
ETNA
Kent State University and

Johann Radon Institute (RICAM)

Electronic Transactions on Numerical Analysis.
Volume 51, pp. 495–511, 2019.
Copyright c© 2019, Kent State University.
ISSN 1068–9613.
DOI: 10.1553/etna_vol51s495

PRECONDITIONED GLOBAL KRYLOV SUBSPACE METHODS FOR SOLVING
SADDLE POINT PROBLEMS WITH MULTIPLE RIGHT-HAND SIDES∗

A. BADAHMANE†‡, A. H. BENTBIB†, AND H. SADOK‡

Abstract. In the present paper, we propose a preconditioned global approach as a new strategy to solve linear
systems with several right-hand sides coming from saddle point problems. The preconditioner is obtained by replacing
a (2,2)-block in the original saddle-point matrix A by another well-chosen block. We apply the global GMRES
method to solve this new problem with several right-hand sides and give some convergence results. Moreover, we
analyze the eigenvalue distribution and the eigenvectors of the proposed preconditioner when the first block is positive
definite. We also compare different preconditioned global Krylov subspace algorithms (CG, MINRES, FGMRES,
GMRES) with preconditioned block (CG, GMRES) algorithms. Numerical results show that our preconditioned
global GMRES method is competitive with other preconditioned global Krylov subspace and preconditioned block
Krylov subspace methods for solving saddle point problems with several right-hand sides.
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1. Introduction. Many problems in science and engineering require the solution of
saddle point problems with multiple right-hand sides (see, for example [5, 8]),

(1.1)
[
A BT

εB O

]
︸ ︷︷ ︸

A

[
X
Y

]
︸︷︷︸
X

=

[
F
εG

]
︸ ︷︷ ︸
B

,

where A ∈ Rn×n is a symmetric matrix and BT ∈ Rn×m has full column rank with
X ∈ Rn×s, Y ∈ Rm×s, F ∈ Rn×s, G ∈ Rm×s, and ε = ±1. Here BT denotes the transpose
of B. Since the matrices A and B in (1.1) are large and sparse, the solution of (1.1) with
s = 1 is suited for the solution by an iterative method. Many effective iterative methods have
been developed for solving saddle point problems such as the Hermitian and skew-Hermitian
splitting (HSS) method [3] and the Regularized HSS iteration method [2].

Instead of applying a standard iterative method to the solution of each one of the saddle
point problems

AX (i) = b(i), for i = 1, . . . , s,

independently, it is often more efficient to apply a global method to (1.1). We use the global
version of GMRES for the solution of nonsymmetric saddle point problems with multiple
right-hand sides (1.1). This version of GMRES has been introduced in [13] and studied in [4].
The method is based on the global version of the standard Arnoldi process; see for example [1].
However, Krylov subspace methods without a good preconditioner converge very slowly when
applied to saddle point problems with multiple right-hand sides. In order to accelerate the
convergence, several preconditioners and iterative methods have been proposed for the solution
of (1.1) with a single right-hand side vector [2, 7, 6, 12].

∗Received October 28, 2018. Accepted November 11, 2019. Published online on December 12, 2019. Recom-
mended by L. Reichel.
†Laboratoire de Mathématiques Appliquées et Informatique, Faculté des Sciences et Techniques Gueliz, Mar-

rakech, Morocco (a.bentbib@uca.ac.ma).
‡Laboratoire de Mathématiques Pures et Appliquées, Université du Littoral Côte d’Opale, Batiment H. Poincarré,

50 rue F. Buisson, F-62280 Calais Cedex, France
(badahmane.achraf@gmail.com, sadok@univ-littoral.fr).

495

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://doi.org/10.1553/etna_vol51s495


ETNA
Kent State University and

Johann Radon Institute (RICAM)

496 A. BADAHMANE, A. H. BENTBIB, AND H. SADOK

In this work, we present variants of preconditioned global Krylov subspace methods that
yield better numerical results compared to the block approach used in [5, 8] for solving (1.1).
The paper is organized as follows. An example of modeling that leads to this type of system
is outlined in Section 2. In Section 3 we give the first-order optimality condition for a block
quadratic problem. In Section 4 we review some properties and definitions of global Krylov
subspace methods. In Section 5 we introduce the preconditioner Pε,α,Q, and we also analyze
the eigenvalue distribution and the eigenvectors of the proposed preconditioner. Numerical
experiments are discussed in Section 6. We use the following notation: For two matrices Y
and Z in R(n+m)×s, we define the inner product 〈Y,Z〉F = trace(Y TZ). The associated
norm is the Frobenius norm denoted by ‖.‖F . A system of vectors (matrices) of R(n+m)×s is
said to be F-orthonormal if it is orthonormal with respect to the scalar product 〈., .〉F . Finally,
the Kronecker product of the matrices C and D is given by C ⊗D = [ci,jD].

2. The problem. Saddle point problems with multiple right-hand sides appear when we
apply the feedback control approach [5] to the following non-stationary Stokes equations:


∂u(t, x)

∂t
− v∆u(t, x) +∇p(t, x) = 0, (0,∞)× Ω,

∇ · u(t, x) = 0, (0,∞)× Ω.

Here t ∈ (0,∞), x ∈ Ω, v > 0 is the viscosity, and u and p denote the velocity and the
pressure, respectively. Moreover, Ω ⊂ R2 is a domain with boundary ∂Ω. Some Dirichlet
boundary conditions which describe an inflow-outflow problem with adequate initial conditions
are found in [11]. By using the feedback control approach [5], we obtain a saddle point problem
with multiple right-hand sides.

3. The classification of the solution of the saddle point problem with multiple right-
hand sides (1.1). We assume thatA is a positive definite matrix. With the use of the Frobenius
inner product 〈., .〉F , equation (1.1) arises from a quadratic constrained optimization problem

min
X

J(X) = min
X

1

2
〈AX,X〉F − 〈X,F 〉F ,

BX = G.

We define the Lagrangian L as

L(X,Y ) =
1

2
〈AX,X〉F − 〈X,F 〉F + 〈Y,BX −G〉F .(3.1)

THEOREM 3.1. The solution of (1.1) is a saddle point of the Lagrangian (3.1).

Proof. To show that the solution of (1.1) is a saddle point of (3.1), we start discussing the
differentiability of L and calculate its differential. As we know, the function

Rn×s × Rn×s → R
(X,Y )→ Trace(Y TX)
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is differentiable. Therefore, the functional L is differentiable. Next we calculate the differential
of L. Let H ∈ Rn×s. We have

L(X +H,Y ) =
1

2
〈A(X +H), X +H〉F − 〈X +H,F 〉F + 〈Y,B(X +H)−G〉F

=
1

2
〈AX,X〉F + 〈AH,X〉F +

1

2
〈AH,H〉F − 〈X,F 〉F

− 〈H,F 〉F + 〈Y,BX −G〉F + 〈Y,BH〉F

=
1

2
〈AX,X〉F − 〈X,F 〉F + 〈Y,BX −G〉F + 〈AH,X〉F

+
1

2
〈AH,H〉F − 〈H,F 〉F + 〈Y,BH〉F

= L(X,Y ) + 〈AH,X〉F +
1

2
〈AH,H〉F − 〈H,F 〉F + 〈Y,BH〉F .

This can be written as

L(X +H,Y )− L(X,Y )− 1

2
〈AH,H〉F = 〈AX,H〉F − 〈H,F 〉F + 〈Y,BH〉F

= 〈AX − F +BTY,H〉F .

Therefore

dXL(X,Y ) = AX − F +BTY.(3.2)

Similarly, we obtain

dY L(X,Y ) = BX −G.(3.3)

According to (3.2) and (3.3), we conclude that the solution (X∗, Y∗) of (1.1) is a critical point
of the functional L. To complete the proof, it must be shown that (X∗, Y∗) satisfies

L(X∗, Y ) ≤ L(X∗, Y∗) ≤ L(X,Y∗) for any X ∈ Rn×s and Y ∈ Rm×s.

We have

L(X,Y ) =
1

2
Trace

([
X
Y

]T [
A BT

εB O

] [
X
Y

])
− Trace

([
X
Y

]T [
F
εG

])

=
1

2
Trace

([
X
Y

]T [
A BT

εB O

] [
X
Y

])
− Trace

([
X
Y

]T [
A BT

εB O

] [
X∗
Y∗

])
.

Then

L(X∗, Y∗) = −1

2
Trace

([
X∗
Y∗

]T [
A BT

εB O

] [
X∗
Y∗

])
.

Consequently,

L(X,Y )− L(X∗, Y∗) =
1

2
Trace

([
X −X∗
Y − Y∗

]T [
A BT

εB O

] [
X −X∗
Y − Y∗

])
.

Case 1: X = X∗: Then

L(X∗, Y )− L(X∗, Y∗) = 0.(3.4)

Case 2: Y = Y∗: Then

L(X,Y∗)− L(X∗, Y∗) = Trace((X −X∗)TA(X −X∗)) ≥ 0.(3.5)

We conclude that (X∗, Y∗) is a saddle point of the Lagrangian L.
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4. Global Krylov subspace methods. In this section we recall some properties and
definitions of the global methods [9, 14].

DEFINITION 4.1. The global Krylov subspace Kk(A, V ) is the subspace spanned by the
matrices V , AV, . . . ,Ak−1V.

REMARK 4.2. Let V be a real matrix of dimension (n + m) × s. According to the
definition of the subspace Kk(A, V ), we have

Z ∈ Kk(A, V ) ⇐⇒ Z =

k∑
i=1

αiAi−1V, αi ∈ R, i = 1, . . . , k.

In other words, Kk(A, V ) is the subspace of R(n+m)×s that contains all the matrices of
dimension (n+m)× s, written as Z = P (A)V , where P is a polynomial of degree at most
k − 1.

DEFINITION 4.3 (Diamond Product). Let Y = [Y1, Y2, . . . , Yp] andZ = [Z1, Z2, . . . , Zl]
be matrices of dimensions n × ps and n × ls, respectively, where Yi and Zj (i = 1, . . . , p,
j = 1, . . . , l) are n× s matrices. The product � is defined by

Y T � Z =


〈Y1, Z1〉F 〈Y1, Z2〉F . . . 〈Y1, Zl〉F
〈Y2, Z1〉F 〈Y2, Z2〉F . . . 〈Y2, Zl〉F

...
...

. . .
...

〈Yp, Z1〉F 〈Yp, Z2〉F . . . 〈Yp, Zl〉F

 ∈ Rp×l.

We use the global Arnoldi process for building an F-orthonormal basis of Kk(A, V ). Let X0

be the initial approximate solution of (1.1), and let R0 = B − AX0 be the corresponding
residual. The following global Arnoldi process, Algorithm 1, which is based on the modified
Gram-Schmidt process, constructs an F-orthonormal basis V1, V2, . . . , Vk of Kk(A, R0). In
other words

Trace(V Ti Vj) = δij , for i, j = 1, . . . , k,

where δij is the Kronecker symbol with δij = 0 for i 6= j and δii = 1.

Algorithm 1 Global Arnoldi process.
1: V1 = R0/||R0||F ;
2: for j = 1, 2, . . . , k do;
3: W := AVj ;
4: for i = 1, 2, . . . , j do;
5: Hi,j =< W,Vi >F ;
6: W = W −HijVi;
7: end;
8: Hj+1,j = ||W ||F ;
9: Vj+1 = W/Hj+1,j ;
10: end;

PROPOSITION 4.4. Assume that hi+1,i 6= 0, for i = 1, . . . , k, and let Vk be the matrix
defined by Vk = [V1, . . . , Vk], where Vi, for i = 1, . . . , k, are the matrices computed by
Algorithm 1. We have the following relations:

AVk = Vk �Hk +Hk+1,k[O, . . . , O, Vk+1],

AVk = Ṽk � H̃k,
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where Ṽk = [V1, . . . , Vk, Vk+1] ∈ R(n+m)×(k+1)s and H̃k ∈ R(k+1)×k. The global GMRES
method constructs, at step k, the approximation Xk satisfying the following two relations

Xk −X0 ∈ Kk(A, R0) and 〈AjR0, Rk〉F = 0, for j = 1, . . . , k.

The residual Rk = B −AXk satisfies the minimization property

(4.1) ‖Rk‖F = min
Z∈Kk(A,R0)

‖R0 −AZ‖F .

Problem (4.1) is solved by applying the global Arnoldi process.

4.1. Convergence analysis of the global GMRES method. In this section, we recall a
bound for the residual Rk in (4.1). Let A = ZDZ−1, where D is the diagonal matrix whose
elements are the eigenvalues λ1, . . . , λn+m and Z is the eigenvector matrix.

THEOREM 4.5 ([4]). Let the initial residual R0 be decomposed as R0 = Zβ, where β is
an (n+m)× s matrix whose columns are denoted by β(1), . . . , β(s). Let Rk = B −AXk be
the kth residual obtained by the global GMRES method when applied to (1.1). Then we have

‖Rk‖2F ≤
‖Z‖22

eT1 (V Tk+1D̃Vk+1)−1e1
,

where

D̃ =



s∑
i=1

| β1(i) |2

. . .
s∑
i=1

| βn+m(i) |2


and Vk+1 =

1 λ1 . . . λk1
...

...
...

1 λn+m . . . λkn+m

 .

The coefficients β(i)
1 , . . . , β

(i)
n+m are the components of the vector β(i), and e1 is the first unit

vector of Rk+1.

5. Preconditioning. In this section we investigate a regularization preconditioner for
solving saddle point problems with multiple right-hand sides (1.1), where A ∈ Rn×n is a
symmetric large, sparse, and invertible matrix and B ∈ Rm×n has full row rank. The idea of
preconditioning is to transform the linear system (1.1) into another one that is easier to solve.
Left preconditioning of (1.1) gives the following new linear system

M−1AX =M−1B.

Although right preconditioning can be used in our context, we will focus only on left precon-
ditioning throughout this work. By exploiting the particular block structure of (1.1), several
block preconditioners have been derived [6]. We introduce and analyze the matrix block
preconditioner for (1.1) defined by

Pε,α,Q =

[
A BT

εB αQ

]
,(5.1)

with α > 0 and Q a symmetric and positive definite matrix. For example, for the discrete
Stokes system, Q may be an approximation of the pressure Schur complement S = BA−1BT ;
see [12].
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5.1. Properties of the preconditioner Pε,α,Q. We describe a block factorization and
some properties of the preconditioner Pε,α,Q.

PROPOSITION 5.1. The preconditioner (5.1) has the block-triangular factorization

Pε,α,Q =

[
A BT

εB αQ

]
=

[
I O

εBA−1 I

] [
A O

O S̃

] [
I A−1BT

O I

]
,

where S̃ =
(
αQ− εBA−1BT

)
. If ε = −1, or ε = 1 and αλmin(Q) > λmax(BA

−1BT ), then
the block S̃ is a positive definite matrix.

The inverse of the preconditioner Pε,α,Q is given by

P−1ε,α,Q =

[
A BT

εB αQ

]−1
=

[
I −A−1BT
O I

] [
A−1 O

O S̃−1

] [
I O

BA−1 I

]
.

The eigenvalue and eigenvector distributions of the preconditioned matrix relate closely to the
convergence rate of Krylov subspace methods. Therefore, it is meaningful to investigate the
spectral properties of the preconditioned matrix P−1ε,α,QA. In the following theorem, we will
deduce the eigenvalue distribution of P−1ε,α,QA.

THEOREM 5.2. Let the preconditioner Pε,α,Q be defined as in (5.1) with A and Q
positive definite matrices. Then the matrix P−1ε,α,QA is diagonalizable and has m1 + 1 distinct
eigenvalues {1, λ1, . . . , λm1}, with 1 ≤ m1 ≤ m.

Proof. Let λ be an eigenvalue of the preconditioned matrix P−1ε,α,QA and (xT , yT )T be the
corresponding eigenvector. To derive the eigenvalue distribution, we consider the following
generalized eigenvalue problem:

P−1ε,α,Q A
[
x
y

]
=

[
In K1

0 K2

] [
x
y

]
= λ

[
x
y

]
,(5.2)

where

S̃ =
(
αQ− εBA−1BT

)
, K1 =

(
I + εA−1BT S̃−1B

)
A−1BT , K2 = −εS̃−1BA−1BT .

Equation (5.2) can be written as

(5.3)


(1− λ)x = −

(
I + εA−1BT S̃−1B

)
A−1BT y,

BA−1BT y =
αλ

ε(λ− 1)
Qy.

If λ = 1 holds true, then from the first equation of (5.3), we easily get(
I + εA−1BT S̃−1B

)
A−1BT y = 0.

When y = 0, equation (5.3) is always true when λ = 1. Thus, there are n linearly independent

eigenvectors
[
u(i)

0

]
, i = 1, . . . , n, corresponding to the eigenvalue 1, where u(i) are arbitrary

linearly independent vectors. If λ 6= 1 and y = 0, then we obtain from the first equation
of (5.3) that x = 0. This contradicts the assumption that (xT , yT )T is an eigenvector of
the preconditioned matrix P−1ε,α,QA, and therefore y 6= 0. If y satisfies the second equation
of (5.3), then

BA−1BT y = µQy,(5.4)
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where

µ =
εαλ

(λ− 1)
.

We deduce that

λ =
µ

µ− αε
.

Since the matrix Q is positive definite, it admits a Cholesky decomposition Q = RTR.
Premultiplying (5.4) with R−T results in

R−TBA−1BTR−1z = µz with z = Ry.

Since R−TBA−1BTR−1 is a positive definite matrix, there are m linearly independent eigen-
vectors of the form w(i) = R−1z(i), i = 1, . . . ,m, where z(i) are orthogonal eigenvectors of
R−TBA−1BTR−1.

Let U , V , and W be the matrices whose columns are
(
u(1), . . . , u(n)

)
,
(
v(1), . . . , v(m)

)
,

and
(
w(1), . . . , w(m)

)
, respectively, where

v(i) =

(
I + εA−1BT S̃−1B

)
A−1BT

(λ− 1)
w(i), i = 1, . . . ,m.(5.5)

Then Z =

[
U V
O W

]
is a matrix of eigenvectors of P−1ε,α,QA. Moreover, since U and W are

nonsingular matrices, Z is also nonsingular. Consequently, P−1ε,α,QA is diagonalizable.
REMARK 5.3.

1. When the hypotheses of the preceding theorem are satisfied, the preconditioned
global Krylov subspace methods converge in at most m1 + 1 iterations. Moreover,
in Theorem 4.5, we can see that the bound depends only on the distribution of the
eigenvalues {1, λ1, . . . , λm1

} and on the matrix Z .
2. If A is positive definite, ε = −1, and µ satisfies the generalized eigenvalue prob-

lem (5.4), then

µ =
λα

(1− λ)
and λ =

µ

α+ µ
≤ 1.

Hence when α→ 0, λ→ 1.
For the discrete Stokes system, if γ is the (generalized) inf-sup constant and Γ is a
boundedness constant, then we have γ2 ≤ µ ≤ Γ2 (see for example [12, p. 173]) and

λ ∈
[

γ2

γ2 + α
,

Γ2

Γ2 + α

]
.

5.2. Preconditioned global subspace Krylov solvers. We consider now preconditioned
global Krylov subspace methods for solving

P−1ε,α,QAX = P−1ε,α,QB.

Each global Krylov iteration requires the solution of a linear system of the form[
A BT

εB αQ

]
︸ ︷︷ ︸
Pε,α,Q

[
Z1

Z2

]
=

[
V1
V2

]
,
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Algorithm 2 The preconditioned global CG.
1: Choose X0, compute R0 = J −AαX0 and solveMZ0 = R0 and set P0 = Z0;
2: for k = 0, 1, ..do
3: αk = 〈Zk,Rk〉F

〈AαPk,Pk〉F ;
4: Xk+1 = Xk + αkPk;
5: Rk+1 = Rk − αkAαPk;
6: SolveMZk+1 = Rk+1;
7: βk = 〈Zk+1,Rk+1〉F

〈Zk,Rk〉F ;
8: Pk+1 = Zk+1 + βkPk;

Algorithm 3 The preconditioned global GMRES.
1: Pε,α,QV1 = R0, V1 = V1/‖V1‖F
2: for j = 1, 2, . . . , k do;
3: Pε,α,QW := AVj ;
4: for i = 1, 2, . . . , j do;
5: Hi,j =< W,Vi >F ;
6: W = W −HijVi;
7: end;
8: Hj+1,j = ||W ||F ;
9: Vj+1 = W/Hj+1,j ;
10: Solve the linear system Hk,ky = βe1 for y;
11: Set Xk = X0 + Vk � y and Rk = B −AXk;
12: end for

with V1 ∈ Rn×s, V2 ∈ Rm×s, Z1 ∈ Rn×s, and Z2 ∈ Rm×s. This system can be solved in
two stages as:

(
A− ε

α
BTQ−1B

)
︸ ︷︷ ︸

Aα

Z1 = V1 −
1

α
BTQ−1V2︸ ︷︷ ︸
J

,

Z2 =
1

α
Q−1(V2 − εBZ1).

The system AαZ1 = J is solvable if the symmetric matrix Aα is invertible. If ε = −1, then
the matrix Aα is symmetric positive definite. We would like to solve the preconditioned
system

M−1Aα =M−1J,

whereM is a preconditioner. Depending on the value of ε, the matrix of the linear system (1.1)
or the preconditioner may be symmetric or nonsymmetric. When the matrix is symmetric
positive definite, we apply the preconditioned global CG method [15], Algorithm 2. If
ε = 1, then the matrix of (1.1) is symmetric indefinite, and we will use the global MINRES
method [10]. When the matrix of the system is nonsymmetric, several global subspace Krylov
methods can be used. The most useful one is the global GMRES method, Algorithm 3, which
computes iterates that minimise the Frobenius norm of the residual. We will define here a
“flexible” version of global GMRES, Algorithm 4, which allows for a preconditioner that
varies during the iterations. The standard Flexible GMRES was defined by Saad [16]. Since
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Algorithm 4 The preconditioned global FGMRES.
1: V1 = R0, V1 = V1/‖V1‖F
2: for j = 1, 2, . . . , k do;
3: Z := P−1ε,α,QVj ;
4: W := AZ;
5: for i = 1, 2, . . . , j do;
6: Hi,j =< W,Vi >F ;
7: W = W −HijVi;
8: end;
9: Hj+1,j = ||W ||F ;
10: Vj+1 = W/Hj+1,j ;
11: Solve the linear system Hk,ky = βe1 for y;
12: Set Xk = X0 + Vk � y and Rk = B −AXk;
13: end for

Algorithm 5 The preconditioned block-BiCGSTAB [11].

1: Choose X0, compute R0 = J −AαX0, P0 = R0 and solveMP̂0 = R0;
2: R̃0 an arbitrary n× s matrix;
3: for k = 0, 1, ..do;
4: Vk = AαP̂k;
5: Solve

(
R̃T0 Vk

)
αk = R̃T0 Rk;

6: Sk = Rk − Vkαk;
7:MŜk = Sk;
8: Tk = AαŜk;
9: wk = 〈Tk,Sk〉F

〈Tk,Tk〉F ;

10: Xk+1 = Xk + P̂kαk + wkŜk;
11: Rk+1 = Sk − wkTk;
12: Solve

(
R̃0Vk

)
βk = −R̃T0 Tk;

12: Pk+1 = Rk+1 + (Pk − wkVk)βk;
13: SolveMP̂k+1 = Pk+1;
14: end.

the amount of computation and storage is increasing with each iteration of the global GMRES
and global FGMRES methods, we will also consider the block BiCGSTAB method introduced
in [11], Algorithm 5. The latter requires only a fixed amount of work per iteration.

6. Numerical experiments. In this section we present the results of numerical experi-
ments that illustrate the convergence behavior of the preconditioned global GMRES, global
MINRES, and global FGMRES methods using the proposed preconditioner. All of the reported
numerical results were performed on a 64-bit 2.49 GHz core i5 processor and 8.00 GB RAM
using MATLAB 2016. In all the experiments, we used ten right-hand sides. CPU times and
iteration counts are reported in the rows “CPU” and “Iter” in the tables below. In the cases of
the preconditioned global GMRES and global FGMRES methods, two values are reported
at “Iter”, namely, the number of steps of the preconditioned global GMRES method or of
the preconditioned global FGMRES method and in parenthesis the total number of inner
preconditioned conjugate gradient iterations. In all the tables, a dagger “†” indicates that the
method has not converged in at most 500 iterations.
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TABLE 6.1
The size of the matrices A and B for the lid driven cavity problem on 2l × 2l.

Lid driven cavity
l n m size of A size of B size of Q
4 578 192 578× 578 578× 192 192× 192
5 2178 768 2178 ×2178 2178 × 766 766× 766
6 8450 3070 8450×8450 8450× 3070 3070× 3070
7 33282 12288 33282 ×33282 33282 × 12288 12288× 12288

When ε = −1, we used the preconditioned global GMRES and global FGMRES methods
to solve the nonsymmetric saddle point problems with multiple right-hand sides (1.1). In
practice, the preconditioners used for solving (1.1) are Pε,α,Q, PT , and PD, where Pε,α,Q,
PT , and PD are given as follows:

Pε,α,Q =

[
A BT

−B αQ

]
, PT =

[
A O
−B S

]
, and PD =

[
A O
O S

]
.

When ε = 1, we used the preconditioned global MINRES methods to solve the symmetric
saddle point problems with multiple right-hand sides (1.1). The preconditioners are given as
follows:

Pε,α,Q =

[
A BT

B αQ

]
and PD =

[
A O
O S

]
.

Here S is a sparse approximation of the pressure Schur complement BA−1BT , and Q is
one of the matrices I or diag(S). The parameter of the Pε,α,Q preconditioner is chosen as
α ∈

[
10−5, 1

]
. In all the numerical tests below, the initial guess is taken to be the null matrix,

and the right-hand side B ∈ R(n+m)×s is chosen such that the exact solution of the saddle
point problem (1.1) is a matrix of ones. For the preconditioned global MINRES, global
GMRES, and global Flexible GMRES (FGMRES) methods, the iterations were stopped where

‖P−1B − P−1AX (k)‖F
‖P−1B‖F

< 10−12,(6.1)

where P is one of the preconditioners Pε,α,Q, PT , or PD. Here ‖ · ‖F stands for the Frobenius
norm, and X (k) ∈ R(n+m)×s denotes the current iterate. When using Algorithm 2 for solving
the first system of Algorithm 4, the preconditioner used is a drop tolerance-based incomplete
Cholesky factorization computed using the Matlab function “ichol(.,opts)”, where

• opts.type = ’ict’,
• opts.droptol = 1e-2.

The inner relative residual norm is less than tol (= 10−9).
We use the IFISS software package developed by Elman et al. [12] to generate the linear

systems with multiple right-hand sides corresponding to l = 4, l = 5, l = 6, and l = 7.
The IFISS software provides the matrices Ast, Bst, and Q for the matrices A, B, and S,
respectively. For the lid driven cavity problem, Bst is a rank deficient matrix, thus we drop
the first two rows of Bst to get a full rank matrix.

Generic information of the test problems, including n and m, are provided in Table 6.1.
Numerical results for the nonsymmetric saddle point problem with multiple right-hand sides
(ε = −1) are presented in Table 6.2. In Tables 6.2, 6.3, 6.4, and 6.5 we report the results
for the preconditioned global GMRES and global FGMRES iterative methods. From the
numerical results listed in the tables, we can conclude that the Pε,α,Q preconditioned global
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TABLE 6.2
Numerical results for the preconditioner Pε,α,Q with Q = I .

l l = 5 l = 6 l = 7
α global GMRES global GMRES global GMRES

10−5 Iter 6(103) 7(155) 9(225)
CPU 1.17 7.31 89.29
RES 2.93e-05 2.11e-04 1.39e-07
ERR 1.65e-03 1.20e-02 1.92e-05

10−4 Iter 8(81) 11(100) 17(116)
CPU 1.25 7.43 81.65
RES 3.93e-06 6.47e-07 1.54e-07
ERR 3.43e-05 1.39e-05 1.09e-05

10−3 Iter 14(47) 21(46) 32(67)
CPU 1.28 7.79 102.83
RES 1.17e-07 4.90e-08 7.66e-08
ERR 1.79e-06 9.18e-07 5.47e-06

10−2 Iter 27(23) 37(33) 43(55)
CPU 1.50 9.28 94.54
RES 1.18e-08 1.46e-08 2.30e-08
ERR 1.69e-07 5.62e-07 2.73e-06

10−1 Iter 40(17) 44(29) 46(50)
CPU 1.53 9.43 97.17
RES 5.43e-08 1.97e-08 2.18e-08
ERR 1.18e-06 2.88e-06 1.87e-06

1 Iter 42(16) 45(26) 46(50)
CPU 1.52 8.84 101.96
RES 1.10e-08 2.29e-08 1.01e-08
ERR 3.37e-07 9.37e-07 2.80e-06

GMRES and global FGMRES methods require less iterations and less CPU time than PT and
PD in all trials.

Table 6.6 indicates that the Pε,α,Q preconditioner with Q = I leads to much better
numerical results than the Pε,α,Q preconditioner with Q = diag(S) and Q = S, as the Pε,α,Q
preconditioned GMRES method with Q = I need less CPU times in all trials and iteration
steps for some values of α compared with the other choices of the matrix Q.

The numerical results for the symmetric saddle point problem with multiple right-hand
sides (ε = 1) are given in Table 6.7. As observed in Table 6.7 and 6.8, the Pε,α,Q precondi-
tioned global MINRES method with the proper parameter α has a better performance than the
PD preconditioned global MINRES method in terms of the iterations and CPU times.

Numerical results for the nonsymmetric saddle point problem with multiple right-hand
sides (ε = −1) and when the discretization is non-uniform are provided in Table 6.9. For
α = 10−5 and α = 10−4, thePε,α,Q (inner block-BiCGSTAB) preconditioned global GMRES
method diverge while the Pε,α,Q (inner PCG) preconditioned global GMRES and the Pε,α,Q
(inner PCG) preconditioned global FGMRES converge.

For the following experiments we will illustrate the good behavior of the preconditioned
global GMRES methods even for a particular right-hand sides. Numerical result for the

preconditioned global GMRES methods with the right-hand sides B =

[
F
O

]
are given in
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TABLE 6.3
Numerical results for the preconditioner Pε,α,Q with Q = I .

l l = 5 l = 6 l = 7
α global FGMRES global FGMRES global FGMRES

10−5 Iter 6(85) 7(143) 8(206)
CPU 0.93 6.61 60.67
RES 5.97e-04 2.09e-04 1.31e-07
ERR 4.87e-03 4.11e-03 2.87e-05

10−4 Iter 7(69) 10(90) 14(106)
CPU 0.99 5.59 55.58
RES 3.77e-06 1.70e-07 8.43e-08
ERR 3.23e-05 2.55e-06 2.46e-06

10−3 Iter 12(43) 18(42) 27(65)
CPU 0.98 6.99 68.58
RES 1.08e-07 6.30e-08 7.05e-08
ERR 6.68e-07 6.62e-07 1.87e-06

10−2 Iter 24(21) 33(32) 39(53)
CPU 1.19 7.92 78.40
RES 6.94e-08 4.80e-08 9.28e-08
ERR 2.01e-07 4.76e-07 3.57e-06

10−1 Iter 37(16) 41(28) 45(51)
CPU 1.45 8.84 90.95
RES 5.54e-08 9.23e-08 1.08e-07
ERR 1.09e-07 1.12e-06 2.04e-06

1 Iter 43(16) 46(27) 49(49)
CPU 1.66 9.04 96.55
RES 7.39e-08 7.92e-08 1.08e-07
ERR 2.51e-07 1.78e-06 1.27e-06

TABLE 6.4
Numerical results for the three preconditioned global GMRES methods.

l
Pε,α,Q

(α = 10−4, Q = I)
PT PD

l = 5 Iter 42(16) 60(15) 122(15)
CPU 1.52 2.24 4.90
RES 1.10e-08 1.00e-07 1.04e-06
ERR 3.37e-07 3.48e-06 6.84e-06

l = 6 Iter 45(26) 62(26) 129(25)
CPU 8.84 11.06 22.70
RES 2.29e-08 2.04e-07 9.65e-07
ERR 9.37e-07 6.22e-06 5.57e-05

l = 7 Iter 46(50) 64(47) 133(46)
CPU 101.96 114.56 295.49
RES 1.01e-08 3.66e-07 2.14e-06
ERR 3.37e-07 3.04e-05 1.21e-04
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TABLE 6.5
Numerical results for the three preconditioned global FGMRES methods.

l
Pε,α,Q

(α = 10−4, Q = I)
PT PD

l = 5 Iter 7(69) 58(16) 115(16)
CPU 0.99 2.24 3.78 8.30e-07
RES 3.77e-06 1.65e-06 1.41e-06
ERR 3.23e-05 1.11e-05

l = 6 Iter 10(90) 59(27) 119(27)
CPU 5.59 11.62 22.99
RES 1.70e-07 1.05e-07 5.30e-08
ERR 2.55e-06 4.36e-06 1.16e-06

l = 7 Iter 14(106) 61(49) 121(50)
CPU 55.58 92.52 181.65
RES 8.43e-08 1.36e-07 9.32e-08
ERR 2.46e-06 1.75e-05 1.00e-06

TABLE 6.6
Numerical results for the preconditioner Pε,α,Q with l = 5.

α Q Q = I Q = diag(S) Q = S
global GMRES global GMRES global GMRES

10−5 Iter 6(103) 9(211) 14(215)
CPU 1.17 3.45 6.05
RES 1.25e-04 8.11e-09 1.62e-07
ERR 6.06e-03 6.26e-08 9.49e-07

10−4 Iter 8(81) 8(190) 15(209)
CPU 1.25 2.92 6.19
RES 3.93e-06 3.63e-09 1.72e-07
ERR 3.43e-05 2.59e-08 9.91e-07

10−3 Iter 14(47) 11(162) 22(173)
CPU 1.28 3.62 7.51
RES 1.17e-07 4.16e-09 8.08e-09
ERR 1.79e-06 3.76e-08 5.51e-08

10−2 Iter 27(23) 14(123) 33(123)
CPU 1.50 4.37 8.87
RES 1.18e-08 2.80e-08 9.72e-08
ERR 1.69e-07 1.77e-07 6.21e-07

10−1 Iter 40(17) 23(65) 115(65)
CPU 1.53 3.64 18.63
RES 5.43e-08 1.21e-07 8.72e-08
ERR 1.18e-06 8.72e-07 5.36e-07

1 Iter 42(16) 27(26) †
CPU 1.52 1.73 †
RES 1.10e-08 1.43e-07 †
ERR 3.37e-07 3.03e-06 †
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TABLE 6.7
Numerical results for the preconditioner Pε,α,Q with Q = I .

l = 5 l = 6 l = 7
α global MINRES global MINRES global MINRES

10−1 Iter 38 38 34
CPU 0.41 2.58 45.60
RES 3.11e-10 6.95e-10 3.07e-08
ERR 1.91e-07 5.16e-06 7.02e-04

1 Iter 37 38 37
CPU 0.36 2.41 46.18
RES 1.00e-09 1.90e-09 5.46e-08
ERR 1.59e-06 8.33e-05 2.68e-03

10 Iter 39 38 38
CPU 0.54 2.79 49.52
RES 2.11e-09 7.51e-09 1.45e-07
ERR 8.05e-07 9.25e-06 1.70e-02

TABLE 6.8
Numerical results for global MINRES with Pε,α,Q and PD .

l
Pε,α,Q

(α = 10−4, Q = I)
PD

l = 5 Iter 37 104
CPU 0.36 0.97
RES 1.00e-09 8.75e-10
ERR 1.59e-06 1.26e-06

l = 6 Iter 38 110
CPU 2.41 5.22
RES 1.90e-09 5.68e-10
ERR 8.33e-05 1.24e-04

l = 7 Iter 37 †
CPU 46.18 †
RES 5.46e-08 †
ERR 2.68e-03 †

Table 6.10. From the numerical results in this table, we observe that the Pε,α,Q preconditioner
is superior to the PT and the PD preconditioners in terms of iterations and CPU times.

Results for the preconditioned global GMRES and preconditioned block GMRES methods
incorporated with the Pε,α,Q preconditioners are listed in Tables 6.11 for different values of α.
From the numerical results in the table, we can conclude that the Pε,α,Q preconditioned global
GMRES method requires less iterations and less CPU time than the Pε,α,Q preconditioned
block GMRES method in all trials. In each case when all two methods produce solutions, the
Pε,α,Q preconditioned global GMRES method gives smaller relative residuals and errors than
the Pε,α,Q preconditioned block GMRES method.

Table 6.12 reports the number of iterations (Iter), CPU times, residual (RES), and error
(ERR) of the tested Pε,α,Q preconditioned global GMRES methods with respect to different
values of α. From Table 6.12, we observe that the Pε,α,Q (inner PGCG) preconditioned global
GMRES method outperforms the Pε,α,Q (inner PBl-CG) preconditioned global GMRES
method in terms of iterations and CPU times.
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TABLE 6.9
Numerical results for the preconditioner Pε,α,Q with Q = I and l = 5.

α
global GMRES
(inner PCG)

global GMRES
(inner block-
BiCGSTAB)

global FGMRES
(inner PCG)

10−3 Iter 37(76) 44(67) 33(79)
CPU 5.43 21.96 4.67
RES 3.49e-06 1.47e-05 1.78e-07
ERR 1.04e-05 6.37e-05 6.95e-07

10−2 Iter 99(32) 118(19) 93(32)
CPU 7.17 16.90 6.11
RES 4.81e-07 7.31e-05 1.25e-07
ERR 2.71e-06 6.01e-04 2.91e-07

10−1 Iter 192(18) 192(9) 178(18)
CPU 12.19 16.81 9.20
RES 2.88e-08 5.42e-07 9.77e-08
ERR 5.12e-07 1.54e-05 2.17e-07

1 Iter 271(4) 251(9) 227(3)
CPU 12.29 19.34 10.42
RES 2.59e-12 3.55e-09 1.30e-11
ERR 1.63e-06 9.42e-07 3.54e-08

TABLE 6.10
Numerical results for the three preconditioned global GMRES methods.

l
Pε,α,Q

(α = 10−5, Q = I)
PT PD

l = 5 Iter 6(92) 62(15) 134(15)
CPU 1.00 2.04 4.11
RES 4.46e-08 6.18e-08 3.56e-08

l = 6 Iter 8(132) 64(26) 142(26)
CPU 7.04 10.35 23.00
RES 7.23e-07 2.44e-07 8.58e-08

l = 7 Iter 10(199) 66(47) 148(46)
CPU 69.69 127.88 297.82
RES 4.59e-07 4.09e-07 6.54e-08

7. Conclusion. We have presented the global approach as a new strategy to solve saddle
point problems with multiple right-hand sides. In addition, we introduced and studied the
preconditioner Pε,α,Q. Tables 6.2, 6.3, 6.4, 6.5, 6.6, and 6.9 illustrate that the Pε,α,Q pre-
conditioner with suitable choices of the parameter α has a better performance compared to
PT and PD in all trials. The results in Tables 6.7 and 6.8 reveal the efficiency of the Pε,α,Q
preconditioned global MINRES method for solving the symmetric saddle point problem with
several right-hand sides. We conclude that our preconditioned global Krylov subspace methods
are very powerful for solving saddle point problems with multiple right-hand sides (1.1).
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TABLE 6.11
Numerical results for the preconditioned global GMRES and preconditioned block GMRES methods with l = 5

and Q = I .

α
Pε,α,Q

global GMRES Pε,α,Q block GMRES

10−5 Iter 6(104) 164
CPU 1.93 20.56
RES 2.93e-05 8.78e-01
ERR 1.65e-03 2.17e+01

10−4 Iter 8(81) 191
CPU 1.25 24.60
RES 3.93e-06 1.20e-03
ERR 3.41e-05 7.50e-03

10−3 Iter 4(47) 164
CPU 1.30 15.77
RES 1.17e-07 1.49e-06
ERR 1.79e-06 6.68e-06

10−2 Iter 27(23) 132
CPU 1.44 9.66
RES 1.18e-08 2.10e-08
ERR 1.69e-07 1.36e-07

10−1 Iter 40(17) 171
CPU 1.54 18.17
RES 5.43e-08 4.74e-09
ERR 1.18e-06 4.68e-08

1 Iter 42(16) 236(42)
CPU 1.66 41.95
RES 1.10e-08 3.87e-09
ERR 3.37e-07 3.41e-07
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