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AUGMENTED GMRES-TYPE VERSUS CGNE METHODS FOR THE SOLUTION
OF LINEAR ILL-POSED PROBLEMS∗

ANDREAS NEUBAUER†

Abstract. In this paper we compare (augmented) GMRES-type methods and (augmented) CGNE methods. The
numerical results show that the CGNE method is more robust and suitable for ill-posed problems with a much higher
degree of ill-posedness. GMRES-type methods only yield useful results for very moderately ill-posed problems.
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1. Introduction. In this paper we deal with linear ill-posed problems

Tx = y ,

where T : X → X is a bounded linear operator and X is a Hilbert space, i.e., we assume that
the best approximate solution x† does not depend continuously on the right-hand side y. Since,
in general, only noisy data yδ are available, where we assume that a bound δ for∥∥y − yδ∥∥

X
≤ δ

is known, we have to approximate x† by so-called regularized solutions; see, e.g., [9]. One of
the best-known regularization method is Tikhonov regularization. However, for large scale
problems, iterative regularization methods are better suited since one avoids inverting large
linear systems: there we look for regularized solutions xδk, where the iteration index k has to
be stopped in dependence on δ and the data yδ in order to obtain good approximations to x†.
One such stopping rule is the discrepancy principle, where the iteration is stopped when for
the first time

(1.1)
∥∥Txδk − yδ∥∥X ≤ τδ

for some τ > 1. This index is denoted by kδ∗.
A very fast method (concerning the number of iterations needed) is the Conjugate Gradient

(CG) method. However, this method only works for self-adjoint positive definite operators
T . If T is not self-adjoint, then there are two alternatives: the first one is the CGNE method,
where the CG method is applied to the normal equation

T ∗Tx = T ∗y .

Thus, xδk minimizes the residual in a special Krylov subspace, i.e.,∥∥Txδk − yδ∥∥X = min
x∈KC

k

∥∥Tx− yδ∥∥
X
,(1.2)

KC
k := Kk(T ∗T, T ∗yδ) .(1.3)

Note thatKk(A, z) := span{z,Az, . . . , Ak−1z}. It follows from the definition of this method
that among all iterative regularization methods in the Krylov subspaces Kk(T ∗T, T ∗yδ)
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combined with the discrepancy principle as stopping rule, CGNE requires the smallest number
of iteration steps. The calculation of the unique minimizer of (1.2) is possible via a fast
iterative algorithm (see, e.g., [9, Algorithm 7.1] for the CGLS implementation) going back to
Hestenes and Stiefel [11].

The second alternative is the Generalized Minimal Residual (GMRES) method, where
one looks for the minimizer∥∥Txδk − yδ∥∥X = min

x∈KG
k

∥∥Tx− yδ∥∥
X
,(1.4)

KG
k := Kk(T, yδ) .(1.5)

If this minimizer is not unique, then we choose the one of minimal norm, i.e.,

xδk := T †ky
δ ∈ N (Tk)⊥ , Tk := TPk ,

where Pk is the orthogonal projector from X onto KG
k . All least-squares solutions in Kk are

given by

xδk + z with z ∈ N (Tk) ∩KG
k .

Noting that

N (Tk) = (KG
k )⊥ + (N (T ) ∩KG

k ) and N (Tk)⊥ = KG
k ∩ (N (T ) ∩KG

k )⊥ ,

there is only one least-squares solution in KG
k if and only if N (T ) ∩KG

k = {0}.
This method was developed for finite-dimensional linear systems. However, it directly

carries over to linear problems in Hilbert spaces (see Section 2). Also an efficient implementa-
tion based on the Arnoldi algorithm (see [13]) can be used in Hilbert spaces. As will be seen
below, this method needs much more storage than the CGNE method.

It was shown in [3] that the range restricted GMRES (RRGMRES), where in the min-
imization problem (1.4) KG

k is replaced by Kk(T, Tyδ), often gives higher accuracy than
GMRES when applied to the solution of linear discrete ill-posed problems.

Of course, for each regularization method the question arises if it is convergent, i.e.,
we want to know if the regularized solutions xδkδ∗ , where kδ∗ is the stopping index from the
discrepancy principle (1.1), converge to x† as δ tends to zero.

Results about convergence and even convergence rates are well-known for the CGNE
method; see, e.g., [9]. However, almost no results are known for the GMRES method.
Therefore, we discuss convergence aspects in Section 3.

If the operators T and T ∗ are very smooth, then for CGNE and RRGMRES, the regularized
solutions will be also smooth. For GMRES this will be true for all solution parts except the
first one. Therefore, it will not be easy to find very good approximations in Krylov subspaces
when we expect discontinuities in the exact solution x†. An improvement can be achieved if
one augments the Krylov subspaces by some small space that represents non-smooth features
of the desired solution. This approach will be discussed in Section 4.

In Section 5 we deal with integral equations and their discretization to obtain finite-
dimensional problems. Numerical results are presented in Section 6. Finally, a short conclusion
is given in the last section.

2. The GMRES method in Hilbert spaces. As already mentioned in the introduction,
in this section we discuss the efficient computation of the minimizers xδk from (1.4).

The aim is to inductively construct orthonormal functions vi such that

KG
k := span{v1, . . . , vk} .
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This is possible, as long as dimKG
k = k holds. Assuming that Tyδ 6= 0, the induction is

started with

v1 :=
yδ

‖yδ‖X
for GMRES and v1 :=

Tyδ

‖Tyδ‖X
for RRGMRES .

Assume that v1, . . . , vk have already been computed. Then the next function vk+1 is found as
follows: calculate

(2.1) hik := 〈 vi, T vk 〉X , i = 1, . . . , k , and zk+1 := Tvk −
k∑
i=1

hikvi .

Note that, due to the orthonormality of the functions vi, the calculation of zk+1 can be done
recursively: starting with zk+1 := Tvk, the update is calculated via

hik = 〈 vi, zk+1 〉X , zk+1 ← zk+1 − hikvi , i = 1, . . . , k .

If zk+1 = 0, then Tvk can be written as a linear combination of the functions v1, . . . , vk.
Since KG

k+1 = KG
k ∪ TKG

k = span{v1, . . . , vk, T vk} (see, e.g., [1]), this can only happen
if dimKG

k+1 = k. The algorithm breaks down (see Proposition 3.1 below), and we set
vk+1 := 0.

If zk+1 6= 0, then by construction 〈 zk+1, vi 〉X = 0 for all i = 1, . . . , k. Therefore, we
may set

(2.2) hk+1,k := ‖zk+1‖X and vk+1 :=
zk+1

hk+1
.

Combining (2.1) and (2.2) immediately yields

(2.3) Tvk =

k+1∑
i=1

hikvi .

Note that this formula is also meaningful for the case where zk+1 = vk+1 = 0.
Assuming that this algorithm does not break down until k, i.e., that dimKG

k = k, and
noting that

(2.4) Pk+1y =

k+1∑
i=1

ŷivi, with ŷi := 〈 y, vi 〉X ,

is the orthogonal projector onto KG
k+1, using formula (2.3), we may rewrite the residuum∥∥Tx− yδ∥∥

X
for any

x =

k∑
j=1

ξjvj ∈ KG
k

via ∥∥Tx− yδ∥∥2
X

=
∥∥Tx− Pk+1y

δ
∥∥2
X

+
∥∥(I − Pk+1)yδ

∥∥2
X

=

∥∥∥∥∥∥
k+1∑
i=1

( k∑
j=max{i−1,1}

hijξj − ŷi
)
vi

∥∥∥∥∥∥
2

X

+
∥∥(I − Pk+1)yδ

∥∥2
X
.
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Defining the (k + 1)× k Hessenbergmatrix Hk by

(2.5) (Hk)ij :=

{
hij , 1 ≤ i ≤ j + 1 ,
0 , else ,

with hij as in (2.1) (k = j) and noting that

∥∥(I − Pk+1)yδ
∥∥2
X

=
∥∥yδ∥∥2

X
−
k+1∑
i=1

ŷ2i ,

we finally obtain that

(2.6)
∥∥Tx− yδ∥∥2

X
= ‖Hkξ − ŷ‖2k+1 +

∥∥yδ∥∥2
X
− ‖ŷ‖2k+1 ,

where ξ := (ξ1, . . . , ξk) ∈ Rk, ŷ := (ŷ1, . . . , ŷk+1) ∈ Rk+1, and ‖·‖k+1 denotes the
Euclidean norm in Rk+1. Note that for the GMRES method ŷ =

∥∥yδ∥∥
X

(1, 0, . . . , 0) and∥∥(I − Pk+1)yδ
∥∥
X

= 0.
The minimizer ξ of (2.6) may be easily calculated by transformingHk via Givens rotations

to an upper triangular matrix. One may calculate the solutions in KG
k recursively by updating

the matrix Hk in every step and then applying the orthonormal transforms to the new column.
Combined with the discrepancy principle (1.1) this yields the following algorithm:

ALGORITHM 2.1. (GMRES and RRGMRES + discrepancy principle.)
Let Tyδ 6= 0, δ > 0, τ > 1, ε > 0 be a small tolerance, and set gm:=true if GMRES and

gm:=false if RRGMRES.
1: r :=

∥∥yδ∥∥
X

; k := 0;
2: if (gm) {
3: z := yδ; h := r; ξ1 := r;
4: } else {
5: z := Tyδ; h = ‖z‖X ; ξ1 =

〈
yδ, z

〉
X
/h; u := r2;

6: }
7: while (r ≥ τδ) {
8: k := k + 1; vk = z/h; z := Tvk;
9: for (i = 1, . . . , k): {

10: Rik := 〈 vi, z 〉X ; z := z −Rikvi;
11: }
12: for (i = 1, . . . , k − 1) : {
13: β := Ri+1,k; Ri+1,k := ciβ − siRik; Rik := ciRik + siβ;
14: }
15: h := ‖z‖X ;
16: if (h < ε) {
17: r := 0;
18: if (|Rkk| < ε) { k := k − 1; }
19: } else {
20: β :=

√
R2
kk + h2; ck := Rkk/β; sk := h/β; Rkk := β;

21: if (gm) {
22: ξk+1 := −skξk; ξk := ckξk; r := |ξk+1|;
23: } else {
24: β :=

〈
yδ, z

〉
X
/h; ξk+1 := ckβ − skξk; ξk := ckξk + skβ;

25: u := u− ξ2k; r :=
√
u;

26: }
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27: }
28: }
29: for (i = k, . . . , 1): {
30: for (l = i+ 1, . . . , k) { ξi := ξi −Rilξl };
31: ξi := ξi/Rii;
32: }

33: xδk :=

k∑
i=1

ξivi;

3. Convergence aspects of the GMRES method. In the following proposition we col-
lect some results concerning the dimension of KG

k . We use y instead of yδ since the results
are independent from the noise aspect.

PROPOSITION 3.1. Let T ∈ L(X,X) and KG
k := Kk(T, y). Then the following

assertions hold:
(i) If dimKG

k = k, then dimKG
j = j for all j < k. Moreover,

N (T ) ∩KG
j = {0} for all j < k ,(3.1)

dim(N (T ) ∩KG
k ) ≤ 1 .(3.2)

(ii) If the condition

(3.3) dimKG
k = k = dimKG

k+1

holds, then KG
j = KG

k for all j > k, and there is a unique ξ ∈ Rk such that

(3.4) T ky =

k∑
i=1

ξiT
i−1y .

Moreover, if ξ1 6= 0, thenN (T )∩KG
k = {0} and y = Tx for x = xk = T †ky ∈ KG

k .
Note that xk need not be equal to the best approximate solution x†.
If ξ1 = 0, then dim(N (T ) ∩ KG

k ) = 1, and xk−1 = T †k−1y is a least-squares
solution of Tx = y in KG

k that is not necessarily equal to T †ky.
Proof.
(i) Due to the definition of Krylov subspaces, it immediately follows that

dimKG
j+l ≤ dimKG

j + l for all l ≥ 0 .

This implies that, if dimKG
j < j < k, then also dimKG

k < j + k − j = k, in
contradiction to the assumption that dimKG

k = k.
Assume that a j < k exists with N (T ) ∩KG

j 6= {0}. Then a vector ξ ∈ Rj\{0}
exists such that

0 = T

( j∑
i=1

ξiT
i−1y

)
=

j∑
i=1

ξiT
iy.

Thus, dimKG
j+1 < j + 1, which is again a contradiction.

We now prove (3.2): assume that xi ∈ N (T ) ∩ KG
k with xi 6= 0, i = 1, 2. Due

to (3.1), xi can be written as xi = ci
(
T k−1y − x̄i

)
with x̄i ∈ KG

k−1 and ci 6= 0.
Since Txi = 0, we get that

(3.5) T ky = T x̄i .
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Moreover, T (x̄1− x̄2) = 0 and (3.1) imply that x̄1 = x̄2 and hence that c2x1 = c1x2.
This proves (3.2).

(ii) Let us assume that condition (3.3) holds. Then KG
k+1 = KG

k and T ky ∈ KG
k

yielding (3.4). The uniqueness of the vector ξ ∈ Rk follows from the fact that
the elements y, Ty, . . . , T k−1y are linearly independent. It immediately follows by
induction that T jy ∈ KG

k for all j ≥ k and hence that KG
j = KG

k for all j > k.
(3.4) implies that

ξ1y = T x̄k with x̄k := T k−1y −
k−1∑
i=1

ξi+1T
i−1y ∈ KG

k \KG
k−1.

Furthermore, it follows from (3.4) and (3.5) that for some x̄ ∈ KG
k−1

dim(N (T ) ∩KG
k ) = 1 ⇔

k∑
i=1

ξiT
i−1y = T x̄ ⇔ ξ1 = 0 .

If ξ1 6= 0, thenN (T )∩KG
k = {0}, and ξ−11 x̄k = xk is an exact solution of Tx = y.

If N (T ) 6= {0}, then xk need not be equal to x†.
If ξ1 = 0, then x̄k ∈ N (T ) ∩KG

k since for all x ∈ KG
k it holds that x = x̄ + cx̄k

for some x̄ ∈ KG
k−1 and c ∈ R, and since ‖Tx− y‖X = ‖T x̄− y‖X , xk−1 is a

least-squares solution of Tx = y in KG
k . Note that it might differ from

xk = xk−1 −
〈xk−1, x̄k 〉X
‖x̄k‖2X

x̄k .

Almost all results of Proposition 3.1 remain valid also for the case of RRGMRES, where
KG
k is replaced by Kk(T, Ty). However, in the case that ξ1 6= 0, it is not guaranteed that an

exact solution of the equation Tx = y is found.
If R(T ) is finite-dimensional, then dimKG

k+1 = k will occur for some k ≤ dimR(T ).
The case ξ1 = 0 in Proposition 3.1 (ii) above can never occur for injective operators T . This
means that for finite-dimensional injective operators and exact data, the algorithm will always
converge to the exact solution.

The question of course is if we get convergence for noisy data when the iteration is
stopped according to (1.1) and δ is going to zero. So far we only found one result addressing
this question in [4]. Stability and convergence were proven under the very strong condition
that condition (3.3) holds uniformly for all data. This practically means that the problem has to
be finite-dimensional, i.e., the problem may be ill-conditioned but not ill-posed. Unfortunately,
no results are yet available for the general case.

The following examples give an indication why it might be complicated to find conditions
that guarantee convergence in the general case.

EXAMPLE 3.2. Let X := l2, and let T : l2 → l2 be defined as follows:

x := (x1, x2, . . .) 7→ Tx := (η1, η2, . . .)

with

η2j−1 := 0 and η2j := ajx2j−1 , j ∈ N ,

where (aj) is a sequence satisfying aj 6= 0 and |aj | ≤ c for all j ∈ N and some c > 0. Then
the following assertions obviously hold:
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• N (T ) = {x ∈ l2 : x2j−1 = 0 for all j ∈ N}.
• T 2 = 0.
• R(T ) is dense in N (T ).
• R(T ) = N (T ) if and only if |aj | ≥ c for all j ∈ N and some c > 0.
• If λ 6= 0, then x = − 1

λy −
1
λ2Ty is the unique solution of Tx− λx = y depending

continuously on y. Thus, σ(T ) = {0}.
• T is compact if and only if aj → 0 as j →∞.
• T is a Hilbert-Schmidt operator if and only if (aj) ∈ l2.

Note that if there exists a subsequence of aj tending to zero and another one being
bounded from below by a positive constant, then T is not compact and R(T ) is not closed.
Thus, the problem of solving Tx = y is still ill-posed.

Let us assume that yδ ∈ N (T )\{0}. Using GMRES, we obtain that

KG
k := Kk(T, yδ) = span{yδ} , k ∈ N .

Thus, xδk = 0, and we never get convergence except for the trivial case that y = 0.
If yδ /∈ N (T ), then we obtain that

KG
1 = span{yδ} and KG

k = span{yδ, T yδ} , k ≥ 2 .

Then

xδ1 = λyδ and xδk = λyδ − λ2Tyδ , k ≥ 2 with λ =

∑∞
l=0 aly

δ
2l−1y

δ
2l∑∞

l=0 a
2
l

(
yδ2l−1

)2 .
If, for instance,

x† = (1, 0, 1, 0, 0, . . .), y = Tx† = (0, a1, 0, a2, 0, . . .), yδ = y + (δ, 0, . . .),

then∥∥y − yδ∥∥
l2

= δ, xδ1 = (1, a1/δ, 0, a2/δ, 0, . . .), and xδk = (1, 0, 0, a2/δ, 0, . . .)

for k ≥ 2. None of these approximations converges towards x† if δ → 0.
EXAMPLE 3.3. Let X := l2, and let T : l2 → l2 be defined as follows:

x := (x1, x2, . . .) 7→ Tx := (η1, η2, . . .)

with

η1 := 0 and ηj+1 := ajxj , j ∈ N ,

where (aj) is a sequence satisfying aj 6= 0 and |aj | ≤ c for all j ∈ N and some c > 0. Then
the following assertions obviously hold:

• N (T ) = {0} andR(T ) = {y ∈ l2 : y1 = 0}.
• R(T ) = R(T ) if and only if |aj | ≥ c for all j ∈ N and some c > 0.
• T has no eigenvalues.
• T is compact if and only if aj → 0 as j →∞.
• T is a Hilbert-Schmidt operator if and only if (aj) ∈ l2.

As in Example 3.2, it holds that, if there exists a subsequence of aj tending to zero and
another one being bounded from below by a positive constant, then T is not compact and
R(T ) is not closed. Thus, the problem of solving Tx = y is still ill-posed.
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Since (T ix)j = 0, for all j ≤ i, it will always hold that dimKG
k = k. Thus, the GMRES

algorithm will never break down.
We first consider the case of exact data (yδ = y = Tx†). Let us assume that x† = (xk) is

such that xj = 0 for all 1 ≤ j < l and xl 6= 0, then, due to the definition of T , all elements of
the spaces KG

k have the property that the first l components are zero. Therefore, the iterates
xk can never converge towards x†.

Let us now assume that x† is as above and that yδ = Tx† + δu with ‖u‖l2 = 1 and
uj = 0 for all j ≤ l. Then∥∥Tx− yδ∥∥

l2
≥ |alxl + δul+1| for all x ∈ KG

k .

This means that for δ > 0 sufficiently small, the discrepancy principle will not stop.
Let us consider the following concrete case: aj := j−p, j ∈ N, for some p ≥ 0. If p = 0,

then T is the down-shift operator with T † being bounded. If p > 0, then T is compact. If
p > 1

2 , then T is even a Hilbert-Schmidt operator. Moreover, let

x† := (1, 1, 0, . . .) , y := Tx† = (0, 1, 2−p, 0, . . .) ,

yδ := (1 + cpδ)y , cp := 1/
√

1 + 4−p .

Then
∥∥yδ − y∥∥

l2
= δ, and all elements x ∈ KG

k satisfy that

x = (1 + cpδ)(0, ξ1, . . . , ξk, ξk+1, 0 . . .) with

ξk+1 =

k∑
i=1

(−1)k−i
(

i!

(k + 1)!

)p
ξi .

(3.6)

A straightforward calculation yields that xδk is as in (3.6) with

ξ1 = 2−p + (−1)k
1

((k + 1)!)p
ξk+1 ,

ξi = (−1)k+1−i
(

i!

(k + 1)!

)p
ξk+1 , i = 2, . . . , k ,

ξk+1 = (−1)k+1 ((k + 1)!)p

2p
∑k+1
i=1 (i!)2p

.

In addition, xδk → x := (0, 2−p, 0, . . .) 6= x† as δ → 0 and k →∞ since

∥∥xδk − x∥∥2l2 = (1− c2pδ2)
|ξk+1|

(2(k + 1)!)p
+ c2pδ

24−p .

Both examples show that convergence towards x† can not be guaranteed if T is not
injective and also not for infinite-dimensional injective operators.

4. Augmented CGNE and GMRES methods. As already mentioned in the introduc-
tion one would like to improve the quality of the approximations when the functions in the
Krylov spaces are much smoother than the expected exact solution by augmenting the Krylov
subspace.

The augmented (or also called enriched) CGNE method was discussed in [5], where
problem (1.2) is replaced by the following one: find xδk as the minimizer of

(4.1)
∥∥Txδk − yδ∥∥X = min

x∈KC
k +Wn

∥∥Tx− yδ∥∥
X
,
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where KC
k is as in (1.3) and

(4.2) Wn := span{w1, . . . , wn}

with n small. We always assume that the functions Twi, i = 1, . . . , n, are linearly independent.
Let us assume thatWn,k is such thatKC

k +Wn = KC
k +Wn,k with TKC

k ⊥ TWk. Then
an efficient computation is possible noting that∥∥T (x+ z)− yδ

∥∥
X

=
∥∥Qkyδ − Tx∥∥X +

∥∥(I −Qk)yδ − Tz
∥∥
X

with x ∈ KC
k and z ∈ Wn,k, where Qk is the orthogonal projector onto TKk. Thus, we

compute the standard CGNE iterate x̄δk ∈ KC
k , and then we look for the minimizer zδk of

(4.3) min
z∈Wk

∥∥dδk − Tz∥∥X
with dδk := yδ − T x̄δk = (I − Qk)yδ. Then xδk = x̄δk + zδk. Note that this minimizer is not
unique if TKC

k ∩ TWn ⊃ {0}. Let Wn,k = span{w1,k, . . . , wn,k}. Then

wj,k := wj,k−1 −
〈Twj,k−1, qk 〉X

‖qk‖2X
pk , wj,0 := wj ,

where pk and qk are the usual functions produced by the CGNE algorithm; see, e.g., [9,
Algorithm 7.1]. This guarantees that 〈Twj,k, Tpi 〉X = 0 for all 1 ≤ i ≤ k.

The minimizer of (4.3) is then given by zk =

n∑
j=1

ηjwj,k, where η = (η1, . . . , ηn) solves

the linear system

[〈Twi,k, Twj,k 〉X ] η = [
〈
Twi,k, d

δ
k

〉
X

] .

The same can be done for the GMRES method (and also for the RRGMRES method),
i.e., (1.4) is replaced by the problem of finding xδk such that

(4.4)
∥∥Txδk − yδ∥∥X = min

x∈KG
k +Wn

∥∥Tx− yδ∥∥
X

with KG
k as in (1.5) and Wn as in (4.2).

The authors of [1] wanted to solve this problem. However, their presented algorithm
solves the problem of finding xδk such that∥∥Txδk − yδ∥∥X = min

x∈K̃n,k+Wn

∥∥Tx− yδ∥∥
X
,

where K̃n,k := Kk((I −Qn)T, (I −Qn)yδ) and Qn is the orthogonal projector onto TWn.
The advantage of this approach is that one can first solve the problem of finding x̃δn,k ∈ K̃n,k

such that ∥∥(I −Qn)(T x̃δn,k − yδ)
∥∥
X

= min
x∈K̃k

‖(I −Qn)(Tx− y)‖X ,

and then in a second step one looks for wδk ∈Wn as the (unique) solution of

Twδk = Qn(yδ − T x̃δn,k) .
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The solution of (4.4) is a little bit more involved. A nice fast algorithm was presented in [7]:
an efficient solution is possible if after running the Arnoldi algorithm to find the orthonormal
basis v1, . . . , vk+1 of KG

k+1 = KG
k ∪ TKG

k , one recursively computes an orthonormal basis
v̄1, . . . , v̄n of Pk+1TWn with Pk+1 as in (2.4):

ALGORITHM 4.1. (Computation of an orthonormal basis for Pk+1TWn.)
1: for (j = 1, . . . , n) {
2: v̄j := Twj ;
3: for (i = 1, . . . , k + 1) { Gij := 〈 vi, v̄j 〉X ; v̄j := v̄j −Gijvi; }
4: for (i = 1, . . . , j − 1) { Ḡkij := 〈 v̄i, v̄j 〉X ; v̄j := v̄j − Ḡkij v̄i; }
5: Ḡkjj := ‖v̄j‖X ; v̄j := v̄j/Ḡ

k
jj ;

6: }

It then holds that Gij := 〈 vi, Twj 〉X , for i = 1, . . . , k+ 1, and that Ḡkij := 〈 v̄i, Twj 〉X
for i ≤ j. Moreover,

Twj =

k+1∑
i=1

Gijvi +

j∑
i=1

Ḡkij v̄i .

For any

x =

k∑
j=1

ξjvj +

n∑
i=1

ηiwi,

we may rewrite the residuum as follows (compare (2.6)):

‖Tx− y‖2X =

∥∥∥∥(Hk Gk
0 Ḡk

)(
ξ
η

)
−
(
ŷ
ȳ

)∥∥∥∥2
k+1+p

+ ‖y‖2X − ‖ŷ‖
2
k+1 − ‖ȳ‖

2
n

with Hk as in (2.5),

(Gk)ij := Gij , (Ḡk)ij :=

{
Ḡkij , i ≤ j ,
0 , i > j ,

ξ ∈ Rk, η ∈ Rn, ŷ ∈ Rk+1, and ȳ ∈ Rn, where ŷi := 〈 y, vi 〉X and ȳi := 〈 y, v̄i 〉X .
Note that during the iteration process, the matrix Ḡk has to be recalculated in each step.

In case of RRGMRES this also holds for the vector ȳ. However, this can be done recursively
since

Ḡkii =

(
Akii −

i−1∑
l=1

(
Ḡkli
)2) 1

2

, Ḡij =
(
Ḡkii
)−1(

Akij −
i−1∑
l=1

ḠkliḠ
k
lj

)
,(4.5)

ȳi =
(
Ḡkii
)−1(

bki −
i−1∑
l=1

Ḡkliȳl

)
,

for 1 ≤ i ≤ j ≤ n, and Ak and bk are defined by induction via

A1
ij := 〈Twi, Twj 〉X −

2∑
l=1

GliGlj and Ak+1
ij := Akij −Gk+2,iGk+2,j ,(4.6)

b1j :=
〈
yδ, Twj

〉
X
−

2∑
l=1

Glj ŷl and bk+1
j := bkj −Gk+2,j ŷk+2 .
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Since n is usually very small, (4.5) and (4.6) are a very fast alternative for the computation of
the matrix Ḡk. The functions v̄j need not be calculated. This approach is even slightly faster
than the one presented in [7].

A comment on the dimension of Pk+1TWn: above we always assumed that it is equal
to n. However, although the functions Tw1, . . . , Twn are assumed to be linearly independent,
it might happen that KG

k+1 ∩ TWn 6= {0}. This will rarely occur for infinite-dimensional
operators since TKG

k consists usually of much smoother functions than TWn. However, if
R(T ) is finite-dimensional, which is the case for any discretization of infinite-dimensional
problems, then this will occur for k large enough. Whenever Ḡkii = 0, the function Twi is a
linear combination of the other ones and, therefore, we can drop this function and reduce n
by 1. Implementation details will be shown in the next section.

5. Discretization of integral equations. In our numerical examples we deal with linear
Fredholm integral equations of the first kind, i.e.,

(Tx)(s) =

∫ 1

0

k(s, t)x(t) dt

with an L2-kernel k. Then T : X → X with X := L2[0, 1] is compact. For the numerical
calculations, we approximate this operator by the finite-dimensional operatorQmT , whereQm
is the orthogonal projector onto Xm := span{ϕ0, . . . , ϕm} and the ϕi are the well-known hat
functions, i.e., linear splines with ϕi(sj) = δij , sj := j/m.

All integrals that can not be computed exactly are approximated using a four-point
Gaussian quadrature rule on each subinterval [sj , sj+1], j = 0, . . . ,m− 1.

All functions x ∈ Xm are identified by their representation vectors, i.e., the function

x =

m∑
i=0

xiϕi ∈ Xm

corresponds to the vector

x := (x0, . . . , xm) ∈ Rm+1

and vice versa. Thus, we use the same letter for the function in Xm and its representation
vector in Rm+1. The inner product of u, v ∈ Xm is given by

(5.1) 〈u, v 〉X = u>Hv with Hij := 〈ϕi, ϕj 〉X .

The matrix H is a symmetric tridiagonal matrix.
Noisy data are created via

yδi = 〈 y, ϕi 〉+ κρi,

with ρi uniformly distributed in [−1, 1] and κ such that
∥∥Qm(yδ − y)

∥∥
X

= δ, i.e.,

κ = δ/
√
ρ>z with Hz = ρ .

For the numerical calculation of the augmented CGNE iterates with T in (4.1) replaced
by QmT , we need the matrix

(5.2) Q := [〈T ∗ϕi, T ∗ϕj 〉]mi,j=0 .
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The approximation of Q with quadrature rules usually costs O(m3). However, for our
numerical examples we could calculate Q exactly using a computer algebra package. This
reduces the effort to O(m2) operations. Using this matrix we get the following algorithm:

ALGORITHM 5.1. (augmented CGNE.)

Let δ > 0, τ > 1. Moreover, let H be defined as in (5.1), and let Q be as in (5.2).

1: x := 0; k := 0;
2: Solve Hz = yδ; r := (yδ)>z;
3: for (j = 1, . . . , n) {
4: w̄j := [〈Twj , ϕi 〉]i=0,...,m; ρj := 0;
5: Solve Hv = w̄j ;
6: for (i = 1, . . . , j) { Aij := w̄>i v; }
7: bj := (yδ)>v;
8: }
9: Solve Aη = b with A = (Aij), Aji = Aij , 1 ≤ i, j ≤ n, b := (b1, . . . , bn);

10: r̂ := r − η>b;
11: while (r̂ ≥ (τδ)2) {
12: if (k = 0) {
13: w := Qz; p := z; γ := z>w;
14: } else {
15: z := z − αq;
16: v := Qz; κ := z>v; β := κ/γ; γ := κ;
17: p := z + βp; w := v + βw;
18: }
19: Solve Hq = w; κ := q>w; α := γ/κ;
20: x := x+ αp; r := r − αγ;
21: for (j = 1, . . . , n) {
22: β := w̄>j q/κ; w̄j := w̄j − βw; ρj := ρj + βp;
23: bj := w̄>j z; Solve Hv := w̄j ;
24: for (i = 1, . . . , j) { Aij := w̄>i v; }
25: }
26: Solve Aη = b;
27: r̂ := r − η>b;
28: k := k + 1;
29: }

30: xδk :=

m∑
i=0

(
xi −

n∑
j=1

ρjiηj

)
T ∗ϕi +

n∑
j=1

ηjwj ;

For the numerical calculation of the augmented GMRES or RRGMRES iterates with T
in (4.4) replaced by QmT , we need the matrix

(5.3) B := [〈ϕi, Tϕj 〉]mi,j=0 .

Contrary to the matrix Q, the approximation of B with quadrature rules only costs O(m2)
operations. Again we could calculate it exactly.

If v ∈ Xm, then QmTv may be identified with the vector z solving the linear system
Bv = Hz. This leads to the following algorithm:
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ALGORITHM 5.2. (augmented GMRES and RRGMRES.)

Let δ > 0, τ > 1, ε > 0 be a small tolerance, and set gm:=true if GMRES and gm:=false
if RRGMRES. Moreover, let H be defined as in (5.1), and let B be as in (5.3).

1: for (j = 1, . . . , n) {
2: w̄j := [〈Twj , ϕi 〉]i=0,...,m;
3: Solve Hz = w̄j ;
4: for (i = 1, . . . , j) { Aij := w̄>i z; }
5: bj := (yδ)>z;
6: }
7: Solve Hz = yδ;
8: r :=

√
(yδ)>z; k := 0;

9: if (gm) {
10: h := r; ξ1 := r;
11: for (j = 1, . . . , n) {
12: G1j := bj/h;
13: for (i = 1, . . . , j) { Aij := Aij −G1iG1j ; }
14: }
15: } else {
16: w := Bz; Solve Hz = w; h =

√
z>w; ξ1 = (yδ)>z/h; u := r2;

17: for (j = 1, . . . , n) {
18: G1j := z>w̄j/h; bj := bj −G1jξ1;
19: for (i = 1, . . . , j) { Aij := Aij −G1iG1j ; }
20: }
21: }
22: while (r ≥ τδ) {
23: k := k + 1; vk = z/h; w := Bvk; Solve Hz = w;
24: for (i = 1, . . . , k): {
25: Rik := w>vi; z := z −Rikvi;
26: }
27: for (i = 1, . . . , k − 1) : {
28: β := Ri+1,k; Ri+1,k := ciβ − siRik; Rik := ciRik + siβ;
29: }
30: h := z>w;
31: if (h < ε) {
32: r := 0;
33: if (|Rkk| < ε) { k = k − 1; η := 0; goto 102; }
34: } else {
35: h :=

√
h;

36: if (¬gm) { ξk+1 = (yδ)>z/h; }
37: for (j = 1, . . . , n) {
38: Gk+1,j := z>w̄j/h; if (¬gm) { bj := bj −Gk+1,jξk+1;}
39: for (i = 1, . . . , j) { Aij := Aij −Gk+1,iGk+1,j ; }
40: }
41: β :=

√
R2
kk + h2; ck := Rkk/β; sk := h/β; Rkk := β;

42: for (j = 1, . . . , n) {
43: β := Gk+1,j ; Gk+1,j := ckβ − skGk,j ; Gk,j := ckGk,j + skβ;
44: }
45: if (gm) {
46: ξk+1 := −skξk; ξk := ckξk;
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47: } else {
48: β := ξk+1; ξk+1 := ckβ − skξk; ξk := ckξk + skβ; u := u− ξ2k;
49: }
50: for (i = 1, . . . , n) {
51: β := Aii;
52: for (l = 1, . . . , i− 1) { β := β − Ḡ2

li; }
53: if (β < ε) {
54: drop column i;
55: } else {
56: Ḡii :=

√
β;

57: for (j = i+ 1, . . . , n) {
58: β := Aij ;
59: for (l = 1, . . . , i− 1) { β := β − ḠliḠlj ; }
60: Ḡij := β/Ḡii;
61: }
62: if (¬gm) {
63: β := bi;
64: for (l = 1, . . . , i− 1) { β := β − Ḡliȳl; }
65: ȳi := β/Ḡii;
66: }
67: }
68: }
69: κ1 :=

√
G2
k+1,1 + Ḡ2

11; c := Gk+1,1/κ1; s := Ḡ11/κ1;

70: for (j = 2, . . . , n) { κj := cGk+1,j + sḠ1j ; Ḡ1j := cḠ1j − sGk+1,j ; }
71: if(gm) {
72: κn+1 := cξk+1; ȳ1 := −sξk+1;
73: } else {
74: κn+1 := cξk+1 + sȳ1; ȳ1 := cȳ1 − sξk+1; ū := u− κ2n+1;
75: }
76: for (i = 2, . . . , n) {
77: β :=

√
Ḡ2
i−1,i + Ḡ2

ii; c := Ḡi−1,i/β; s := Ḡii/β; Ḡi−1,i := β;
78: for (j = i+ 1, . . . , n) {
79: β := Ḡi−1,j ; Ḡi−1,j := cβ + sḠij ; Ḡij := cḠij − sβ;
80: }
81: if(gm) {
82: ȳi := −sȳi−1; ȳi−1 := cȳi−1;
83: } else {
84: β := ȳi−1; ȳi−1 := cβ + sȳi; ȳi := cȳi − sβ; ū := ū− ȳ2i−1;
85: }
86: }
87: if(gm) {
88: r := |ȳn|;
89: } else {
90: r :=

√
ū;

91: }
92: }
93: }
94: for (j = n, . . . , 2): {
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95: ηj = ȳj−1;
96: for (l = j + 1, . . . , n) { ηj := ηj − Ḡj−1,lηl }
97: ηj := ηj/Ḡj−1,j ;
98: }
99: η1 = κn+1;

100: for (l = 2, . . . , n) { η1 := η1 − κlηl }
101: η1 := η1/κ1;
102: for (i = k, . . . , 1): {
103: for (l = 1, . . . , n) { ξi := ξi −Gilηl };
104: for (l = i+ 1, . . . , k) { ξi := ξi −Rilξl };
105: ξi := ξi/Rii;
106: }

107: xδk :=

k∑
i=1

ξivi +

n∑
j=1

ηjwj ;

It turns out that, due to numerical errors, one should include a reorthogonalization
step after line 26 of the algorithm above, especially for RRGMRES; see, e.g., [1]. An
implementation of RRGMRES that does not require reorthogonalization is described in [12].
The implementations there are particularly well suited for the use with the discrepancy
principle.

6. Numerical results. In our numerical examples, we choose kernels

k(s, t) :=

{
(s− t)p , t ≤ s ,
0 , t > s ,

p ∈ N .

The corresponding Volterra integral operator T is not selfadjoint,

R(T ) = {y ∈ Hp+1[0, 1] : y(l)(0) = 0 , l = 0, . . . , p}.

The problem of solving Tx = y is modestly ill-posed. Note that

Tx = y ⇔ y(p+1) = p!x .

We present examples for p = 0, 1, 4. In all cases we test discontinuous solutions

x†(t) :=

{
1− t

a , 0 ≤ t ≤ a ,
1
2 + t−a

2(1−a) , a < t ≤ 1 .

Here a is the location of the discontinuity. In one case we assume that a = 1
2 and in another

one that a = 11
20 . For both solutions we chose the following augmented functions:

w1(t) :=

{
1 , 0 ≤ t ≤ 1

2 ,
0 , 1

2 < t ≤ 1 ,
w2(t) :=

{
0 , 0 ≤ t ≤ 1

2 ,
1 , 1

2 < t ≤ 1 .

This means that for a = 1
2 one guesses the location of the discontinuity correctly, but for the

other a value, one is only close to it.
For all examples, the exact right-hand sides y, the functions Twj , and the matrices B and

Q were calculated exactly.
Since the results for GMRES and RRGMRES were almost identical, we only present

results for CGNE and GMRES.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

AUGMENTED GMRES-TYPE VERSUS CGNE METHODS 427

For all cases, we computed xδk for m = 20 and m = 200. The noise was chosen smaller
for larger m and larger p to still obtain useful results. In the stopping rule, τ = 1.1. All figures
display the graphs of the exact solution in black and of the final iterates xδkδ∗ stopped according
to the discrepancy principle (see Algorithms 5.1 and 5.2); the iterations with augmentation are
displayed in red and those without augmentation in blue.

The results for the case p = 0 are given in Table 7.1 and Figures 7.1 and 7.2: δ-% means
percent of ‖y‖X , C stands for CGNE, aC for augmented CGNE, G for GMRES, and aG for
augmented GMRES.

The results for the case p = 1 are presented in Table 7.2 and Figures 7.3 and 7.4. The
results for GMRES without augmentation are complete nonsense and are, therefore, omitted.
The reason is that the matrix B is already almost singular, and we know from Section 3 that
no convergence may be expected in this case. Luckily, augmentation fixes the problem.

The results for the case p = 4 are presented in Table 7.3 and Figures 7.5. In that case
even augmented GMRES does not yield any useful results. Therefore, only the results for
CGNE are shown, which are much better for m = 200 than for m = 20.

7. Conclusion. The numerical results show that for Volterra integral equations with
discontinuous solutions, the GMRES and the RRGMRES (even with reorthogonalization)
methods implemented as in Algorithm 5.2 should only be used when the matrix is not too
close to a singular one. That means it can be used only for very moderately ill-posed problems.
The augmentation of the GMRES method improves the results quite a bit.

The advantage of the CGNE method is that it also converges for inverse problems with a
higher degree of ill-posedness. Also for the CGNE method, augmentation improves the results.
In all cases the results were better for the CGNE method than for the GMRES method.

The number of CGNE iterations is about half of the number of GMRES iterations. Since
the CGNE method needs two matrix vector multiplications with the matrix Q in each iteration
step while the GMRES method only needs one with the matrix B, the numerical effort for
computing the regularized solutions is almost the same. As mentioned in Section 5, the effort
for the compilation of the matrix Q is higher than the one for B if the integrals involved have
to be approximated by quadrature rules.

We want to mention that one can improve the implementations of GMRES and RRGMRES
using preconditioning so that the results are compatible to CGNE and sometimes yield even
better results. In [2], GMRES is used for deconvolution in image restoration. It turns out
that GMRES compared to CGNE requires less computational work and gives restored images
of higher quality. In [8], GMRES converges well for the test problem baart from Hansen’s
Regularization Tools, which is a severely ill-posed problem. In [6] it was shown that right
preconditioning in conjunction with methods based on the Arnoldi process are found to be
robust and give high-quality restorations. In [10], the authors try to shed some light on reasons
for the poor performance of GMRES in certain situations, especially discretizations of linear
ill-posed problems, and discusses some remedies based on specific kinds of preconditioning.

Nevertheless, whether one uses GMRES with preconditioning or CGNE, sometimes
CGNE and sometimes GMRES yields better results. Unfortunately, no rule was yet found
that allows to decide for which classes of problems one can expect GMRES-like methods to
perform better or worse than CGNE.

Acknowledgments. The author wants to thank the referees for comments and for point-
ing out several new references concerning GMRES methods with preconditioning. He also
wants to thank Lothar Reichel for stimulating discussions and providing a copy of the new
paper [10].
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TABLE 7.1
Case p = 0.

a m δ-% kδ∗-C kδ∗-aC kδ∗-G kδ∗-aG
1/2 20 1 5 3 9 4
1/2 200 0.1 15 14 25 14

11/20 20 1 5 5 9 7
11/20 200 0.1 16 16 24 21

TABLE 7.2
Case p = 1.

a m δ-% kδ∗-C kδ∗-aC kδ∗-G kδ∗-aG
1/2 20 0.1 9 4 19 3
1/2 200 0.1 11 4 46 7

11/20 20 0.1 9 8 19 7
11/20 200 0.1 9 8 36 8

TABLE 7.3
Case p = 4.

a m δ-% kδ∗-C kδ∗-aC kδ∗-G kδ∗-aG
1/2 20 0.01 6 5 10 8
1/2 200 0.001 15 5 21 21

11/20 20 0.01 6 2 12 7
11/20 200 0.001 15 9 12 12

m = 20, CGNE m = 20, GMRES

m = 200, CGNE m = 200, GMRES
0 1

1

t

0 1

1

t
0 1

1

t

0 1

1

t

FIG. 7.1. Case p = 0, a = 1/2.
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m = 20, CGNE m = 20, GMRES

m = 200, CGNE m = 200, GMRES
0 1
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t
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FIG. 7.2. Case p = 0, a = 11/20.

m = 20, CGNE m = 20, GMRES
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FIG. 7.3. Case p = 1, a = 1/2.
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FIG. 7.4. Case p = 1, a = 11/20.
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FIG. 7.5. Case p = 4, CGNE.
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