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Abstract. A singularly perturbed fourth-order problem with two small parameters is considered in one dimension
and on a smooth domain in two dimensions. Using its discretisation by a mixed finite element method on a properly
defined Shishkin mesh, we prove convergence in the associated energy norm.
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1. Introduction. A motivation for considering fourth-order singularly perturbed prob-
lems comes from the fact that they are currently very popular in the scientific community and
have application in vibration beam problems [8] and the theory of hydrodynamic stability, like
the Orr-Sommerfeld equation [6, 9]. In such problems, the highest derivative in the differential
equation is multiplied by a small positive parameter, which produces the appearance of layers.
Standard numerical methods are inefficient for singularly perturbed problems, so the main
goal in the construction of numerical methods for these problems is acquiring their uniform
convergence with respect to all perturbation parameters. Recently, fourth-order singularly
perturbed problems with one perturbation parameter were investigated in [3, 4, 5, 7, 14].

In this paper we consider the singularly perturbed fourth-order problem with two small
parameters given by

ε2
1∆2u− ε2

2∆u+ cu = f in Ω,(1.1a)
u = 0 on Γ = ∂Ω,(1.1b)

∂
∂nu = 0 on Γ = ∂Ω,(1.1c)

under the assumption that c ≥ c20 > 0 ∈ L∞(Ω) and that 0 < ε1 < ε2 � 1 are two small
perturbation parameters. We further specify that for an arbitrary constant C > 0

ε1 ≤ Cε2
2,(1.2)

as otherwise we have essentially a one-parameter singularly perturbed problem; see [6]. Note
that for smooth enough functions c and f we have in 1D and for smooth or rectangular domains
in 2D the regularity result u ∈ H2

0 (Ω) ∩H4(Ω); see [1].
The solution to a problem like (1.1) with perturbation parameters fulfilling (1.2) is

characterised by two overlapping layers along all boundaries. In Section 2 we analyse the
structure in 1D in more detail and present a numerical method for simulating the problem.
In Section 3 we consider smooth domains Ω ⊂ R2 and present a numerical analysis for our
numerical method. Section 4 then gives some examples and results supporting our theoretical
findings.
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1.1. Notation. We will use ‖·‖k,D to denote the Hk-norm and ‖·‖Lp(D) to denote the
Lp-norm on D ⊂ Ω. If D = Ω, then the reference to the domain may be suppressed. For the
L2-scalar product in Ω we write 〈·, ·〉. Furthermore, we present estimates using A . B if a
generic constant C independent of ε1, ε2 and the numerical method parameter N exists such
that A ≤ CB. For A . B and B . A, we write shortly A ∼ B.

2. Analysis in 1D. For this section let Ω = (0, 1) be the unit interval in 1D. If we want
to construct any numerical method for solving singularly perturbed problem in a uniform
way, then it is crucial to have information about the behaviour of the derivatives of the exact
solution. The bounds for the derivatives are required in the mesh definition as well as in the
error analysis. The behaviour of the solution for the problem (1.1) in 1D can be deduced from
the asymptotic expansion of [6]. Here, we are only interested in the case when ε1 � ε2

2, as in
the cases of ε1 = αε2

2 and ε1 � ε2
2, we have essentially singularly perturbed problems with

one perturbation parameter.
ASSUMPTION 2.1. The solution u of the boundary value problem (1.1) in 1D can be

decomposed as

u = S + E1 + E2 + E3 + E4,

where S is the smooth part of the solution, E1 and E2 are layer parts near x = 0, and E3 and
E4 are layer parts near x = 1. We assume that for 0 ≤ k ≤ 4,

∣∣∣S(k)(x)
∣∣∣ . 1,

∣∣∣E(k)
1 (x)

∣∣∣ . 1

ε2

(
ε1

ε2

)1−k
e−

x ε2
ε1 ,

∣∣∣E(k)
2 (x)

∣∣∣ . ε−k2 e−
x
ε2 ,

for x ∈ Ω and similarly for E3 and E4 with x being replaced by 1− x in the bounds.
With this assumption on the solution decomposition, we introduce a layer-adapted mesh

based on the standard Shishkin mesh [11, 12]. Let the number N be a positive integer divisible
by 8, and let

λ1 = min

{
σ1
ε1

ε2
lnN,

1

8

}
, λ2 = min

{
σ2ε2 lnN,

1

4

}
,

where σi, i = 1, 2, are user-chosen parameters. Then we define a mesh on Ω̄ = [0, 1]
constructed with five distinct uniform meshes separated by transition points located at λ1, λ2,
1− λ2, and 1− λ1. Each of the subintervals

Ω1 = [0, λ1], Ω2 = [λ1, λ2], Ω4 = [1− λ2, 1− λ1], Ω5 = [1− λ1, 1]

is divided into N/8 equal mesh elements, and the subinterval Ω3 = [λ2, 1 − λ2] is divided
into N/2 equal mesh elements.

Let us denote the length of a cell in Ω1 ∪Ω5 by h1, of a cell in Ω2 ∪Ω4 by h2, and in Ω3

by h3. For them we have

h1 =
8λ1

N
∼ ε1

ε2
N−1 lnN,

h2 =
8(λ2 − λ1)

N
∼ ε2N

−1 lnN,

h3 =
2(1− 2λ2)

N
∼ N−1.
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Following the idea from [4], we rewrite the problem (1.1) as a system using the auxiliary
unknown w = ε1u

′′ ∈ H2(Ω). Then a standard weak formulation for (1.1) is as follows:
find (u,w) ∈ H1

0 (Ω)×H1(Ω) such that

ε1〈u′, ϕ′〉+ 〈w,ϕ〉 = 0, ∀ϕ ∈ H1(Ω),

ε2
2〈u′, ψ′〉+ 〈cu, ψ〉 − ε1〈w′, ψ′〉 = 〈f, ψ〉, ∀ψ ∈ H1

0 (Ω).

By using the bilinear form

a((u,w), (ψ,ϕ)) := 〈w,ϕ〉+ ε2
2〈u′, ψ′〉+ 〈cu, ψ〉+ ε1 (〈u′, ϕ′〉 − 〈w′, ψ′〉) ,

we can rewrite the task as: find (u,w) ∈ H1
0 (Ω)×H1(Ω) such that

a((u,w), (ψ,ϕ)) = 〈f, ψ〉, ∀(ψ,ϕ) ∈ H1
0 (Ω)×H1(Ω).(2.1)

Let S0
h = {v ∈ H1

0 (Ω) : v|τ ∈ P1(τ)} and Sh = {v ∈ H1(Ω) : v|τ ∈ P1(τ)} be the finite
element spaces of piecewise linear functions defined on the Shishkin mesh. The discrete
problem is then characterised by: find (uN , wN ) ∈ S0

h × Sh such that

a((uN , wN ), (ψ,ϕ)) = 〈f, ψ〉, ∀ϕ ∈ Sh, ψ ∈ S0
h.(2.2)

The bilinear form is coercive with respect to the energy norm given by

|||(u,w)|||2 := ‖w‖20 + ε2
2‖u′‖20 + ‖c1/2u‖20.

Hence, the standard weak formulation and the discretisation method have unique solutions.
In order to estimate interpolation errors, we use standard piecewise linear interpolants

I : C(Ω) → V0(Ω) and J : C(Ω) → V (Ω) defined by interpolating the values at the mesh
nodes.

LEMMA 2.2. For σ1 ≥ 2 and σ2 ≥ 2, we have

‖u− Iu‖0 + ‖w − Jw‖0 . N−2 ln3/2N, ‖(u− Iu)′‖0 . ε
−1/2
2 N−1 lnN.

Proof. For the smooth part S of the solution u we have by standard interpolation error
estimates on each subinterval

‖S − IS‖0 . (h2
1 + h2

2 + h2
3)‖S′′‖0 . N−2.

Similarly, we have for the first layer part E1 = E1 + E3,

‖E1 − IE1‖0,Ω1∪Ω5 . h2
1‖E1′′‖0,Ω1∪Ω5 .

(
ε1

ε2

)1/2

(N−1 lnN)2,

‖E1 − IE1‖20,Ω2∪Ω3∪Ω4
. ‖E1‖L∞(Ω2∪Ω3∪Ω4) . N−σ1 . N−2,

where the L∞-stability of the interpolation and σ1 ≥ 2 was used. For the second layer part
E2 = E2 + E4, we have similarly

‖E2 − IE2‖0,Ω1∪Ω2∪Ω4∪Ω5 . (h2
1 + h2

2)‖E2′′‖0,Ω1∪Ω2∪Ω4∪Ω5

.

(
ε1

ε2
+ ε2

)1/2

(N−1 lnN)2,

‖E2 − IE2‖20,Ω3
. ‖E2‖L∞(Ω3) . N−σ2 . N−2,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

SINGULARLY PERTURBED FOURTH-ORDER TWO-PARAMETER PROBLEMS 53

now using σ2 ≥ 2. Combining these estimates with ε2 lnN . 1 and ε1
ε2

lnN . 1, we obtain
the first result. The results for w = ε1u

′′ follow in the same way.
For the H1-error we use again the above techniques, now for the derivative, and a trick

from [13, proof of Lemma 3.2] to estimate ‖IE‖0,Ω2∪Ω4
in an optimal way.

Having the interpolation error bound, we only need estimates for the discrete error
Iu− uN .

THEOREM 2.3. For the discrete error on a Shishkin mesh with σ1, σ2 ≥ 2, where
(uN , wN ) is the solution of (2.2), we have the supercloseness estimate

|||(Iu− uN , Jw − wN )||| . N−2(lnN)3/2.

Proof. Let ψ = Iu− uN ∈ V 0
N and ϕ = Jw − wN ∈ VN . Starting with the coercivity

and Galerkin orthogonality of the bilinear form a((·, ·), (·, ·)), we have

|||(ψ,ϕ)|||2 ≤ a((Iu− u, Jw − w), (ψ,ϕ))

= 〈Jw − w,ϕ〉+ ε2
2〈(Iu− u)′, ψ′〉+ 〈c(Iu− u), ψ〉

+ ε1 (〈(Iu− u)′, ϕ′〉 − 〈(Jw − w)′, ψ′〉)
=: I1 + I2 + I3 + I4 + I5.

By definition of the interpolation operators the quantities Iu− u and Jw − w are zero at the
mesh points. Therefore, I2, I4, I5 are also zero. With the Cauchy-Schwarz inequality and
Lemma 2.2, we obtain for the remaining two terms

|I1| ≤ ‖Jw − w‖0‖ϕ‖0 . N−2 ln3/2N‖ϕ‖0,
|I3| ≤ ‖Iu− u‖0‖ψ‖0 . N−2 ln3/2N‖ψ‖0.

Combining the estimates for the interpolation error with those for the discrete error we
obtain the main result of this section.

THEOREM 2.4. On a Shishkin mesh with σ1, σ2 ≥ 2, where (u,w) is the solution of (2.1)
and (uN , wN ) is the solution of (2.2), the following estimate holds:

|||(u− uN , w − wN )||| . N−2(lnN)3/2 + ε
1/2
2 N−1 lnN.

3. Smooth domains in 2D. Let us now assume that Ω is the interior of a smooth, non-
overlapping curve Γ = ∂Ω.

3.1. Decomposition of solution and domain. We will dissect Ω into three disjoint
subdomains that are then discretised. We follow the idea by Shishkin and define for given
mesh-parameters N, σ1, σ2 the transition points

λ1 = σ1
ε1

ε2
lnN, λ2 = σ2ε2 lnN.

We will give precise bounds for the user-chosen parameters σ1, σ2 later. The parameter N is
used to parameterise the number of cells in the final mesh (and thus the number of unknowns).

Like in the 1D-case we assume ε1 � ε2
2 and ε2 to be small enough such that λ1 ≤ 1

2λ2 . 1
holds as otherwise no special treatment of the boundary layers is needed. Furthermore, the
above assumption guarantees that the numerical layer further away from the boundary is not
smaller than the numerical layer near the boundary.
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With the distance ρ = d(x,Γ) of a point x to the boundary Γ and θ as the local coordinates
near the boundary, we define

Ω1 := {x ∈ Ω : d(x,Γ) < λ1} ,
Ω2 := {x ∈ Ω : λ1 < d(x,Γ) < λ2} , and
Ω3 := {x ∈ Ω : λ2 < d(x,Γ)} .

The reason for choosing the transition parameters as above is inspired by the 1D-analysis.
We assume a similar decomposition for the smooth-domain case. Then the reasoning of
Shishkin’s approach is to define the transition points such that the sizes of the exponentially
decaying boundary-layer terms are as small as N−σ at λ. The precise assumptions needed for
our analysis are given in the following.

ASSUMPTION 3.1. Let us assume that u and w = ε1∆u can be decomposed as

u = S + E1 + E2 and w = S̃ + Ẽ1 + Ẽ2,

where we have the estimates

‖S‖3 . 1, ‖S̃‖3 . ε1,

‖E1‖L∞(Ω3) + ε
1/2
2 ‖E1‖1,Ω3 + ‖Ẽ1‖L∞(Ω3) + ε

1/2
2 ‖Ẽ1‖1,Ω3

. e
− λ1
ε1/ε2 . N−σ1 ,

‖E2‖L∞(Ω3) + ε
1/2
2 ‖E2‖1,Ω3 + ‖Ẽ2‖L∞(Ω3) + ε

1/2
2 ‖Ẽ2‖1,Ω3

. e−
λ2
ε2 . N−σ2 ,

and the pointwise bounds, for 0 ≤ ρ ≤ λ2 and 0 ≤ `+ k ≤ 3,

|∂`θ∂kρE1(ρ, θ)| . 1

ε2

(
ε1

ε2

)1−k
e
− ρ
ε1/ε2 , |∂`θ∂kρE2(ρ, θ)| . ε−k2 e−

ρ
ε2 ,

respectively, for 0 ≤ `+ k ≤ 2,

|∂`θ∂kρ Ẽ1(ρ, θ)| .
(
ε1

ε2

)−k
e
− ρ
ε1/ε2 , |∂`θ∂kρ Ẽ2(ρ, θ)| . ε−k2 e−

ρ
ε2 .

REMARK 3.2. The above assumptions are reasonable. If we consider the decomposition
of the 1D-example and use it as an approximation near the (stretched) boundary, then the
above stated assumptions follow. Furthermore, for the case ε2 = 1, they correspond well with
those in [2] on smooth domains and those of [4, 5] on a square-domain.

REMARK 3.3. By assuming ∂Ω to be smooth, the first derivatives with respect to the
(physical) x, y variables are bounded by the first derivatives with respect to the ρ, θ variables.

3.2. Definition of the mesh. Figure 3.1 shows exemplarily a mesh for a smooth domain
that is also used in the numerical examples. We use mapped quadrilaterals to discretise the
layer regions Ω1 (between the two outer thick lines in Figure 3.1) and Ω2 (between the two
inner thick lines). The mapping is defined such that the boundary is exactly matched using the
ideas from [10]—there is no approximation of the curved boundary. In Ω1 and Ω2 we place
N
8 plies of mapped quadrilaterals in such a way that they are of the same size in ρ-direction

and thereby giving the analogon of the 1D-Shishkin mesh. For the domain Ω3 we can use
either mapped triangles or quadrilaterals to discretise it. Here we use triangles. Again there is
no approximation of the curved transition line between Ω2 and Ω3. Depending on the given
setting, all cells in Ω3 are of similar size, and the mesh in Ω3 is quasi-uniform. The number of
cells in Ω3 is proportional to N2, and therefore the size of a cell τ ⊂ Ω3 can be estimated by

diam(τ) ∼ H =
1

N
.
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FIG. 3.1. Mesh of a smooth domain with N = 16.

For the cells τ in the layer region with the corresponding cells τ̂ in the reference domain, the
dimensions h1 by k1 in Ω1 and h2 by k2 in Ω2 follow, where

h1, h2 ∼ H, k1 ∼
λ1

N
∼ ε1

ε2
N−1 lnN, and k2 ∼

λ2

N
∼ ε2N

−1 lnN.

3.3. Numerical method. Similarly to the 1D case we rewrite the fourth-order equation
as a system of two second-order equations for u ∈ H1

0 (Ω) and w = ε1∆u ∈ H1(Ω):

−ε1∆u+ w = 0,

ε1∆w − ε2
2∆u+ cu = f.

Its weak formulation now reads: find (u,w) ∈ H1
0 (Ω)×H1(Ω) such that

a((u,w), (ψ,ϕ)) := 〈w,ϕ〉+ ε2
2〈∇u,∇ψ〉+ 〈cu, ψ〉

+ ε1〈∇u,∇ϕ〉 − ε1〈∇w,∇ψ〉 = 〈f, ψ〉(3.1)

for all (ψ,ϕ) ∈ H1
0 (Ω)×H1(Ω).

Our discrete space is piecewise polynomial in the reference domain. For any cell τ ⊂ Ω,
let mτ be the mapping from one of the three reference domains into the mesh on Ω. Then our
first discrete space is given by

VN :=
{
v ∈ H1(Ω) : v

∣∣
τ

= v̂τ̂ ◦m−1
τ , v̂τ̂ ∈ Q1(τ̂) for τ ⊂ Ω1 ∪ Ω2,

v̂τ̂ ∈ P1(τ̂) for τ ⊂ Ω3

}
.

The second discrete space is simply

V 0
N := VN ∩H1

0 (Ω).
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Our discrete problem now reads: find (uN , wN ) ∈ V 0
N × VN such that

a((uN , wN ), (ψ,ϕ)) = 〈f, ψ〉(3.2)

for all (ψ,ϕ) ∈ V 0
N × VN .

REMARK 3.4. By definition we immediately have Galerkin orthogonality

a((u− uN , w − wN ), (ψ,ϕ)) = 0

and coercivity

a((u,w), (u,w)) ≥ ‖w‖20 + ε2
2‖∇u‖20 + ‖c0u‖20 =: |||(u,w)|||2

in the energy norm. Note that we have with w = ε1∆u

|||(u,w)|||2 = ε2
1‖∆u‖20 + ε2

2‖∇u‖20 + ‖c0u‖20.

Thus the energy norm is equivalent to the classical energy norm for the problem (1.1).

3.4. Analysis of the method. The convergence analysis follows the standard procedure
of estimating the interpolation error in various norms and then estimating the discrete error
by the interpolation error in the bilinear form. Let us start by defining suitable interpolation
operators. Here we use the canonical vertex-interpolation operators

I : C(Ω)→ V 0
N and J : C(Ω)→ VN

defined by point-evaluation in the parameter space. Note that we have for a quadrilateral cell τ
the estimates

‖u− Iu‖0,τ . h2
τ̂‖∂2

θ û‖0,τ̂ + k2
τ̂‖∂2

ρ û‖0,τ̂ ,(3.3a)

‖u− Iu‖1,τ . hτ̂‖∂2
θ û‖0,τ̂ + (kτ̂ + hτ̂ )‖∂θ∂ρû‖0,τ̂ + kτ̂‖∂2

ρ û‖0,τ̂(3.3b)

and similarly for w − Jw because of the transformation between real-world and parameter
space.

LEMMA 3.5. Let (u,w) be the solution of (3.1) fulfilling Assumption 3.1. Then under the
conditions σ1 ≥ 2 and σ2 ≥ 2, we have the estimates for the interpolation error

‖u− Iu‖0 + ‖w − Jw‖0 . N−2(lnN)3/2,(3.4)

‖u− Iu‖1 . ε
−1/2
2 N−1 lnN,(3.5)

‖w − Jw‖1 .

(
ε1

ε2

)−1/2

N−1 lnN,(3.6)

‖E − IE‖1,Ω3
. ε
−1/2
2 N−(σ2−1) lnN,(3.7)

where E is any of the boundary layer terms.
Proof. The estimation follows the standard procedure of evaluating each component of

the solution decomposition on each part of the mesh separately by either using the anisotropic
interpolation error formulas (3.3) if the resulting derivatives can be bounded by the mesh-sizes
or by the stability of the interpolation with respect to the L∞- or W 1,∞-norms and inverse
inequalities if the solution component is already small enough. Therefore, we skip the details
here.
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Let us now consider estimating the discrete error

(ψ,ϕ) := (Iu− uN , Jw − wN ) ∈ V 0
N × VN .

Using coercivity and Galerkin-orthogonality we have

|||(ψ,ϕ)|||2 ≤ a((Iu− u, Jw − w), (ψ,ϕ))

= 〈Jw − w,ϕ〉+ ε2
2〈∇(Iu− u),∇ψ〉+ 〈c(Iu− u), ψ〉

+ ε1〈∇(Iu− u),∇ϕ〉 − ε1〈∇(Jw − w),∇ψ〉
=: I + II + III + IV + V.

In contrast to the 1D case, all terms have to be estimated as none is vanishing.
LEMMA 3.6. Let (u,w) be the solution of (3.1) fulfilling Assumption 3.1 and (uN , wN )

be the solution of (3.2). Under the conditions σ1 ≥ 2 and σ2 ≥ 2, we have

|I|+ |III| . N−2(lnN)3/2 |||(ψ,ϕ)||| ,
|II| . ε

1/2
2 N−1 lnN |||(ψ,ϕ)||| ,

|V | .
(
ε1

ε2

)1/2

N−1 lnN |||(ψ,ϕ)||| .

Proof. The first bound follows directly from the Cauchy-Schwarz inequality and (3.4).
Similarly the other two estimates follow using (3.5) and (3.6)

|II| . ε2
2‖Iu− u‖1‖ψ‖1 . ε

1/2
2 N−1 lnN(ε2‖ψ‖1) . ε

1/2
2 N−1 lnN |||(ψ,ϕ)||| ,

|V | . ε1‖Jw − w‖1‖ψ‖1 .

(
ε1

ε2

)1/2

N−1 lnN |||(ψ,ϕ)||| .

The only term left is IV . A direct estimation as above is not applicable as ‖∇ϕ‖0 is not
part of the energy norm. Thus we have to bound this term more elaborately and under stronger
conditions.

LEMMA 3.7. Let (u,w) be the solution of (3.1) fulfilling Assumption 3.1 and (uN , wN )
be the solution of (3.2). Under the conditions σ1 ≥ 2, σ2 ≥ 2 + 1

4 , and ε1 . N−1, we have

|IV | . N−1 lnN‖ϕ‖0.

Proof. The proof consists of two parts. We use sharper estimates for the interpolation
error in the coarse (triangulated) domain Ω3 and supercloseness formulas in the remaining
domain.

1) By (3.7) for the boundary layer components and standard interpolation error estimates
for the smooth component S of the solution decomposition, we obtain

ε1|〈∇(Iu− u),∇ϕ〉Ω3
| . ε1

(
N−1‖S‖2,Ω3

+ ε
−1/2
2 N−(σ2−1) lnN

)
N‖ϕ‖0,Ω3

. (ε1 + ε
3/4
1 N−(σ2−2) lnN)‖ϕ‖0

. N−1 lnN‖ϕ‖0,

where the stronger conditions on ε1 and σ2 were used.
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2) For the other term we use supercloseness formulas; see, e.g., [15]. For them let v
be defined on the rectangular cell τ with sides of length hτ and kτ in an arbitrary s- and
t-direction and on a rectangular domain T consisting of cells τ with sides `1 and `2 for minimal
and maximal t. Then we have

|〈∂s(Iv − v), ∂sϕ〉τ | . k2
τ‖∂s∂2

t v‖L∞(τ)‖∂sϕ‖L1(τ),(3.8a)

|〈∂s(Iv − v), ∂tϕ〉T | .
∑
τ⊂T

(kτ‖∂s∂2
t v‖L∞(τ) + hτ‖∂2

s∂tv‖L∞(τ))‖ϕ‖L1(τ)

+

2∑
i=1

∑
τ⊂T

τ∩`i 6=∅

hτ‖∂2
sv‖L∞(`i∩∂τ)‖ϕ‖L1(`i∩∂τ).

(3.8b)

The second sum in (3.8b) can be set to zero if v|`1 = v|`2 .

Now let us look at the remaining term

ε1|〈∇(Iu− u),∇ϕ〉Ω1∪Ω2
| . ε1

∣∣∣〈∂θ(Î û− û), ∂θϕ̂〉Ω̂1∪Ω̂2

∣∣∣
+ ε1

∣∣∣〈∂ρ(Î û− û), ∂ρϕ̂〉Ω̂1∪Ω̂2

∣∣∣
+ ε1

∣∣∣〈∂θ(Î û− û), ∂ρϕ̂〉Ω̂1∪Ω̂2

∣∣∣
+ ε1

∣∣∣〈∂ρ(Î û− û), ∂θϕ̂〉Ω̂1∪Ω̂2

∣∣∣
=: a+ b+ c+ d.

We use (3.8a) and inverse inequalities for a and b to obtain

a . ε1

(
k2

1

h1
‖∂θ∂2

ρ û‖L∞(Ω̂1)‖ϕ̂‖L1(Ω̂1) +
k2

2

h2
‖∂θ∂2

ρ û‖L∞(Ω̂2)‖ϕ̂‖L1(Ω̂2)

)
. ε1N

−1(lnN)2
(
ε2

1 + ε2
2

) (
1 + ε−1

1 + ε−2
2

)
‖ϕ‖0

. N−1(lnN)2
(
ε1 + ε2

2

)
‖ϕ‖0

. N−1‖ϕ‖0,

b . ε1

(
h2

1

k1
‖∂2
θ∂ρû‖L∞(Ω̂1)‖ϕ̂‖L1(Ω̂1) +

h2
2

k2
‖∂2
θ∂ρû‖L∞(Ω̂2)‖ϕ̂‖L1(Ω̂2)

)
. ε1

N−1

lnN

(
ε−1

1 (ε1 lnN)1/2 + ε−1
2 (ε2 lnN)1/2

)
(1 + ε−1

2 )‖ϕ‖0

.
N−1

(lnN)1/2

(
ε2 + ε

3/2
2

)
(1 + ε−1

2 )‖ϕ‖0

. N−1‖ϕ‖0.

For c and d we use (3.8b). As we have periodicity in θ-direction, we can ignore the second
sum when bounding d. But then d can be estimated by the same bound as c due to exchanging
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ρ and θ as well as h and k. Therefore, it follows that

c . ε1

(
h1‖∂2

θ∂ρû‖L∞(Ω̂1) + k1‖∂θ∂2
ρ û‖L∞(Ω̂1)

)
(ε1 lnN)1/2‖ϕ‖0

+ ε1

(
h2‖∂2

θ∂ρû‖L∞(Ω̂2) + k2‖∂θ∂2
ρ û‖L∞(Ω̂2)

)
(ε2 lnN)1/2‖ϕ‖0

+ ε1h1‖∂2
θ û‖L∞(ρ=0)‖ϕ‖L1(ρ=0)

+ ε1h2‖∂2
θ û‖L∞(ρ=λ2)‖ϕ‖L1(ρ=λ2)

. ε1N
−1

(
1 + ε−1

1 + ε−2
2 + 0 + (1 +N−σ1 +N−σ2)N1/2

)
‖ϕ‖0

. (N−1 + ε1N
−1/2)‖ϕ‖0 . N−1‖ϕ‖0,

d . N−1‖ϕ‖0.

Combining Lemmas 3.5 to 3.7 we obtain the main result of this section.
THEOREM 3.8. Let (u,w) be the solution of (3.1) fulfilling Assumption 3.1 and (uN , wN )

be the solution of (3.2). Under the conditions σ1 ≥ 2, σ2 ≥ 2 + 1/4, and ε1 . N−1, we have

|||(u− uN , w − wN )||| . N−1 lnN.

REMARK 3.9. The proof of Lemma 3.7 shows that Theorem 3.8 remains true under the
conditions σ1 ≥ 2, σ2 ≥ 2, and ε1 . N

4
3σ2−4.

4. Numerical experiments. In this section we present the results of numerical exper-
iments. All computations were made using the finite element library SOFE1 running in
Matlab/Octave.

In our examples the exact solution is not known. Therefore, we use a numerically
computed reference solution as substitute. This reference solution is computed on a Shishkin
mesh twice as fine as the finest one used in our computations and with a polynomial degree of
two.

We will present results in the energy norm

|||(u,w)|||2 := ‖w‖20 + ε2
2‖∇u‖20 + ‖c0u‖20.

This norm is not a balanced norm, i.e., for ε1 ≤ ε2 → 0 not all solution components contribute
equally to it. With the decomposition u = S +E1 +E2, where S is the smooth part, E1 are
the faster decaying layers, and E2 are the slower decaying layers, we have the estimates

|||(S, ε1∆S)|||2 . ε2
1 + ε2

2 + 1 ∼ 1,

|||(E1, ε1∆E1)|||2 .
ε1

ε2
+
ε1

ε2
+
ε2

1

ε3
2

∼ ε1

ε2
→ 0,

|||(E2, ε1∆E2)|||2 .
ε2

1

ε3
2

+ ε2 + ε2 ∼ ε2 → 0.

On the other hand, we obtain with

|||(u,w)|||2b :=
ε2

ε1
‖w‖20 + ε2‖∇u‖20 + ‖c0u‖20

1https://github.com/SOFE-Developers/SOFE
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101 102 103 104 105

10−5

10−3

10−1

101

N

FIG. 4.1. Convergence behaviour in the energy norm (solid line) and the balanced norm (dashed line) for
ε1 = 10−8 (•), 10−9 (+), and 10−10 (x) and for ε2 = 10−3 (black) and 10−4 (gray).

a balanced norm with

|||(S, ε1∆S)|||2b . ε1ε2 + ε2 + 1 ∼ 1,

|||(E1, ε1∆E1)|||2b . 1 +
ε1

ε2
2

+
ε2

1

ε3
2

∼ 1,

|||(E2, ε1∆E2)|||2b .
ε1

ε2
2

+ 1 + ε2 ∼ 1.

Unfortunately, the numerical method is not coercive with this norm and proving uniform
convergence with respect to this stronger norm is an open problem. Nevertheless, we do
present numerical results also with respect to this norm.

EXAMPLE 4.1. Let us start with a 1D problem given on Ω = (0, 1). We simply set c = 1

and f(x) = 1 + sin(8x)
2 . The right-hand side is chosen such that it is not zero at the endpoints

of Ω and not polynomial.
Figure 4.1 displays the convergence behaviour of our method for various values of ε1, ε2,

and N . It can be seen that the errors in both the energy and the balanced norms behave like
N−1 lnN . This reference rate is depicted for comparison as a dotted line. Thus the theoretical
result of Theorem 2.4 is confirmed numerically.

EXAMPLE 4.2. We consider a smooth domain Ω ⊂ R2 with a boundary Γ given by a
curve γ(θ) using polar coordinates. We consider the so called Cranioid-curve with

γ(θ) =

(
1

4
sin(θ) +

1

2

√
1− 0.9 cos(θ)2 +

1

2

√
1− 0.7 cos(θ)2

)
·
[
cos(θ)
sin(θ)

]
and θ ∈ [0, 2π). This domain together with a mesh for N = 16 and rather large values of ε1

and ε2 is presented in Figure 3.1. On this domain Ω we choose c = 1 and f(x, y) = 10x as
right-hand side.

The mesh is not a tensor-product mesh. Therefore, Table 4.1 presents the almost quadratic
dependence of the number of degrees of freedom on N for ε1 = 10−10 and ε2 = 10−4. For
other values of ε1, ε2, the exact number of degrees of freedom changes only slightly.

Figure 4.2 displays the convergence behaviour of our method for various values of ε1, ε2,
and N . It can be seen that also for the 2D-problem the errors in both the energy and the
balanced norm behave like N−1 lnN , again depicted for comparison as a dotted line. Thus,
the theoretical result of Theorem 3.8 is confirmed numerically. Furthermore, the balanced
norm is larger than the energy norm (as expected), but for our example we still see a reduction
in the errors for ε2 becoming smaller. This is even more pronounced in the energy norm.
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TABLE 4.1
Quadratic dependence of the number of degrees of freedom (#DoF) on N .

N #DoF

8 102
16 388
32 1602
64 6495

128 25957
256 105543
512 426187

101 102
10−3

10−2

10−1

100

101

N

FIG. 4.2. Convergence behaviour in the energy norm (solid line) and the balanced norm (dashed line) for
ε1 = 10−8 (•), 10−9 (+), and 10−10 (x) and ε2 = 10−3 (black) and 10−4 (gray).
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