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ON THE CONSTRUCTION OF REAL NON-SELFADJOINT TRIDIAGONAL
MATRICES WITH PRESCRIBED THREE SPECTRA*

WEI-RU XUT8 NATALIA BEBIANO%, AND GUO-LIANG CHEN$

Abstract. Non-selfadjoint tridiagonal matrices play a role in the discretization and truncation of the Schrodinger
equation in some extensions of quantum mechanics, a research field particularly active in the last two decades.
In this article, we consider an inverse eigenvalue problem that consists of the reconstruction of such a real non-
selfadjoint matrix from its prescribed eigenvalues and those of two complementary principal submatrices. Necessary
and sufficient conditions under which the problem has a solution are presented, and uniqueness is discussed. The
reconstruction is performed by using a modified unsymmetric Lanczos algorithm, designed to solve the proposed
inverse eigenvalue problem. Some illustrative numerical examples are given to test the efficiency and feasibility of
our reconstruction algorithm.

Key words. inverse eigenvalue problem, non-selfadjoint tridiagonal matrix, modified unsymmetric Lanczos
algorithm, spectral data
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1. Introduction. The process of manifesting the dynamical behavior of a system from a
priori known physical magnitudes, such as mass, length, elasticity, inductance, and capacitance,
is referred to as a direct problem. The problem of determining the physical parameters of the
system in terms of its observed, or expected, dynamic behavior is an inverse problem. Both
problems are of great importance in applications. The goal of this paper is to study an inverse
eigenvalue problem for tridiagonal matrices of the form

o ab
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€r—18r—1
Br-1 a € Pr
(L) Jp= Br Qrg1 1Bt )

ﬂr+1 Q42 €r+2/3r+2
57‘4»2

6n—lﬁn—l

ﬂnfl Qp

where all the diagonal entries are real, the subdiagonal entries are positive and ¢; € {1, —1},

fori = 1,2,...,n — 1. These matrices, called pseudo-Jacobi matrices, are related to the
selfadjoint involutory matrix H = diag(d1,d2,...,0,), with 1 = 1 and §; = H;;ll €;, for
i=2,...,n,as follows: Consider C" endowed with the indefinite inner product [-, -] defined

as [x,y] := (Hx,y) for any x,y € C", where (-, ) is the standard Euclidean inner product.
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The H-adjoint of a real matrix A is the unique n X n matrix, written A% which satisfies
[Ax,y] = [X,A#y]

for all x,y € C™. In particular, if A = A%, or equivalently, if A = HATH, A is referred to
as H-symmetric or pseudo-symmetric. Thus, the matrix J, in (1.1) is pseudo-symmetric. If
A#* A = I,,, Ais called H-orthogonal or pseudo-orthogonal. Let 3 = (31, ..., Bn_1), and
let e = (eq,...,€e,—1) be the so called sign vector. We denote the set of matrices of the form
(1.1) by J (n, €, B). If € is a vector with all entries equal to one, then J,, reduces to a Jacobi
matrix.

Pseudo-symmetric matrices usually appear in non-Hermitian quantum mechanics [12],
where H is the sign operator (that is, H? is the identity). A sign change in one of the
components in € may lead to strong perturbations in the spectral properties of the matrices
in 7 (n, €, 3). The study of pseudo-Jacobi matrices extends the well-known theory of Jacobi
matrices, which arise in a variety of applications in different fields such as classical moment
problems [1], vibrating systems [15], etc. The discretization and truncation of the Schrédinger
equation in non-Hermitian quantum mechanics leads to pseudo-Jacobi matrices [4]. Research
on inverse eigenvalue problems for Jacobi matrices originated several fruitful results; see
[2,7,9,10,11, 13,14, 15,16, 17, 23, 24, 25, 26, 27, 28] and the references therein. In contrast,
the theory concerning the pseudo-Jacobi case constitutes a small part of the literature. The
problems in this area deserve attention in order to extend the classical theory of the Jacobi
case. At present, some developments focusing on pseudo-Jacobi inverse eigenvalue problem,
abbreviated by the acronym PJIEP, have been obtained; see [3, 4, 5, 6, 18, 21, 29, 30]. This
paper is in the continuation of this research field. Our work proceeds along the conceptual
lines of the standard Jacobi case, but some remarkable differences occur. First, as the matrix
H that fixes the inner product is indefinite, there may appear Lanczos vectors with zero norm.
Second, the mathematical manipulations are more involved.

In what follows, the principal submatrix of J,, in the lines (w,...,v), 1 <w < v < n,
will be denoted by
5w Q41 €w+16w+1
(1.2) Jov = Bt ,
' ev—lﬂu—l
61)71 Oy

and Jp ,, simply by J,,. We will consider the following inverse problem:

PJIEP. Let a sign vector € and the sets A = {\;}"_; C C, py = {pi}i—1 C R, and
Uy = {Hi}?:_rl+1 CR, 1 <r <n-—2be given, where X is closed under complex conjugation
and the elements of both p, and py are pairwise distinct. Construct a pseudo-Jacobi matrix
Jn € J(n,€,8) such that A\, p,, and py are, respectively, the spectra of the matrices J,,, J,
and Jyyo p.

Before solving this computability problem, we determine a necessary and sufficient
condition under which this problem has a solution. In [18], Mirzaei investigated the particular
case of the PJIEP in which the elements of X, p;, and p, are real pairwise distinct numbers
and pq N py = . The special case in which H = I, & —I; & I,,_,_; was solved by Xu,
Bebiano, and Chen [29].

This article is organized as follows. In Section 2, we present a modified unsymmetric
Lanczos algorithm to construct a matrix J,, € J(n, €, 3) whose eigenvalues are real and
pairwise distinct. In Section 3, a necessary and sufficient condition under which the PJIEP has
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a solution is stated in the cases when p; N, = @ and py N py # . A numerical algorithm
to solve the PJIEP is proposed in Section 4. In Section 5, numerical examples illustrate our
approach to the PJIEP and test the efficiency and feasibility of the reconstruction algorithm. In
Section 6, some conclusions are drawn. The theoretical results stated in Sections 2 and 3 are
proved in the Appendices A and B.

2. Modified unsymmetric Lanczos algorithms. Throughout this paper, let
Xw.w(A) = det(Ay—yt1 — Juw) and o(J, ) be, respectively, the characteristic polynomial
and the spectrum of the pseudo- Jacobl matrix J,, ,, in (1.2). For s1mp1101ty, we denote x1.,(\)
as xn(A). Let J, € J (n, €, 3) have real and distinct eigenvalues )\1, )\2, .. )\ associated
with the real eigenvectors v1, vy, .. ., v, respectively, and let A = dlag()\l, )\2, ceey h) n)- It can
be easily shown that the eigenvectors vi,t =1,2,...,n, may be chosen so that they constitute
an H-orthonormal basis of R™, i.e., [v;,v;| = 0;;0;, where J,; denotes the Kronecker delta.
Thus V = [v1,va,...,v,] € R"*"is H-orthogonal, thatis, V#V = I,, with V# = HVTH.

Before presenting our modified Lanczos formalism, we state an useful extension of the
Thompson-McEnteggert-Paige theorem [19].

THEOREM 2.1. The first and last entries of the H-orthonormal eigenvectors of a pseudo-
Jacobi matrix with distinct real eigenvalues are both nonzero.

The unsymmetrlc Lanczos algorithm in [8] can be used to reconstruct a pseudo-Jacobi

matrix J from its distinct real eigenvalues )\1, )\2, ... )\n, the first, or the last, entries of
the corresponding H-orthonormal eigenvectors v1,va, ..., Vv,, and from its pseudo-norms
01,02, ..., 0, where §; := [v;,v;]. It should be noticed that H is indefinite and so the induced

inner product lacks positivity. Therefore, it must be analyzed whether the H-norms of the
computed Lanczos vectors do not vanish. By using the unsymmetric Lanczos algorithm for the
matrices diag(p,) and diag(p,) with the appropriate starting vectors of order r and n —r — 1,
respectively, the pseudo-Jacobi matrices J, and J,.;2 , are obtained. The diagonal entry
a1 of J, results from the trace condition and the neighboring off-diagonals come from the
Lanczos procedures.

Firstly, we present the backward modified unsymmetric Lanczos algorithm to recover the
matrix J, € J(n, €, 3) initialized from the last entries of its H-orthonormal eigenvectors
Vi,V2,...,Vn. o N
_ THEOREM 2.2.  Let Ai,Aa,..., Ay be the real pairwise distinct eigenvalues of
JIn € J(n, €, B). Given the last entries v, 1,Vn.2, ... ,Vnn Of the corresponding H-ortho-
normal eigenvectors vi,va,...,V,, then jn can be constructed by the backward modified
unsymmetric Lanczos algorithm in Algorithm 1.

Next, we give a forward modified unsymmetric Lanczos algorithm, initialized with the
entries in the first row of the H-orthogonal matrix V. The proof of this result is similar to that
of Theorem 2.2, and so it is omitted.

THEOREM 2.3. Let J,, € J(n,€,3) have distinct real eigenvalues A1, Aa, ..., Ay, and
let vi1,v12,...,v1,n be the first entries of the corresponding H-orthonormal eigenvectors
V1,V2,...,Vy. Then, J, can be constructed by the forward modified unsymmetric Lanczos

algorithm in Algorithm 2

REMARK 2.4. By executing Algorithm 2 from Theorem 2.3, we find the matrices
Y = [Y,Y,..., Y, = VVand Z = [Z,,Z,,...,Z,] = V# from the initial vector
Y1 = (11,v12, V1) T

3. The construction of the pseudo-Jacobi matrix .J,, in the PJIEP. Let be given a sign
vector € and the sets A, p1, and p, as in the PJIEP. We construct a solution J,, € J(n, €, 3)
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Algorithm 1 Backward modified unsymmetric Lanczos algorithm.

1: Initialize two n-dimensional column vectors Y,, 11 = 0 and

rg\n-&-l = (vn,lavn,Qa .. )T'

s Vn.n

2: Set 5n+1 = 1’?n+1 = Hg'\n+1(sn+1, k=n+1.

3: while ([TS‘\k,S‘\k](Sk_l > 0) do

4 Bre1 =[Sk, Sk)Ok—1
PN PN
skrk
5: k—1 =
B Br—1
Sk
6: Y1 =
Br—1
7 Zy—1=HYp 16,1
8: k=k-—-1
o = ZL AYy,

10: S = (A —arplp)Yr — Yiqa
11: ?k = H/S\kék
12: end while

Algorithm 2 Forward modified unsymmetric Lanczos algorithm.

1: Initialize two n-dimensional column vectors Zo = 0 and ro = H (v11,V12, . .. ,vl’n)Tél.

2: Setdg = 1,50 = Hrodg, k = 0.
3: while ([rk.,rk.]ékH > 0) do

4 Br = /IrK,re)or+1
T
skrk
5: k= ——
7 Bk
Ty
6: Zk+1 = 7
7: Yk+1 = sz+15k+1
8: k=k+1
: ap = YEAZ]C

100 ry=A—opln)Zy —Ye—1Zp—1
11: Sk = Hrkék
12: end while

for the PJIEP of the form

JT E’I“ﬁ’rer
Jn - ﬁre? Qpq1
0 fBrwr

@3.1)

0
T
67‘+16r+1w1 5
JT+2,71

where e, = (0,...,0,1)T € R", w; = (1,0,...,0)T e R*""1 5(J,,) = A, 0(J,) = pq,
and o(Jy42.,) = po. Hence, the pseudo-Jacobi matrices J, and J,yo ,, are, respectively,

H,-symmetric and Hy-symmetric for

H1 = dlag(l, €1,€1€2,...

Hy = diag(1, €42, €, 426743, .., €r42 - €,_1) = diag (

,€1 0 Er*l) = diag(51752’ o .,51-)

and

6r+2 57‘+3 6n >

s Sy
§r+2 57’—}-2 57’—}-2
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1 @ 1)

Let ul(»l) = (Uy U jyes Uy )T be the H;-orthonormal eigenvector of J,. associ-

ated with its eigenvalue pu;, for i = 1,2,...,r, and let u§2) = (uggg, ufg, . ,uf_)r_l DT
be the H-orthonormal eigenvector of J,.;2, corresponding to its eigenvalue p,.4;, for

i1=1,2,...,n —r — 1. The matrices

Uy = [ugl),uél), ulY] and
U2 = [u(12)’ uéZ), . ,uglz_)r_l]

are, respectively, H-orthogonal and Hs-orthogonal and satisfy
(3.2) UFJ.U = Ay = diag(py)  and  UF Jry0.,Us = Ay = diag(ps).

In Theorems 3.1 and 3.2 below, we construct the pseudo-Jacobi matrix J,, of the form
(3.1) in the following two cases:

(D Npy=2  and  (2) py Npy # 9.

Although the notation is inevitably heavy, our approach is conceptually simple and
consists of the following three main steps.
(i) We recover J,- using Algorithm 1 with

H=H,, A=A,
and the initializing vector

< — (D) 1)\T
Sp41 = (ur,17ur,2v s aus“,vz) :

Algorithm 1 is used, replacing in steps 1, 2 and 10 all the subscripts n by r.
(ii) We recover J,1 o ,, using Algorithm 2 with

H = H,, A=Ay,
and the initializing vector

2 2 2
Fry1 = HQ(U(H)’ u(12)’ s 7“&,3;—7-—1)T . 6T+2/6T-‘r2'

In this forward modified unsymmetric Lanczos algorithm, we replace all the subscripts n
and k by n —r — 1 and r + k + 1, respectively. Thus, all the d,.; ;41 have a multiplicative

factor 1/6,12. In step 1, we replace ro = H(v11,v12,- - - ,vl,n)Tél by r,y1. In step 2, we
also replace all the subscripts 0 by r + 1.
(iii) In the backward modified unsymmetric Lanczos process, Y = [Y1,Yo,...,Y,] =

UL. Similarly, Z = [Z1,2Z5,...,Z, 1] = Uz# in the forward modified unsymmetric
Lanczos process. In both modified unsymmetric Lanczos processes we have y; = €;03;.

THEOREM 3.1. Let be given a sign vector € and the sets A, p1, and 4 as in the PJIEP.
Setxj = — " (N — p ) H?;ll,#j(ui —p)" L =12, .. ,n— 1 If uy N py = O, then
the PIIEP has a solution if and only if the following conditions are satisfied, and in this case
the solution is unique:

() Ort10525 >0 ifi=1,2,...,r, and
Ory16j412;, >0 ifj=r+1,r+2,...,n—-1,

-1
(2) &>y x;>0and ery1 35—, x5 >0,
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(3) [Sk,Sk]0k—1 > O0fork =r,r —1,...,2, where

~ 1 1 1
Sk = (A1 — ol )Y — Ve Ypi1, Yi = (U;(C,%, u,ii, e ,u;(q,i)Tv and . = € Pk,
(4) [Frsrsts Fronsd] “gﬁjj >0fork=1,2,....,n—1r —2 where
Frik+1 = (A2 - a7‘+k+lln—7'—1)zk - 77‘+kzk—1y
2 2 2 S
Z. = Hg(ufc’i, u,(C,%, . ’ul(c,Zz—r—1)T . 761)::1’ and

Yrtk = €ErtkBrik-
THEOREM 3.2. Let be given a sign vector € and the sets A, pu,, and [i5 as in the PJIEP.
Let py M py = {5, and py; = p; foranyi = 1,2,... kwith k < min{r,n —r — 1}.
Assume \; = p;, 1 =1,2,...,k, and set

n n—1
Tj=— H()\i—uj) H (wi—n))™'  j=k+1...n-1
i=k+1 i=k+1,i#j

Then, the PJIEP has a solution if and only if
(1) there exist real numbers 0; ¢ {0, 1} such that

5r+16j0jxr+j >0 and 57>+15r+j+1(1—9j)x,.+j > 0, fOl’j = 1, 2, Ceey k,

2) Or+10525 > 0 forj=k+1,...,r, and
Or410j412; >0, forj=r+k+1,...,n—1,

k r
(3) ET(ijl Ojxrs; + Zj:k+1 zj) >0 and
k n—1
67”+1(Zj:1(1 —0;)zr4j + Zj:r+k+1 zj) >0,
(4) Conditions (3) and (4) in Theorem 3.1 hold.
Furthermore, there are infinite many solutions.

4. Algorithm. Based on Theorems 3.1 and 3.2, we present the following algorithm to
construct a pseudo-Jacobi matrix J,, in J (n, €, 3) that solves the PJIEP. The 0,7 = 1,2, ... k,
in Theorem 3.2 are randomly selected in R — {0, 1} most of the times.

Algorithm 3 A solution of the PJIEP.
Input: €, A\, i1, and p, as in the PJIEP
Output: J,

1: if py N py, = @, then
2: Form

"N — s
oy = - Al ) e,
i=1,i#j (i — )

3. if the conditions (1)—(2) in Theorem 3.1 hold, then

Calculate
1 1
r 2 n—1 2
Br = <€T'Z$j> ; Bra1 = <6r+1 > l’j) :
=1 j=r+1
S Compute
1y VOr+165T; .
ur,j ‘_Tu ]—1,2,...77',
\/Or41041;
u§27)-_,~2= r+10j+1 Looj=r+1,r+2,...,n—1.
’ 6r+1

6: else
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7 stop

8  endif

9: else

10:  Rearrange the elements in A, g, and p, such that g, Ny, = {,ui}f:l, Mrti = i, and A\ = p;
fort =1,2,...,k.

11: Form

’(l_ AZ— ;.
Tj == l}j?ﬁl( M]) ) j:k+17-~~7n_17

i=k—41,i%] (i — )

12:  Selectf; inR — {0,1} foralli =1,2,... k.
13: if conditions (1)—(3) in Theorem 3.2 hold, then

14: Calculate
1
k T N
Bri=|&O_ Oimrps+ > z) |
j=1 j=k+1
1
k n—1 2
Briri= | er1(Q_ (L= 0z + Y )
j=1 j=r+k+1
15: Compute
1
1) FV6T+16jeij+j7 j:1327"'7k7
Uy ;=7 _
! ﬁ—\/&ﬂ@m’j, i=k+1,...,m,
and
1 .
7\/51"+167”+j+1(1 _Qj)x7'+j> J= 1727"-7k7
)= { P
' —— /O 10r 1T 45, j=k+4+1,...,n—r—1.
/BT‘+1
16:  else
17: Go to step 12.
18: end if
19: end if
20: if the conditions (3)—(4) in Theorem 3.1 hold, then
21:  Construct the pseudo-Jacobi matrix J, from Hi, pq, and g1 = (uill),uﬁl; . ,us.}}.)T by
Algorithm 1.
22:  Compute the pseudo-Jacobi matrix J;12,, from Ha, pt,, and g2 = (uﬁ), u(122), o ,ufzhrfl)T
by Algorithm 2.
23: else
24:  stop
25: end if
26: Compute a1 = 31y i — S0y i

27: return J,

Next, we discuss the computational complexity of the above algorithm considering just
the case when p; N py = .

Step 1 requires O(r(n — r — 1)) operations and step 2 O((n — 1)(4n — 5)). Step 3
requires O(2n) operations, step 4 does not require operations, and the cost of step 5 is
O(n—1). As the computational complexities of Algorithms 1 and 2 are both at most O(15n2),
the cost of steps 20-22 is at most O(15(r% + (n — r — 1)?)). Finally, step 26 requires
O(2n — 2) operations. Therefore, the total complexity of the algorithm when g, N py = & is
approximately O(19n2 + 29r2 — 29nr — 34n + 29r + 17).
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5. Numerical experiments. In this section, we present some numerical examples illus-
trating that Algorithm 3 is theoretically effective to solve the PIIEP. All the tests are performed
by using MATLAB R2016a. Because all the pseudo-Jacobi matrices J,, in J(n, €, 3) rely
on the sign vector €, the main diagonal entries & = (a, a2, . .., @), and the subdiagonal
entries 8 = (1, B2, - - -, Bn—1), they can be generated by the following MATLAB code:

diag(alpha)+diag(beta,-1)+diag(beta.x*epsilon,l).

Leti = y/—1 be the imaginary unit.
EXAMPLE 5.1. Consider an extended harmonic oscillator [12]

Hg = g( *+a2%) +ivep, B>,
which acts on L? (the Hilbert space of square integrable differentiable functions of the
real variable x). The operator p: L? — L? is the differential operator f(z) — —i% and
x: L? — L?is the multiplicative operator f(z) — x f (). With respect to the orthonormal ba-
sis constituted by the eigenvectors of the harmonic oscillator, ¢, (z) = K, (z— )" exp(— %)
(K, is the normalization constant), the non-Hermitian operator Hpg is represented by the non-

selfadjoint infinite tridiagonal matrix

38 —V1
vVio38 —V2
5

V3. 3B

with real spectrum. The matrix Mg is pseudo-Hermitian for H = diag(1, —1
Then, we consider the finite » X r tridiagonal matrix

I _

VI35 2
VCRE
b

717_17“')'

R =y

Let a pseudo-Jacobi matrix .J,, of the form (3.1) be given as follows:

Jr = Mﬂ,ra Jr+2,n = Mgﬂw
/87‘ = \/;7 ﬂ’r'-‘rl =vr 17

Qry1 =T, €r = €ry1 = L.

Assume A = o(J,,), by = o(J,), and py = 0(Jr42,,). We choose the values of r and 3
such that the elements in p¢; and g4 are all real and pairwise distinct and gy N py = .

By Algorithm 3 we can obtain a unique pseudo-Jacobi matrix Jp. Then, we compute the
spectra A, 1y, and g, of jn and of its principal submatrices jr and <7T+27n. In Table 5.1, we
present the comparison between A, s o, J,., and the initial counterparts. If the value of r
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is larger, then the errors | A — Xl|2, [ — Fiy ll2. |tg — fiol2, and ||J, — Jp || will also be
larger. Assume that there exist an H1-orthogonal matrix (71 and an H,-orthogonal matrix (72
such that U J,.U, = diag(f1,) and U Jr42nUs = diag(pt,). From the Hoffman-Wielandt
theorem for diagonalizable matrices [20], we have that

iy = Bll2 < 6(UDEO)|1Jr = Tl and
12 = Boll2 < K(U2)k(U2)||Jrt2,n — Jrs2nllr
by (3.2), where k(X)) denotes the condition number of the matrix X. Similarly, there exist

pseudo-orthogonal matrices P and P such that P#J,, P = diag(\) and P#J,, P = diag(X).
We also have that

IA = X2 < K(P)&(P)|[ o — T -

So the large variations in the errors for J,, may yield such small variations in the errors for the

eigenvalues A, 11, and p, in Table 5.1. Thus, the results agree with our theoretical results

established in this paper and demonstrate the feasibility and effectiveness of Algorithm 3.
EXAMPLE 5.2. Let the vector e = (1, —1,—1,—1,1,—1, —1,1) and the matrix

2 2 0 0 0 0 0 0 0
2 -1 -1 0 0 0 0 0 0
0 1 3 -2 0 0 0 0 0
0 0 2 -2 -2 0 0 0 0
Jo=10 0 0 2 2 3 0 0 0
0O 0 0 0 3 —4 -2 0 0
0 0 0 0 0 2 1 —/2 o0
0 0 0 0 0 0 V2 3 V2
0o 0 0 0 0 0 0 2 -3]

be given. Consider 7 = 4 and let the spectra X, w1, p5 of Jy and of its principal subma-
trices J4 and Jg 9 be as in Table 5.2. Then, p; N py = &, H; = diag(1,1,—1,1), and
H, = diag(1, —1,1,1). By Algorithm 3, we get

1 = —0.35726558990817, x5 = —0.66666666666666, x3 = 1.99999999999999,
x4 = —4.97606774342519, x5 = 0.71665054819938, z¢ = —3.00000000000001,
7 = 9.00000000000002, rg = 2.28334945180063.

It is obvious that the conditions (1) and (2) in Theorem 3.1 hold. Thus,

g1 = (0.29885849072269, 0.40824829046386,0.70710678118654, 1.11535507165041) T,
g2 = (0.28218405108868, 0.57735026918963, 1.00000000000000, 0.50369186477897) .

Continuing using Algorithm 3, the pseudo-Jacobi matrix JoeJ (9, €, 3) in Table 5.3 can be
obtained.
This matrix is the unique solution of the PJIEP because we have

|Jo — Jo||p = 1.80047652073822¢-13.

Furthermore, we compute the spectra ;\, 1y, o of jg and of its principal submatrices Jy and
J6,9. In Figure 5.1 we compare the computed spectra with the original spectra X\, pt;, and 5.
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A= Xl2

TABLE 5.1

Numerical results of Example 5.1.

:IH IN:__M

2 = o2

__&ﬁ - 2::»..

10

<
I

B=15
B =17.05
B =17.005

B =105
B =10.05
B =10.005

B =122
B =12.27
B =12.227

B =156
B =15.62
B =15.627

B =385
B = 38.54
B = 38.542

1.21654087139106e-13
8.91280407333371e-14
5.74883418456454e-14

1.03928498584809¢-13
1.42836826118259%¢-13
1.01618101503372e-13

1.63429971714009¢-10
3.56072544922297e-10
7.66680284994086¢-11

1.58489386292105e-06
2.70117225939402e-07
8.29477849157585e-07

2.67730161759526e-05
3.47348272517093e-05
4.68726739372201e-05

7.53906016829511e-14
3.31166706280011e-14
1.76968296418523e-14

1.87991937470471e-14
6.37511677045892¢e-14
2.31608595598326e-14

1.63136090375117e-10
3.10049934403217e-10
7.28806581445643e-11

1.58492490913971e-06
2.70116033248486e-07
8.29470091227044e-07

2.67730145907598e-05
3.47347596882915e-05
4.68725644670191e-05

1.07874211489352e-14
4.36203221376583e-14
5.23911753690996¢-14

2.45497399495158e-14
1.48885833566228e-14
2.04281036531029¢-14

6.45688930806847¢-12
1.66967112863334¢-10
2.29559276828696¢-11

3.17397792186766e-09
2.97767699245570e-11
3.67038177702291e-09

1.43873524019575e-08
3.66138295955242¢-08
2.17506827107243e-08

5.55406538452228e-07
6.75339350432302e-07
8.69512140667790e-09

1.14483347887364e-06
8.23170442289946e-06
2.00292443464089¢e-06

2.63164795080718e-06
8.95113200525828e-06
3.96950713189288e-06

3.05364567938157e-05
2.82192471207050e-05
9.30526242363253e-06

5.16235943827669e-05
6.20954702973390e-05
1.80684325832389¢-04
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TABLE 5.2

The spectra A = {)\; }?:1, py = {Nj}?:l and poy = {uj}?zs.

Main diagonal & = (a1,

—3.27839182934239

J Aj 1

1| 2.97935111716971-0.16836804694051i | 2.73205080756888

2 | 2.97935111716971+0.168368046940511 | —2.00000000000000
3 2.25663440991630 2.00000000000000
4 | 1.26336198716348-1.322572166827031 | —0.73205080756888
5 | 1.26336198716348+1.32257216682703i | 2.37228132326901

6 ~0.03727254885815 1.00000000000000
7 —1.96441245351364 —-3.00000000000000
8 —4.46198378686847 —3.37228132326901
9

TABLE 5.3 _

s, ..., a9) and subdiagonal 3 = (51,,52, ..

L Bs)of Jo € T(9,€,B).

original spectrum A
computed spectrum A
original spectrum
computed spectrum fiy
original spectrum o
computed spectrum iy

T
O % O+ 0O

0.5

Im
o
T
)
8
®
L]
®
®

0.5+

J @ Bi

1 1.99999999999997 | 2.00000000000004
2 | —0.99999999999996 | 1.00000000000001
3 | 2.99999999999997 1.99999999999997
4 | =1.99999999999997 | 2.00000000000001
51 2.00000000000001 3.00000000000001
6 | =3.99999999999999 | 1.99999999999998
7 | 0.99999999999994 | 1.41421356237315
8 | 3.00000000000007 | 1.41421356237305
9 | =3.00000000000002

FIG. 5.1. Comparison between the original spectra A, 41, po and the computed spectra by Ry
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TABLE 5.4 ~
Absolute errors between the original spectra A, |1, o and the computed spectra X, [iy, L.

A = All2 | 1 — a2 | 22 = Pl
6.27822826864024e-15 | 5.61843057806044e-15 | 7.93168690704416e-15

TABLE 5.5
The spectra X = {)\j}?:l, p = {;Lj}?:l and po = {:“J'}§':5'

j Aj 1

1 2.00000000000000 2.00000000000000

2 —2.00000000000000 —2.00000000000000
3 6.58533601596052 2.73205080756888

4 3.40647425562398 ~0.73205080756888
5 1.79809235457054 2.00000000000000

6 | —1.96971063765212+2.86959352986032i | —2.00000000000000
7 | =1.96971063765212-2.869593529860321 | 3.37228132326901

8 —0.57578829818534 -2.37228132326901
9 ~2.27469305266548

In Table 5.4 we also present their respective absolute errors. The computed spectra are in total
accordance with the original spectra within the machine precision.
EXAMPLE 5.3. Lete = (—1,—1,1,1,—1,—1,—1,1),r = 4, and

-2 -2 000 0 O 0 0
2 3 -1 00 0 0 0 0

0 1 -1 20 0 0 0 0

0 0 225 0 0 0 0
Jo=| 0 0 05 2 —4 0 0 0
0 0 00 4 -3 =2 0 0

0 0 000 2 2 —/2 0

0 0 000 0 V2 4 2

L 0O 0 000 0 0 V2 -2]

Then, H; = Hy = diag(1, —1,1, 1), and the spectra A, p, and p, of Jy and of its principal
submatrices .J4 and Jg g are given in Table 5.5.

Obviously, p; N py = {2.00000000000000, —2.00000000000000} and & = 2. In
Algorithm 3, we consider three of the solutions. Firstly, by selecting ; = 2 and 6, = —7,

~ ~(1
a pseudo-Jacobi matrix Jél) € J(9, ¢, ﬂ( )) is obtained in Table 5.6 . Then, by choosing

~ ~(2
0, = 3 and ; = —8, we get another pseudo-Jacobi matrix Jéz) e J(9, 6,6( )) whose
entries are displayed in Table 5.7. Next, taking #; = 5 and 03 = —8, a pseudo-Jacobi matrix

7(3) 53, . . L
Jg” € J(9,€,8 ) is obtained and given in Table 5.8.

Finally, we compute the spectra ;\(Z), ﬁgl) and ﬁ(;) of the pseudo-Jacobi matrices jéi)

and of their principal submatrices jf) and jéfg, for i = 1,2,3. Comparing these spectra
with the original spectra A, pt,, and p,, Figures 5.2, 5.3, 5.4, and Table 5.9 illustrate that
the computed spectra agree with the original spectra up to the machine precision. All the
numerical results are in accordance with the theory developed in this paper.

6. Conclusions. In this paper, an inverse eigenvalue problem for Jacobi matrices that
was investigated in [17] has been considered in the non-selfadjoint setting. This problem,
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TABLE 5.6
Main diagonal a = (&gl), &;U, ... ,&él)) and subdiagonal ﬁ(l) = (E§1), ~él), . ,Bé”) ofjgl) €
709,63").
1 | —1.71754190328978 | 1.83482089091865
2 | 2.65888882292985 0.58272751993471
3| 2.14866944697204 1.94778362432672
4 | —1.09001636661211 | 10.09125033548037
5| 1.99999999999999 | 9.63500562186306
6 | —2.25134649910235 | 0.94668324899178
7 | 1.62607316500176 1.14864353913391
8 | 3.52046222224392 1.69309068435266
9 | —1.89518888814334
TABLE 5.7
Main diagonal a® = (&(12), &;2), ... ,aéQ)) and subdiagonal 5(2) = (5&2), ~é2), ceey ~é2)) of jgf) €
J09,687).
1 | -1.20263604281617 | 1.12069676849459
2 | 1.81727913229512 | 0.97735873260376
3| 2.78441794338492 1.72672967266801
4 | —-1.39906103286386 | 10.31988372027510
5| 1.99999999999999 | 9.87420882906570
6 | —2.53333333333336 | 1.50122457136676
7 | 2.27605177993530 | 0.64677836372989
8 | 3.00807778349232 1.82098682825439
9 | -1.75079623009426
TABLE 5.8
Main diagonal a® = (&53), &53), e &ég)) and subdiagonal ,5<3) = (E&S) , 553)7 RPN Eég)) of j};g) €
J09,687).
j &§3) B’J(_S)
1 | —0.88332250873279 | 0.45831627309447
2 | -1.02180790112723 | 3.59721086479957
3| 5.83279767929948 | 1.17008113254617
4 | -1.92766726943946 | 9.60034721594304
5| 1.99999999999999 | 9.11957601353623
6 | —3.31462925851710 | 2.60660360466998
7 | 3.19245936689820 | 0.38865718165124
8 | 2.80498308965325 | 1.87250089319368
9 | —1.68281319803435
TABLE 5.9 )
Absolute errors between the original spectra A, 11, po and the computed spectra X(z), ﬁg”, /,’Zél)
I N N PO N 170yl O N 17yl

2.76195696656855e-14 | 1.39393795312866e-14 | 7.02517689335219¢-15
7.85613248788838e-14 | 2.44249065417534e-15 | 2.97904098389673¢-15
9.20595358801062e-13 | 2.13859186672314e-13 | 5.82417538579527e-15

W N = .
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r ® —
05 O original spectrum A
’ + computed spectrum A
2r o original spectrum
15k * computed spectrum ﬁgl)
' o original spectrum p
T computed spectrum ﬁél)
05
E of ®e o %0 o @ ®
=
0.5
qF
15
.2 -
25
73 1 $ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 25 2 15 1 05 0 05 1 15 2 25 3 35 4 45 5 55 6 65 7

Re

~(1) - ~
FIG. 5.2. Comparison between the original spectra A, puq, po and the computed spectra )\( >, ,u,§1>, u(;)‘

abbreviated as PJIEP, has been solved from the knowledge of a given sign vector € and from
the prescribed spectra A, pq, and g, of J,, and of two complementary principal submatrices,
where A is closed under complex conjugation and all the elements in p; and g, are real
pairwise distinct. Necessary and sufficient conditions for the existence of the solution have
been found according to the two cases puq N py = & and p; N py # . Then, the desired
pseudo-Jacobi matrices have been constructed with the aid of a modified unsymmetric Lanczos
algorithm. Furthermore, numerical experiments illustrate the efficiency and feasibility of the
proposed construction algorithm (Algorithm 3). Our results extend the previous results
obtained in [18] for the unique case when p; N o, = & as well as in [6] and [29] for the cases
H=I®&-I, rand H =1.® -1 & I,,_,_1, respectively. If the sets t; and g, in the
PJIEP have complex elements and are closed under conjugation, then the present approach
does not apply. This is an open problem that deserves future attention.
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Appendix A. Proofs of Theorems 2.1 and 2.2. The proofs of the theorems in Section 2
require the following lemmas.

LEMMA A.1. Let J,, € J(n, €, B8) have distinct real eigenvalues /):1, /):2, ... ,Xn. Then,
the adjugate ofXjIn — jn is

o~

(A.1) adj(\ L, — Jn) = Xt (N vy HO;,
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5T ®
O original spectrum A
251 + computed spectrum A
ok O original spectrum
* computed spectrum ﬁ?)
15 o original spectrum fp
1r computed spectrum ﬁg)
051
E of me o o0 © ® ®
=
0.5
,1 -
15
2F
25
_3 1 $ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 25 -2 -15 -1 -05 0 05 1 15 2 25 3 35 4 45 5 55 6 65 7
Re

FIG. 5.3. Comparison between the original spectra A, puq, po and the computed spectra by ) ~< >, ﬁ(22)‘

where v; is the jth column of an H-orthogonal diagonalizing matrix of jn and where
Xn(Aj) = H?:i;&j()‘j = i)

Proof. Under the hypothesis on jn, there exists an [{-orthogonal matrix V' such that

TV =VA, A=diag(A, A2, An).

Thus,
adj(M,, — J,,) = det(AL, — Jp) - (AL, — Jp) "' = det(AL, — Jp,) - V(AL — A)~'V#
- d n - An
_ et(A], - J, )vl-vZTH(SZ—.
= A=A\
From the last equality, we easily obtain (A.1). 0

REMARK A.2. Matrices in J(n, €, 3) may exist with multiple eigenvalues (see Ex-
amples 4.1 and 4.2 in [29]). It has been shown in Lemma A.1 that, if J,, € J(n,€,3) is
diagonalizable and has a multiple eigenvalue );, then the equality (A.1) also holds.

LEMMA A.3. Under the assumptions in Lemma A. 1, both of the following statements
hold:

(1) If w < v, then X1 o, 1( 3)Be 'B'Ule'qul,n(Ej) = X;l(zj)ijvvj(swéj;
(2) Ifw >, then X1,v— 1( 7 )ﬂv : '6w—1Xw+1,n()\j) = X;l()\j)ijvuj&véj;
where v;; is the ith component of v ;.
Proof. If w < v, we consider the (w, v)th entry on both sides of the equality (A.1), and
we get

X1w-1 ()8 Bo1€w - Com1Xot 10 (Ng) = X (g )WV 0ud;.

Then, (1) holds because €, - - - €,_1 = %
If w > v, we take the (w, v)th entry on both sides of the equality (A.1). Then,

Xl,v—l(}\\j)ﬂv T ﬁw—le—Q—l,n(’)\\j) = X;L()‘j)ijvvj(sv(;jy
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3r ® _
25k O original spectrum A
' + computed spectrum A®)
2r O original spectrum
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1 computed spectrum /iy
0.5
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05
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15F
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~(3) ~ ~
FIG. 5.4. Comparison between the original spectra A, puq, po and the computed spectra )\( >, ,u,§3>, N(23)‘

and (2) follows. 0

When (w, v) is, respectively, taken to be (1,n), (n,1), (1,1), and (n, n), the following
immediate consequence of Lemma A.3 holds.

LEMMA A.4. Under the assumptions in Lemma A. 1, we have

o~

(1) X;L(/):j)vljvnj = 51@'51?2 < Bty

(2) xn (A1 = 0105 x2.n(Ns);

(3) X;L(Aj)v’?’b]‘ = 0n0;X1,n-1(Nj).

Proof of Theorem 2.1. The first item in the above lemma was obtained in [5, Lemma 2.2].
Because 0 # x/,(A;) € R, from (1) it follows that 0 # v1;v,,; € R. a

Proof of Theorem 2.2. From Lemma A.4 (1) it follows that 5182 -+ 8,1 # 0 and
0#wv,;, €R fori=1,2,...,n Since (v,1,Vn2,---,Vnn) is the last row of the H-
orthogonal matrix V/, it follows that

(A2) S1vo )+ 0avp g 4 o+ Oy, = O

Assume that [k, 8%]0x—1 > 0, for k = n,n —1,...,2, and also [, +1,5n+1]0n > 0.
We first show that Y¥,,, Y,,_1,..., Y1, computed by this algorithm, are the columns of the
H-orthogonal matrix Y = [¥1,Yo,...,Y,], and we demonstrate that the following pseudo-
orthogonality relations hold:

(A.3) [Yi,Yj]:(sij(Si, forj:n,n—l,...,i andi:n,n—l,...,l.

From (A.2) and steps 4 and 6, (A.3) follows for i = n. If (A.3) holds fori =n,n—1,...,1,
we then prove that it also holds fori = — 1.
If j =1 —1, steps 4 and 6 imply that (A.3) holds because

|
Y11, Y 1] = ——[s1,5] = 1.

-1
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For j > [, from steps 6 and 10 we have

1 1
— Y=
5171[ v ¥l Bi-1

1
=34 ([AY 1, Y] — o600 — Yi0141,50141)-

Clearly steps 7 and 9 imply that the right-hand side of the above equality is zero for j = [. If
j>1, we get

Y_1,Y] = (A — L)Y —viYi41, Y]

[AY}, Y] = [Yi,AY;] = [Y1,5; + a;¥; + ;Y 41]
= Bj—101,j—101 + 8 501 + v;61, 5410 = Bj—101,5-10;

from steps 6 and 10. Then

1
Y;_1,Y;] = B (Bj—101,j—101 — 10141,j0141) = O,
—1
because yy_1 = i[@c,fk]ék = €,_18k_1,fork =n,n —1,...,2, from steps 4, 5, and

11.
Next, we show that the matrix Z = [Z1,Z,,...,Z,] computed by this algorithm is an
H-orthogonal matrix. As

(Zi,Z;] = [Y;,Y;]6:6; = 06,

forj =nn-—1,...;4,and ¢ = n,n — 1,...,1, from step 7 and (A.3), we can also get
Z = HY H as well as the biorthogonality condition YTZ = I,,.

Now, we show that’s; = 0. It is sufficient to prove that [s1, Y;] = 0,for: =1,2,...,n,
because Y1,Yo,...,Y, constitute an H-orthonormal basis of R™. If 1 = 1, we obtam

[51,Y1] = [AY1 — a1 ¥y — Y2, Y1] = [AYy, Y] — 161 =0
from steps 7, 9, and 10. If ¢ = 2, we have
[s1,Y2] = [AY1 — a1 Y1 —11Y2,Ya| = [V, AY2] — 7162
= [¥Y1,52 + a2¥2 + 72¥3] — 7102 = 161 — 7162 = 0
from steps 6 and 10, and y; = €1 31. If i > 3, we obtain

[51,Y;] = [AY; — a1 Y1 — 1Y, Y| = [Y1,AY,]
= [Y1,5 + ;Y + v Y1) = [Y1,5i-1Yi—1] =0

from steps 6 and 10. Then, 57 = 7; = 0 holds from step 11. Thus, the algorithm will
prematurely terminate in this case and it follows that

AY =YJY  and AZ=ZJ],

andso (Y " HTJYT = A.

Finally, we demonstrate that the constructed pseudo-Jacobi matrlx Jis umque Let J be a
pseudo-Jacobi matrix characterized by the distinct real eigenvalues )\1, )\2, e )\n, the nonzero
H-orthonormal vector (v, 1,Vp2,. .- ,vmn)T, and the pseudo-norms 41,6z, ...,d0,. The
column vectors f’n, IN/n_l, ceey I~/1, obtained by the algorithm, are pseudo-orthogonal with the
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respective norms d,, 6,1, - - ., 01. The computed column vectors Zn, Zn_l, ... ,21 are also
~T~

pseudo-orthogonal and satisfy the biorthogonality condition Y; Z; = 6,5, foré,j = 1,2,...,n.

Thus,

(A4) AY =YJT  and AZ=2ZJ

forY = [171, 17'2, e f’n] and Z = [Z,ZQ, . ,Zn]. Because all the subdiagonal entries Ez

and the superdiagonal entries y; of J satisty 7; = €;/3;, we only need to prove that all the main
diagonal entries o; and subdiagonal entries EZ of J are equal to the corresponding entries o;
and f3; of the matrix J computed by the algorithm.

From the identities in (A.4), the columns Y}, and Zj, of the H-orthogonal matrices Y and
Z, respectively, satisfy the following recurrence relations:

Br1Yr 1 =5k = (A — L) Y5 — A Y5i1,
Foo1Zi1 =T, = (A — & 10)Zk — BrZi

fork =n,n—1,...,1, with l~/n+1 = 2n+1 =0ands; =7 = 0. As Z, = HY;,0; and

~ . . .o 5T
r, = Hs}0, we only consider the first recurrence relation pre-multiplied by Z,, . It follows
that

~T ~
&k:ZkAYk7 kzn,n—l,...,l.

Observing that

~T ~ 1 T~
1=Y, Zj = ——5, Fp,
Br—1Vk—1
we find that
~ - - 1 7
Yi1 = =5y, Ye—1 = ~—s;frk,
k1 Br—1
and so
[Br1Yi 1, Br1Yi_1] = [h,5)-
Thus,

Bk:—l =V Ek;gk]ak—la k= n,n— 17"'72'

By the sequence of computations in the backward modified unsymmetric Lanczos algorithm
and considering f/n = (Vn,1,Vn2,--- 7vn’n)T, we can easily show that the entries a,, En,l,
Qp_1, En,g, ey 517 oy of fcoincide, respectively, with the entries o, Bn—1, @n—1, Brn—2,
.oy 517 1 of j\ 0
REMARK A.5. By executing the algorithm in Theorem 2.3, we can also get Y = VT and
Z = V# from the initial vector ¥, = (v, 1,2, -, Vnn) -

Appendix B. Proofs of Theorems 3.1 and 3.2. The proofs of the theorems in Section 3
use the following four lemmas. The first one gives a necessary and sufficient condition for
Jr and J42 5, in (3.1) to share a common eigenvalue. As noticed by one of the referees, the
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rational function F (\) there appearing is the (r 4+ 1,7 + 1)-entry of the twisted factorization
of the tridiagonal matrix A\I,, — J,, (see [22]).

LEMMA B.1. Let pu and p, be the spectra of J, and Jyys p, in (3.1), respectively. Then,
an element of p, is an eigenvalue of J,, in (3.1) if and only if it is an element of p, and
vice-versa.

Proof. From (3.2), it follows that U = Uy © I1 & U is a pseudo-orthogonal matrix with
respectto H = H; & I, ® Ho, and so U# = HUTH. Thus, we get

Al GrﬁrUl#er 0
U#J,U = | Be'U; Qry1 €r+1Br41wT Us
0 5r+1U2#w1 Ay

By using the Laplace expansion for the determinant, it follows that

(B D

det(\,, — J,,) = det(\I,, — U# J,U)

s, - 5r+1(5ru£l 26, =) s ﬂr+1ug Z) )20
:1;[ >\ Mj ( Oér+1_izzl >\*HJ1 ’_l;l N i .

Because ,B,ui? #£0,i=1,2,...,r,and BTHquT #0,i=r+1,r+2,...,n—1, from
Lemma A.4 (1) we find that

det(/,LjIn — Jn)

n—1 (1)\2 .
5 1(/6 ur ) 6'7 .]:172’"'7T7
T o fri

5T+1(6T+1u§2_j77,)25j+1, j=r+1r+2...,n—-1

Due to the fact that all the elements in p; and p, are pairwise distinct, j; is an eigenvalue
of J, if and only if HZ;IZ 2; (i — pi) = 0, thatis, pi; is a common eigenvalue of .J;,. and
Jr+27n- O

If J, and J,. 42 5, have no common eigenvalues, then the following holds.

LEMMA B.2. Let o(J;) = pq and 0(Jrj2n) = po. If o(Jr) No(Jryon) = O, then the
eigenvalues of J,, are the n zeros of the following rational function

b (Bl T S (Bl )20
B2 ) =\—ar —Z/\—— > 3 lu .
i=1 i=r+1 i

Proof. ByLemmaB.1, u; ¢ o(Jy,),forany j =1,2,...,n—1,ifo(J,)No(Jry2.n) = @.
Then, det(Al,, — J,,) = 0 is equivalent to

81 (Brul)?0i 2 61 (B’ )60

Fl(A):A—OéTJ,_l—ZT— Z N " =0
=1 i=r+1
from equation (B.1), and the result holds. 0

If J, and J,. 42 5, have common eigenvalues, then the following holds.
LEMMA B.3. Let 0(J,) = py and o(Jri2,n) = po. Assume py N po = {p;}e_; and
Wi = Wi, forany i = 1,2, ...k, with k < min{r,n —r — 1}. Then, u1, o, ..., ui are
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eigenvalues of J,, and the remaining eigenvalues of J,, are the n — k zeros of the rational
function

k (1)\2 (2)\2
57" rly. 52 + 57‘ r Uq 57‘ 3
F(A)=X—apy1 — Z 1B i) S _ﬁ;@ +1U1 ;) Or it
1=1 7
(B3) i o
o Z r-‘rl ﬂr 7’2) i _ Z T+1(6T+1u1,i7'r) i+1
i=k+1 T k1 A= i

Proof. Because p; € o(J,) No(Jryon), forany i =1,2,... k, then pq, po, . . ., g are
also eigenvalues of J,, by Lemma B.1. Hence the remaining eigenvalues of J,, are the zeros of
the polynomial

detMn = Ju) _ T 0= m)ro
Hz 1 (A — i) Jlgi-l( e

from equation (B.1). Since 1; ¢ (J YN o(Jryon,) forany i ¢ {1,2,..., k}U{r+1,r+
2,...,r + k}, from Lemma B.1 HJ k+1()‘ pi) # 0 forany X & {p1, po, ..., i }. Hence,
G()\) = 0 if and only if

G\ =

7‘+1(B7‘ rz) 6 +§1‘+1(6T+1u12) 67‘+i+1

k
Fg(/\) = Fl(/\) =\ — Opy1 — Z

i=1 A i
_ Z 81 (Brug))?d; nil Sr1 (Brarug’) )21 0
i=k+1 A= Hi i=r+k+1 A= Hi

By construction, G(\) has degree n — k and so G(\) has n — k zeros. Thus, F5(\) also has
n — k zeros. a

In order to prove the main theorems in Section 3, we recall the following crucial result
presented in [5, 17].

LEMMA B.4. Let {&1,&, . .., &m } be a set of complex numbers closed under conjugation,
and let {n1,M2, ..., Nm—1} be a set of distinct real numbers withn; ¢ {&1,&2 ... &m ). Then,
the following system of linear algebraic equations

Ty T2 Tm—1

+ o4 T ¢ —a, t=1,2,...,m,
S—m &G & — Mm—1 &

has a unique solution x = (x1, T2, ..., T;m—1) if and only if

[T, (& —my)
m—1 ’
Hi:l,i;éj(ni —1n5)
anda =377 & =520 .
Proof of Theorem 3.1. Necessity: Assume that there exists a pseudo-Jacobi matrix
Jn € J(n,e,B) as in (3.1) such that o(J,,) = A, o(J;.) = py, and 0(Jpg2.,) = Mo

Because pt; N py = &, then it follows from Lemma B.2 that the eigenvalues of J,, are the
zeros of F1(A) = 01in (B.2). By Lemma B.4, we get

(B 4) 6T+1(57‘u7(«’1j?)25j = Ty, ] = 1a2a"'aTa
5T+1(ﬁr+1ufj)-_r)25j+1 =Ty, ] =7r—+ 1,7’ —+ 2, ey — ].,

T, = — i=1,2,....,m—1,
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-1 _ . 1) .
where rj = — H?:l()‘l - /J’J) HZL:LZ;;&] (:ut - /.L]) 1' Since ﬁra /87'-‘,-17 u£~’}7] = 1a 2a s T

(2)

and u j=r+1,7+2,...,n — 1, are real, then condition (1) holds.

1j—r
By (3.2) we know that 2221(U£,1;)25j = 4, and Z?;:H(uf])-_r)%jﬂ = 0,42. Thus,
condition (2) follows from (B.4). Finally, conditions (3) and (4) are satisfied because

ﬁ;%q = [k, 8k]0k—1 > 0, fork=nr,r—1,...,2, and
Bf+k+1 = [Frakt1, Frakt1)0rtkt2/0rp2 > 0, fork=1,2,...,n—7—2.

Sufficiency: Assume that conditions (1)—(4) hold. Consider the sign vector € and the
nonzero real numbers

ITi (N — 1)
10 (s — 1)

(B.5) z; = — . j=12....n—1.

Let us define

[N
SIS

T n—1
(B.6) Bri=le&d 2|+ Bei= e Y oa|
j=1 j=r+1
and
1) VO0r+10;7; .
Uy ; .—T, 71=1,2,...,m
(B.7) %ST it
ugi);r::ir+ ks . j=r+1r+2...,n—-1
’ Br+1
Then, g; = (ufll), u512), CuhTand gy = (Wl WP uffl_,,__l)T are, respectively, an

H-orthonormal and an Hs-orthonormal vector. Furthermore, condition (3) ensures that a
unique pseudo-Jacobi matrix J,. can be constructed from (H7, 1, g1) by using the algorithm in
Theorem 2.2. Similarly, condition (4) guarantees that the algorithm in Theorem 2.3 generates a
unique pseudo-Jacobi matrix J, 1o ,, given (Ha, to, g2). Since a1 = Y oy Ai — Z;;l e
a unique pseudo-Jacobi matrix .J,, is so constructed.

From equations (B.5) and (B.7), we find

o 5T+1(6TU£};)25J'7 j=1,2,...,m
j 6r+1(ﬁr+lu(1?;7r)26j+1, j=r+1l,r+2,...,n—1,

By Lemma B .4, F;()\;) = 0 holds for i = 1,2,...,n, in Lemma B.2. Thus, it follows that
det(A\; I, — J,) =0,i=1,2,...,n. Therefore, A = o(J,,) and the constructed matrix J,, is
the unique solution of the PJIEP. 0

Proof of Theorem 3.2. Necessity: For the given sign vector € and the sets A, pq,
and g5, suppose that there exists a pseudo-Jacobi matrix J,, € J(n,€,B) as in (3.1). If
0 opy = {p}E and py; = pg, fori = 1,2,... k, then \; = ;i = 1,2,... k, are
also the eigenvalues of .J,, by Lemma B.1. The remaining eigenvalues A\;y1, Ag+2, ..., Ap of
Jp, are the zeros of F5(A\) = 0 in (B.3) by Lemma B.3. Thus, from Lemma B.4 we obtain

Or1 (Brul))?0; + 0ria (Brrud?) g jir = wrgyy G =1,2.....k,
(B.8) 5T+1(,8Tu£71]))25j =z, ji=k+1,k4+2,...,m
6"‘+1(67‘+1u§2,;7r)26j+1 = Ty, .7 :T+k+17"'7n_ 1)
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where z; = —TT:_, ., (N — 1) H?:_klﬂ’#j(ui — i)"Y j=k+1,...,n— 1. Then there
exist real numbers 6; ¢ {0, 1} such that

(B.9) 5r+1(ﬂru7(n,1})25j =0;Tr1j, 5r+1(5r+1ufj)')25r+j+1 = (1= 0;)xr4j,

for j = 1,2,...,k. Having in mind that BTUS} #0,7=1,2,...,r,and Brﬂuf; # 0,
7=12,...,n—7r —1, from Lemma A.4, conditions (1) and (2) are satisfied.

Because > (u (1)) §; = 6, and Z;L :H( (23 2841 = Op42 from (3.2), condi-
tion (3) holds by (B.8) and (B.9). Since 87 | = [k,Sk]0k—1 > Ofork =r,r —1,...,2, and
B2 i1 = [Prakst, Frgrs1]0rghga/0ro > O0fork =1,2,...,n —r — 2, conditions (3) and
(4) in Theorem 3.1 follow.

Sufficiency: Because p1q Ny = {15, then \; = ;.4 € {1,2, ..., k} are eigenvalues
of a pseudo-Jacobi matrix J,, which will be constructed in the sequel. If the conditions in this
theorem are satisfied, let

H:L k+1()‘ NJ)

(B.10) Tj=— , ji=k+1,...,n—1,
IS k+1 i#£j (i — 115)
where x; are all nonzero real numbers. For the selected §; € R — {0,1}, j =1,2,...,k, let
us define
3
/87« = ZH .’ICT+] + Z xj 5
Jj=k+1
(B.11) L
k 2
67‘-&-1 = €r4+1 Z xf—i—] + Z )
Jj=1 Jj=r+k+1
1 .
(1) 57\/57‘-'1-16]'9]'3;7‘-}—]'7 ] = 1,2,...,/{;,
(B.12) U, ; i
f\/6T+15j.’L'j7 j:k+1,...77’,
Br
and
@) 6 \/6T+167‘+j+1( 9‘)'7:7‘+ja ] = 172a"'7ka
(B.13) uy ;= s

1 .
m\/5r+15r+j+1$r+j, j=k+1,...,n—r—1
B

Hence, we can construct a unique Jacobi matrix J,. from H;, p, and also the H-orthonormal
vector g1 = (ug,ll) , ufle), ceey 51,2) by using the algorithm in Theorem 2.2 with the help
of condition (3) in Theorem 3.1. In addition, condition (4) in Theorem 3.1 ensures that a

unique pseudo-Jacobi matrix J, 2 , can be constructed from Hs, w5 and the H>-orthonormal
(2) ) (2) (2) )T

vector ga = (Ugy ,Ugg s e e ey Ug pyyg
Qg1 =D Ni — Zi:1 i from (3.1), and a pseudo-Jacobi matrix J,, is so reconstructed.

As Br, Bri1s ufﬂlj), and ug) depend on 0; € R — {0, 1} and the §; can be taken arbitrarily
for j = 1,2,...,k, there are infinite pseudo-Jacobi matrices J,. and J, 2 ,, obtained from
the algorithms in Theorems 2.2 and 2.3, and so infinite pseudo-Jacobi matrices .J,, can be

achieved.

by using the algorithm in Theorem 2.3. Then,
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Finally, we show that a reconstructed pseudo-Jacobi matrix J,, solves the PJIEP. By
equations (B.10), (B.12), and (B.13), we have

67’+1(B7’u§‘,1;—?”)26j*7‘ + 6T+1(5T+1ufj)'_r)26j+17 .7 =r+lr+2,...,r+ k7

;=3 So1 (Brul))2s;, j=k+1k+2,...,m
5r+1([3r+1ufj)-,r)25j+1, j=r+k+1,...,n—1,

where (5T+1(67‘U£,1;)26j = 0;x,4; and 5r+1(ﬁr+1ug)25r+j+1 = (1—0;)zr4j,0; € R~
{0,1} forj =1,2,..., k. By Lemma B4, Fy(\;) = \i — a1 — 31—y 32 = 0holds
fori =k+1,k+2,...,ninLemma B.3. Then det(\;I,, — J,) =0,i = k+1,k+2,...,n,
and \;, i =k + 1,k +2,...,n are the remaining eigenvalues of .J,,. Thus, A = o(J,,), and
J, is a solution of the PJIEP. a0
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