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1-D: ERROR ESTIMATES∗
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Abstract. We consider one-dimensional singularly perturbed boundary value problems of reaction-convection-
diffusion type, and the approximation of their solution using isogeometric analysis. In particular, we use a Galerkin
formulation with B-splines as basis functions, defined on appropriately chosen knot vectors. We prove robust
exponential convergence in the energy norm, independently of the singular perturbation parameters, and illustrate our
findings through a numerical example.
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1. Introduction. We consider second order singularly perturbed problems (SPPs) in one-
dimension, of reaction-convection-diffusion type, whose solution contains boundary layers;
see, e.g., [13]. The approximation of the solution to SPPs has received a lot of attention in
the last few decades, mainly using finite differences (FDs) and finite elements (FEs) on layer
adapted meshes; see, e.g., [9]. Various formulations and results are available in the literature,
both theoretical and computational (cf. [9, 13], and the references therein). One method
that has not, to our knowledge, been applied to general SPPs is isogeometric analysis (IGA).
Since the introduction of IGA by T. R. Hughes et al. [7], the method has been successfully
applied to a large number of problem classes. Even though much attention has been given to
convection-dominated problems [3], the method has not been applied, as far as we know, to a
typical singularly perturbed problem, such as (2.1), (2.2) ahead.

Our goal in this article is to provide the theoretical justification for the application of IGA
to SPPs and, in particular, for the approximation of the solution to the boundary value problem
(BVP) given by (2.1), (2.2). We use a Galerkin formulation with B-splines as basis functions
and select appropriate knot vectors, such that as the polynomial degree increases, the error
in the approximation, measured in the energy norm, decays exponentially and independently
of the singular perturbation parameters. This is the analog of performing p refinement in the
FEM. Even though we focus on the one-dimensional case, our results will serve as the stepping
stone to higher dimensions for two reasons: the boundary layer effect is one dimensional (in
the direction normal to the boundary) and B-splines in two-dimensions are constructed via
tensor products. Hence, this is the first step towards higher dimensions.

The rest of the paper is organized as follows: in Section 2 we describe the model problem,
its regularity and the Galerkin formulation we will use. In Section 3 we give a brief introduction
to IGA, as described in [3], and present the discrete problem. Section 4 contains our main
result of uniform exponential convergence and finally, Section 5 shows the result of a numerical
experiment to illustrate the theory.

With I ⊂ R an interval with boundary ∂I and measure |I|, we will denote by Ck(I) the
space of continuous functions on I with continuous derivatives up to order k. We will use the
usual Sobolev spaces W k,m(I) of functions on I with 0, 1, 2, . . . , k generalized derivatives
in Lm (I), equipped with the norm and seminorm ‖·‖k,m,I and |·|k,m,I , respectively. When
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m = 2, we will write Hk (I) instead of W k,2 (I), and for the norm and seminorm, we will
write ‖·‖k,I and |·|k,I , respectively. The usual L2(I) inner product will be denoted by 〈·, ·〉I ,
with the subscript omitted when there is no confusion. We will also use the space

H1
0 (I) =

{
u ∈ H1 (I) : u|∂I = 0

}
.

The norm of the space L∞(I) of essentially bounded functions is denoted by ‖ · ‖∞,I . Finally,
the letter C will denote a generic positive constant, independent of any parameters and possibly
having different values in each occurence.

2. The model problem and its regularity. We consider the following model BVP: find
u such that

−ε1u′′(x) + ε2b(x)u′(x) + c(x)u(x) = f(x), x ∈ I = (0, 1) ,(2.1)
u(0) = u(1) = 0,(2.2)

where 0 < ε1, ε2 ≤ 1 are given parameters that can approach zero and the functions b, c, f are
given and sufficiently smooth. We assume that there exist constants β, γ, ρ, independent of
ε1, ε2, such that ∀ x ∈ I ,

(2.3) b(x) ≥ β ≥ 0 , c(x) ≥ γ > 0 , c(x)− ε2
2
b′(x) ≥ ρ > 0.

The reason for the above assumptions is to ensure existence and uniqueness of a weak solution
to (2.1), (2.2).

The structure of the solution to (2.1) depends on the roots of the characteristic equation
associated with the differential operator. For this reason, we let λ0(x), λ1(x) be the solutions
of the characteristic equation and set

µ0 = − max
x∈[0,1]

λ0(x) , µ1 = min
x∈[0,1]

λ1(x),

or equivalently,

(2.4) µ0,1 = min
x∈[0,1]

∓ε2b(x) +
√
ε22b

2(x) + 4ε1c(x)

2ε1
.

The following holds true [14, 17]:

(2.5)


1� µ0 ≤ µ1,

ε2
ε2+ε

1/2
1

≤ Cε2µ0 ≤ C, ε
1/2
1 µ0 ≤ C,

max{µ−10 , ε1µ1} ≤ Cε1 + ε
1/2
2 , ε2 ≤ Cε1µ1,

for ε22 ≥ ε1 : ε
−1/2
1 ≤ Cµ1 ≤ Cε−11 ,

for ε22 ≤ ε1 : ε
−1/2
1 ≤ Cµ1 ≤ Cε−1/21 .

The values of µ0, µ1 determine the strength of the boundary layers and since |λ0(x)| < |λ1(x)|
the layer at x = 1 is stronger than the layer at x = 0. Essentially, there are three regimes, as
shown in Table 1, which is taken from [9]. Figure 2.1 shows the behavior of the solution to
(2.1), (2.2), in all three regimes.

The above considerations suggest the following two cases:
1. ε1 is large compared to ε2: this is similar to a ‘regular perturbation’ of reaction-

diffusion type. If we consider the limiting case ε2 = 0, then we see that there are two
boundary layers, one at each endpoint, of width O

(
ε
1/2
1

∣∣∣ln ε1/21

∣∣∣). This situation
has been studied in the literature (see, e.g., [10]) and will not be considered further in
this article.
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TABLE 2.1
Different regimes based on the relationship between ε1 and ε2.

µ0 µ1

convection-diffusion ε1 � ε2 = 1 1 ε−11

convection-reaction-diffusion ε1 � ε22 � 1 ε−12 ε2/ε1

reaction-diffusion ε22 � ε1 � 1 ε
−1/2
1 ε

−1/2
1
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FIG. 2.1. Exact solution for different values of ε1 and ε2.

2. ε1 is small compared to ε2: before discussing the different regimes, it is instructive to
consider the limiting case ε1 = 0. Then there is an exponential layer (of length scale
O(ε2)) at the left endpoint. The homogeneous equation suggests that the different
regimes are ε1 � ε22, ε1 ≈ ε22, ε1 � ε22.

(a) In the regime ε1 � ε22, we have µ0 = O(ε−12 ) and µ1 = O(ε2ε
−1
1 ). Hence,

µ1 is much larger than µ0 and the boundary layer in the vicinity of x = 1 is
stronger. Consequently, there is a layer of width O(ε2) at the left endpoint (the
one that arose from the analysis of the case ε1 = 0) and additionally, there is
another layer at the right endpoint, of width O(ε1/ε2).

(b) In the regime ε1 ≈ ε22, there are layers at both endpoints of width O
(
ε
1/2
1

)
.

(c) In the regime ε22 � ε1 � 1, there are layers at both endpoints of width
O
(
ε
1/2
1

)
.

It was shown in [9, p. 46] (see also [14, Lemma 2.2], which is the result we quote below)
that under the assumptions b, c, f ∈ Cq(I) for some q ≥ 1 and q ‖b′‖∞,I ε2 ≤ C(1− `) for
some C, ` ∈ (0, 1), the solution u to (2.1), (2.2) can be decomposed into a smooth part ES , a
boundary layer part at the left endpoint EL, and a boundary layer part at the right endpoint
ER, viz.

u = ES + EL + ER,

with ∣∣∣E(n)
S (x)

∣∣∣ ≤ C ,
∣∣∣E(n)

L (x)
∣∣∣ ≤ Cµn0 e−`µ0x ,

∣∣∣E(n)
R (x)

∣∣∣ ≤ Cµn1 e−`µ1(1−x),
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for all x ∈ I and for n = 0, 1, 2, . . . , q. If one wants to approximate the solution using
a fixed order method (e.g., the h version of the Finite Element Method (FEM)), then this
regularity result is sufficient for proving convergence; for a higher order method a more refined
regularity result is needed for the smooth part. To this end, we assume that b, c, f satisfy,
∀ n = 0, 1, 2, . . . ,

(2.6)
∥∥∥f (n)∥∥∥

∞,I
≤ Cn!γnf ,

∥∥∥c(n)∥∥∥
∞,I
≤ Cn!γnc ,

∥∥∥b(n)∥∥∥
∞,I
≤ Cn!γnb ,

for some positive constants C, γf , γc, γb, independent of ε1, ε2. In terms of classical differen-
tiability, we have that the solution to (2.1), (2.2) satisfies (see, e.g., [9, p. 39])

(2.7) ‖u‖∞,I ≤ C.

The following lemma provides an estimate for u′.
LEMMA 2.1. Let u be the solution of (2.1), (2.2) and assume that (2.3), (2.6) hold. Then

there exists a positive constant C, such that

‖u′‖∞,I ≤ C max
{
ε−11 , ε−12

}
.

Proof. The proof follows [11]. Let

A(x) =
ε2
ε1

∫ 1

x

b(t)dt

and note that A(1) = 0 and A′(x) = − ε2ε1 b(x). Then multiplying (2.1) by eA(x) and integrat-
ing from x to 1 gives

−ε1u′(1) + ε1e
A(x)u′(x) +

∫ 1

x

eA(t)c(t)u(t)dt =

∫ 1

x

eA(t)f(t)dt.

Multiplying by e−A(x) yields

(2.8) u′(x) = e−A(x)u′(1)− 1

ε1

∫ 1

x

eA(t)−A(x)c(t)u(t)dt+
1

ε1

∫ 1

x

eA(t)−A(x)f(t)dt.

Integrating from 0 to 1, we further get

(2.9) 0 = u′(1)

∫ 1

0

e−A(x)dx− 1

ε1

∫ 1

0

∫ 1

x

eA(t)−A(x) (c(t)u(t)− f(t)) dtdx.

Since we wish to first estimate u′(1), we need upper and lower bounds for
∫ 1

0
e−A(x)dx. From

(2.3) we have

(2.10)
∫ 1

0

e−A(x)dx ≤
∫ 1

0

e−
ε2
ε1
β(x−1)dx ≤ C ε1

ε2β
.

Similarly,

(2.11)
∫ 1

0

e−A(x)dx ≥
∫ 1

0

e−
ε2
ε1
‖b‖∞,I(1−x)dx ≥ ε1

ε2 ‖b‖∞,I

(
1− e−

ε2
ε1
‖b‖∞,I

)
.

Also, to estimate the remaining term in (2.9), we consider

1

ε1

∫ 1

0

∫ 1

x

eA(t)−A(x)dtdx =
1

ε1

∫ 1

0

∫ 1

x

eA
′(ζ)(t−x)dtdx,
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for some ζ between t and x. Hence,

1

ε1

∫ 1

0

∫ 1

x

eA(t)−A(x)dtdx ≤ 1

ε1

∫ 1

0

∫ 1

x

e−
ε2
ε1
β(t−x)dtdx ≤ C 1

ε2
+
ε1
ε22
.

Using (2.9)–(2.11), we get

|u′(1)| ≤ C 1∫ 1

0
e−A(x)dx

(
‖c‖∞,I ‖u‖∞,I + ‖f‖∞,I

)( 1

ε2
+
ε1
ε22

)
≤ Cε2

‖b‖∞,I
ε1

(
1− e−

ε2
ε1
‖b‖∞,I

)−1( 1

ε2
+
ε1
ε22

)
≤ C(ε−11 + ε−12 ).

Inserting this bound in (2.8) gives

|u′(x)| ≤ C
(
ε−11 + ε−12

)
+

1

ε1

(
‖c‖∞,I ‖u‖∞,I + ‖f‖∞,I

)∫ 1

x

eA(t)dt

≤ C
(
ε−11 + ε−12

)
+

1

ε1

(
‖c‖∞,I ‖u‖∞,I + ‖f‖∞,I

)∫ 1

x

e
ε2
ε1
‖b‖∞,I(1−t)dt

≤ C
(
ε−11 + ε−12

)
+

1

ε1

(
1− e−

ε2
ε1
‖b‖∞,I

)
≤ C

(
ε−11 + ε−12

)
,

as desired.
Using an inductive argument we are able to prove the following.
THEOREM 2.2. Let u be the solution of (2.1), (2.2). Then there exist positive constants

K,C, independent of ε1, ε2, and u, such that for n = 0, 1, 2, . . .

(2.12)
∥∥∥u(n)∥∥∥

∞,I
≤ CKn max

{
n, ε−11 , ε−12

}n
.

Proof. The proof is by induction on n and follows from [10]. Equation (2.7) and Lemma
2.1 give the result for n = 0, 1, so we assume it holds for 0 ≤ ν ≤ n + 1 and show that it
holds for n+ 2. Differentiating n times (2.1) gives

−ε1u(n+2) = f (n) − ε2 (bu′)
(n) − (cu)

(n)

= f (n) −
n∑
ν=0

(
n

ν

)(
ε2b

(ν)u(n+1−ν) + c(ν)u(n−ν)
)
.

By the induction hypothesis we have

ε1

∥∥∥u(n+2)
∥∥∥
∞,I
≤ C

∥∥∥f (n)∥∥∥
∞,I

+

+C

n∑
ν=0

(
n

ν

)(
ε2γ

ν
b ν!Kn+1−ν max

{
n+ 1− ν, ε−11 , ε−12

}n+1−ν

+γνc ν!Kn−ν max
{
n− ν, ε−11 , ε−12

}n−ν)
.

Using the estimates below (which follow by standard considerations)(
n

ν

)
ν! max

{
n+ 1− ν, ε−11 , ε−12

}n+1−ν ≤ max
{
n+ 1, ε−11 , ε−12

}n+1
,
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6 C. XENOPHONTOS AND I. SYKOPETRITOU(
n

ν

)
ν! max

{
n− ν, ε−11 , ε−12

}n−ν ≤ max
{
n+ 1, ε−11 , ε−12

}n+1
,

∥∥∥f (n)∥∥∥
∞,I
≤ Cγnf n! ≤ C max

{
n+ 1, ε−11 , ε−12

}n+1
,

we obtain

ε1

∥∥∥u(n+2)
∥∥∥
∞,I
≤ C

∥∥∥f (n)∥∥∥
∞,I

+

+CKn+2 max
{
n+ 1, ε−11 , ε−12

}n+1
n∑
ν=0

(
1

K

(γb
K

)ν
+

1

K2

(γc
K

)ν)

≤ CKn+2 max
{
n+ 1, ε−11 , ε−12

}n+1
(

1

K2
+

1

K

1

(1− γb/K)
+

1

K2

1

(1− γc/K)

)
.

Choose the constant K > max{1, γf , γb, γc} such that the expression in brackets above is
bounded by 1, and we have

ε1

∥∥∥u(n+2)
∥∥∥
∞,I
≤ CKn+2 max

{
n+ 1, ε−11 , ε−12

}n+1
.

Dividing by ε1, gives the desired result.
For simplicity, we will focus on the case

ε21 � ε2.

For the remainder of the article we will make the following assumption:

Assumption 1: Assume there exist positive constants C, K̄, K1, `,K2, δ > 0, indepen-
dent of ε1, ε2, such that the solution u of (2.1), (2.2) can be decomposed into a smooth part
uS , two boundary layers at each endpoint u±BL, and a remainder uR , viz.

(2.13) u = uS + u−BL + u+BL + uR,

with the following estimates: for every n ∈ N0 there holds

(2.14)
∥∥∥u(n)S

∥∥∥
∞,I
≤ CK̄nn! ,

(2.15)


∣∣∣(u−BL)(n) (x)

∣∣∣ ≤ CKn
1 ε
−n
2 e−`x/ε2 ,∣∣∣(u+BL)(n) (x)

∣∣∣ ≤ CKn
2

(
ε1
ε2

)−n
e−`(1−x)ε2/ε1 ,

(2.16) ‖uR‖∞,∂I + ‖uR‖0,I + ε
1/2
1 ‖u′R‖0,I ≤ C max{e−δε2/ε1 , e−δ/ε2},

for all x ∈ I .

We provide in the Appendix, for the convenience of the reader, a proof of Assumption 1 in
the case of constant coefficients, in order to illustrate the procedure for obtaining such results.
The case of variable coefficients is considerably more tedious (cf. [16]).
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3. Discretization using isogeometric analysis. Isogeometric analysis may be combined
with a number of formulations; we use Galerkin’s approach, i.e., we multiply (2.1) by a suitable
test function, integrate by parts and use the boundary conditions (2.2). The resulting variational
formulation reads: find u ∈ H1

0 (I) such that

(3.1) B (u, v) = 〈f, v〉I ∀ v ∈ H1
0 (I) ,

where

(3.2) B (u, v) = ε1 〈u′, v′〉I + ε2 〈bu′, v〉I + 〈cu, v〉I .

The bilinear form B (·, ·) given by (3.2) is coercive (due to (2.3)) with respect to the energy
norm

(3.3) ‖v‖2E,I := ε1 |v|21,I + ρ ‖v‖20,I ,

i.e.,

(3.4) B (v, v) ≥ ‖v‖2E,I ∀ v ∈ H1
0 (I) .

Next, we restrict our attention to a finite dimensional subspace VN ⊂ H1
0 (I), that will be

selected shortly, and obtain the discrete version of (3.1) as: find uN ∈ VN such that

(3.5) B (uN , v) = 〈f, v〉I ∀ v ∈ VN .

There holds [9]

B (uN − u, v) = 0 ∀ v ∈ VN .

In order to define the space VN , we first review the concept of IGA. In this article we use
B-splines as basis functions and follow [3] closely. To this end let Ξ = {ξ1, ξ2, . . . , ξn+p+1}
be a knot vector, where ξi ∈ R is the ith knot, i = 1, 2, . . . , N + p+ 1, p is the polynomial
order, and N is the number of basis functions. The numbers in Ξ are non-decreasing and may
be repeated, in which case we are talking about a non-uniform knot vector. If the first and
last knot values appear p+ 1 times, the knot vector is called open (see [3] for more details).
With a knot vector Ξ in hand, the B-spline basis functions are defined recursively, starting with
piecewise constants (p = 0):

Bi,0(ξ) =

{
1, ξi ≤ ξ < ξi+1,
0, otherwise.

For p = 1, 2, . . ., they are defined by the Cox–de Boor recursion formula [5, 6]:

Bi,p(ξ) =
ξ − ξi

ξi+p − ξi
Bi,p−1(ξ) +

ξ − ξi
ξi+p − ξi

Bi,p−1(ξ).

We also mention the recursive formula for obtaining the derivative of a B-spline [3]:

d

dξ
Bi,p(ξ) =

p

ξi+p − ξi
Bi,p−1(ξ)− p

ξi+p+1 − ξi+1
Bi+1,p−1(ξ).

We will be considering open knot vectors, having ξ1, . . . , ξm distinct knots, each with
multiplicity ri. Then

Ξ = [ξ1, . . . , ξ1︸ ︷︷ ︸
r1 times

, ξ2, . . . , ξ2︸ ︷︷ ︸
r2 times

, . . . , ξm, . . . , ξm︸ ︷︷ ︸
rm times

]
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and there holds
∑m
i=1 ri = N+p+1. Since we are using open knots, we have r1 = rm = p+1.

The regularity of the B-spline at each knot ξi is determined by ri, in that the B-spline has
p− ri continuous derivatives at ξi. For this reason, we define ki = p− ri + 1 as a measure of
the regularity at the knot ξi and set k = [k1, . . . , km]. Note that k1 = km = 0 in the case of
an open knot vector.

B-splines form a partition of unity and they span the space of continuous piecewise
polynomials of degree p on the subdivision {ξ1, . . . , ξm}.

Each basis function is positive and has support in [ξi, ξi+p+1]. In the sections that follow,
we will approximate the solution to the BVP under consideration, using the space

(3.6) Spk = span {Bk,p}Nk=1

of dimension

N = dim (Spk) = mp−
m∑
i=1

ki.

We point out that we are using a uniform polynomial degree p, while we allow for the regularity
at each knot to (possibly) vary. A more general approach would be to allow p to vary as well.
We will refer to N as the number of degrees of freedom, DOF.

Returning to our problem, the space VN in (3.5) is chosen as VN = Spk , given by (3.6).
Thus, we may write the approximate solution as

uN =

N∑
k=0

αkBk,p,

with α = [α1, . . . , αN ]T unknown coefficients, and subsitute in (3.5) to obtain the linear
system of equations

(3.7) (ε1A1 + ε2A2 +A0)︸ ︷︷ ︸
M∈RN×N

α = f ,

where

[A1]i,j =

∫
I

B′i,p(ξ)B
′
j,p(ξ)dξ , [A2]i,j =

∫
I

B′i,p(ξ)Bj,p(ξ)dξ,

[A0]i,j =

∫
I

Bi,p(ξ)Bj,p(ξ)dξ , [f ]i =

∫
I

Bi,p(ξ)f(ξ)dξ,

for i, j = 1, . . . , N. The linear system (3.7) has a unique solution since the matrix M is
invertible (due to (3.4) and the linear independence of the basis functions Bj,p).

If ε1 and ε2 are large, then no boundary layers are present and approximating u may be
done using a fixed mesh (of say one element) and increasing p. On the other hand, if ε1 and ε2
are small, then classical techniques fail and the mesh must be chosen carefully. The challenge
lies in approximating the typical boundary layer function e−x/ε. In the context of FDs and
FEs, the mesh points must depend on ε, as is well documented in the literature under the name
layer-adapted meshes [9]. A similar observation holds for IGA, in the sense that the knot
vector must depend on ε. This was illustrated in [8] through numerical experiments and in the
next section we establish it mathematically.
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4. Error estimates. We begin by citing the main tool for the analysis (see Corollary 2 in
[4]).

PROPOSITION 4.1. Given the subdivision {0 = ξ1, . . . , ξm = 1} of the reference domain
I = (0, 1), let Ii = (ξi, ξi+1) , hi = ξi+1 − ξi, i = 1, . . . ,m− 1, k, p non-negative integers
with p ≥ 2k − 1 and u(k) ∈ Hs (I) for some 0 ≤ s ≤ κ = p − k + 1. Then there exists a
quasi-interpolation operator πp,k such that, for i = 1, . . . ,m− 1, j = 1, . . . , k − 1,∥∥∥u(j) − (πp,ku)

(j)
∥∥∥2
L2(Ii)

≤
(
hi
2

)2(s+k−j)
(κ− s)!(κ− (k − j))!
(κ+ s)!(κ+ (k − j))!

∣∣∣u(k)∣∣∣2
Hs(Ii)

.

In [2], the above was specialized for maximal smoothness by selecting p = 2q − 1, for
some q ≥ 1, and then k = κ = q, so the estimate of Proposition 4.1 becomes

(4.1)
∥∥∥u(j) − (π2q−1,qu)

(j)
∥∥∥2
L2(Ii)

≤
(
hi
2

)2(s+q−j)
(q − s)!j!

(q + s)!(2q − j)!

∥∥∥u(q+s)∥∥∥2
L2(Ii)

,

for 0 ≤ s ≤ q, j = 1, . . . , q − 1.

In view of the above, from now on we will be using the symbol q to denote the polynomial
degree.

The knot vector described below, is ‘inspired’ by the so-called spectral boundary layer
mesh used in the hp-FEM for such problems (see [12] and the references therein).

DEFINITION 4.2. Let µ0, µ1 be given by (2.4) and let λ ≥ 1 be a user specified parameter.
Then, if λqµ−11 ≥ 1/2,

(4.2) Ξ = [0, . . . , 0︸ ︷︷ ︸
q+1 times

, 1, . . . , 1︸ ︷︷ ︸
q+1times

],

and, if λqµ−10 < 1/2,

(4.3) Ξ = [0, . . . , 0︸ ︷︷ ︸
q+1 times

, λqµ−10 , 1− λqµ−11 , 1, . . . , 1︸ ︷︷ ︸
q+1 times

],

where q is the polynomial degree.
The following auxiliary result will be used in the sequel.
LEMMA 4.3. There exists τ ∈ [1/2, 2/3] such that for every q ≥ 2, 3, 4, . . ., there holds

s := τq ∈ N and

(q − s)!
(q + s)!

≤ Ce−σqq−2τqe2τq,

where

(4.4) σ := min
τ∈[1/2,2/3]

∣∣∣∣ln (1− τ)1−τ

(1 + τ)1+τ

∣∣∣∣ .
Proof. We first show τq ∈ N, for some τ ∈ [1/2, 2/2]. If q is even, then we simply take

τ = 1/2. If q is odd, i.e., q = 2n+ 1, n ∈ N, then we choose τ = (n+ 1)/(2n+ 1).
Now, with τq ∈ N, we have (q ± τq)! = Γ(q ± τq + 1) and, as q →∞ [1],

(q − τq)!
(q + τq)!

=
Γ(q − τq + 1)

Γ(q + τq + 1)
≤ C (q (1− τ) + 1)

q−τq+1/2
e−(q−τq+1)

(q (1 + τ) + 1)
q+τq+1/2

e−(q+τq+1)

≤ C

(
(1− τ)

1−τ

(1 + τ)
1+τ

)q
q−2τqe2τq ≤ Ce−σqq−2τqe2τq.
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THEOREM 4.4. Let u be the solution to (2.1), (2.2) and let π2q−1,qu ∈ S2q−1
q be its

quasi-interpolant, constructed using the knot vector of Definition 4.2 and satisfying (4.1).
Then there exist positive constants σ,C, independent of ε1, ε2, such that as q →∞ there holds

‖u− π2q−1,qu‖E,I ≤ Ce
−σq.

Proof. The proof is separated into two cases. In Case 1, we make use of the classical
differentiability result (2.12) and construct a quasi-interpolant of u on the entire interval I
with the desired properties. In Case 2, we use the decomposition (2.13) and construct quasi-
interpolants for each piece separately, as follows: for the smooth part, the quasi-interpolant is
constructed on I , while for the boundary layers, it has support only in the layer regions. No
quasi-interpolant is constructed for the remainder, since it is already exponentially small. We
next give the details.

Case 1: λqµ−11 ≥ 1/2 or equivalently 2λq ≥ ε−11 . In this case, the knot vector is given by
(4.2). We make use of (2.12) and (4.1) to obtain a quasi-interpolant π2q−1,qu on I , such that

‖u− π2q−1,qu‖2E,I ≤ C
(q − s)!
(q + s)!

(
ε1

(2q − 1)!
+

ρ

(2q)!

)∥∥∥u(q+s)∥∥∥2
L2(I)

≤ C (q − s)!
(q + s)!

(
2qε1 + ρ

(2q)!

)
K2(q+s) max{ε−11 , q + s}2(q+s).

We choose s = τq, with τ ∈ [1/2, 2/3] as asserted by Lemma 4.3, and we note that, from
(2.5) and the fact that in this case there holds 2λq ≥ ε−11 , we have

max{ε−11 , q + s}2(q+s) = max{ε−11 , (τ + 1)q}2q(τ+1)

≤ max{2λq, (τ + 1)q}2q(τ+1) ≤ (2λq)
2q(τ+1)

,

since 2λ ≥ τ + 1. Then, with the aid of Lemma 4.3, we get

‖u− π2q−1,qu‖2E,I ≤ C
(q − τq)!
(q + τq)!

(
2qε1 + ρ

(2q)!

)
K2(τ+1)q (2λq)

2q(τ+1)

≤ Ce−σ1qq−2τqe2τq+1

(
2qε1 + ρ

(2q)!

)
K2(τ+1)q (2λq)

2q(τ+1)

≤ C q
2q+1

(2q)!
K2qe−σ1q (2eKλ)

2τq
,

with σ1 given by (4.4). By Stirling’s formula q(Kq)2q

(2q)! ≤
√
q (eK/2)

2q , hence

‖u− π2q−1,qu‖2E,I ≤ C
√
q (eK/2)

2q
e−σ1q (2eKλ)

2τq

≤ C√qe−σ1q
(

(2eKλ)
2τ

(eK/2)
2
)q
.

Selecting λ such that (2eKλ)
2τ

(eK/2)
2
< 1, gives

‖u− π2q−1,qu‖E,I ≤ Cq
1/4e−σ1q,

where C > 0 is independent of q ∈ N and ε1. Reducing the value of σ1 to σ̃1 ∈ (0, σ1), there
exists a positive constant C, independent of q and ε1, such that

(4.5) ‖u− π2q−1,qu‖E,I ≤ Ce
−σ̃1q.
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Case 2: λqµ−10 < 1/2 or equivalently, 2qε1 < 1/λ. In this case, the solution is
decomposed as in (2.13) with the bounds (2.14)–(2.16) being valid. We will approximate each
term in (2.13) separately, using Proposition 4.1 to construct appropriate quasi-interpolants
over the three intervals

(4.6) I1 = (0, qµ−10 ) , I2 = (qµ−10 , 1− qµ−11 ) , I3 = (qµ−11 , 1).

Throughout the proof, we choose

(4.7) λ ≤ 2

e
max

{
1

K
,

1

K1
,

1

K2

}
,

with K,K1,K2 the constants in (2.14)–(2.16) . So we have, with the obvious notation,

u− π2q−1,qu = uS + u−BL + u+B + uR − π2q−1,quS − π2q−1,qu−BL − π2q−1,qu
+
BL,

hence

|u− π2q−1,qu| ≤ |uS − π2q−1,quS |+ |u−BL − π2q−1,qu
−
BL|+ |u

+
B − π2q−1,qu

+
BL|+ |uR|.

For the smooth part, Proposition 4.1 ensures that π2q−1,quS , is such that

‖uS − π2q−1,quS‖2E,I ≤ C
(q − s)!
(q + s)!

(
ε1

(2q − 1)!
+

ρ

(2q)!

)∥∥∥u(q+s)S

∥∥∥2
L2(I)

≤ C (q − s)!
(q + s)!

1

λ(2q)!
K2(q+s) ((2(q + s))!)

2
.

Choosing s = τ̃ q with τ̃ ∈ [1/2, 2/3] as in Lemma 4.3, and using Lemma 1 of [2], we get

‖uS − π2q−1,quS‖2E,I ≤ C

(
1

4

(1 + τ̃)
1+τ̃

(1− τ̃)
τ̃−1

)q
1

λ(2q)!
K2(q+τ̃q)

≤ C

(
1

4

(1 + τ̃)
1+τ̃

(1− τ̃)
τ̃−1

)q
1

λ(2q)2q+1/2e−2q
K2(q+τ̃q)

≤ C 1

λ(2q)1/2

(
1

4

(1 + τ̃)
1+τ̃

(1− τ̃)
τ̃−1

)q (
eK τ̃+1

2q

)2q

≤ C
(
K

λq

)2q

,

by (4.7). Therefore, there exist constants C, σ2 > 0 such that for every ε1, ε2 ∈ (0, 1], and for
every q ∈ N, there holds

(4.8) ‖uS − π2q−1,quS‖E,I ≤ Ce
−σ2q.

For the left boundary layer u−BL we obtain from Proposition 4.1, a quasi-interpolant
π2q−1,qu

−
BL on the interval I1 = (0, λqµ−10 ), such that

∣∣u−BL − π2q−1,qu−BL∣∣21,I1 ≤ C
(
λqµ−10

2

)2(s+q−1)
(q − s)!
(q + s)!

2q

(2q − 1)!

∥∥∥(u−BL)(q+s)∥∥∥2
L2(I1)

≤ C
(
λqµ−10

2

)2(s+q−1)
(q − s)!
(q + s)!

2q

(2q − 1)!
K

2(q+s)
1 ε

−2(q+s)+1
2 .
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Using (2.5), we obtain∣∣u−BL − π2q−1,qu−BL∣∣21,I1 ≤ Cµ0 (µ0ε2)
−2(q+s)+1

(
λq

2

)2s
(q − s)!
(q + s)!

(λq)
2q−2

(2q − 1)!
K

2(q+s)
1

≤ Cε−1/21 (q/e)
2s (q − s)!

(q + s)!

(λq)
2q−2

(2q − 1)!
K2q

1 ,

where (4.7) was used. Choosing s = τq, with τ ∈ [1/2, 2/3] as in Lemma 4.3, we get (for σ3
given by (4.4) with τ replaced by τ ),∣∣u−BL − π2q−1,qu−BL∣∣21,I1 ≤ Cε−1/21

(
e−1q

)2τq
e−σ3qq−2τqe2τq+1 (λq)

2q−2

(2q − 1)!
K2q

1

≤ Cε−1/21 e−σ3q
(λq)

2q−2

(2q − 1)!
K2q

1

≤ Cε−1/21 (λq)
−2
e−σ3q

(λqK1)
2q

(2q − 1)!
.

Since, by (4.7) and Stirling’s formula, (λqK1)
2q

(2q−1)! ≤
(2qe−1)

2q

(2q−1)! ≤
e−2q(2q)2q2q

(2q)2q+1/2e−2q ≤ (2q)1/2, we
have ∣∣u−BL − π2q−1,qu−BL∣∣1,I1 ≤ Cε−1/41 e−σ3q,

with C > 0 independent of ε1 and q. On I\I1, u−BL is already exponentially small, i.e., by
(2.15), we have∣∣u−BL∣∣21,I\I1 =

∫ 1

qµ−1
0

[
(
u−BL

)′
(x)]2dx ≤ Cε−22

∫ 1

qµ−1
0

e−2`qµ
−1
0 /ε2dx

≤ Cε−12 e−`λq,

hence it will not be approximated. Thus, there exist constants C, σ3 > 0 such that for every
ε1, ε2 ∈ (0, 1], and for every q ∈ N, there holds∣∣u−BL − π2q−1,qu−BL∣∣1,I ≤ ∣∣u−BL − π2q−1,qu−BL∣∣1,I1 +

∣∣u−BL∣∣1,I\I1
≤ C

(
ε
−1/4
1 e−σ3q + ε

−1/2
2 e−`λq

)
≤ Cε−1/21 e−σ3q,(4.9)

where again (2.5) was used. For the L2 error, we have

∥∥u−BL − π2q−1,qu−BL∥∥20,I1 ≤
(
λqµ−10

2

)2(s+q)
(q − s)!
(q + s)!

1

(2q)!

∥∥∥(u−BL)(q+s)∥∥∥2
L2(I1)

≤ C
(
λqµ−10

2

)2(s+q)
(q − s)!
(q + s)!

1

(2q)!
K

2(q+s)
1 ε

−2(q+s)+1
2

≤ Cε2 (µ0ε2)
−2(q+s)

(
λq

2

)2(s+q)
(q − s)!
(q + s)!

1

(2q)!
K

2(q+s)
1 .

Choosing s as a non-integer multiple of q, and repeating the same steps as for the H1-
seminorm, we see that there exist constants C, σ4 > 0 such that for every ε1, ε2 ∈ (0, 1], and
for every q ∈ N, there holds∥∥u−BL − π2q−1,qu−BL∥∥0,I1 ≤ Cε1/22 e−σ4q.
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On I\I1, u−BL is already exponentially small, hence there exist constants C, σ5 > 0 such that
for every ε1, ε2 ∈ (0, 1], and for every q ∈ N, there holds∥∥u−BL − π2q−1,qu−BL∥∥0,I ≤ ∥∥u−BL − π2q−1,qu−BL∥∥0,I1 +

∥∥u−BL∥∥0,I\I1
≤ C

(
ε
1/2
2 e−σ4q + e−`µ0λqµ

−1
0

)
≤ Ce−σ5q.(4.10)

We follow the same steps for the right boundary layer u+BL: Proposition 4.1 gives
π2q−1,qu

+
BL on I3, such that

∣∣u+BL − π2q−1,qu+BL∣∣21,I3
≤
(
λqµ−11

2

)2(s+q−1)
(q − s)!
(q + s)!

2q

(2q − 1)!

∥∥∥(u+BL)(q+s)∥∥∥2
L2(I3)

≤ C
(
λqµ−11

2

)2(s+q−1)
(q − s)!
(q + s)!

2q

(2q − 1)!
K

2(q+s)
2

(
ε1
ε2

)−2(q+s)+1

≤ Cµ1

(
ε2
µ1ε1

)2(q+s)+1(
λq

2

)2(s+q−1)
(q − s)!
(q + s)!

2q

(2q − 1)!
K

2(q+s)
2 .

Using (2.5), we obtain

∣∣u+BL − π2q−1,qu+BL∣∣21,I3 ≤ Cε−11

(q
e

)2s (q − s)!
(q + s)!

(λq)
2q−2

(2q − 1)!
K2q

2 .

Choosing s = τ̃ q, with τ̃ ∈ [1/2, 2/3] as in Lemma 4.3, and following the same steps as in
the approximation of the left boundary layer (using (4.7)), we arrive at

∣∣u+BL − π2q−1,qu+BL∣∣1,I3 ≤ Cε−1/21 e−σ6q,

with σ6 given by (4.4) with τ replaced by τ̃ . On I\I3, u+BL is already exponentially small, i.e.,
by (2.15) we have

∣∣u+BL∣∣21,I\I3 =

∫ qµ−1
1

0

[
(
u+BL

)′
(x)]2dx ≤ C

(
ε1
ε2

)−2 ∫ qµ−1
1

0

e−`(1−x)ε2/ε1dx

≤ C
(
ε1
ε2

)−1
e−`λq,

hence it will not be approximated. Thus∣∣u+BL − π2q−1,qu+BL∣∣1,I ≤ ∣∣u+BL − π2q−1,qu+BL∣∣1,I3 +
∣∣u+BL∣∣1,I\I3

≤ C

(
ε
−1/2
1 e−σ6q +

(
ε1
ε2

)−1/2
e−`λq

)
≤ Cε−11 e−σ̃6q,(4.11)
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for some positive constant σ̃6, where (2.5) was used once more. For the L2 error, we have

∥∥u+BL − π2q−1,qu+BL∥∥20,I3 ≤
(
λqµ−11

2

)2(s+q)
(q − s)!
(q + s)!

1

(2q)!

∥∥∥(u+BL)(q+s)∥∥∥2
L2(I3)

≤ C
(
λqµ−11

2

)2(s+q)
(q − s)!
(q + s)!

1

(2q)!
K

2(q+s)
1

(
ε1
ε2

)−2(q+s)+1

≤ C ε1
ε2

(
ε2
µ1ε1

)2(q+s)(
λq

2

)2(s+q)
(q − s)!
(q + s)!

1

(2q)!
K

2(q+s)
1

≤ C ε1
ε2

(
λq

2

)2(s+q)
(q − s)!
(q + s)!

1

(2q)!
K

2(q+s)
1 ,

where we used (2.5) and (4.7). The remaining steps are the same as above, so they are omitted.
We arrive at

(4.12)
∥∥u+BL − π2q−1,qu+BL∥∥0,I3 ≤ C

(
ε1
ε2

)1/2

e−σ7q,

for some positive constant σ7. Finally,∥∥u+BL − π2q−1,qu+BL∥∥0,I ≤ ∥∥u+BL − π2q−1,qu+BL∥∥0,I3 +
∥∥u+BL∥∥0,I\I3

≤ C

((
ε1
ε2

)1/2

e−σ7q + e−`λq

)
≤ Ce−σ̃7q,(4.13)

for some positive constant σ̃7.
It remains to consider the remainder, which by (2.16) is exponentially small:

(4.14) ‖uR‖E,I ≤ C max{e−δε2/ε1 , e−δ/ε2} ≤ Ce−δ/ε2 ≤ Ce−ζλq,

since λpµ−10 < 1/2 (hence λpε2 < 1/2), where ζ > 0 is a constant independent of ε1, ε2.
The proof is completed by using the definition of the energy norm (3.3), along with (2.16),

(4.5), (4.8)–(4.14), to get

‖u− π2q−1,qu‖E,I ≤ ε1
(
|uS − π2q−1,quS |1,I +

∣∣u±BL − π2q−1,qu±BL∣∣1,I)+

‖uS − π2q−1,quS‖0,I +
∥∥u±BL − π2q−1,qu±BL∥∥0,I + ‖uR‖E,I

≤ Ce−σq,

for some positive consant σ.
We next estimate the difference between the IGA solution uN and the quasi-interpolant

π2q−1,qu.
LEMMA 4.5. Let uN ∈ S2q−1

q be the approximation to u, the solution of (2.1), (2.2),
based on the knot vector of Defintion 4.2, and let π2q−1,q be the approximation operator of
Proposition 4.1. Then there exist constants C, σ > 0, independent of ε1, ε2, such that ∀q ∈ N,

‖π2q−1,qu− uN‖E,I ≤ Ce
−σq.

Proof. Set ξ := π2q−1,qu− uN . Then, by coercivity of the bilinear form Bε (eq. (3.4)),
there holds

‖ξ‖2E,I ≤ Bε (ξ, ξ) = −Bε (u− π2q−1,qu, ξ) ,
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where we also used Galerkin orthogonality. Hence,

‖ξ‖2E,I ≤ −ε1
〈
(u− π2q−1,qu)

′
, ξ′
〉
I
+ε2

〈
b (u− π2q−1,qu)

′
, ξ
〉
I
+〈c (u− π2q−1,qu) , ξ〉I .

The first and last term may be estimated using Cauchy-Schwarz:∣∣−ε1 〈(u− π2q−1,qu)
′
, ξ′
〉
I

∣∣+
∣∣〈c (u− π2q−1,qu) , ξ〉I

∣∣
≤ ε1

∥∥(u− π2q−1,qu)
′∥∥

0,I
‖ξ′‖0,I + ‖c‖∞,I ‖u− π2q−1,qu‖0,I ‖ξ‖0,I

≤ C max{1, ‖c‖∞,I} ‖u− π2q−1,qu‖E,I ‖ξ‖E,I .

For the second term, we will consider the two ranges of q separately: in the asymptotic range
of q, i.e., λqµ−11 ≥ 1/2 or equivalently λqε1 ≥ 1/2, we have∣∣ε2 〈b (u− π2q−1,qu)

′
, ξ
〉
I

∣∣ ≤ Cε2 ‖b‖∞,I ∥∥(u− π2q−1,qu)
′∥∥

0,I
‖ξ‖0,I

≤ Cε2ε−1/21 ‖u− π2q−1,qu‖E,I ‖ξ‖E,I
≤ Cε2 (λq)

1/2 ‖u− π2q−1,qu‖E,I ‖ξ‖E,I
≤ Ce−σq ‖ξ‖E,I .

In the pre-asymptotic range of q, i.e., λqµ−10 < 1/2, we first use integration by parts to obtain∣∣ε2 〈b (u− π2q−1,qu)
′
, ξ
〉
I

∣∣ =
∣∣ε2 〈b (u− π2q−1,qu) , ξ′〉I

∣∣ .
Next, we consider the three subintervals given by (4.6): on the first subinterval we have∣∣∣ε2 〈b (u− π2q−1,qu) , ξ′〉I1

∣∣∣ ≤ Cε2 ‖b‖∞,I1 ∣∣∣〈u− π2q−1,qu, ξ′〉I1 ∣∣∣
≤ Cε2 ‖u− π2q−1,qu‖0,I1 ‖ξ

′‖0,I1
≤ C ε2

λqµ−10

‖u− π2q−1,qu‖0,I1 ‖ξ‖0,I1 ,

where we used an inverse inequality; see, e.g., [15, Thm. 3.91]. Thus∣∣∣ε2 〈b (u− π2q−1,qu) , ξ′〉I1
∣∣∣ ≤ C ε2µ0

λq
ε2e
−σ3q ‖ξ‖E,I ≤ Ce

−βq ‖ξ‖E,I .

Similarly, on the second subinterval we have∣∣∣ε2 〈b (u− π2q−1,qu)
′
, ξ
〉
I2

∣∣∣ ≤ ε2 ‖b‖∞,I2 ∣∣∣〈u− π2q−1,qu, ξ′〉I2 ∣∣∣
≤ Cε2 ‖u− π2q−1,qu‖0,I2 ‖ξ‖0,I2
≤ Ce−βq ‖ξ‖E,I .

Finally, on the third subinterval,∣∣∣ε2 〈b (u− π2q−1,qu)
′
, ξ
〉
I3

∣∣∣ ≤ ε2 ‖b‖∞,I3 ∣∣∣〈u− π2q−1,qu, ξ′〉I3 ∣∣∣
≤ Cε2 ‖u− π2q−1,qu‖0,I3 ‖ξ

′‖0,I3

≤ Cε2
(
ε1
ε2

)1/2

ε
−1/2
1 e−βq ‖ξ‖E,I

≤ Cε1/22 e−βq ‖ξ‖E,I .
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Therefore, by (4.12), we get∣∣ε2 〈b (u− π2q−1,qu)
′
, ξ
〉
I

∣∣ ≤ Ce−βq ‖ξ‖E,I
and

‖ξ‖2E,I ≤ Ce
−βq ‖ξ‖E,I

which completes the proof.
We conclude with our main result.
THEOREM 4.6. Let u be the solution to (2.1), (2.2) and let uN ∈ S2q−1

q be its approx-
imation, based on the knot vector of Defintion 4.2. Then there exist positive constants C, σ,
independent of ε1, ε2, such that, ∀q ∈ N,

‖u− uN‖E,I ≤ Ce
−σq.

Proof. We begin with the triangle inequality:

‖u− uN‖E,I ≤ ‖u− π2q−1,qu‖E,I + ‖π2q−1,qu− uN‖E,I ,

where π2q−1,q is the approximation operator of Theorem 4.4. The first term is handled by
Lemma 4.4 and the second by Lemma 4.5.

5. Numerical example. We will be considering the following BVP and we refer to [8]
for more numerical experiments. Find u such that

−ε1u′′(x) +
ε2

1 + x2
u′(x) + e−xu(x) = 1 in I = (0, 1) ,

u(0) = u(1) = 0 .

An exact solution is not available, so we use as a reference solution the one computed with the
highest polynomial degree, denoted by uREF . Instead of the error in the energy norm, we will
be measuring

Error := 100× max
k=1,...,n

|uREF (xk)− uN (xk)| / max
k=1,...,n

|uREF (xk)| ,

where {xk}nk=1 ∈ I are points in (0, 1), chosen uniformly in the layer region and outside – we
use n = 400 in each region for our computations.

Figure 5.1 shows the Error vs. the number of degrees of freedom, DOF, in a semi-log
scale. The curves indicate exponential convergence and the fact that they coincide indicates
robustness. The two curves that are not on top of the rest, correspond to even smaller errors
and could be due to the fact that we are using a reference solution.

6. Conclusions. In this article we performed the numerical analysis of IGA for one-
dimensional reaction-convection-diffusion problems with two small parameters. We estab-
lished that if the knot vector is chosen appropriately and depending on the singular perturbation
parameters, then p-refinement yields robust, exponential rates of convergence, in the energy
norm. We also presented one numerical example agreeing with, and even extending the theory.

This was a step towards the study of two-dimensional SPPs, especially fourth order SPPs,
for which there are very few available methods for general two-dimensional domains.

Appendix A. Here we establish eqs. (2.14)–(2.16), in the case of constant coefficients,
i.e., b(x) = b > 0, c(x) = c > 0. In [16], the non-constant coefficient case is considered; we
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present here the much simpler case of constant coefficients in order to illustrate the procedure
for obtaining such regularity estimates, for the benefit of the reader.

Recall that we are focusing on the case ε21 � ε2, hence we anticipate a layer of width
O(ε2) at the left endpoint and a layer of width O (ε1/ε2) at the right endpoint. To deal with
this we define the stretched variables x̃ = x/ε2 and x̂ = (1− x)ε2/ε1 and make the formal
ansatz

(A.1) u ∼
∞∑
i=0

∞∑
j=0

εi2(ε1/ε
2
2)j
(
ui,j(x) + ũBLi,j (x̃) + ûBLi,j (x̂)

)
,

with ui,j , ũBLi,j , û
BL
i,j to be determined. Substituting (A.1) into (2.1), separating the slow (i.e.,

x) and fast (i.e., x̃, x̂) variables, and equating like powers of ε1 and ε2, we get

(A.2)


u0,0 = f

c ,
ui,0 = − bcu

′
i−1,0, i ≥ 1,

u0,j = u1,j = 0, j ≥ 1,
ui,j = 1

c

(
u′′i−2,j−1 − bu′i−1,j

)
, i ≥ 2, j ≥ 1,

(A.3)

{
b
(
ũBLi,0

)′
+ cũBLi,0 = 0, i ≥ 0,

b
(
ũBLi,j

)′
+ cũBLi,j =

(
ũBLi,j−1

)′′
, i ≥ 0, j ≥ 1,

(A.4)

{ (
ûBLi,0

)′′
+ b

(
ûBLi,0

)′
= 0, i ≥ 0,(

ûBLi,j+1

)′′
+ b

(
ûBLi,j+1

)′
= cûBLi,j , i, j ≥ 0.

The last two equations are supplemented with the following boundary conditions (in order for
(2.2) to be satisfied) for all i, j ≥ 0:

(A.5)


ũBLi,j (0) = −ui,j(0),
ûBLi,j (0) = −ui,j(1),

limx̂→−∞ ûBLi,j (x̂) = 0.
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Note that, by (A.3) and the fact that b, c > 0, we automatically have limx̃→∞ ũBLi,j (x̃) = 0.
Next, we would like to describe the regularity of the functions ui,j , ũBLi,j , û

BL
i,j , defined by

(A.2)–(A.5) above. We begin with ui,j , and we have the following.
LEMMA A.1. Let ui,j be defined by (A.2) and assume (2.6) holds. Then there exist

positive constants C,K and a complex neighborhood G of I such that the complex extension
of u (denoted again by u) satisfies

|ui,j(z)| ≤ Cδ−iKiii ∀ z ∈ Gδ = {z ∈ G : dist(z, ∂G) > δ} .

Proof. The proof is by induction on i. The case i = 0 holds trivially, so assume the
result holds for i and establish it for i + 1. Let τ ∈ (0, 1) and let K > 0 be a constant so
that

(
2
K2 + 1

K

)
≤ C. We have by (A.2), the induction hypothesis with G(1−τ)δ ⊃ Gδ, and

Cauchy’s Integral Theorem,

|ui+1,j(z)| ≤ C
∣∣u′′i−1,j−1(z)

∣∣+
∣∣u′i,j(z)∣∣

≤ C
(

2

(τδ)2
((1− τ)δ)

−i+1
Ki−1(i− 1)i−1 +

1

(τδ)
((1− τ)δ)

−i
Kiii

)
≤ Cδ−i−1Ki+1(i+ 1)i+1

(
1

K2

1

(i+ 1)2
2

τ2(1− τ)i−1

(
i− 1

i+ 1

)i−1
+

+
1

K

1

(i+ 1)

1

τ(1− τ)i

(
i

i+ 1

)i)
.

Choose τ = 1/(i+ 1). Then

|ui+1,j(z)| ≤ Cδ−i−1Ki+1(i+ 1)i+1

(
2

K2
+

1

K

)
,

so by the choice of K the expression in brackets is bounded and this completes the proof.
LEMMA A.2. Let ui,j be defined by (A.2) and assume (2.6) holds. Then there exist

positive constants C,K1,K2 such that

‖u(n)i,j ‖∞,I ≤ Cn!Kn
1 i!K

i
2 ∀ n ∈ N.

Proof. This follows immediately from Lemma A.1 and Cauchy’s Integral Theorem for
derivatives:

‖u(n)i,j ‖∞,I ≤ C
n!

(n+ 1)n
δ−iKiiien ≤ Cn!Kn

1 i!K
i
2,

with K1 = e,K2 = K/δ.
The following auxiliary lemma, which is an analog of Lemma 7.3.6 in [10], will be used

in the proof of Lemma A.4.
LEMMA A.3. Let λ, γ ∈ C with Re(λ) > 0,Re(γ) > 0. Let F be an entire function

satisfying, for some i, j ∈ N0 and C > 0,

|F (z)| ≤ Cγi+je−Re(λz) (i+ j + |z|)i+j ∀ z ∈ C.

Let α ∈ C and let v : (0,∞)→ C, be the solution of the problem

v′ + λv = F on (0,∞) , v(0) = α.
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Then v can be extended to an entire function (denoted again by v), which satisfies

|v(z)| ≤ C

(
γi+j

(i+ j + |z|)i+j+1

(i+ j + 1)
+ |α|

)
e−Re(λz) ∀ z ∈ C.

Proof. Using an integrating factor, we find

v(z) = e−Re(λz)
(
α+

∫ z

0

eRe(λs)F (s)ds

)
,

from which we have

|v(z)| ≤ e−Re(λz)

(
|α|+

∫ |z|
0

∣∣∣eRe(λs)F (s)
∣∣∣ ds)

≤ Ce−Re(λz)

(
|α|+ γi+j

∫ |z|
0

∣∣∣(i+ j + |s|)i+j
∣∣∣ ds) ,

where we used the assumption on F . The result follows.
LEMMA A.4. The functions ũBLi,j , which satisfy (A.3), are entire and there exist positive

constants C, K̃, γ̃, depending only on the data, such that

(A.6)
∣∣(ũBLi,j ) (z)

∣∣ ≤ CK̃γ̃i+j(i+ j + |z|)i+je−βRe(z) ∀ z ∈ C.

Proof. The proof is by induction. We first note that from (A.3), we may calculate

ũBLi,0 (z) = −ui,0(0)e−
c
b z , i ≥ 0.

Thus, using Lemma A.2 to bound the term |ui,0(0)|, we get∣∣ũBLi,0 (z)
∣∣ ≤ Ci!Ki

2e
−| cb z| ≤ Cγ̃i (i+ |z|)i e−βRe(z),

where γ̃ = K2, β = c/b, hence the result holds for j = 0 and for all i ≥ 0. We then proceed
by induction on j. We assume (A.6) holds for j ≥ 1 (and for all i ≥ 0) and show it for j + 1.
We note that, by (A.3), ũBLi,j+1 satisfies, ∀ i, j ≥ 0,(

ũBLi,j+1

)′
+
c

b
ũBLi,j+1 =

1

b

(
ũBLi,j

)′′
, ũBLi,j+1(0) = −ui,j+1(0).

By the induction hypothesis and Cauchy’s Integral Theorem for Derivatives (we take as the
contour the unit circle centered at z), we get∣∣∣(ũBLi,j )′′ (z)∣∣∣ ≤ Cγ̃i+j (i+ j + |z|)i+j e−βRe(z).

Lemma A.3 is then applicable (with λ = c
b , γ = γ̃, F = 1

b

(
ũBLi,j

)′′
and α = −ui,j+1(0)) and

with the aid of Lemma A.2 (to bound |α|) we obtain

∣∣(ũBLi,j+1

)
(z)
∣∣ ≤ C (γ̃i+j (i+ j + 1 + |z|)i+j+1

(i+ j + 1)
+ i!Ki

2

)
e−Re(λz)

≤ Cγ̃i+j (i+ j + 1 + |z|)i+j+1 ×(
1

(i+ j + 1)
+

i!Ki
2

γ̃i (i+ j + 1 + |z|)i+j+1

)
e−Re(λz)

≤ C γ̃i

(i+ j + 1)!
(i+ j + 1 + |z|)i+j+1

e−Re(λz)
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where we used the fact that γ̃ = K2. Hence, the induction is complete and this concludes the
proof.

COROLLARY A.5. The functions ũBLi,j , which satisfy (A.3), are entire and there exist
positive constants C, K̃, K1, γ̃, depending only on the data, such that, ∀ n ∈ N0 and x̃ ≥ 0,
there holds ∣∣∣(ũBLi,j )(n) (x̃)

∣∣∣ ≤ CKn
1 K̃γ̃

i+j(i+ j)i+je−βx̃.

Proof. Cauchy’s Integral Theorem for Derivatives gives∣∣∣(ũBLi,j )(n) (x̃)
∣∣∣ ≤ Ce−βx̃ n!

(n+ 1)n
γ̃i+j (i+ j + x̃)

i+j
en

≤ Ce−βx̃ n!

(n+ 1)n
γ̃i+j (i+ j + n)

i+j
en.

The proof is completed by observing that

(A.7) (i+ j + n)
i+j ≤ (i+ j)

i+j
(1 + n/(i+ j))

i+j ≤ (i+ j)
i+j

en.

REMARK A.6. An analogous result may be proven for the functions ûBLi,j , which satisfy
(A.4), (A.5):

(A.8)
∣∣∣(ûBLi,j )(n) (x̂)

∣∣∣ ≤ CK̂nγ̂i+j(i+ j)i+je−βx̂ ∀ i, j ≥ 0.

Indeed, from (A.4) we find

ûBLi,0 (x̂) = ûBLi,0 (1)e−bx̂,

ûBLi,1 (x̂) = ûBLi,1 (1)e−bx̂ +

∫ x̂

1

cûBLi,0 (s)
(

1− eb(s−x̂)
)
ds

and an inductive argument, like in the proof of Lemma A.4, can be used to establish (A.8).
Next, we define, for some M ∈ Z,

uM (x) =

M∑
i=0

M∑
j=0

εi2(ε1/ε
2
2)jui,j(x),(A.9)

ũBLM (x̃) =
M∑
i=0

M∑
j=0

εi2(ε1/ε
2
2)j ũBLi,j (x̃),(A.10)

ûBLM (x̂) =

M∑
i=0

M∑
j=0

εi2(ε1/ε
2
2)j ûBLi,j (x̂),(A.11)

rM = u−
(
uM + ũBLM + ûBLM

)
,

and we have the following decomposition

(A.12) u = uM + ũBLM + ûBLM + rM .

THEOREM A.7. Assume that (2.6), (2.3) hold. Then there exist positive constants
C,K1,K2, K̃,K̂,γ̃,γ̂, δ, independent of ε1, ε2, such that the solution u of (2.1), (2.2) can be
decomposed as in (A.12), with

(A.13)
∥∥∥u(n)M

∥∥∥
∞,I
≤ Cn!Kn

1 ∀ n ∈ N0,
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(A.14)
∣∣∣(ũBLM )(n)

(x)
∣∣∣ ≤ CK̃nε−n2 e−dist(x,∂I)/ε2 ∀ n ∈ N0,

(A.15)
∣∣∣(ûBLM )(n)

(x)
∣∣∣ ≤ CK̂n

2

(
ε1
ε2

)−n
e−dist(x,∂I)ε2/ε1 ∀ n ∈ N0,

(A.16) ‖rM‖∞,∂I + ‖rM‖0,I + ε
1/2
1 ‖r′M‖0,I ≤ C max{e−δε2/ε1 , e−δ/ε2},

provided ε2eM max {K2, γ̃, γ̂} < 1 and ε1
ε22
eM max{γ̃, γ̂} < 1.

Proof. We first show (A.13): from (A.9) and Lemma A.2 we have

∥∥∥u(n)M

∥∥∥
∞,I
≤

M∑
i=0

M∑
j=0

εi2(ε1/ε
2
2)j
∥∥∥u(n)i,j

∥∥∥
∞,I
≤ C

M∑
i=0

M∑
j=0

εi2(ε1/ε
2
2)jn!Kn

1 i!K
i
2

≤ Cn!Kn
1

(
M∑
i=0

εi2i
iKi

2

) M∑
j=0

(ε1/ε
2
2)j


≤ Cn!Kn

1

( ∞∑
i=0

(ε2MK2)
i

) ∞∑
j=0

(ε1/ε
2
2)j


≤ Cn!Kn

1 ,

since both sums are convergent geometric series due to the assumptions ε2MK2 < 1 and
ε1/ε

2
2 < 1.

Next, we show (A.14): by (A.10) and Lemma A.4, we have

∣∣∣(ũBLM )(n)
(x̃)
∣∣∣ ≤ M∑

i=0

M∑
j=0

εi2(ε1/ε
2
2)j
∣∣∣(ũBLi,j )(n) (x̃)

∣∣∣
≤ C

M∑
i=0

M∑
j=0

εi2(ε1/ε
2
2)jK̃nγ̃i(i+ j)i+je−|βz|.

Now, (i+ j)i+j ≤ eiiiejjj (cf. (A.7)) hence we get

∣∣∣(ũBLM )(n)
(x̃)
∣∣∣ ≤ CK̃ne−βx̃

(
M∑
i=0

γ̃ieiiiεi2

) M∑
j=0

(ε1/ε
2
2)jejjj


≤ CK̃ne−βx̃

( ∞∑
i=0

(γ̃eMε2)
i

) ∞∑
j=0

(
ε1
ε22
eM

)j
≤ CK̃ne−βx̃,

since both sums are convergent geometric series, due to the assumptions γ̃eMε2 < 1,
ε1
ε22
eM < 1. The result follows.
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Similarly, we show (A.15): by (A.11) and (A.8),∣∣∣(ûBLM )(n)
(x̂)
∣∣∣ ≤ M∑

i=0

M∑
j=0

εi2(ε1/ε
2
2)j
∣∣∣(ûBLi,j )(n) (x̂)

∣∣∣
≤ C

M∑
i=0

M∑
j=0

εi2(ε1/ε
2
2)jK̂nγ̂i(i+ j)i+je−βx̂

≤ CK̂ne−βx̂

( ∞∑
i=0

(γ̂eMε2)
i

)  ∞∑
j=0

(
ε1
ε22
eM

)j
≤ CK̂ne−βx̂.

It remains to show (A.16). To this end, note that

rM (0) = u(0)−
M∑
i=0

M∑
j=0

εi2(ε1/ε
2
2)j
(
ui,j(0) + ũBLi,j (0) + ûBLi,j (ε2/ε1)

)
= −

M∑
i=0

M∑
j=0

εi2(ε1/ε
2
2)j ûBLi,j (ε2/ε1).

By (A.8),

|rM (0)| ≤
M∑
i=0

M∑
j=0

εi2(ε1/ε
2
2)j
∣∣ûBLi,j (ε2/ε1)

∣∣ ≤ C M∑
i=0

M∑
j=0

εi2(ε1/ε
2
2)j γ̂i(i+ j)i+je−βε2/ε1

≤ Ce−βε2/ε1
( ∞∑
i=0

(γ̂Meε2)
i

) ∞∑
j=0

(
(ε1/ε

2
2)eM

)j ≤ Ce−δε2/ε1 ,
for some positive δ, independent of ε1, ε2 and bounded away from 0. Similarly,

|rM (1)| ≤
M∑
i=0

M∑
j=0

εi2(ε1/ε
2
2)j
∣∣ũBLi,j (1/ε2)

∣∣ ≤ C M∑
i=0

M∑
j=0

εi2(ε1/ε
2
2)j γ̃i(i+ j)i+je−β/ε2

≤ Ce−β/ε2
( ∞∑
i=0

(γ̃eε2M)i

) ∞∑
j=0

(
(ε1/ε

2
2)M

)j ≤ Ce−δ/ε2 .
Combining the two results, we have

‖rM‖∞,∂I ≤ C max{e−δε2/ε1 , e−δ/ε2}.

Now, let L := −ε1 d2

dx2 + ε2b
d
dx + c Id, with Id the identity operator, and consider

L (u− uM ) = f(x)−
M∑
i=0

M∑
j=0

εi2(ε1/ε
2
2)jLui,j(x),

with ui,j satisfying (A.2). After some calculations, we find

L (u− uM ) = −εM+1
2

M∑
j=1

(
ε1
ε22

)j
bu′M,j ,
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hence

‖L (u− uM )‖∞,I ≤ ε
M+1
2

M∑
j=1

(
ε1
ε22

)j
‖b‖∞,I

∥∥u′M,j

∥∥
∞,I

≤ CεM+1
2

M∑
j=1

(
ε1
ε22

)j ∥∥u′M,j

∥∥
∞,I .

Using Lemma A.2, we further obtain

‖L (u− uM )‖∞,I ≤ Cε
M+1
2 M !KM

2

M∑
j=1

(
ε1
ε22

)j
≤ Cε2 (ε2MK2)

M
,

since the finite sum can be bounded by a converging geometric series.
We also consider the operator L in the stretched variable x̃:

L̃ = −ε1ε−22

d2

dx̃2
+ b

d

dx̃
+ c Id,

and we find, after some calculations,

L̃ũBLM =

M∑
i=0

M∑
j=0

εi2(ε1/ε
2
2)jL̃ũBLi,j

=

M∑
i=0

M∑
j=0

εi2(ε1/ε
2
2)j
(
−ε1ε−22

(
ũBLi,j

)′′
+ b

(
ũBLi,j

)′
+ cũBLi,j

)

=

(
ε1
ε22

)M+1 M∑
i=0

εi2
(
ũBLi,M

)′′
,

where (A.3) was used. Hence, using (A.6), we have

∥∥∥L̃ũBLM ∥∥∥
∞,I
≤
(
ε1
ε22

)M+1 M∑
i=0

εi2

∥∥∥(ũBLi,M)′′∥∥∥∞,I ≤ C
(
ε1
ε22

)M+1 M∑
i=0

εi2γ̃
i(i+M)i+M

≤ C
(
ε1
ε22

)M+1 M∑
i=0

εi2γ̃
ieiiieMMM ≤ C

(
ε1
ε22
eM

)M+1 M∑
i=0

(ε2γ̃eM)i

≤ C
(
ε1
ε22
eM

)M+1

.

Similarly, in the stretched variable x̂ we have

L̂ = −ε1
(
ε2
ε1

)2
d2

dx̂2
− bε2

ε2
ε1

d

dx̂
+ c Id
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and, with the help of (A.4),

L̂ûBLM =

M∑
i=0

M∑
j=0

εi2(ε1/ε
2
2)jL̂ûBLi,j

=

M∑
i=0

M∑
j=0

εi2(ε1/ε
2
2)j
(
−ε

2
2

ε1

(
ûBLi,j

)′′ − bε22
ε1

(
ûBLi,j

)′
+ cûBLi,j

)

=

(
ε1
ε22

)M M∑
i=0

εi2
(
ũBLi,M

)′′
,

thus, by following the exact same steps as above,

∥∥∥L̂ûBLM ∥∥∥
∞,I
≤
(
ε1
ε22

)M M∑
i=0

εi2

∥∥∥(ûBLi,M)′′∥∥∥∞,I ≤ C
(
ε1
ε22

)M M∑
i=0

εi2γ̂
i(i+M)i+M

≤ C
(
ε1
ε22
eM

)M
.

Therefore,

‖LrM‖∞,I =
∥∥L (u− uM − ũBLM − ûBLM

)∥∥
∞,I

≤ ‖L (u− uM )‖∞,I +
∥∥LũBLM ∥∥

∞,I +
∥∥LûBLM ∥∥

∞,I

≤ C

(
ε2 (ε2MK2)

M
+

(
ε1
ε22
eM

)M+1(
ε1
ε22
eM

)M)
.

Under the assumptions of the theorem, we have shown that the remainder rM has exponentially
small values at the endpoints of I, and LrM is uniformly bounded by an arbitrarily small
quantity on I . By, e.g., stability (see [9]) we have the desired result.
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