√√√2‖k‖22 − |xT k|2

G
ε

2
w−1,2

if

{
λµ 6= −1, ∗ = T, ε = +1,

λµ 6= 1, ∗ = −T, ε = −1,

≤ 2ηw,2(λ, µ, x,M) if <(λµ) = 0,

√
2ηw,2(λ, µ, x,M) if

{
λµ = −1, ∗ = T, ε = +1,

λµ = 1, ∗ = −T, ε = −1.

Consider the matrix polynomial of the form M ⊗ f(λ) =
∑m
j=0 λ

jMj . A special case of
Theorem 4.1 can be derived for non-homogeneous matrix polynomials. We get the following
results:

THEOREM 4.3. Let M ∈Mm+1(Cn×n) be a T -palindromic/T -anti-palindromic matrix
polynomial of the form (4.1) with λ = 1. Let k = −M(µ)x, ZεMj

given in equation (3.1), and
let Px = I − xxH . Then we have

ηSw,F (µ, x,M) =



√√√√2‖k‖22 − |xT k|2

G
ε

2
w−1,2

if


µm 6= −1, ∀ odd m, ∗ = T, ε = +1,

µm 6= 1, ∀ odd m, ∗ = −T, ε = −1,

∀ µwith even m,

≤ 2ηw,2(µ, x,M) if <(µm) = 0,

√
2ηw,2(µ, x,M) if

{
µm = −1, ∀ odd m, ∗ = T, ε = +1,

µm = 1, ∀ odd m, ∗ = −T, ε = −1.

with the perturbation matrices

∆Mj :=



Z
ε

Mj
xxT kxH + εZ

ε

Mm−j
xkTPx + Z

ε

Mj
PTx kx

H

if


µm 6= −1, ∀ odd m, ∗ = T, ε = +1,

µm 6= 1, ∀ odd m, ∗ = −T, ε = −1,

∀ µwith even m,
±ZεMm−j

xkTPx + ZεMj
xPTx kx

H

if

{
µm = −1, ∀ odd m, ∗ = T, ε = +1,

µm = 1, ∀ odd m, ∗ = −T, ε = −1.
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Proof. The proof follows by substituting fj = λj in Theorem 3.1.
COROLLARY 4.4. For a matrix pencil we have the following relations

ηSw,F (µ, x,M) =



√√√√2‖k‖22 − |xT k|2

G
ε

2
w−1,2

if

{
µ 6= −1, ∗ = T, ε = +1,

µ 6= 1, ∗ = −T, ε = −1,

≤ 2ηw,2(µ, x,M) if <(µ) = 0,

√
2ηw,2(µ, x,M) if

{
µ = −1, ∗ = T, ε = +1,

µ = 1, ∗ = −T, ε = −1.

Proof. The proof follows from the previous theorem.
Now we can discuss a simpler case. Consider the matrix polynomial of the form (4.1).

We derive results similar to Theorem 3.2.
THEOREM 4.5. Let L ∈Mm+1(Cn×n) be a H-palindromic/H-anti-palindromic matrix

polynomial. Let k = −M(λ, µ)x, ZεMj
be given in equation (3.1), and Px = I − xxH . Then

we have

ηSw,F (λ, µ, x,M) =



√√√√2‖k‖22 − |xHk|2

G
ε

2
w−1,2

if


λmµm 6= −1, ∀ odd m, ∗ = H, ε = +1,

λmµm 6= 1, ∀ odd m, ∗ = H, ε = −1,

∀ (λ, µ) with even m,

√
2ηw,2(λ, µ, x,M) if

{
λmµm = −1, m-odd, ∗ = H, ε = +1,

λmµm = 1, m odd, ∗ = H, ε = −1,

≤ 2ηw,2(λ, µ, x,M) if <(λmµm) = 0, ∀ m, ∗ = H, ε = ±1,

with the perturbation matrices

∆Mj :=



Z
ε

Mj
xxHkxH + εZ

ε

Mm−j
PHx kx

H + Z
ε

Mj
xkHPx

if


λmµm 6= −1, ∀ odd m, ∗ = H, ε = +1,

λmµm 6= 1, ∀ odd m, ∗ = H, ε = −1,

∀ (λ, µ) with even m,

εZεMj
PHx kx

H + ZεMm−j
xkHPx

if

{
λmµm = −1, m-odd, ∗ = H, ε = +1,

λmµm = 1, m odd, ∗ = H, ε = −1,

ZεMj
(xHk)xxH + εZεMm−j

PTx kx
H + ZεMj

xkHPx

if <(λmµm) = 0, ∀ m, ∗ = H, ε = ±1 .

Proof. The proof follows from the previous theorem by substituting fj = λjµm−j . When
m is odd, we have the following two cases:

Case A: (λ, µ) = (−1, 1), (1,−1) for an H-palindromic structure.
Case B: (λ, µ) = (1, 1), (−1,−1) for an H-anti-palindromic structure.
In all the two cases we have xHk = 0, whenm is odd. Hence the minimum-norm solution

of
∑m
j=0 fjajj = xHk is ajj = 0. Similarly, we have

∑m
j=0 fjbj = UH1 k. Then we have for
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j = 0, 1, . . . ,m:

∆Mj = U

[
0 εZεMm−j

(UH1 k)H

ZεMj
UH1 k Dj,j

]
UH and

∆Mj = εZεMm−j
xxHPx + ZεMj

PHx kx
H ,

and the backward error is given by

ηSw,F (λ, µ, x,M) =
√

2
‖k‖

Hw−1,2
=
√

2ηw,2(λ, µ, x,M).

We see that the backward error of M for homogeneous matrix polynomials with H-palin-
dromic and H-anti-palindromic structures are exactly equal to

√
2 times the unstructured

backward error when an approximate eigenpair becomes an exact eigenpair of a suitable
minimal perturbed polynomial.

REMARK 4.6. Considering the matrix polynomial of the form M ⊗f(λ) =
∑m
j=0 λ

jMj ,
the special cases of Theorem 4.5 can be derived for the case of non-homogeneous matrix
polynomials.

4.1. The relation between Gw−1,2 and Hw−1,2. Consider the matrix polynomial
M(c, s) =

∑m
j=0 c

jsm−jMj . Let m̃ = m/2 + 1 when m is even and m̃ = (m + 1)/2
when m is odd. Then consider

G
ε
w,2(y) = ‖(α0y0, α1y1, . . . , α(m̃−1)y(m̃−1))‖α,2,

where wj = wm−j , yj = fj + εfm−j , j = 0, 1, 2, . . . , m̃ − 1, and define the functions
αjfj = wjfj + εwm−jfm−j . Note that when m is even, we define αm/2 = wm/2 and
ym/2 = fm/2, where fj = λjµm−j . For a T -palindromic/H-palindromic structure, the
structured backward error is half as large as the unstructured backward error for all m when
<(fjfm−j) ≥ 0, and similarly, for a T -palindromic/H-palindromic structure, the structured
backward error is two times larger than the unstructured backward error for all m when
<(fjfm−j) ≤ 0.

COROLLARY 4.7. Let M ∈Mm+1(Cn×n) be a T -palindromic/H-palindromic matrix
polynomial of the form (1.1). Let (λ, µ) 6= (1,−1), (−1, 1), and let ε = +1.

• If <(fjfm−j) ≥ 0,

then G
ε
w−1,2 ≥ 1√

2
Hw−1,2 and ηSw,F (λ, µ, x,M) ≤ 2ηw,2(λ, µ, x,M).

• If <(fjfm−j) ≤ 0,

then G
ε
w−1,2 ≤ 1√

2
Hw−1,2 and ηSw,F (λ, µ, x,M) ≥ 2ηw,2(λ, µ, x,M).

Proof. The proof follows from Theorem 3.1 and Theorem 3.2.
For T -anti-palindromic/H-anti-palindromic structures, the structured backward error is

half as large as the unstructured backward error for allmwhen<(fjfm−j) ≤ 0, and similarly,
for T -anti-palindromic/H-anti-palindromic structures, the structured backward error is two
times larger than the unstructured backward error for all m when <(fjfm−j) ≥ 0.

COROLLARY 4.8. Let M ∈Mm+1(Cn×n) be a T -anti-palindromic/H-anti-palindromic
matrix polynomial of the form (4.1). Let m be odd with (λ, µ) 6= (1, 1), (−1,−1), and let
ε = −1. Then we have the following:

• If <(fjfm−j) ≤ 0,

then G
ε
w−1,2 ≥ 1√

2
Hw−1,2 and ηSw,F (λ, µ, x,M) ≤ 2ηw,2(λ, µ, x,M).

• If <(fjfm−j) ≥ 0,

then G
ε
w−1,2 ≤ 1√

2
Hw−1,2 and ηSw,F (λ, µ, x,M) ≥ 2ηw,2(λ, µ, x,M).

Proof. The proof follows from Theorem 3.1 and Theorem 3.2.
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TABLE 4.2
For a palindromic structure, where ε = +1.

m (λ, µ) <(fjfm−j) ∗ = {T,H}, ε = +1

odd 6= (1,−1), (−1, 1) ≥ 0 ΛS
ε,F (M) ⊆ Λ2ε,2(M)

odd 6= (1,−1), (−1, 1) ≤ 0 Λ2ε,2(M) ⊆ ΛS
ε,F (M)

even ∀ (λ, µ) ≥ 0 ΛS
ε,F (M) ⊆ Λ2ε,2(M)

even ∀ (λ, µ) ≤ 0 Λ2ε,2(M) ⊆ ΛS
ε,F (M)

TABLE 4.3
For an anti-palindromic structure, where ε = −1.

m (λ, µ) <(fjfm−j) ∗ = {T,H}, ε = −1

odd 6= (1, 1), (−1,−1) ≤ 0 ΛS
ε,F (M) ⊆ Λ2ε,2(M)

odd 6= (1, 1), (−1,−1) ≥ 0 Λ2ε,2(M) ⊆ ΛS
ε,F (M)

even ∀ (λ, µ) ≤ 0 ΛS
ε,F (M) ⊆ Λ2ε,2(M)

even ∀ (λ, µ) ≥ 0 Λ2ε,2(M) ⊆ ΛS
ε,F (M)

5. Structured versus unstructured pseudospectra. Let M ⊗ f =
∑m
j=0 fjMj ,

f = [f0, f1, . . . , fm] ∈ Cm+1, M = [M0,M1, . . . ,Mm] ∈ (Cn×n)m+1. Then we define
the pseudospectra and structured pseudospectra of M ⊗ f as follows for the Frobenius norm
of a matrix:

Λε,w(M) := {f ∈ Cm+1 : det((M + ∆M)⊗ f) = 0, ∆M ∈Mm+1(Cn×n)},
ΛS
ε,w(M) := {f ∈ Cm+1 : det((M + ∆M)⊗ f) = 0, ∆M ∈MS

m+1(Cn×n)}.

PROPOSITION 5.1. Let M ∈Mm+1(Cn×n) be of the form M ⊗ f =
∑m
j=0 fjMj . Then

Λε,w(M) = {f ∈ Cm+1 : ∆M ∈ S : ηSw,l(f, x,M) ≤ ε}, l = {2, F},
ΛS
ε,w(M) = {f ∈ Cm+1 : ∆M ∈Mm+1(Cn×n), ηw,l(f, x,M) ≤ ε}, l = {2, F}.

Substituting fj = cjsm−j in Proposition 5.1, we get the desired result for homogeneous
matrix polynomials. For T -palindromic/anti-palindromic structures, the ε-pseudospectrum of
M in the Frobenius norm is

√
2 times the pseudospectrum of M in the spectral norm when

w = (1, 1, . . . , 1) and (λ, µ) = (1,∓1).
COROLLARY 5.2. Let M ∈ Mm+1(Cn×n) be a T -palindromic/T -anti-palindromic

matrix polynomial M(c, s) =
∑m
j=0 c

jsm−jMj . For (λ, µ) = (1,∓1) and when m is odd,
we have

ΛS
ε,F (M) = Λ√2ε,2(M).

Proof. The proof follows from Theorem 4.1.
COROLLARY 5.3. Let M ∈ Mm+1(Cn×n) be a T -palindromic/T -anti-palindromic

matrix polynomial M(c, s) =
∑m
j=0 c

jsm−jMj . For (λ, µ) = (1, 1), (λ, µ) = (−1,−1)
with m-even, we have

ΛS
ε,F (M) ⊂ Λ√2ε,2(M).
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Proof. The proof follows from Theorem 4.1.

COROLLARY 5.4. Let M ∈ Mm+1(Cn×n) be a T -palindromic/T -anti-palindromic
matrix polynomial of the form M(c, s) =

∑m
j=0 c

jsm−jMj . Let (λ, µ) = (1,∓1). Then for
even m, we get

ΛS
ε,F (M) ⊂ Λ√2ε,2(M).

Proof. The proof follows from Theorem 4.1.

COROLLARY 5.5. Let M ∈ Mm+1(Cn×n) be a T -palindromic/T -anti-palindromic
matrix polynomial of the form M(c, s) =

∑m
j=0 c

jsm−jMj . Let (λ, µ) 6= (1,∓1), (λ, µ) 6=
(1,±1) ∀ m. Then

(a) for a T -palindromic structure, we have ΛS
ε,F (M) ⊂ Λ√2ε,2(M).

(b) For a T -anti-palindromic structure, we have Λ√2ε,2(M) ⊂ ΛS
ε,F (M).

Proof. The proof follows from Theorem 4.1.

EXAMPLE 5.6. Consider the rational eigenvalue problem in homogeneous form

(5.1)
(
sM0 + cM1 +

cs

σ1s− c
M2

)
y = 0, σ1 = 12,

where (c, s) \ {0}. Let f = [f0, f1, f2]T such that f0 = s, f1 = c, f2 =
cs

σ1s− c
. Then (5.1)

becomes (M ⊗ f)y = 0, where M = [M0,M1,M2] ∈ (Cn×n)3.

(a) Let the coefficient matrices of (5.1) have a T -palindromic structure, with M0 = MT
2 ,

M1 = MT
1 , where

M0 =

 1 2 3
2 + i 2 + 2i 7 + i

3 2 + i 6− 3i

 , M1 =

 1 1− i 1 + i
1− i 2 + 2i 2 + i
1 + i 2 + i 6− 3i

 ,
M2 =

1 2 + i 3
2 2 + 2i 2 + i
3 7 + i 6− 3i

 .
We choose here x =

[
i/
√

3 −i/
√

3 1/
√

3
]T

as an approximate eigenvector corresponding
to an approximate eigenvalue (λ, µ) ∈ C2 \ {(0, 0)} of M ⊗ f such that (M ⊗ ψ)x ≈ 0,

where ψ := [ψ0, ψ1, ψ2]T , ψ0 = µ, ψ1 = λ, ψ2 =
λµ

σ1µ− λ
. Then there exists a minimal-

norm perturbation ∆M := [∆M0,∆M1,∆M2] ∈ (C3×3)3 in the Frobenius norm such that
((M + ∆M) ⊗ ψ)x = 0, and the corresponding backward errors for different values of
(λ, µ) ∈ C2 \ {(0, 0)} are given by

(λ, µ) S η2(ψ, x,M) ηSF (ψ, x,M)

(1, 2) T -palindromic 8.1604 10.9467

(3, 5) T -palindromic 7.9795 10.6687

(i, 1 + 5i) T -palindromic 7.4073 10.0112
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(b) Let the coefficient matrices of (5.1) be H-palindromic with M0 = MH
2 , M1 = MH

1 ,
where

M0 =

 1 2 3
2 + i 2 + 2i 7 + i

3 2 + i 6− 3i

 , M1 =

 1 1− i 1 + i
1 + i 2 2 + i
1− i 2− i 6

 ,
M2 =

1 2− i 3
2 2− 2i 2− i
3 7− i 6 + 3i

 .
Let x =

[
i/
√

3 −i/
√

3 1/
√

3
]T

be an approximate eigenvector corresponding to an
approximate eigenvalue (λ, µ) ∈ C2 \ {(0, 0)} of M ⊗ f that is M ⊗ ψ)x ≈ 0. Then there
exists ∆M = [∆M0,∆M1,∆M2] ∈ (C3×3)3 such that ((M + ∆M) ⊗ ψ)x = 0, and the
corresponding backward errors for different values of (λ, µ) are as follows:

(λ, µ) S η2(ψ, x,M) ηSF (ψ, x,M)

(i, 2− i) H-palindromic 5.5175 83.4494

(3i, 5− 4i) H-palindromic 5.2493 87.7947

6. Conclusion. In this work, we have extended the construction of structured backward
errors for a polynomial eigenvalue problem to general nonlinear eigenvalue problems. A
systematic framework for the construction of appropriately structured backward errors is
discussed for the classes of T -palindromic, T -anti-palindromic, H-palindromic, and H-
anti-palindromic problems. The resulting minimal perturbation is unique in the case of
the Frobenius norm and has infinitely many solutions for the matrix 2-norm. Using these
results, we have determined structured pseudospectra and have compared these results with the
backward errors of the unstructured backward errors of the nonlinear eigenvalue problem. The
results are similar to the previous work in this direction [1, 2] but for different structures that
have not been discussed before. The relations between structured and unstructured backward
errors and pseudospectra have been derived. This work can be extended to more than one
specified eigenpairs, which will be discussed in our future research work.
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