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Abstract. We use a barrier-function technique to prove the parameter-uniform convergence for singularly
perturbed convection-diffusion problems discretized on a Bakhvalov-type mesh. This is the first proof of this kind in
the research literature, the barrier-function approach having only been applied so far to Shishkin-type meshes.
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1. Introduction. Singularly perturbed boundary-value problems arise as models of var-
ious phenomena in science and engineering [4, 5, 19]. Their numerical solution represents
a challenge because of the presence of boundary and/or interior layers in the continuous
solution. This is why layer-adapted meshes are often used in numerical methods for solving
these problems. Bakhvalov and Shishkin meshes and their modifications are the best-known
meshes of this kind. Despite the fact that the latter [20] was introduced about two decades
later than the former [3], Shishkin-type (S-type) meshes have become predominant in the
singular-perturbation research, largely due to their simple construction. We refer the reader to
the monographs [10, 19] and the many references therein for dedicated discussions on such
layer-adapted meshes and relevant numerical schemes.

The original Shishkin mesh and its slight modifications enjoy properties of piecewise-
uniformity and explicitly defined transition points between fine and coarse parts of the mesh,
which greatly simplifies the analysis of numerical methods applied. Their drawback is that they
produce errors which contain lnN -factors, where N is the number of mesh steps. Bakhvalov-
type (B-type) meshes do not suffer from this as they are graded in the layer and smoothly
transition to a coarser part at a point which is farther away from the layer than the Shishkin
transition point. B-type meshes include the original Bakhvalov mesh and its modifications,
like the one due to Kopteva [6, 7] (or the variation in [19, p. 120]), as well as Vulanović’s
generalization [22]. The generalization in [10, 17] combines the Shishkin transition point
with the possibility of having a smoothly graded mesh in the layer, which also eliminates
lnN -factors from the error. Because of the transition point, these meshes are considered
S-type meshes. Their graded part can be generated by the same mesh-generating functions
like those used to create the graded part of B-type meshes. In this sense, we have meshes like
the Bakhvalov-Shishkin mesh or the Vulanović-Shishkin mesh.

Generally speaking, the nature of singular perturbation problems makes their numerical
analysis difficult. For instance, when convection-dominated problems are solved by a finite-
difference method on a layer-adapted mesh, special techniques are needed to prove that the
method converges uniformly with respect to the singular perturbation parameter ε. Those
techniques include, but are not limited to, the use of barrier-function estimates of the truncation
error (e.g., [16, 17, 21]), of the hybrid stability-inequalities [1, 2, 6, 7, 12], which usually
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involves the discrete Green’s function, or of the newly proposed preconditioning approach [13,
14, 15, 26].

All the above ε-uniform convergence proof techniques on layer-adapted meshes have
been applied successfully to singularly perturbed convection-diffusion problems, except for
one case, namely the truncation error and barrier function technique on B-type meshes. The
question whether this kind of proof would be possible was posed in the early 2000s and has
remained unanswered until now (see the survey [8, p. 1068] for instance). At the same time,
the existing barrier-function technique works for S-type meshes, even the ones graded in the
layer [17]. This is mainly because the step sizes of S-type meshes possess certain technical
properties, which B-type meshes do not have. For example, all mesh steps in the layer region
of the S-type meshes introduced in [17] are bounded by Cε, where C denotes a positive
generic constant independent of ε and N . By contrast, as will be seen in the present paper,
B-type meshes do not satisfy this property. This is why other techniques (i.e., the hybrid
stability-inequalities and preconditioning) have been developed for B-type meshes.

In this paper, we close the existing theoretical gap and provide the first-ever barrier-
function proof of ε-uniform convergence for convection-diffusion problems discretized on
a B-type mesh. The construction of an appropriate barrier function is based on a careful
and detailed analysis of the truncation error. Our proof technique is inspired by the one we
recently used in [16], where we modified and improved the barrier-function approach to prove
ε-uniform convergence for a generalized Shishkin mesh.

To present our proof, we consider the simplest model problem, the simplest finite-
difference scheme, and one of the simplest B-type meshes. For the model problem, we
take a linear singularly perturbed convection-diffusion problem in one dimension,

Lu : = −εu′′ − b(x)u′ + c(x)u = f(x), x ∈ (0, 1),

u(0) = u(1) = 0,
(1.1)

with a small positive perturbation parameter ε and C1[0, 1]-functions b, c, and f , where b and
c satisfy

b(x) ≥ β > 0, c(x) ≥ 0 for x ∈ I := [0, 1].

With these assumptions, the problem (1.1) has a unique solution u, which in general has
an exponential boundary layer near x = 0. We discretize the problem on the simplest of
Vulanović’s modifications of the original Bakhvalov mesh [22] and use the standard upwind
scheme, the simplest ε-uniformly stable scheme available. This method provides ε-uniform
convergence of the first order, which is what we prove. We particularly emphasize that this
result is not new; the same has been proved using the other above-mentioned techniques [1,
2, 15]. Rather, the novel contribution of the paper lies in the way the problem is analyzed
by a barrier-function approach for the first time. Our analysis provides more understanding
of the behavior of the truncation error at every discretization point of the B-type mesh, and
therefore we provide the theoretical answer to the open problem posed in [8, p. 1068] and also
in [10, Remark 4.21].

Additionally, we are motivated to study the barrier-function technique because it can
be generalized to two dimensions [9, 11]. This has been done for S-type meshes, but the
question whether one can prove ε-uniform convergence on a B-type mesh for the upwind
discretization of the two-dimensional convection-diffusion problem, [18, Question 4.1], has
remained open until now. We demonstrate in the appendix that our approach can be extended
to two dimensions, thus answering the question affirmatively.

The rest of the paper is organized as follows. The B-type mesh is introduced and analyzed
in Section 2. This is followed by the truncation-error analysis in Section 3. We then prove the
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main result, ε-uniform convergence, in Section 4 and illustrate it by a numerical experiment
in Section 5. Some concluding discussions are provided in Section 6, which continues in the
appendix, where we comment on the two-dimensional case of the problem.

2. The Vulanović-Bakhvalov mesh. Let xi, i = 0, 1, . . . , N , denote the points of the
discretization mesh, 0 = x0 < x1 < · · · < xN = 1, and let hi = xi − xi−1, i = 1, 2, . . . , N .
We also define ~i = (hi+hi+1)/2, i = 1, 2, . . . , N−1. A mesh function on the discretization
mesh is denoted by wN = (wN0 , w

N
1 , . . . , w

N
N ). If g is a function defined on I , we write gi

instead of g(xi) and gN for the corresponding mesh function.
We repeat that C denotes a generic positive constant independent of both ε and N . Some

specific constants of this kind will be indexed.
The design and generalization of Shishkin meshes have gained much attention from

researchers; see [16, 17, 23, 24] for instance. In contrast, there has been less attention
on the generalized construction or analysis of the Bakhvalov mesh. A rare example of
the generalization of the Bakhvalov mesh is an early contribution by Vulanović [22]. A
modification of the Bakhvalov mesh can also be found in [6, 7]. The mesh points xi of any
B-type mesh are generated by a function λ in the sense that xi = λ(ti), where ti = i/N for
i = 0, 1, . . . , N . The mesh-generating function λ is defined as follows:

(2.1) λ(t) =

{
ψ(t), t ∈ [0, α],

ψ(α) + ψ′(α)(t− α), t ∈ [α, 1],

with ψ = aεφ, where a is a positive fixed mesh-parameter and φ is a smooth function which
essentially is the inverse of the exponential-layer function. The point α is the solution of the
equation

(2.2) ψ(α) + ψ′(α)(1− α) = 1.

The part of λ on the interval [0, α] generates the fine portion of the mesh in the layer, while
the part on [α, 1] generates the coarse mesh outside the layer (this part is the tangent line from
the point (1, 1) to ψ, touching ψ at (α,ψ(α))).

In [22], the author also introduces a simpler B-type mesh, in which a Padé-approximation
of the exponential-layer function is employed to construct the function φ,

φ(t) =
t

q − t
=

q

q − t
− 1, t ∈ [0, α],

where q is another fixed mesh-parameter, 0 < q < 1. We consider this mesh in the present
paper and call it the Vulanović-Bakhvalov mesh (VB mesh). With this choice of φ, the
equation (2.2) reduces to a quadratic one, and its solution is easy to find,

α =
q −

√
aεq(1− q + aε)

1 + aε
.

The two mesh-parameters have to satisfy aε < q (which is equivalent to ψ′(0) < 1), and then
α is positive. Note also that α < q and

q − α = ζ
√
ε, ζ ≤ C, 1

ζ
≤ C.

Let J be the index such that tJ−1 < α ≤ tJ . Starting from the mesh point xJ , the mesh
is uniform. However, xJ behaves differently from the transition point of the Shishkin mesh
because

(2.3) xJ ≥ ψ(α) =
aα

ζ

√
ε.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

318 T. A. NHAN AND R. VULANOVIĆ

Additionally, it is also worth mentioning that λ defined in (2.1) is differentiable on [0, 1],
whereas mesh-generating functions of graded S-type meshes are only piecewise differentiable.

We now derive some estimates for the VB mesh steps.
LEMMA 2.1. Let tJ ≤ q. Then we have the following estimates for the step sizes of the

VB mesh in the layer region:

(2.4) CεN−1 ≤ hi ≤ CεN, i = 1, 2, . . . , J − 1,

and

(2.5) 1 ≤ hi
hi−1

≤ 3, i = 2, 3, . . . , J − 1.

Furthermore, when hi > ε, we have that

(2.6)
1

q − ti−1
>
N1/2

√
2aq

, i = 1, 2, . . . , J − 1.

Proof. First, we show that

CεN−1 ≤ hi, i = 1, 2, . . . , J − 1.

This is because

hi = xi − xi−1 = aε[φ(ti)− φ(ti−1)] ≥ aεN−1φ′(ti−1)

= aεN−1
q

(q − ti−1)2
≥ aεN−1 q

(q)2
≥ CεN−1.

On the other hand, for i ≤ J − 1 and tJ ≤ q, we have

hi = xi − xi−1 = aε[φ(ti)− φ(ti−1)] =
aεq

N(q − ti−1)(q − ti)

≤ aεq

N(q − tJ−2)(q − tJ−1)
≤ aεq

N(tJ − tJ−2)(tJ − tJ−1)
≤ CεN.

To prove (2.5), the mesh construction yields hi−1 ≤ hi, so that we immediately have
hi
hi−1

≥ 1. Furthermore,

hi
hi−1

=
q − ti−2
q − ti

=
q − ti + 2/N

q − ti
≤ 1 +

2

N(tJ − tJ−1)
= 3

for all i ≤ J − 1.
To verify (2.6), we first observe that for i ≤ J − 1 and tJ ≤ q:

q − ti−1
q − ti

= 1 +
1

N(q − ti)
≤ 1 +

1

N(tJ − ti)
≤ 2.

That is,

(2.7)
1

q − ti
≤ 2

q − ti−1
.

Additionally, when hi > ε, we have

hi
ε

=
aq

N(q − ti−1)(q − ti)
> 1,
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and then (2.7) yields

2aq

N(q − ti−1)2
> 1,

which asserts (2.6).
REMARK 2.2. The mesh step-size estimates stated in (2.4) distinguish our B-type mesh

from S-type meshes in the sense of [14, 17]. That is, in the layer region, while the step size hi
of S-type meshes is bounded from above by Cε, that of the VB mesh is gradually graded with
h1 ∼ O(εN−1) and hJ−1 ∼ O(εN). This is a striking contrast between the two mesh types.

REMARK 2.3. Without the condition tJ ≤ q, all the estimates in Lemma 2.1 are true for
i ≤ J − 2.

We now consider step-size estimates for the case q < tJ . We also define

tJ−1/2 =
tJ−1 + tJ

2
=
J − 1/2

N
.

LEMMA 2.4. Let q < tJ . Then the following estimates are satisfied:
• When α ≤ tJ−1/2, we have

(2.8) hJ ≥ CN−1.

• When tJ−1/2 < α, we have

(2.9) hJ−1 ≤ CεN.

Proof. First, consider α ≤ tJ−1/2. Then, hJ = χ1 + χ2, where χ1 = xα − xJ−1 and
χ2 = xJ − xα with xα = ψ(α). It follows that

hJ ≥ χ2 = ψ′(α)(tJ − α) =
aεq

q − α

(
tJ − α
q − α

)
≥ aq

ζ2
(
tJ − tJ−1/2

)
≥ aq

ζ2
1

2N
,

which gives (2.8).
Second, for tJ−1/2 < α and because tJ−1 < tJ−1/2 < α < q, we have

hJ−1 =
aεq

N(q − tJ−2)(q − tJ−1)
≤ aεq

N(tJ−1 − tJ−2)(tJ−1/2 − tJ−1)
≤ 2aεqN.

3. The upwind discretization and truncation-error estimate. We discretize the prob-
lem (1.1) on the VB mesh using the upwind finite-difference scheme,

wN0 = 0,

LNwNi := −εD′′wNi − biD+wNi + ciw
N
i = fi, i = 1, 2, . . . , N − 1,(3.1)

wNN = 0,

where

D′′wNi =
1

~i
(
D+wNi −D−wNi

)
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and

D+wNi =
wNi+1 − wNi

hi+1
, D−wNi =

wNi − wNi−1
hi

.

It is easy to see that the operator LN satisfies the discrete maximum principle. Therefore, the
discrete problem (3.1) has a unique solution wN .

We proceed to provide the truncation-error estimate when the problem (1.1) is discretized
by the above upwind scheme on the VB mesh. Let

τi[g] = LNgi − (Lg)i, i = 1, 2, . . . , N − 1,

for any C2(I)-function g. In particular, τi[u] is the truncation error of the finite-difference
operator LN and

(3.2) τi[u] = LNui − LNwNi = LN (u− wN )i.

By Taylor’s expansion we get that

(3.3) |τi[u]| ≤ Chi+1(ε‖u′′′‖i + ‖u′′‖i),

where ‖g‖i := maxxi−1≤x≤xi+1
|g(x)| for any g ∈ C(I).

We estimate the truncation error below by using the following decomposition of the
continuous solution u into the smooth and boundary-layer parts, [10, Theorem 3.48]:

u(x) = s(x) + y(x),

where for x ∈ I and k = 0, 1, 2, 3 we have

|s(k)(x)| ≤ C
(
1 + ε2−k

)
(3.4)

and

|y(k)(x)| ≤ Cε−ke−βx/ε.(3.5)

In addition, the layer component y satisfies a homogeneous differential equation,

(3.6) Ly(x) = 0, x ∈ (0, 1).

Moreover, in the proof of the next lemma, we crucially need the inequality

(3.7) e−βxi/(2ε) =

i∏
j=1

(
e−βhj/(2ε)

)
≤

i∏
j=1

(
1 +

βhj
2ε

)−1
=: ȳNi

for i = 0, 1, . . . , N , which is based on et ≥ 1 + t, for all t ≥ 0.
LEMMA 3.1. The truncation error for the regular part satisfies

|τi[s]| ≤ CN−1, i = 1, 2, . . . , N − 1.

The layer part can be estimated as follows:
• For i ≥ J + 1, we have

(3.8) |τi[y]| ≤ CN−1.
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• For i ≤ J , we have the following subcases:
– When hi ≤ ε, we have

(3.9) |τi[y]| ≤ Cε−1ȳNi N−1.

– When hi > ε, we first have an estimate for i = J ,

(3.10) |τi[y]| ≤ CN−1.

For i ≤ J − 1 and tJ ≤ q,

(3.11) |τi[y]| ≤ Ch−1i+1ȳ
N
i N

−1.

For i ≤ J − 1 and q < tJ , we have

(3.12) |τi[y]| ≤


CN−1, i = J − 1 & α ≤ tJ−1/2,
Ch−1i+1ȳ

N
i N

−1, i = J − 1 & tJ−1/2 < α,

Ch−1i+1ȳ
N
i N

−1, i ≤ J − 2.

Proof. It is an easy computation to bound |τi[s]| by applying (3.3) to s and using the
estimates in (3.4). Similarly, for the layer component, we use the derivative estimates (3.5).

To prove (3.8), we apply (3.3) to y and note that in this case ti−1 ≥ tJ ≥ α. Then we
have

|τi[y]| ≤ Chi+1 (ε‖y′′′‖i + ‖y′′‖i) ≤ CN−1λ′(ti+1)ε−2e−βλ(ti−1)/ε

≤ CN−1λ′(ti+1)ε−2e−βλ(α)/ε ≤ CN−1ε−2e−aβα/(ζ
√
ε) ≤ CN−1,

where we have used (2.3) and the fact that ε−2e−aβα/(ζ
√
ε) ≤ C.

The case for which i ≤ J and hi ≤ ε is handled as follows. In order to show (3.9), we
divide this case into two subcases:

1. When ti−1 ≤ q − 3/N .
2. When q − 3/N < ti−1 < α.

Subcase 1. Note that, when ti−1 ≤ q − 3/N , we have

ti+1 ≤ q − 1/N < q, (so λ(ti+1) ≤ aεφ(ti+1))

and

q − ti+1 = q − ti−1 −
2

N
=

1

3
(q − ti−1) +

2

3
(q − ti−1)− 2

N
≥ 1

3
(q − ti−1),

and also,

q − ti = q − ti−1 − 1/N =
2

3
(q − ti−1) +

1

3
(q − ti−1)− 1

N
≥ 2

3
(q − ti−1),

because q − ti−1 ≥ 3/N yields 1
3 (q − ti−1)− 1/N ≥ 0. Hence,

|τi[y]| ≤ Chi+1 (ε‖y′′′‖i + ‖y′′‖i)
≤ CN−1λ′(ti+1)ε−2e−βxi−1/ε

≤ Cε−1N−1φ′(ti+1)e−βxi−1/2εe−βxi−1/2ε

≤ Cε−1N−1(q − ti+1)−2e−
aβ
2 (q/(q−ti−1)−1)e−βxi−1/2ε

≤ Cε−1N−1(q − ti−1)−2e−aβq/[2(q−ti−1)]e−βxi−1/2ε

≤ Cε−1N−1(q − ti−1)−2e−aβq/[2(q−ti−1)]e−βxi/(2ε)eβhi/(2ε)

≤ Cε−1N−1(q − ti−1)−2e−aβq/[2(q−ti−1)]ȳNi ,
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where we used hi ≤ ε in the last step. It follows from this that

|τi[y]| ≤ Cε−1N−1ȳNi

Subcase 2. This can be handled as follows:

|τi[y]| ≤ 2ε‖y′′‖i + 2bi‖y′‖i ≤ Cε−1e−βxi−1/2εe−βxi−1/2ε

≤ Cε−1e−βxi/(2ε)eβhi/(2ε)e−βxi−1/(2ε)

≤ Cε−1ȳNi e−βxi−1/2ε ≤ Cε−1ȳNi e−
aβ
2 (qN/3−1) ≤ Cε−1ȳNi N−1.

This completes the proof of (3.9).
We next proceed to the case when hi > ε. For the estimate (3.10), we consider the

truncation error in the form τJ [y] = LNy, which is valid because of (3.6). Thus, we have

|τJ [y]| ≤ PJ +QJ +RJ ,

where

PJ = ε|D′′yJ |, QJ = bJ |D′yJ |, and RJ = cJ |yJ |.

For PJ , since ~J ≥ hJ+1/2 ≥ CN−1, we get ~−1J ≤ CN and

PJ ≤ C~−1J e−βxJ−1/ε ≤ CNe−βaφ(tJ−2) ≤ CNe−βaq/(q−tJ−2).

We next apply (2.6) and arrive at the desired estimate

PJ ≤ CNe−β
√
aqN1/2/

√
2 ≤ CN−1.

Similar arguments work for QJ and RJ .
We now move onto the case i ≤ J − 1 and tJ ≤ q. We have

Ri ≤ Ce−βxi/ε = Ch−1i+1hi+1e
−βxi/(2ε)e−βxi/(2ε)

≤ Ch−1i+1ȳ
N
i e
−βxi/(2ε) ≤ Ch−1i+1ȳ

N
i e
−βxi−1/(2ε)

≤ Ch−1i+1ȳ
N
i e
−βaq/[2(q−ti−1)] ≤ Ch−1i+1ȳ

N
i e
−β√aqN1/2/(2

√
2)

≤ Ch−1i+1ȳ
N
i N

−1.

(3.13)

For Pi, and analogously for Qi,

Pi ≤ C~−1i e−βxi−1/ε ≤ Ch−1i+1e
−βxi−1/(2ε)e−βxi−1/(2ε)

≤ Ch−1i+1ȳ
N
i

(
1 +

βhi
2ε

)
e−βxi−1/(2ε).

We then use the inequality hi ≤ CεN from Lemma 2.1 and get

Pi ≤ Ch−1i+1ȳ
N
i (1 + CN) e−βaq/[2(q−ti−1)]

≤ Ch−1i+1ȳ
N
i (1 + CN) e−β

√
aqN1/2/(2

√
2) ≤ Ch−1i+1ȳ

N
i N

−1.
(3.14)

This asserts (3.11).
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For hi > ε, i = J − 1 and α ≤ tJ−1/2, using (2.8) we get

PJ−1 ≤ C~−1J−1e
−βxJ−2/ε ≤ Ch−1J e−βxJ−2/ε ≤ CNe−β

√
aqN1/2/

√
2 ≤ CN−1.

We apply a similar argument to QJ−1 and RJ−1. This implies that |τJ−1[y]| ≤ CN−1, which
is the first case in (3.12).

For hi > ε with i = J − 1 and tJ−1/2 < α, we use (2.9) to verify that the estimates in
(3.13) and (3.14) are true. In this way we prove the second case in (3.12).

For the last case in (3.12), the assertions of Lemma 2.1 are satisfied for i ≤ J − 2 (see
also Remark 2.3), so the analysis of the truncation error in this case is the same as that of the
estimate (3.11).

The detailed estimates of the truncation errors of the regular and layer components in
Lemma 3.1, invoking τi[u] = τi[s] + τi[y], can be summarized as follows.

THEOREM 3.2. The truncation error of the upwind discretization of the problem (1.1) on
the VB mesh satisfies the following:

• When hi > ε,

|τi[u]| ≤ C
(
N−1 + h−1i+1ȳ

N
i N

−1) , i = 1, 2, . . . , N − 1,

• When hi ≤ ε,

|τi[u]| ≤ C
(
N−1 + ε−1ȳNi N

−1) , i = 1, 2, . . . , N − 1,

where ȳNi is defined in (3.7).
The above theorem is a crucial component of our analysis. It is interesting to mention

that similar estimates can be found in the truncation-error bound [6, (4.9)]. However, this
bound is obtained for the central scheme applied on a mesh different from ours (a slight
modification of the Bakhvalov mesh) and is used in a discrete-Green’s-function approach, not
a barrier-function one.

4. The barrier function and ε-uniform convergence. In this section, we propose a
barrier function to bound the truncation error established in Theorem 3.2. We then apply the
discrete maximum principle to get the ε-uniform-convergence result.

Imitating the newly proposed barrier function in [16], we form

γi = γ
(1)
i + γ

(2)
i , i = 0, 1, . . . , N,

with

γ
(1)
i = C1N

−1(1− xi) and γ
(2)
i = C2ȳ

N
i N

−1,

where C1 and C2 are appropriately chosen positive constants independent of both ε and N .
LEMMA 4.1. There exist sufficiently large constants C1 and C2 such that

(4.1) LNγi ≥ |τi[u]|, i = 1, 2, . . . , N − 1.

Proof. It is an easy calculation (see details in [16, p. 6]) to verify that

LNγi ≥ C3

(
N−1 + [max{ε, hi+1}]−1ȳNi N−1

)
=: κi,

where the constant C3 can be made sufficiently large by choosing C1 and C2 large enough.
We next consider the two cases of Theorem 3.2. The first case, when hi > ε, immediately

yields |τi[u]| ≤ κi because hi+1 ≥ hi for any i. Therefore, (4.1) is fulfilled in this case.
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When hi ≤ ε, we consider different values of the index i. First, for i ≥ J + 1, it is clear
that

|τi[u]| ≤ CN−1 ≤ κi ≤ LNγi, i = J + 1, J + 2, . . . , N − 1.

Second, for i ≤ J − 3, we have

hi+1

hi
=
q − ti−1
q − ti+1

≤ 1 +
2

N(q − ti+1)
≤ 1 +

2

N(q − tJ−2)

≤ 1 +
2

N(tJ−1 − tJ−2)
= 3, (because tJ−1 < α < q),

so hi+1 ≤ 3ε for i ≤ J − 3. Therefore, from the second case of Theorem 3.2 we obtain

|τi[u]| ≤ C
(
N−1 + ε−1ȳNi N

−1) ≤ κi ≤ LNγi for any i ≤ J − 3.

Lastly, for i = J − 2, J − 1, J , we consider the relative position of q and tJ+2.
Case 1: If i = J − 2, J − 1, J, and tJ+2 < q, then

hi+1

hi
=
q − ti−1
q − ti+1

≤ 1 +
2

N(q − ti+1)
≤ 1 +

2

N(q − tJ+1)
≤ 1 +

2

N(tJ+2 − tJ+1)
= 3.

Hence again,

|τi[u]| ≤ C
(
N−1 + ε−1ȳNi N

−1) ≤ κi ≤ LNγi, i = J − 2, J − 1, J.

Case 2: If i = J − 2, J − 1, J and q ≤ tJ+2, then we consider two subcases: hi+1 ≤ ε
and hi+1 > ε. In the former subcase, the proof follows like in Case 1 above. If, on the other
hand, hi+1 > ε, then max{ε, hi+1} = hi+1, and we can show that

(4.2) |τi[y]| ≤ Ch−1i+1ȳ
N
i N

−1, i = J − 2, J − 1, J.

Indeed, since tJ−1 < α < q ≤ tJ+2, we have

q − 5/N ≤ tJ−3 < α.

We modify the estimate in (3.14) as follows:

Pi ≤ C~−1i e−βxi−1/ε ≤ Ch−1i+1e
−βxi−1/(2ε)e−βxi−1/(2ε)

≤ Ch−1i+1ȳ
N
i

(
1 +

βhi
2ε

)
e−βxi−1/(2ε)

≤ Ch−1i+1ȳ
N
i e
−βxi−1/(2ε) (because hi ≤ Cε)

≤ Ch−1i+1ȳ
N
i e
− aq2 (qN/5−1) ≤ Ch−1i+1ȳ

N
i N

−1,

thus fulfilling (4.2). Therefore, in this case we also have

|τi[u]| ≤ κi ≤ LNγi.

THEOREM 4.2. Let u be the solution of the continuous problem (1.1), and let wN be the
solution of the discrete problem (3.1) on the VB mesh. Then the following error estimate is
satisfied:

|ui − wNi | ≤ CN−1, i = 0, 1, . . . , N.

Proof. We have γi ≥ 0 = (u− wN )i for i = 0, N , whereas (3.2) and Lemma 4.1 imply
that LNγi ≥ ±LN (u− wN )i for i = 1, 2, . . . , N − 1. Then the discrete maximum principle
gives |ui − wNi | ≤ γi, i = 0, 1, . . . , N , and the assertion follows.
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TABLE 5.1
The maximum pointwise error EN and the convergence order ρ for the problem (5.1).

− log ε N = 25 N = 26 N = 27 N = 28 N = 29 N = 210

1 3.35e-03 1.82e-03 9.47e-04 4.84e-04 2.45e-04 1.23e-04 EN

0.88 0.94 0.97 0.98 0.99 ρ
2 6.21e-03 3.32e-03 1.72e-03 8.73e-04 4.40e-04 2.21e-04

0.90 0.95 0.98 0.99 0.99
3 6.88e-03 3.61e-03 1.85e-03 9.38e-04 4.72e-04 2.37e-04

0.93 0.96 0.98 0.99 1.00
4 7.00e-03 3.67e-03 1.88e-03 9.52e-04 4.79e-04 2.40e-04

0.93 0.97 0.98 0.99 1.00
5 7.04e-03 3.69e-03 1.89e-03 9.56e-04 4.81e-04 2.41e-04

0.93 0.97 0.98 0.99 1.00
6 7.05e-03 3.69e-03 1.89e-03 9.57e-04 4.81e-04 2.41e-04

0.93 0.97 0.98 0.99 1.00
7 7.06e-03 3.70e-03 1.89e-03 9.57e-04 4.82e-04 2.42e-04

0.93 0.97 0.98 0.99 1.00
8 7.06e-03 3.70e-03 1.89e-03 9.57e-04 4.82e-04 2.42e-04

0.93 0.97 0.98 0.99 1.00

5. Numerical results. The Bakhvalov mesh [3] and its generalization [22] were orig-
inally designed for reaction-diffusion problems. In particular, the VB mesh’s numerical
performance can be found in [22]. On the other hand, we now illustrate its optimal conver-
gence result for the convection-diffusion problem (1.1) even with large values of ε. In order
to verify the numerical rate of convergence of the upwind scheme on the VB mesh, we also
calculate the convergence order ρ as a power of N−1,

ρ ≈ lnEN − lnE2N

ln 2
,

where EN = max
0≤i≤N

|ui − wNi |. We choose a = 2 and q = 1/2 in all numerical experiments.

We consider the test problem taken from [13, p. 235],

−εu′′ −
[
x sin

(π
4
x
)

+ 1
]
u′ +

(
2ex + x2

)
u = ex−1, u(0) = u(1) = 0.(5.1)

Since we do not know the exact solution to this problem, we approximate the error EN using
the double-mesh principle; see, e.g., [5]. The results are presented in Table 5.1.

Table 5.1 clearly shows that the method converges uniformly in ε and that the order of
convergence is 1. This order of ε-uniform convergence is optimal because the VB mesh, like
other B-type meshes, does not suffer from lnN -factors in the error like the piecewise-uniform
S-type meshes do. The optimal order of ε-uniform convergence is a well-known property of
B-type meshes (for instance, [10, Sec. 4.2.2] and [15] establish first-order convergence results,
whereas second-order convergence can be found in [6, 7]).

6. Concluding remarks. We have analyzed the ε-uniform convergence of the upwind
discretization of a linear singularly perturbed convection-diffusion problem on a Bakhvalov-
type (B-type) mesh, where ε is the perturbation parameter. Our proof of ε-uniform convergence
uses a barrier-function approach. So far, this proof method has only been applied to Shishkin-
type (S-type) meshes and not to B-type meshes. The proof is an extension of the new
barrier-function technique which we proposed in [16] and applied to a generalized Shishkin
mesh. A new technique is needed because the generalized Shishkin mesh in [16] only retains
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the transition point, whereas the B-type mesh considered here does not have any of the features
of S-type meshes. Otherwise, the classical barrier-function proof on S-type meshes primarily
relies on the a priori defined transition point between fine and coarse parts of the mesh and,
in the fine part, either on its uniformity or on the smoothness of the functions generating the
mesh in the layer region.

Our interest in B-type meshes can be justified by the fact that they do not have lnN -
factors in the error and are therefore numerically superior to the piecewise-uniform Shishkin
meshes. However, our paper does not provide a unifying analysis for all B-type meshes but
only deals with one specific B-type mesh, the simplest one from [22]. A unifying analysis like
this is possible when a hybrid stability-inequality (as opposed to the barrier-function estimate
of the truncation error) is used (see, for example, [6, 7, 10]). The question therefore arises
whether our technique can be extended to the original Bakhvalov mesh and its modifications
in [6, 7] or [19, p. 120]. We believe that this is possible to do because all these meshes share
many crucial properties, but some technical details may have to be different. We plan to work
on generalizing our analysis so that it can be applied to the whole class of B-type meshes
from [22], which includes the original Bakhvalov mesh.

Although the mesh in [6] is an example showing that a B-type mesh does not have to
be smooth in the layer region, this smoothness is almost a defining characteristic of B-type
meshes. This is because of the mesh-generating functions used to create the points in the
layer. The proof presented here, in its technical details, uses this smoothness, but based on our
result in [16], we do not feel that this is essential for our barrier-function technique. There
are also B-type meshes (see [25] for instance) which do not transition smoothly from the fine
to the coarse part. Therefore, the smooth transition is also a property that probably could be
eliminated but, again, some technicalities in the proof of ε-uniform convergence would very
likely have to be different.

The barrier-function technique is limited to schemes that satisfy the discrete maximum
principle. However, such schemes are natural for problems like (1.1), which satisfy the
continuous maximum principle. Admittedly, the proof of ε-uniform convergence on B-meshes
using barrier functions is not the simplest one (cf. the proof of Lemma 3.1), but the barrier-
function technique is of interest because it can be extended to higher-dimensional problems.
Proofs on the piece-wise uniform Shishkin mesh are simpler but the order of convergence is
sub-optimal as a trade-off. On the other hand, barrier-function proofs of ε-uniform convergence
on graded S-type meshes are essentially as involved as the proof presented here. This is why
other proof techniques are usually used with S-type meshes, but they are often combined with
the assumption that ε ≤ N−1 (see [10, p. 12] and [12] for instance). Although this assumption
is quite acceptable in practice, strictly speaking it does not mean convergence uniform in ε.
We point out that the proof presented here is valid for all values of ε.

As for higher-dimensional convection-diffusion problems, the barrier-function proofs
of ε-uniform convergence has only been done on Shishkin-type meshes [9, 11]. Roos and
Stynes [18] point out that the ε-uniform convergence proof for two-dimensional convection-
diffusion problems on a Bakhvalov-type mesh is one of sixteen contemporary open questions
in the numerical analysis of singularly perturbed differential equations. The present paper is a
step in the direction of answering this question. The remaining task is to adapt and extend our
barrier-function approach to 2D problems. This is our ongoing research project. Some results
related to this are sketched in the appendix.
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Appendix A. We outline here the proof of ε-uniform convergence for the upwind dis-
cretization of the two-dimensional singularly perturbed convection-diffusion problem on the
VB mesh. The problem, which corresponds to the one-dimensional case (1.1) with c ≡ 0
(assumed for simplicity), is given by

−ε∆u− b1(x, y)ux − b2(x, y)uy = f(x, y) in Ω = (0, 1)2,

u = 0 on Γ = ∂Ω,
(A.1)

where b1(x, y) ≥ β1 > 0 and b2(x, y) ≥ β2 > 0 for all (x, y) ∈ Ω̄. When the data satisfy the
compatibility conditions (see, for instance, [11, Lemma 1]), the problem (A.1) has a classical
solution u ∈ C3,1

(
Ω̄
)

and this solution can be decomposed as

(A.2) u = S + E1 + E2 + E12.

For details of the derivative estimates of the regular part S, the layer terms E1 and E2, and the
corner component E12, we refer the reader to [9, 11].

Let ΩN = {(xi, yj) : i, j = 0, . . . , N} be the discretization mesh, where the points
xi and yj form the respective VB meshes on the x- and y-axes. Let hx,i = xi − xi−1,
~x,i = (hx,i+1 + hx,i)/2 and hy,j = yj − yj−1, ~y,j = (hy,j+1 + hy,j)/2. We discretize the
problem (A.1) by the standard upwind scheme as used in [11],

(A.3)
LNwNij :=

(
−ε(D′′x +D′′y )− b1,ijD+

x − b2,ijD+
y

)
wNij = fij on ΩN\ΓN ,
wNij = 0 on ΓN ,

with

D′′xw
N
ij =

1

~x,i
(
D+
x w

N
ij −D−x wNij

)
, D′′yw

N
ij =

1

~y,j
(
D+
y w

N
ij −D−y wNij

)
,

D−x w
N
ij =

wNij − wNi−1,j
hx,i

, D+
x w

N
ij =

wNi+1,j − wNi,j
hx,i+1

,

D−y w
N
ij =

wNij − wNi,j−1
hy,j

, D+
y w

N
ij =

wNi,j+1 − wNi,j
hy,j+1

.

Here, {wNij } is a mesh function on ΩN representing the numerical solution wNij ≈u(xi, yj).
The numerical solution is decomposed analogously to (A.2),

wNij = SNij + EN1,ij + EN2,ij + EN12,ij .

We also split LN into LNx + LNy , where

LNx wNij = (−εD′′x − b1,ijD+
x )wNij and LNy = (−εD′′y − b2,ijD+

y )wNij .

Next, we outline the truncation-error estimates. We use∣∣LN (uij − wNij )∣∣ ≤ ∣∣LN (Sij − SNij )∣∣+
∣∣LN (E1,ij − EN1,ij

)∣∣
+
∣∣LN (E2,ij − EN2,ij

)∣∣+
∣∣LN (E12,ij − EN12,ij

)∣∣
and separately bound each term of the right-hand side.

It is an easy calculation to show that

(A.4)
∣∣LN (Sij − SNij )∣∣ ≤ CN−1.
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For
∣∣LN (E1,ij − EN1,ij

)∣∣, we follow the following key observation:∣∣LN (E1,ij − EN1,ij
)∣∣ ≤ ∣∣LNx (E1,ij − EN1,ij

)∣∣+
∣∣LNy (E1,ij − EN1,ij

)∣∣ .
We can now imitate the truncation error analysis of Theorem 3.2 to get

∣∣LNx (E1,ij − EN1,ij
)∣∣ ≤


C
(
N−1 + h−1x,i+1Ē

x
ijN

−1) for hx,i > ε & any hy,j ,

C
(
N−1 + ε−1ĒxijN

−1) for hx,i ≤ ε & any hy,j ,

where

Ēxij =

i∏
k=1

(
1 +

β1hx,k
2ε

)−1
and Ēyij =

j∏
k=1

(
1 +

β2hy,k
2ε

)−1
.

For
∣∣LNy (E1,ij − EN1,ij

)∣∣, we can easily show that with arbitrary hx,i,∣∣LNy (E1,ij − EN1,ij
)∣∣ ≤ C (hy,j + hy,j+1) ≤ CN−1.

where we used the property hy,j ≤ CN−1, j = 1, . . . , N , of the VB mesh. Combining these
bounds we get

(A.5)
∣∣LN (E1,ij − EN1,ij

)∣∣ ≤

C
(
N−1 + h−1x,i+1Ē

x
ijN

−1) for hx,i > ε & any hy,j ,

C
(
N−1 + ε−1ĒxijN

−1) for hx,i ≤ ε & any hy,j .

Analogously,

(A.6)
∣∣LN (E2,ij − EN2,ij

)∣∣ ≤

C
(
N−1 + h−1y,j+1Ē

y
ijN

−1) for hy,j > ε & any hx,i,

C
(
N−1 + ε−1ĒyijN

−1) for hy,j ≤ ε & any hx,i.

Finally, for the corner component, we have
(A.7)

∣∣LN (E12,ij − EN12,ij
)∣∣ ≤ CN−1



1 + h−1x,i+1Ē
x
ij + h−1y,j+1Ē

y
ij , hx,i > ε & hy,j > ε,

1 + h−1x,i+1Ē
x
ij + ε−1Ēyij , hx,i > ε & hy,j ≤ ε,

1 + ε−1Ēxij + h−1y,j+1Ē
y
ij , hx,i ≤ ε & hy,j > ε,

1 + ε−1
[
Ēxij + Ēyij

]
, hx,i ≤ ε & hy,j ≤ ε.

From (A.4), (A.5), (A.6), and (A.7), we get

(A.8)
∣∣LN (uij − wNij )∣∣ ≤ CN−1



1 + h−1x,i+1Ē
x
ij + h−1y,j+1Ē

y
ij , hx,i > ε & hy,j > ε,

1 + h−1x,i+1Ē
x
ij + ε−1Ēyij , hx,i > ε & hy,j ≤ ε,

1 + ε−1Ēxij + h−1y,j+1Ē
y
ij , hx,i ≤ ε & hy,j > ε,

1 + ε−1
[
Ēxij + Ēyij

]
, hx,i ≤ ε & hy,j ≤ ε.
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We now proceed to form a barrier function similar to the one used in the one-dimensional case,

γij = C̃
[
γsij + γxij + γyij

]
,

where C̃ is a sufficiently large constant independent of N and ε, and

γsij = N−1 ((1− xi) + (1− yj)) , γxij = ĒxijN
−1, and γyij = ĒyijN

−1.

By imitating Lemma 4.1, we can show that LNγij ≥
∣∣LN (uij − wNij )∣∣ for all cases described

in (A.8) depending on the values of the indices i and j. Using the fact that the discrete operator
LN defined in (A.3) satisfies the discrete maximum principle, we arrive at the main result:

The error estimate of the upwind scheme discretizing the problem (A.1) on the Vulanović-
Bakhvalov mesh satisfies∣∣uij − wNij ∣∣ ≤ CN−1, 0 ≤ i, j ≤ N.
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