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APPROXIMATE RESIDUAL-MINIMIZING SHIFT PARAMETERS FOR THE
LOW-RANK ADI ITERATION∗

PATRICK KÜRSCHNER†

Abstract. The low-rank alternating directions implicit (LR-ADI) iteration is a frequently employed method
for efficiently computing low-rank approximate solutions of large-scale Lyapunov equations. In order to achieve a
rapid error reduction, the iteration requires shift parameters whose selection and generation is often a difficult task,
especially for nonsymmetric matrices in the Lyapunov equation. This article represents a follow up of Benner et
al. [Electron. Trans. Numer. Anal., 43 (2014–2015), pp. 142–162] and investigates self-generating shift parameters
based on a minimization principle for the Lyapunov residual norm. Since the involved objective functions are too
expensive to evaluate and hence intractable, objective functions are introduced which are efficiently constructed
from the available data generated by the LR-ADI iteration. Several numerical experiments indicate that these
residual-minimizing shifts using approximated objective functions outperform existing precomputed and dynamic
shift parameter selection techniques, although their generation is more involved.

Key words. Lyapunov equation, alternating directions implicit, low-rank approximation, shift parameters

AMS subject classifications. 15A06, 65F10, 65F30

1. Introduction. In this paper, we study the numerical solution of large-scale, continu-
ous-time, algebraic Lyapunov equations (CALE)

AX +XA∗ +BB∗ = 0(1.1)

defined by matrices A ∈ Rn×n, B ∈ Rn×s, s � n, and where X ∈ Rn×n is the sought
solution. For large sizes n of the problem, directly computing and storing X is infeasible.
For dealing with (1.1), it has become common practice to approximate X by a low-rank
factorization X ≈ ZZ∗ with Z ∈ Rn×r, rankZ = r � n. Theoretical evidence for the
existence of such low-rank approximations can be found, e.g., in [2, 4, 21, 42]. The low-rank
solution factor Z can be computed by iterative methods employing techniques from large-scale
numerical linear algebra. Projection-based methods utilizing extended or rational Krylov
subspaces, and the low-rank alternating directions implicit (LR-ADI) iteration belongs to the
most successful and often used representatives of iterative low-rank methods for (1.1); see,
e.g., [8, 10, 16, 17, 30, 44].

Here, we focus on the LR-ADI iteration and a particular important issue thereof. One of
the biggest reservations against the LR-ADI iteration is its dependence on certain parameters
called shifts, which steer the convergence rate of the iteration. For large problems, especially
those defined by nonsymmetric matrices A, generating these shift parameters is a difficult task
and often only suboptimal or heuristic shift selection approaches can be employed. In [9],
a shift generation approach was proposed where the shifts are chosen dynamically in the
course of the LR-ADI iteration and are based on minimizing the Lyapunov residual norm.
Unfortunately, although potentially leading to very good shifts, this approach constitutes in its
original form only a theoretical concept because employing it is numerically very expensive
and thus unusable in practice. This article follows up on [9] and investigates several aspects
and modifications of the residual minimization-based shift selection. The main goal is a
numerically feasible and efficient generation of high quality shift parameters for the LR-ADI
iteration that are based on the residual minimization principle.
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1.1. Notation. R and C denote the real and complex numbers, and R−, C− refer to
the set of strictly negative real numbers and the open left half plane. In the matrix case,
Rn×m, Cn×m denote n×m real and complex matrices, respectively. For a complex quantity
X = Re(X)+ Im(X), Re(X), Im(X) are its real and imaginary parts, and  is the imaginary
unit. The complex conjugate of X is denoted by X , and |ξ| is the absolute value of ξ ∈ C.
If not stated otherwise, ‖ · ‖ is the Euclidean vector- or subordinate matrix norm (spectral
norm). The matrix A∗ is the transpose of a real or the complex conjugate transpose of a
complex matrix A, A−1 is the inverse of a nonsingular matrix A, and A−∗ = (A∗)−1. The
identity matrix of dimension n is indicated by In, and 1n := (1, . . . , 1)T ∈ Rn is the vector
of ones. The spectrum of a matrix A is given by Λ(A), and the spectral radius is defined as
ρ(A) := max{|λ|, λ ∈ Λ(A)}. The symbol ⊗ denotes the Kronecker product.

For a multivariate function f(x1, . . . , xd) : Rd 7→ R, we employ the typical shorthand
notation fxi

= ∂f
∂xi

and fxixj
= ∂2f

∂xi∂xj
for the first- and second-order partial derivatives,

accumulated in the gradient grad f = [fxi
] and the Hessian grad2 = [fxixj

], respectively.
For a vector-valued function F (x1, . . . , xd) = [f1, . . . , fv]

T , the Jacobian is given by [ ∂fi∂xj
].

For complex functions g(z1, . . . , zd, z1, . . . , zd) depending on d complex variables and their
conjugates, the Wirtinger calculus [38] is used to define complex and complex conjugate
derivatives: ∂g

∂zj
= 1

2

(
∂g

∂ Re(zi)
−  ∂g

∂ Im(zi)

)
, ∂g
∂zj

= 1
2

(
∂g

∂ Re(zi)
+  ∂g

∂ Im(zi)

)
.

1.2. Problem assumptions. Throughout the article we assume that Λ(A) ⊂ C−, which
ensures a unique positive semidefinite solution X of (1.1). To permit low-rank approximations
of X , we shall assume that s � n. Moreover, we assume that we are able to efficiently
solve linear systems of equations of the form (A + αI)x = b, α ∈ C, by either iterative or
sparse-direct solvers, where we restrict ourselves for the sake of brevity to the latter type of
solvers.

1.3. Overview of this article. We begin by reviewing the low-rank ADI iteration in
Section 2, including important structural properties of the method and a brief recapitulation
of the ADI shift parameter problem. The residual norm-minimizing shift parameters are
discussed in depth in Section 3, where our main contribution, a numerically efficient approach
to obtain those shifts, is presented. The main building block is the replacement of the expensive
to evaluate and intractable objective functions by approximations that are constructed from the
already computed data. Along the way, extensions to the generalized Lyapunov equations

AXM∗ +MXA∗ +BB∗ = 0,(1.2)

with nonsingular M ∈ Rn×n will be discussed. Section 4 extends these ideas to the generation
of a single shift for the use in more than one LR-ADI iteration steps, which can further reduce
the computation times. A series of numerical experiments are given in Section 5, evaluating the
performance of the proposed shift generation machinery in comparison with existing selection
strategies. Comparisons with other low-rank algorithms for (1.1) are also presented. Section 6
concludes the paper and provides some future research directions.

2. Review of the low-rank ADI iteration. The low-rank ADI iteration can be derived
from the nonstationary iteration

Xj = (A− αjI)(A+ αjI)−1Xj−1(A+ αjI)−∗(A− αjI)∗

− 2 Re(αj)(A+ αjI)−1BB∗(A+ αjI)−∗, j ≥ 1, X0 ∈ Rn×n,

for the CALE (1.1). There, αi ∈ C−, i = 1, . . . , j, are the previously mentioned shift
parameters discussed further in Section 2.1. By introducing the low-rank approximations
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Algorithm 1: LR-ADI iteration for computing low-rank solution factors.
Input :Matrices A, B defining (1.1), tolerance 0 < τ � 1.
Output :Zj ∈ Cn×sj , such that ZZ∗ ≈ X .

1 W0 = B, Z0 = [ ], j = 1, choose α1 ∈ C−.
2 while ‖W ∗j−1Wj−1‖ ≥ τ‖B∗B‖ do
3 Solve (A+ αjI)Vj = Wj−1 for Vj .
4 Wj = Wj−1 − 2 Re(αj)Vj .
5 Zj = [Zj−1,

√
−2 Re(αj)Vj ].

6 Select next shift αj+1 ∈ C−.
7 j = j + 1.

Xj = ZjZ
∗
j in each step and assuming Z0 = 0, the above iteration can be rearranged [8, 25,

30, 40] into the low-rank ADI iteration illustrated in Algorithm 1.
For the Lyapunov residual matrix regarding the approximate solution Xj = ZjZ

∗
j , we

have the following result.
THEOREM 2.1 ([8, 52]). Assume that j steps of the LR-ADI iteration with the shift

parameters {α1, . . . , αj} ⊂ C− have been applied to (1.1). Then the Lyapunov residual
matrix can be factorized via

Rj = AZjZ
∗
j + ZjZ

∗
jA
∗ +BB∗ = WjW

∗
j ,(2.1)

where the residual factors Wj ∈ Cn×s are given by

Wj := (A− αjI)Vj = Wj−1 − 2 Re(αj)Vj = W0 + ZjGj ,(2.2)

with W0 := B, Vj = (A + αjI)−1Wj−1, and Gj := [γ1, . . . , γj ]
∗ ⊗ Is ∈ Rjs×s, where

γi :=
√
−2 Re(αi), for i = 1, . . . , j.

The residual factors Wj ∈ Cn×s will play a very important role in this article. As already
indicated in line 2 in Algorithm 1, the residual factorization (2.1) greatly helps to cheaply
compute the norm of the residual matrix which is useful as a stopping criterion. The low-
rank solution factors Zj generated by the LR-ADI iteration solve certain Sylvester equations.
Similar results regarding an older version of the LR-ADI iteration can be found in [29, 30].

COROLLARY 2.2 ([25, Corollary 3.9], [51, Lemma 5.12], [52, Lemma 3.1]). With the
same assumptions and notations as in Theorem 2.1, the low-rank factor Zj after j steps of the
LR-ADI iteration (Algorithm 1) satisfies the Sylvester equations

AZj − ZjSj = BG∗j ,(2.3a)

AZj + ZjS
∗
j = WjG

∗
j ,(2.3b)

where

Sj :=


α1 γ1γ2 · · · γ1γj

. . .
. . .

...
. . . γj−1γj

αj

⊗ Is ∈ Cjs×js.

REMARK 2.3. In practice, although (1.1) is defined by real A and B, complex shift
parameters can occur. We assume that the set of shifts {α1, . . . , αj} are closed under complex
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conjugation and that pairs of complex conjugated shifts occur subsequently, i.e., αi+1 = αi if
Im(αi) 6= 0. These complex parameters pairs are in practice dealt within the LR-ADI iteration
by a double-step fashion [7, 9, 25] resulting in real low-rank factors Zj and, important for this
study, real low-rank residual factors Wj . Real versions of the above results can be established,
but for brevity and clarity we keep the shorter complex versions in the remainder. The real
version of the LR-ADI iteration will nevertheless be used in the numerical experiments in the
end.

2.1. Shift parameters. The approximation error X − Xj and the residual Rj can be
expressed as

X −Xj =Mj(X −X0)M∗j , Rj =MjR0M∗j ,

with Mj =

j∏
i=1

C(A,αi), and C(A,α) := (A− αI)(A+ αI)−1

is a Cayley transformation of A. Taking norms leads to

‖X −Xj‖
‖X −X0‖

≤ cρ(Mj)
2,

‖Rj‖
‖R0‖

≤ cρ(Mj)
2,

where c ≥ 1 is the squared condition number1 of the eigenvector matrix of A. Because
of Λ(A) ⊂ C− as well as αi ∈ C−, it holds that ρ(C(A,αi)) < 1, for i = 1, . . . , j, and
consequently, ρ(Mj) < 1 is getting smaller as the ADI iteration proceeds. This motivates
to select the shifts αi such that ρ(Mj) is as small as possible leading to the ADI parameter
problem

min
α1,...,αj∈C−

(
max
λ∈Λ(A)

|µj(λ)|
)
, µj(λ) :=

j∏
i=1

λ− αi
λ+ αi

.(2.4)

Several shift selection strategies have been developed based on (2.4), e.g., the often used
Wachspress [42, 49] and Penzl [36] selection approaches, which precompute a number of
shifts before the actual LR-ADI iteration. There, the spectrum Λ(A) in (2.4) is replaced by an
easy to compute approximation, typically using a small number of approximate eigenvalues
generated by Arnoldi and inverse Arnoldi processes. The shifts are then obtained by means of
elliptic functions in the Wachspress approach [42, 49] and, respectively, heuristically in the
Penzl approach [36]. Starting from (2.4) for selecting shifts has, however, some shortcomings.
A disadvantage from the conceptual side is that the min–max problem (2.4) does only take
(approximate) eigenvalues of A into account. No information regarding the inhomogeneity
BB∗ of the CALE (1.1) is incorporated although the low-rank property of BB∗ is one
significant factor for the singular value decay of the solution and hence for the existence of
low-rank approximations [2, 21, 47]. Furthermore, no information regarding the eigenvectors
of A enters (2.4). While this might not be a big issue for CALEs defined by symmetric
matrices, in the nonsymmetric case the spectrum alone might not be enough to fully explain
the singular value decay of the solution; see, e.g., the discussions in [3, 42].

Because only approximate eigenvalues can be used for large-scale problems, Wachspress
and Penzl shift strategies can also suffer from poor eigenvalue estimates [42], and the cardinal-
ity of the set of approximate eigenvalues (Ritz values) is an unknown quantity the user has to

1Alternatively, if the field of values of A lies in C−, one can use c = (1 +
√
2)2 and replace ρ by the squared

maximal magnitude that the rational function µj in (2.4) assumes on the field of values; see [13].
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provide in advance. Even tiny changes in these quantities can greatly alter the speed of the
error or the residual reduction in the ADI iteration. Because the strategies based on (2.4) are
usually in general carried out in advance, i.e., shifts are generated before the actual iteration,
no information about the current progress of the iteration is incorporated.

Here, we are interested in adaptive shift selection and generation strategies that circumvent
these issues. Our goal is that these approaches take the current stage of the iteration into
account and that the shifts are generated automatically and in a numerically efficient way
during the iteration, i.e., the shift computation should consume only a small fraction of the
total numerical effort of the LR-ADI iteration. Next, we review commonly used existing
dynamic shift selection approaches and propose some enhancements.

2.1.1. Ritz value-based dynamic shifts. First steps regarding dynamic shift approaches
were made in [9] by using Ritz values of A with respect to a subspace Q` = range (Q`) ⊆
range (Zj), where Q` ∈ Rn×` has orthonormal columns. The typical choice is to select the
most recent block columns of Zj for spanning Q`:

Q` = Z(h) := range ([Vj−h+1, . . . , Vj ]) ,(2.5)

with h = 1, . . . , j, to keep the space dimension small. The Ritz values are given by Λ(H`)
with H` := Q∗`AQ` and can, e.g., be plugged into the Penzl heuristic to select g ≤ ` shift
parameters. It can happen that Λ(H`) ∩ C+ 6= ∅ in which case we simple negate all unstable
Ritz values. Once these g shifts have been used, the generation and selection process is
repeated with Zj+g. Despite its simplicity, this idea already led to a significant speedup of
the LR-ADI iteration, in particular for nonsymmetric problems where the a priori computed
shifts resulted in a very slow convergence. This approach is the default shift selection routine
in the M-M.E.S.S. software package [41]. Further details on an efficient construction of H`

are given later. This basic selection strategy can be modified in the following ways.

2.1.2. Convex hull-based shifts. Motivated by the connection of LR-ADI to rational
Krylov subspaces [16, 18, 29, 51, 52] we can borrow the greedy shift selection strategy
from [17] which was developed for the rational Krylov subspace method for (1.1). Let
S ⊂ C− be the convex hull of the set of Ritz values Λ(H`) and ∂S its boundary. For a discrete
subset D ⊂ ∂S one tries to heuristically find α ∈ D that reduces the magnitude of the rational
function (cf. (2.4)) connected to the previous LR-ADI steps the most. In contrast to the Ritz
value-based shift selection discussed above, the convex hull-based selection will only provide
a single shift parameter to be used for the next iteration, and thus, the selection process has to
be executed in every iteration step. Note that this approach employed in RKSM uses the Ritz
values associated with the full already computed rational Krylov subspace, while in LR-ADI
we only use a smaller subspace (2.5).

2.1.3. Residual-Hamiltonian-based shifts. Both strategies mentioned so far select shift
parameters on the basis of the eigenvalues of a compressed version H` of A. A different
modification developed for the RADI method [5, 6] for algebraic Riccati equations also takes
some eigenvector information into account. For Riccati equations, the core idea is to consider
a projected version of the associated Hamiltonian matrix which we can simplify for CALEs.
If [P ∗, Q∗]∗ spans the stable n-dimensional invariant subspace of

H0 :=

[
A∗ 0
BB∗ −A

]
,

then X = PQ−1 solves (1.1). Let Xj ≈ X be obtained by LR-ADI, then all later steps can be
seen as the application of LR-ADI to the residual Lyapunov equations AX̂ + X̂AT = −Rj
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(see [25, Corollary 3.8]), where Rj = WjW
∗
j is the residual associated with Xj . The residual

equations are connected to the Hamiltonian matricesHj :=

[
A∗ 0

WjW
∗
j −A

]
. Following the

same motivation as in [6], we set up the projected Hamiltonian H̃j,` :=

[
H∗` 0

Q∗`WjW
∗
j Q` −H`

]
,

compute its stable eigenvalues λk and associated eigenvectors
[
pk
qk

]
, pk, qk ∈ C`, and se-

lect the eigenvalue λk with the largest ‖qk‖ as next ADI shift. As in the convex hull-based
selection, this approach delivers only a single shift each time.

3. Residual norm-minimizing shifts. In this section we discuss the main focus of this
study: the shift selection strategy originally proposed in [9], where the objective is to find
shift parameters that explicitly minimize the Lyapunov residual norm. Assume that step j of
the LR-ADI iteration has been completed and that the associated residual factor Wj is a real
n× s matrix (cf. Remark 2.3). By Theorem 2.1 it holds for the next Lyapunov residual that
‖Rj+1‖ = ‖Wj+1‖2 with

Wj+1 = Wj+1(αj+1) = C(A,αj+1)Wj = Wj − 2 Re(αj+1)
(
(A+ αj+1I)−1Wj

)
.

This motivates to determine the parameter αj+1 ∈ C− such that the Lyapunov residual norm
is reduced the most from step j to j + 1. This can be formulated as, e.g., a complex nonlinear
least-squares problem (NLS)

αj+1 = argmin
α∈C−

1

2
‖Ψj(α, α)‖2,

Ψj(α, α) = C(A,α)Wj = (A− αI)(A+ αI)−1Wj .

(3.1)

The complex function Ψj(α, α) : C 7→ Cn×s is obviously not analytic in the complex variables
α, α alone but in the full variable (α, α), a property typically referred to as polyanalyticity.
Furthermore, the residual-minimizing approach can also be considered via the real-valued
function ψC

j = ‖Wj+1‖2, leading to the complex minimization problem

αj = argmin
αj∈C−

ψC
j (α, α), ψC

j (α, α) := ‖Ψj(α, α)‖2,(3.2)

which corresponds to the original formulation for the residual-minimizing shifts [9].
It is clear that (3.1) and (3.2) essentially encode the same optimization task but differences

will occur in the numerical treatment of both formulations. Using α = ν+ ξ with 0 > ν ∈ R,
ξ ∈ R, yields that real and imaginary parts of the next shift αj+1 = νj+1 + ξj+1 can be
obtained from solving

[νj+1, ξj+1] = argmin
ν∈R−,ξ∈R

ψj(ν, ξ),

ψj = ψj(ν, ξ) := ‖Wj − 2ν
(
(A+ (ν + ξ)I)−1Wj

)
‖2.

(3.3)

Since ‖X‖22 = λmax(X∗X), the minimization problems (3.2) and (3.3) can also be understood
as eigenvalue optimization problems if s > 1.

Naturally, if one knows that real shift parameters are sufficient, e.g., when A = A∗, then
the above minimization problems simplify in the obvious manner by restricting the optimiza-
tion to R−. For achieving a reduction of the residual as well as avoiding the singularities
at −Λ(A) ⊂ C+, the constraint ν < 0 is mandatory. Originally, an unconstrained version
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of (3.3) and derivative-free methods were used in [9], which turned out to be unreliable
because, in particular, unusable shifts (ν ≥ 0) were frequently generated. In this article, we
employ constrained, derivative-based optimization approaches using the complex nonlinear
least-squares (3.1) and the real-valued minimization problem (3.3). The underlying objective
functions are generally not convex and have potentially more than one minimum in C−. Here,
we will pursue only the detection of local minima because any parameter α ∈ C− will yield at
least some reduction of the CALE residual norm such that the substantially larger numerical
effort to compute global minima will hardly pay off. The next section gives the structure of the
required derivatives of Ψj(α, α), ψR

j . Afterwards, numerical aspects such as approximating
the objective functions, solving the minimization or least-squares problems, and implementing
the proposed shift generation framework efficiently in Algorithm 1 are discussed.

3.1. Derivatives of the objective functions. For the least-squares problem (3.1), the
Jacobian, and conjugate Jacobian [45] of Ψj(α, α) are

∂Ψj(α, α)

α
= −(A− αI)(A+ αI)−2Wj = C(A,α)(A+ αI)−1Wj ,

∂Ψj(α, α)

α
= −(A+ αI)−1Wj .

The structure of the derivatives for ψj in (3.3) is more complicated.
THEOREM 3.1 (Gradient and Hessian of the objective function (3.3)). Assume that

α = ν + ξ ∈ C−, W = Wj ∈ Rn×s, and define L(ν, ξ) := A+ αI ,

S(i) := (L(ν, ξ)−1)iW, W (i)
α := S(i) − 2νS(i+1), Ŵ (i) := S(i) − νS(i+1),

R̃ν := −(W (0)
α )∗Ŵ (1), R̃ξ := (W (0)

α )∗S(2),

for i = 0, . . . , 3. Assume that (W
(0)
α )∗W (0)

α has s distinct eigenvalues θ1 > . . . > θs > 0 and
let (θ` , u`) = (θ`(ν, ξ) , u`(ν, ξ)) with ‖u`‖ = 1, ` = 1, . . . , s, be its eigenpairs. Then, the
gradient and Hessian of (3.3) are given by

gradψj = 4

 Re(u∗1
(

(W
(0)
α )∗Ŵ (1)

)
u1)

−ν Im(u∗1
(

(W
(0)
α )∗S(2)

)
u1)

 = 4

[
Re(u∗1R̃νu1)

−ν Im(u∗1R̃ξu1)

]
,

and

grad2 ψj = 8

[
Re(u∗1

(
(Ŵ (2))∗W (0)

α + (Ŵ (1))∗Ŵ (1)
)
u1) h12

h12 ν Re(u∗1((S(3))∗W (0)
α + ν(S(2))∗S(2))u1)

]
(3.4)

+

s∑
k=2

8
θ1−θk


∣∣∣u∗1(R̃∗ν + R̃ν)uk

∣∣∣2 h̃
(k)
12

h̃
(k)
12

∣∣∣u∗1(R̃∗ξ − R̃ξ)uk
∣∣∣2
 ,

where

h12 :=
1

2
Im(u∗1

(
(W (2)

α )∗W (0)
α − 2ν(S(2))∗W (1)

α

)
u1),

h̃
(k)
12 := −Re((u∗1(R̃∗ν + R̃ν)uk)(νu∗k(R̃∗ξ − R̃ξ)u1)).

Proof. The results are obtained by building the partial derivatives of Ĉ(A,α = ν + ξ)

and of ψj(ν, ξ) = σ2
max (C(A, ν + ξ)W ) = λmax (Ψ∗Ψ) = λmax

(
(W

(0)
α )∗W (0)

α

)
using
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results on derivatives of eigenvalues of parameter-dependent matrices; see, e.g., [26, 31]. For a
detailed proof the reader is referred to [25, Section 5], where also the formulas adapted to (1.2)
are given.

3.2. Approximating the objective functions. The main issue arising when solving the
optimization problems (3.1), (3.3) is that each evaluation of the objective functions Ψj , ψj
and their derivatives at a value α requires additional linear solves with A+ αI . Thus, each
of those evaluations within a derivative-based optimization method will be more expensive
than a single LR-ADI iteration step, making the numerical solution of (3.1), (3.3) very costly
regardless of the employed optimization algorithm, and consequently, the shift generation
would be prohibitively expensive.

As a main contribution of this paper, this section proposes shift generation strategies
working with cheaper to evaluate approximations of the objective functions Ψ̃j ≈ Ψj , ψ̃j ≈ ψj .
Our main approach is based on a projection framework using a low-dimensional subspace
Q ⊂ Cn, dim(Q) = ` � n. Let the columns of Q` ∈ Cn×` be an orthonormal basis of Q.
We employ the usual Galerkin approach to obtain an approximation

Ψj(α, α) = C(A,α)Wj ≈ Q`C(H`, α)W̃`,j =: Ψ̃j(α, α),(3.5)

H` := Q∗`AQ` ∈ C`×`, W̃`,j := Q∗`Wj ∈ C`×s.
Because of the orthogonality of Q` it suffices to use the projected objective functions
ψ̃j := ‖C(H`, α)W̃`,j‖2 and Ψ̂j(α, α) := C(H`, α)W̃`,j . Evaluations of the functions and
their derivatives is cheaper because the small dimension of H` allows easier to solve systems
with H` + αI`.

In the following we discuss some choices for the projection subspace Q. Our emphasis
is that quantities already generated by the LR-ADI iteration are used as much as possible.
Since (3.1), (3.3) have to be solved in each iteration step of Algorithm 1 using a different
residual factor Wj each time, we also discuss the reuse of approximation data from step j to
j + 1.

3.2.1. Using subspaces spanned by the low-rank factor. In [25] it is suggested to
augment the Ritz value-based shifts (Section 2.1.1) by the optimization problem (3.3) using
ψ̃j , i.e., after step j, the space Q = Z(h) spanned by the last h = 1, . . . , j block columns of
the already generated low-rank solution factor Zj = [V1, . . . , Vj ] is selected as in (2.5). The
reduced objective function ψ̃j is then defined by H` and W̃`,j . The restriction Hj of A can be
build without additional multiplications with A because of (2.3). Let Rj ∈ Chs×hs so that
Qj = [Vj−h+1, . . . , Vj ]Rj has orthonormal columns. Then,

Hj := Q∗jAQj = Q∗jWjG
∗
j,hRj −R−1

j S∗j,hRj ,

where Gj,h, Sj,h indicate the last h block rows (and columns) of Gj , Sj from (2.3). Even
though this space selection is rather intuitive, it led to impressive results often outperforming
existing shift selecting strategies in [25]. The obtained rate of the residual norm reduction in
the LR-ADI iteration was very close to the case when the true objection function was used
in (3.3), indicating a sufficiently good approximation of ψj at low generation costs. Note that,
the concept of approximating an expensive to evaluate objective function by projections onto
already built up subspaces can also be found in other areas, e.g., in the context of model order
reduction [11].

3.2.2. Krylov and extended Krylov subspace-based approximations. Consider the
block Krylov subspace of order p as projection space:

Q = Kp(A,Wj) := range
(
[Wj , AWj , . . . , A

p−1Wj ]
)
.
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This is a common strategy for approximating the product of a parameter-independent, large-
scale matrix function times a block vector f(A)Wj ; see, e.g., [19, 20, 23, 24, 39]. For our
parameter-dependent matrix function C(A,α), this choice can be motivated by considering
the boundary of the stability region, where C(A, 0)Wj = Wj , which is the first basis block of
Kp(A,Wj). On the other hand, at α = 0 we have for the derivatives, e.g.,

∂Ψj(α, α)

α
= −A−1Wj ,

and moreover, grad2 ψj at α = 0 involves expressions with A−2Wj . In order to get, at least
near the origin, a good approximation of Ψj , ψj and their derivatives, this motivates to also
incorporate information from a low-order inverse Krylov subspace Km(A−1, A−1Wj) to the
projection space Q. Hence, we consider the extended Krylov subspace

Q = Ep,m(A,Wj) := Kp(A,Wj) ∪ Km(A−1, A−1Wj)

= range
(
[Wj , AWj , . . . , A

p−1Wj , A
−1Wj , . . . , A

−mWj ]
)

as projection subspace. Let the columns of Q` = Qp,m be an orthonormal basis for Q
and recall (3.5). Existing results on such Galerkin approximations using (extended) Krylov
subspaces, e.g., [20, 23], dictate for α fixed, s = 1, that Ψ̃j(α, α) = Q`C(H`, α)Q∗`W`,j

in (3.5) has degree p− 1 in the numerator, m in the denominator, and interpolates C(z, α) at
the eigenvalues of H`. For results regarding s > 1 we refer to [19].

Constructing the basis matrix Qp,m and the restrictions H , W̃j can be done efficiently
by the extended Arnoldi process [43], requiring essentially only matrix vector products and
linear solves with A. However, Wj changes throughout the ADI iteration, which would
necessitate to construct a new orthonormal basis associated with Ep,m(A,Wj) in each LR-
ADI iteration step. As an auxiliary contribution, the next theorem shows that this is not
needed for j > 1 and shows how the subspaces Ep,m(A,Wj) evolve from an initial subspace
Ep,m(A,B) = Ep,m(A,W0). Note that because of the arising block matrices qi ∈ Cn×s,
i = 1, . . . , `, the expressions span {q1, . . . , q`} and range ([q1, . . . , q`]) in the theorem are to
be understood in the block-wise sense following the framework defined in [19]. In particular,

span {q1, . . . , q`} =

{∑̀
i=1

qiΞi, Ξi ∈ Cs×s
}

and similarly for range (·).

THEOREM 3.2. For j > 1 and p,m = 0, . . . , n (with at least one of the orders p,m
nonzero) it holds that

Ep,m(A,Wj) ⊆ Ep,m(A,B) ∪ range (Zj) .

Proof. For simplicity and clarity, we restrict the proof to the case p > 0, m = 0. The
more general situation can be elaborated similarly. Let Kp(A,B) = range (Kp(A,B)),
where Kp(A,B) := [B,AB, . . . , Ap−1B] ∈ Rn×ps is the associated block Krylov matrix.
Likewise, Kp(A,Wj) is the Krylov matrix with respect to. Kp(A,Wj).

We show span
{
Ap−1Wj

}
⊂ Kp(A,B) ∪ range (Zj) via induction. For p = 1, it holds

that A0Wj = Wj = K1(A,B)Is + ZjS
0
jGj = B + ZjGj because of (2.2). Let the claim be

true for all powers up to p− 2, i.e., it holds that

Ap−2Wj = Kp−1(A,B)Mp−1 + ZjNp−2
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for some matrices Mp−1 ∈ Rs(p−1)×s, Np−2 ∈ Rjs×s of rank s. By using (2.2) and (2.3a),
we obtain for the induction step from the matrix power p− 2 to p− 1

Ap−1Wj = A(Ap−2Wj) = A(Kp−1(A,B)Mp−1 + ZjNp−2)

= AKp−1(A,B)Mp−1 +BG∗jNp−1 + ZjSjNp−2

= [B,AKp−1(A,B)]

[
G∗jNp−2

Mp−1

]
+ ZjSjNp−2.

It is easy to see that Np−2 = Sp−2
j Gj which establishes for p > 1

Ap−1Wj = Kp(A,B)Mk + Zj(Sj)
p−1Gj , Mp :=

[
G∗jS

p−2
j Gj

Mp−1

]
, M1 := Is,(3.6)

proving the assertion. For m > 0 we have A−1Zj = ZjS
−1
j − A−1BG∗jS

−1
j by (2.3a)

which leads immediately to A−1Wj = A−1B(Is −G∗jS−1
j Gj) + ZjS

−1
j and, consequently,

Km(A−1, A−1Wj) ⊆ Km(A−1, A−1B) ∪ range (Zj) can be shown as for the standard
Krylov subspace. The unification yields the claim for Ep,m.

The consequence of Theorem 3.2 is that for every iteration step j > 1, a basis for the
subspace Ep,m(A,Wj) can be constructed from the initial basis for Ep,m(A,B) and the low-
rank factor Zj . By concatenating the block columns Wj , AWj , . . . , A

p−1Wj from (3.6) we
obtain

Kp(A,Wj) = Kp(A,B)TKp + ZjKp(Sj , Gj),

TKp :=


Is T2 · · · Tp

. . . . . .
...

. . . T2

Is

 ∈ Csp×sp,
with Ti = G∗jS

i−2
j Gj ∈ Cs×s for i = 2, . . . , p. For m > 0 a straightforward generalized

expression can be found. Of course, from a numerical point of view it is not wise to work with
the explicit (extended) Krylov matrices or the matrix TKp . Instead, we propose to use

Qp,m(A,Wj) = orth[Qp,m(A,B), ωj ], ωj := ZjQp,m(Sj , Gj),(3.7)

as projection space, where orth refers to any stable orthogonalization routine. There,
Qp,m(A,Wj), Qp,m(A,B), and Qp,m(Sj , Gj) are orthonormal basis matrices for the ex-
tended Krylov spaces Ep,m(A,Wj), Ep,m(A,B), and Ep,m(Sj , Gj), respectively. More details
on the numerical implementation are given later in Section 3.2.3.

REMARK 3.3.
1. The result for m = 0 indicates a basic framework for acquiring a basis of Kp(A,Wj)

from Kp(A,B) without new matrix vector products involving A, and thus, it could
be useful for iteratively solving the shifted linear systems in LR-ADI by Krylov
subspace methods. Since this is beyond the scope of this study, we leave exploiting
Theorem 3.2 for iterative linear solves for future work.

2. The motivation for using Ep,m was to improve the approximation of Ψj , ψj near the
origin. However, in practice the origin will be excluded in the actual optimization.
One can use shifted spaces defined by A − φI , φ > 0, e.g., if one can expect that
the local minima have Re(α) < −φ < 0. This only changes the inverse Krylov
subspace Km((A− φI)−1, (A− φI)−1B) since the standard Krylov subspaces are
shift-invariant.
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3. Extensions to rational Krylov subspaces

Krat
r (A,Wj ,β) = range

{
(A+ β1I)−1Wj , . . . ,

r∏
i=1

(A+ βiI)−1Wj

}
,

with shifts β = {β1, . . . , βr} are also possible, but since this would provoke an
additional search for β, we restrict ourselves in the remainder to the standard and
extended Krylov subspace approaches. If βi = αi, 1 ≤ i ≤ r ≤ j, it is well
known that range (Zj) ⊆ Krat

r (A,B,β) [18, 30, 51, 52]. However, even in this
case span

{
(A+ αiI)−1Wj

}
 range (Zj) such that the construction mentioned in

Section 3.2.1 is not a true rational Krylov approximation.

3.2.3. Implementation. We give some remarks on the numerical implementation of
the proposed strategy for approximating the objective function Ψj , ψj within the LR-ADI
iteration. Before the LR-ADI iteration is started, a block-extended Arnoldi process [43] with
orders p,m is applied to A,B which provides

Q∗BQB = I, range (QB) = EKp,m(A,B), PB := AQB ,

whereQB(:, 1 : s)η = B, η ∈ Rs×s, andHB = Q∗BAQB = Q∗BPB ∈ R(p+m)s×(p+m)s, i.e.,
the restriction ofAwith respect to EKp,m(A,B). For later use,QB , PB , andHB are stored. If
no shift parameter α1 is provided, then it is computed using HB and
W̃0 := Q∗BB = [η∗, 0, . . . , 0]∗ ∈ R(p+m)s×s within (3.3). Suppose that j steps of the
LR-ADI iterations have been carried out and αj+1 is sought for the next step. A reduced
objective function constructed from the approximation space EKp(A,Wj) is employed. Moti-
vated by the argumentation in Section 3.2.2, the augmented basis matrix (3.7) with respect to
the augmented space EKp,m(A,B) ∪ span {ωj} is used, where ωj := ZjQSj

∈ Cn×(p+m)s

and QSj ∈ Cjs×(p+m)s is the orthogonal basis matrix spanning EKp,m(Sj , Gj). Executing
the extended Arnoldi process with Sj , Gj is extraordinarily cheap because it involves only
quantities of dimension j due to the Kronecker structure of Sj , Gj (cf. (2.2), (2.3a)).

The generation of the shift αj+1 is summarized in Algorithm 2 including both subspace
choices from Sections 3.2.1 and 3.2.2. The orthogonalization of the long block vectors in
lines 7, 9 represents extra computational costs that were not present in the original LR-ADI
iteration. In order to keep these costs low, it is advised to use only small values for p,m, e.g.,
p,m ≤ 2. This setting appeared to be sufficient in our numerical tests. By cleverly using (2.3a)
and similar relations for the extended Arnoldi process [43], the restriction Hj in line 10 can be
constructed without explicitly computing additional matrix vector products2. Unless A+A∗

is negative definite, it can happen that Λ(Hj) ∩ C− 6= ∅, which would be problematic for
the compressed objective functions. A basic counter measure is shown in line 13, where Hj

is replaced by its Schur form Hj ← Q∗j,HHjQj,H and any unstable eigenvalues that may
appear on the diagonal of Hj are negated. The transformation into the Schur basis Qj,H also
simplifies the evaluation of function and derivatives due to the (quasi)triangular structure of
the Schur form.

Dealing with the generalized Lyapunov equations. In practice often the generalized
Lyapunov equations (1.2) arise with an additional, invertible matrix M ∈ Rn×n. The LR-ADI
iteration for (1.2) is given by

Vj = (A+ αjM)−1Wj−1, Wj = Wj−1 + γ2
jMVj , W0 := B,(3.8)

2Details on this can be found in an earlier preprint of this article: https://arxiv.org/abs/1811.
05500v1.
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Algorithm 2: Construction and solution of reduced minimization problems.
Input :LR-ADI iteration index j, low-rank solution factor Zj , residual factor Wj ,

previously used shifts {α1, . . . , αj}, orders p,m for extended Krylov
subspace, matrices QB , HB = Q∗B(AQB) of initial space EKp,m(A,B),
number h > 0 of previous block columns of Zj if p = m = 0.

Output :Next shift αj+1 for LR-ADI iteration
1 if j > 1 then
2 if p > 0 and m > 0 then
3 if j ≤ p+m then
4 Set QSj = 1.
5 else
6 Generate orthonormal basis QSj

∈ Csj×(p+m)s for Ep,m(Sj , Gj) with
Sj , Gj from (2.2), (2.3).

7 Qj = orth[QB , ZjQSj ], .
8 else
9 Qj = orth[Zj(:, (j −min(j, h))s+ 1 : js)].

10 Hj = Q∗j (AQj) , W̃j := Q∗jWj .
11 else
12 Hj = HB , W̃j = Q∗BW0(= Q∗BB).

13 Compute Schur form Hj ← Q∗j,HHjQj,H (negate unstable eigenvalues on demand),
W̃j ← Q∗j,HW̃j

14 Find local minimizer αj+1 = ν + ξ ∈ C− by solving compressed optimization
problems (3.1), (3.3) defined by Hj , W̃j .

(see, e.g., [8, 25]) leading to generalizations of the objective functions

ΨM
j (α, α) = (A− αM)(A+ αM)−1Wj , ψMj (α, α) = ‖ΨM

j (α, α)‖2.

Approximating the generalized objective functions by using subspaces of range (Zj) as in
Section 3.2.1 leads to Ψ̃M

j ≈ ΨM
j defined by

Nj := Q∗jMQj , Hj := Q∗jAQj = Q∗jWjG
∗
j,hRj −NjR−1

j S∗j,hRj , W̃j := Q∗jWj ,

where Qj , Rj come from a thin QR-factorization of the h newest block columns of Zj .
For the (extended) Krylov subspace approximations proposed in Section 3.2.2, we define,

e.g., AM := M−1A, WM,j := M−1Wj , and use

ΨM
j (α, α) = MΨ̊j(α, α), Ψ̊j(α, α) = Ψ̊j := (AM − αI)(AM + αI)−1WM,j ,

ψMj (α, α) = ‖MΨ̊j‖2 = λmax(Ψ̊∗jM
∗MΨ̊j).

The objective function approximation framework presented before can still be used except
that QB now spans EKm,p(AM , BM ) for BM := M−1B. For (3.8) the relations (2.3) hold
for AM , BM , WM,j such that we can orthogonally augment QB by QZj

exactly as before to
Qj = [QB , QZj ] and use the approximations

ΨM
j ≈ FM,j

˚̂
Ψj(α, α), FM,j := MQj ,

˚̂
Ψ := C(Hj , α)Q∗jWM,j .
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The matrix FM,j ∈ Rn×2(m+p)s is independent on the optimization variables and can therefore
be easily integrated into the compressed optimization problems via, e.g., a thin QR factorization
FM,j = QM,jRM,j .

3.3. Solving the optimization problem. Having constructed the reduced objective func-
tion Ψ̃j , ψ̃j by the approaches discussed before, we plan to find a local minimizer with a
derivative-based numerical optimization routine. Here, we omit most details on the optimiza-
tion routines as more information can be found in the given citations and references therein as
well as in standard literature on numerical optimization [34].

The constraints in (3.1)–(3.3) can for practical purposes be given by

ν− ≤ ν ≤ ν+, 0 ≤ ξ ≤ ξ+, −∞ < ν− < ν+ < 0, ξ ∈ R+,(3.9)

where the imaginary part was restricted to the nonnegative real numbers because we exclusively
consider CALEs defined by real matrices and the generated set of shift parameters is supposed
to be closed under complex conjugation. We set ν±, ξ+ by means of approximate spectral
data of A using the extremal eigenvalues of Hj . Often, optimization algorithms require an
initial guess, and we use the shift obtained by the Residual-Hamiltonian approach as initial
guess since this led to the most promising results.

For solving the polyanalytic, nonlinear least-squares problem in (3.1) with the con-
straints (3.9), we use the routine nlsb_gndl based on a projected Gauss-Newton type
method from the TENSORLAB software package [48]3. For the real-valued constrained
minimization problem (3.3) in real variables, a large variety of software solutions is available.
The MATLAB Optimization Toolbox provides the general purpose routine fmincon that
comes with different internal optimization algorithms, e.g., interior-point [50] and trust-region-
reflective algorithms [12]. Both allow to specify hard-coded Hessians via (3.4).

However, when s > 1 the assumption in Theorem 3.1 that the parameter-dependent matrix
(W

(0)
α )∗W (0)

α has s distinct eigenvalues θi(ν, ξ), i = 1, . . . , s, can in practice be violated. For
instance, it can happen that θ1(ν, ξ) and θ2(ν, ξ) coalesce at certain points ν, ξ. Consequently,
at these points the derivatives of ψj (or ψ̃j) do not exist; see, e.g., [14, 27, 28, 31, 32, 35].
Experimental observations show that especially the minima of ψj are often attained at those
points. A simple approach in [25] to prevent these instances is to transform the eigenvalue
optimization to a scalar optimization problem (i.e., s = 1) by multiplying the compressed
residual factors W̃j with an appropriate tangential vector t ∈ Rs: Ŵj = W̃jt. An obvious
choice for t is the left singular vector corresponding to the largest singular value of W̃j . The
associated modified objective function is then

Ŵj = W̃jt, ψ̂j := ‖Ŵj − 2ν(Hj + (ν + ξ)I)−1Ŵj‖2.(3.10)

Although this transformation is an additional approximation step regarding the original function
ψj , numerical experiments in, e.g., [25] do not indicate a substantial deterioration of the quality
of the obtained shift parameters, and moreover, it simplifies the evaluations of the functions
and its derivatives a bit further.

Here we also handle the minimization of ψ̃j without the modification (3.10). Meth-
ods based on the BFGS framework are capable of solving non-smooth optimization prob-
lems [14, 28] provided a careful implementation is used. The GRANSO package [14] provides
MATLAB implementations of these BFGS type methods and will also be tested in the numeri-
cal experiments for (3.3) without the modification (3.10).

3In principle, the functionality of TENSORLAB would also allow to solve the complex minimization problem (3.2).
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4. Multistep extensions. Until now a single shift αj+1 was generated in each iteration
step for reducing the residual norm from the current to the immediate next step. This can be
generalized towards the generation of multiple, say g > 1, shifts for reducing ‖Wj+g‖2 the
most starting from ‖Wj‖2. The NLS formulation for g ≥ 1 takes the form

{αj+1, . . . , αj+g} = argmin
α∈Cg

−

‖Ψj,j+g(α,α)‖2, Ψj,j+g(α,α) :=

(
g∏
i=1

C(A,α(i))

)
Wj .

Since we always assumed that if αi ∈ C−, then also its complex conjugate is used (Re-
mark 2.3), this could yield parameters for up to 2g future LR-ADI steps. Obviously, this
multistep optimization problem is more difficult than the single step one. For instance,
since the order in which the shifts are applied is not important we have Ψj,j+g(α,α) =
Ψj,j+g(Πgα,Πgα) for any permutation Πr ∈ Rg×g, implying that several local minima
always exist. Moreover, the larger g, the harder it will be to approximate Ψj,j+g by the data
available at step j such that potentially better shifts might be obtained from the single shift
approach carried out in each step. A similar generalization of (3.3) that can be found in [25]
indicated no substantial improvements over g = 1. An interesting special situation is when
the g > 1 future shift parameters are restricted to be equal, αj+i = αj+1, i = 1, . . . , g.
Similar multistep approaches were investigated for Smith-type methods in, e.g., [1, 22, 37, 46].
Although this restriction might slow down the convergence compared to different shifts in
each step, a noticeable reduction in the computation time can be gained. In particular, when
sparse direct solvers are employed, a sparse LU factorization LU = A + αj+1I is reused
in the required forward and backward solves for the linear systems in the next g iteration
steps: Vj+i = U−1L−1Wj+i−1, 1 ≤ i ≤ g. This can be substantially cheaper compared to
solving g different shifted linear systems depending on the value g and the cost for solving a
single shifted linear system. Obviously, one could simply use the shift obtained by the single
step residual norm minimization framework g times. We hope to obtain a better LR-ADI
performance by incorporating the prior knowledge that αj+1 is to be used in g ≥ 1 iteration
steps. The associated multi-shift NLS formulation is

αj+1 = argmin
α∈C−

‖Ψj,j+g(α, α)‖2, Ψj,j+g(α, α) := C(A,α)gWj .

Using the product rule, the Jacobian and conjugate Jacobian of Ψj,j+r are given by

∂Ψj,j+g(α, α)

α
= −gC(A,α)g(A+ αI)−1Wj ,

∂Ψj,j+g(α, α)

α
= −gC(A,α)g−1(A+ αI)−1Wj .

By the same reasoning as in Section 3.2.2, these formulas indicate that for approximat-
ing the objective function and its derivatives, the orders p,m for the approximation sub-
space EKp,m(A,B) should be at least g, but in the numerical experiment smaller orders
worked sufficiently well. Extending (3.3) is done in the same way, that is, by defining
ψj,j+g(ν, ξ) := ‖C(A, ν + ξ)gWj‖2. Theorem 3.1 for the derivatives of ψj,j+g can easily be
reformulated by using

W (r)
α := gC(A,α)g−1Wj = g

(
I − 2νL(ν, ξ)−1

)g−1
Wj

instead of W (0)
α .
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5. Numerical experiments. In this section we execute several numerical examples to
evaluate different aspects of the residual norm-minimizing shift selection techniques. All
experiments were done in MATLAB 2016a using a Intel Core 2 i7-7500U CPU @ 2.7 GHz
with 16 GB RAM. We wish to obtain an approximate solution such that the scaled Lyapunov
residual norm satisfies

R := ‖Rtrue‖/‖B‖2 ≤ ε, 0 < ε� 1.

Table 5.1 summarizes the four different test examples.

TABLE 5.1
Overview of the numerical examples.

Example n s Origin of matrix A (and M ) ε

cd2d 40000 {1, 5} Finite difference discretization of the 2d operator
L(u) = ∆u−100x∂u∂x −1000y ∂u∂y on [0, 1]2 with
homogeneous Dirichlet b.c.

10−8

cd3d 27000 10 Finite difference discretization of the 3d operator
L(u) = ∆u− 100x∂u∂x − 1000y ∂u∂y − 10z ∂u∂z on
[0, 1]3 with homogeneous Dirichlet b.c.

10−8

lung 109460 10 A model of temperature and water vapor transport
in the human lung from the suitesparse collec-
tion [15].

10−8

chip 20082 1 Finite element model of a chip cooling pro-
cess [33], M = M∗ 6= I .

10−10

The right-hand side factors B for all examples except chip are generated randomly
with uniformly distributed entries, where the random number generator is initialized by
rand(’state’, 0). The maximal allowed number of LR-ADI steps is restricted to 150.
In all experiments, we also emphasize the numerical costs for generating shift parameters
by giving shift generation times tshift next to the total run times ttotal of the LR-ADI iteration.
Before we compare the proposed residual-minimizing shifts against other existing approaches,
some tests with respect to certain aspects of this shift selection framework are conducted.

5.1. Approximation of the objective function. At first, we evaluate different approx-
imation approaches from Section 3.2 for the objective functions, i.e., we test the influence
of different choices for the projection subspace to the overall performance of the LR-ADI
iteration. This experiment is carried out on the cd2d example (see Table 5.1) with a single
vector in B and ‖B‖ = 1. The NLS formulation (3.1) is employed and dealt with by the
TENSORLAB routine nlsb_gndl. As approximation subspaces the last h = 8 columns
of Zj from Section 3.2.1 (denoted by Z(8)) and the extended Krylov approximations from
Section 3.2.2 with different orders p,m are used such that the dimension of the basis is in all
cases at most 8. Moreover, the experiment is carried out in the single step (g = 1) as well as
multistep fashion (g = 5) from Section 4. The obtained results are presented in Figure 5.1 and
Table 5.2.

Apparently, for the single step optimization approach, using Z(h) as approximation space
seems to yield shifts leading to the fastest convergence compared to the other subspace choices.
The required iteration numbers and timings are the smallest among all tested settings. In
particular, the pure Krylov (m = 0) and inverse Krylov subspaces (p = 0) lag behind the other
choices. The picture changes when considering the multistep optimization from Section 4
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10−9

10−5

10−1

iter

g = 5

20 40 60 80
10−9

10−5

10−1

iter

g = 5

FIG. 5.1. Residual norm history of LR-ADI iteration using different objective function approximations for the
cd2d example. Left: single step shift selection (g = 1). Right: multistep shift selection (g = 5).

TABLE 5.2
Results with different projection subspaces for the objective function approximation using the cd2d example.

For single and multistep approaches (g = 5), listed are the executed iteration numbers (iters), the column dimension of
the built up low-rank factors (dim), the estimated rank (rk) of the approximate solution, the total and shift computation
times (ttotal, tshift) in seconds, and the final residual norm R (res).

proj. Single step (g = 1) Multistep (g = 5)
space iters dim rk ttotal tshift res iters dim rk ttotal tshift res

Z(8) 61 61 58 8.6 1.3 7.2 · 10−9 84 84 63 3.6 0.5 8.6 · 10−9

EK4,0 71 71 58 12.3 2.9 7.9 · 10−9 86 86 63 4.6 0.9 9.4 · 10−9

EK3,1 62 62 59 10.5 2.4 5.7 · 10−9 61 61 61 3.2 0.7 8.5 · 10−9

EK2,2 70 70 64 12.3 3.0 8.7 · 10−9 62 62 62 3.0 0.7 5.1 · 10−9

EK0,4 91 91 62 18.7 3.1 9.1 · 10−9 92 92 63 4.2 1.0 8.0 · 10−9

over g = 5 steps, where the extended Krylov approximations with m, p ≥ 1 yield better shifts,
i.e., less iteration steps compared to using range (Zj). Interestingly, in some cases the number
of iteration steps is even lower compared to the single step optimization. Due to the reuse
of LU factorizations over g = 5 steps and since the optimization problem has to be solved
less frequently, the savings in the computation times reported in Table 5.2 are substantial. To
conclude, while the standard objective function approximation using range (Zj) seems to
work satisfactory in most cases for the single step shift selection, for g > 1 better results might
be obtained by the proposed extended Krylov approximations with m, p ≥ 1.

5.2. Choice of the optimization routine. Now we test different optimization problem
formulations (3.1), (3.3) as well as different optimization routines for the cd3d example
(see Table 5.1) having s = 10 columns in B. As in the previous experiment, the TENSOR-
LAB routine nlsb_gndl is used for the NLS problem, but for the function minimization
problem (3.3) we employ GRANSO and fmincon. In fmincon the interior-point and trust-
region-reflective methods are used as optimization routines. Since s > 1, we also use the
tangential approximation (3.10) to avoid the potential non-smoothness of ψj in (3.3) and test
this modification also within the NLS framework. The projection subspaces for the objective
function approximations are constructed from the last h = 4 block columns of Zj . Table 5.3
summarizes the results.
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TABLE 5.3
Results with different optimization routines for the cd3d example.

Opt. problem Opt. routine iters dim rk ttotal tshift res

NLS (3.1) nlsb_gndl 52 520 520 88.6 2.1 2.9 · 10−9

NLS (3.10) nlsb_gndl 47 470 470 78.0 1.7 7.8 · 10−9

fun.min. (3.3) fmincon+int. point 48 480 480 67.8 2.0 5.6 · 10−9

fun.min. (3.10) fmincon+int. point 50 500 500 77.6 2.1 4.4 · 10−9

fun.min. (3.3) fmincon+thrust
region reflective

49 490 490 82.0 1.9 4.7 · 10−9

fun.min. (3.10) fmincon+thrust
region reflective

51 510 510 80.1 1.7 2.0 · 10−9

fun.min. (3.3) GRANSO 51 510 510 111.3 20.4 2.0 · 10−9

Judging from the number of required LR-ADI steps, the usage of different optimization
routines appears to have less impact than working with different objective function approx-
imations. The additional tangential approximation (3.10) seems to slow down the LR-ADI
iteration only marginally. The exception, as seen in Table 5.3, is when comparing to the
NLS formulation (3.1) and nlsb_gndl is used, where five less LR-ADI steps, and conse-
quently less computation time, are required. Using GRANSO resulted in comparatively high
computational times for this shift generation. The main computational bottleneck in this
method are the arising quadratic optimization problems. Apparently, the non-smoothness of
the function φj (in the sense of coalescing eigenvalues of W (α)∗W (α)) did hardly occur or
appear to be problematic for methods for smooth optimization problems so that the application
of non-smooth optimizers or using the tangential approximation (3.10) might not be necessary
in most cases. Although not reported here, tests using fmincon without explicitly provided
Hessians led to similar results regarding the required number of steps of the LR-ADI iteration
but to marginally longer shift generation times since the inherent optimization algorithms
(interior-point or trust-region-reflective) required more steps. The performance of the opti-
mization routines appeared to be also noticeably influenced by the choice of the initial guess.
Using the heuristic instead of the residual-Hamiltonian selection for determining the initial
guess led to higher shift generation times due to longer runs of the optimization routines.
Setting up the constraints (3.9) for the optimization variables by using the computed Ritz
values (eigenvalues of Hj) led in a few cases to difficulties for the solution of the optimization
problems. Especially the upper bounds for the imaginary parts of the shift parameters appeared
to be of strong influence. Further adjustments are necessary in this directions, also with respect
to deciding in advance if the optimization problems can be safely restricted to real variables.
Currently, this is only done for problems with real spectra (e.g., A = A∗).

5.3. Comparison with other shift selection routines and methods. Now the LR-ADI
performance obtained with the approximate residual norm-minimizing shifts is compared with
the other shift selection strategies reviewed in Section 2.1. All employed shift generation and
selection approaches are used and abbreviated as in Table 5.4.

We also run a few tests with the multistep approach with g = 5. For each example, we
also compare the LR-ADI to the rational Krylov subspace method [16] (RKSM) equipped
with the convex hull-based shift selection [17] and the extended Krylov subspace method [43]
(EKSM). The reduced Lyapunov equations in RKSM, EKSM are solved in every fifth step if
s > 1.

Figure 5.2 displays the history of the scaled Lyapunov residual norms for some selection
approaches and the cd3d, chip examples. Table 5.5 summarizes the results of the experiment.
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TABLE 5.4
Overview of employed shift selection strategies.

Type Abbreviation Description of strategy Information
pr

ec
om

pu
te

d heur(J, p,m) Heuristic selection of J ∈ N shifts
from Ritz values associated with
EKp,m(A,B1s), cyclic usage.

[36, 40]

Wachs(ε, p, m) Wachspress selection using Ritz values
associated with EKp,m(A,B1s) and
tolerance 0 < ε� 1, cyclic usage.

[40, 42, 49]

ad
ap

tiv
e

Z(h)+heur Projection-based shifts using newest h
block columns of Zj and selection via
heuristic.

[9, 25], Section 2.1.1

Z(h)+conv Projection-based shifts as above, but
convex hull-based selection.

[17], Section 2.1.2

Z(h)+Hres Projection-based shifts as above, but
residual Hamiltonian-based selection.

[6], Section 2.1.3

resmin+Q+OR Residual norm-minimizing shifts with
Q as approximation space and OR as
optimization routine.

[9, 25], Section 3

0 20 40 60
10−9

10−5

10−1

iteration j

R

cd3d

heur Wachs Z(h)+Hres resmin RKSM

10 20 30 40
10−14

10−7

100

iteration j

chip

FIG. 5.2. Residual norm history of LR-ADI iteration and RKSM using different shift selection strategies. Left:
cd3d example. Right: chip example.

The proposed residual norm-minimizing shift generation strategy based on reduced objective
functions leads to the smallest number of required iteration steps compared to the other
selection approaches. The obtained rate of residual norm reduction is very close to the one
obtained by RKSM, but LR-ADI required in all tests less computation time than RKSM.
Hence, taking both the iteration numbers as well as the computation times in account, with
the right set of shift parameters, the LR-ADI iteration is competitive to RKSM. Note that
RKSM is theoretically expected to converge faster than LR-ADI [16]. EKSM generates in
all experiments larger subspaces but still manages to deliver competitive computation times
against some of the other methods. This is due to the efficient way the linear systems can
be solved in EKSM. For chip, EKSM is the fastest method in terms of run time. Among
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TABLE 5.5
Comparison of different shift routines and against RKSM, EKSM. A superscript † denotes g = 5.

Ex. Method Shift selection strategy iters dim rk ttotal tshift res
c
d
2
d

L
R

-A
D

I
heur(20, 30, 20) 137 685 269 30.3 0.6 9.0 · 10−9

Wachs(10−8, 30, 20) 93 465 254 22.0 0.6 7.2 · 10−9

Z(4)+heur 74 370 257 16.3 0.5 9.2 · 10−9

Z(4)+conv 80 400 265 18.5 1.8 6.1 · 10−9

Z(4)+Hres 74 370 259 19.7 1.6 2.8 · 10−9

resmin+Z(4)+fmincon 58 290 251 19.6 6.4 6.2 · 10−9

RKSM convex hull 61 305 277 35.9 3.9 4.3 · 10−9

EKSM 60 600 269 38.7 − 9.8 · 10−9

c
d
3
d

L
R

-A
D

I

heur(20, 40, 30) 68 680 504 85.4 1.7 1.7 · 10−9

Wachs(10−8, 30, 20) 150 1500 253 190.1 1.5 5.2 · 10−4

Z(4)+heur 71 710 511 89.1 0.3 1.9 · 10−9

Z(4)+conv 57 570 487 71.8 1.3 2.3 · 10−9

Z(4)+Hres 52 520 448 66.3 1.1 9.7 · 10−9

resmin+Z(4)+fmincon 50 500 444 67.9 2.3 6.7 · 10−9

resmin+EK1,1+nlsb_gndl† 59 590 498 24.5 0.9 6.2 · 10−9

RKSM convex hull 57 570 517 113.3 4.2 2.5 · 10−9

EKSM 60 1200 480 72.0 − 2.3 · 10−9

l
u
n
g

L
R

-A
D

I

heur(20, 30, 20) 150 1500 332 72.6 4.2 1.7 · 10−8

Wachs(10−8, 30, 20) 150 1500 261 66.1 4.3 2.8 · 10−2

Z(2)+heur 94 940 343 42.8 1.0 4.6 · 10−10

Z(2)+conv 80 800 348 44.5 7.1 3.6 · 10−9

Z(2)+Hres 71 710 349 42.4 5.5 8.5 · 10−9

resmin+Z(2)+fmincon 65 650 351 37.5 4.6 8.6 · 10−9

resmin+Z(2)+GRANSO† 69 690 350 9.1 1.3 9.5 · 10−9

RKSM convex hull 61 610 353 135.9 12.4 6.1 · 10−9

EKSM 45 900 345 104.4 − 2.1 · 10−9

c
h
i
p

L
R

-A
D

I

heur(10, 20, 10) 33 33 28 24.1 1.2 7.1 · 10−11

Wachs(10−12, 20, 10) 34 34 28 24.4 1.2 5.0 · 10−13

Z(4)+heur 70 70 45 49.3 0.2 5.6 · 10−11

Z(4)+conv 55 55 44 38.9 0.3 5.6 · 10−11

Z(4)+Hres 43 43 43 30.4 0.2 8.6 · 10−12

resmin+Z(4)+fmincon 32 32 29 27.5 1.0 2.2 · 10−11

resmin+EK1,1+nlsb_gndl† 32 32 28 10.2 0.2 7.0 · 10−11

RKSM convex hull 28 28 26 22.0 1.6 7.5 · 10−11

EKSM 34 68 28 5.4 − 4.7 · 10−11

the Ritz value-based shift selection techniques (Section 2.1.1) for LR-ADI, the Residual-
Hamiltonian selection (Section 2.1.3, Z(h)+Hres) appears to perform best, leading to iteration
numbers close to the ones obtained with the residual-minimizing shifts. The precomputed
shift approaches (heur(J, p,m), Wachs(ε, p,m)) could in several cases not compete with the
dynamic shift generation approaches, which again underlines the superiority of an adaptive
selection of shift parameters. The generation times tshift of the adaptive shifts were in all
cases only a small fraction of the total computation times ttotal. The quickest reduction of the
residual norm and the smallest number of iteration steps was achieved by the (single step)
residual minimization-based approaches. They appear to be especially effective for the cd2d
and lung examples, where up to 20 percent less iteration steps are required. These two
examples have more nonnormal A than the other two examples cd3d, chip such that the
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more involved residual minimization framework seems to be the safer choice for acquiring
high quality shifts. For the examples cd3d, chip, already the Ritz value-based shift routines
led to a rapid residual reduction leaving hardly any room for further speed ups. Due to the
need to set up and solve (compressed) optimization problems, the generation times of the
residual-minimizing shifts was in some cases slightly higher compared to the other approaches.
Therefore, for the examples cd3d, chip the ultimate choice of the shift selection routine
depends on whether the gained slight acceleration of LR-ADI (and, thus, the minor storage
savings for the low-rank factors Z) is worth the additional shift generation effort. The results in
Table 5.5 also confirm the findings of Section 5.1 that the Z(h) subspace choice (Section 3.2.1)
appears to be adequate (for the single step minimization) in most situations. Although the
multistep shift selection approach yielded higher iteration numbers compared to the single
step versions, they led to a substantial reduction in the computation times ttotal because of the
reuse of LU factorizations over several iteration steps. If small computations times are more
important than acquiring the smallest possible low-rank factors, then the multistep approaches
might be the method of choice. Moreover, they might be invaluable for situations where sparse
factorizations are expensive but also iterative linear solvers are difficult to employ. As outlined
in Section 5.1, approximating the objective function by means of extended Krylov subspaces
seems to be the safer choice.

6. Summary. This article discussed dynamically generated shift parameters for the LR-
ADI iteration for large Lyapunov equations. The selection of shifts was based on a residual
norm minimization principle, which could be formulated as a nonlinear least-squares or
function minimization problem. Since the involved objective functions are too expensive
to evaluate, a framework using approximated objective functions was developed. These ap-
proximations were built using projections onto low-dimensional subspaces, whose efficient
construction from the data generated by the LR-ADI iteration was presented. The numerical
experiments showed that the proposed shift generation approach resulted in the fastest conver-
gence of LR-ADI, bringing it very close to the rational Krylov subspace method in terms of the
iteration numbers. At the expense of higher iteration numbers, a substantial computation time
reduction could be achieved by a multistep shift selection approach. Obvious future research
direction might include similar shift selection strategies in LR-ADI type methods for other
matrix equations, e.g., algebraic Sylvester and Riccati equations, where first investigations
can be found in [6, 9, 25]. Deriving a similar multistep selection for RKSM is also an open
topic. Improving the solution of the occurring optimization problems by, e.g., providing
better constraints or initial guesses, would further increase the performance of the residual
norm-minimizing shift selection.
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