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FRACTIONAL HERMITE INTERPOLATION FOR NON-SMOOTH FUNCTIONS∗

JIAYIN ZHAI†, ZHIYUE ZHANG‡, AND TONGKE WANG§

Abstract. The interpolation of functions plays a fundamental role in numerical analysis. The highly accu-
rate approximation of non-smooth functions is a challenge in science and engineering as traditional polynomial
interpolation cannot characterize the singular features of these functions. This paper aims at designing a fractional
Hermite interpolation for non-smooth functions based on the local fractional Taylor expansion and at deriving the
corresponding explicit formula and its error remainder. We also present a piecewise hybrid Hermite interpolation
scheme, a combination of fractional Hermite interpolation and traditional Hermite interpolation. Some numerical
examples are presented to show the high accuracy of the fractional Hermite interpolation method.

Key words. non-smooth function, local fractional Taylor expansion, fractional Hermite interpolation, error
remainder

AMS subject classifications. 26A30, 41A05, 65D05, 97N50

1. Introduction. We consider in this paper fractional Hermite interpolation of non-
smooth function defined on a bounded interval, where the function is sufficiently smooth
except at a finite set of points. We usually call these points singularities, where the function is
discontinuous or its derivative is discontinuous. Traditional Hermite interpolation approximates
a complicated function by a simple polynomial, where the values of the function and its first
(or first few) derivative(s) are matched with the values of the polynomial and its derivatives at
some prescribed nodes [8]. General descriptions of the Hermite interpolating polynomial in
some more general cases may be found in [11, 28, 33]. The error remainder of the Hermite
interpolating polynomial can be found by applying Rolle’s theorem repetitively [21], which
shows that the accuracy of the interpolation depends upon the smoothness of the function.
Traditional Hermite interpolation for approximating non-smooth functions is not accurate
since the values of non-smooth functions or their derivatives do not exist at their singularities.

In the field of numerical mathematics and approximation theory, many papers have been
published on the constructions, error estimates, and applications of Hermite interpolation in
one and several variables; see [2, 6, 7, 9, 14, 15, 16, 32]. For some more complex interpolation
problems, many scholars have carried out thorough expositions. For example, Tachev [30]
provided norm estimates for the approximation of continuous functions by piecewise linear
interpolation with non-equidistant nodes. Arandiga [1] gave the approximation order for a class
of nonlinear interpolation procedures with a uniform mesh. In [20], a new representation of
Hermite osculatory interpolation was presented in order to construct weighted Hermite quadra-
ture rules with arithmetic and geometric nodes. For f(x) = |x|α, x ∈ [−1, 1], Revers [26],
Lu [19], and Su [27] showed that the sequence of Lagrange interpolating polynomials with
equidistant nodes is divergent everywhere in the interval except at zero and the endpoints,
for 0 < α ≤ 1, 1 < α ≤ 2, and 2 < α < 4, respectively. For fractional smooth functions,
Wang et al. [35] derived a general form for a local fractional Taylor expansion based on the
local fractional derivative at the singular points and obtained the remainder expansions for
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linear and quadratic interpolants. The fractional Lagrange interpolation formula with its error
remainder obtained in [10] is an effective approximation for non-smooth functions. Rapaić et
al. presented an auxiliary result from the numerical evaluation of fractional-order integrals
in [24], where they constructed Lagrange and Hermite quasi-polynomial interpolations by
replacing (±(x − x0))β (β > 0 is fractional) with a variable t. Besides, quasi-polynomial
interpolants were considered for the approximation of solutions of integral equations with
weakly singular kernels [3, 4, 25, 31]. In fact, these quasi-polynomials are a kind of fractional
interpolation formulas. In recent years, the interpolation method was applied to approximate
fractional derivatives in [12, 13, 29]. Hence, fractional interpolation methods play an increas-
ingly important role in the approximation of non-smooth functions. However, there are few
papers that discuss the construction and error analysis of Hermite interpolation for non-smooth
functions in detail. In the present paper, we will construct an efficient fractional Hermite
interpolation method to accurately approximate non-smooth functions.

As it is well known, sufficiently smooth functions have a Taylor series at every point
in the interval. For non-smooth functions, a standard Taylor series does not exist at the
singularities. However, there may exist a Puiseux series [5, 23] at the singularities in the
interval. Puiseux series are generalizations of power series and may contain negative and
fractional exponents and logarithms, and they were first introduced by Isaac Newton in 1676
and afterwards rediscovered by Victor Puiseux in 1850 [34]. Puiseux series are interpreted as
local fractional Taylor series when they do not involve logarithmic factors. In this paper, we
assume that f(x) is sufficiently smooth in (a, b) except at x = a or x = b and f(x) possesses
the local fractional Taylor expansion

(1.1) f(x) =

u∑
i=1

ai(x− a)αi + ra(x), x > a,

or

(1.2) f(x) =

v∑
i=1

ai(b− x)αi + rb(x), x < b,

at x = a or x = b or both of them, where all the exponents αi (i = 1, 2, . . .) are real numbers
satisfying α1 < α2 < . . . We note that the numbers αi (i = 1, 2, . . .) are called critical
orders, ±Γ(1 + αi)ai (i = 1, 2, . . .) are called local fractional derivatives, and Γ(·) is the
gamma function [17]. If all the αi are positive integers, then (1.1) or (1.2) degenerates to a
standard Taylor expansion. Liu [18] designed an extrapolation method to recover the first
few critical orders and calculated the corresponding local fractional derivatives. In fact, the
local fractional Taylor expansion of a function at a point can be easily obtained by symbolic
computation. It is noted that the remainder ra(x) = o((x−a)αu) or rb(x) = o((b−x)αv ) can
be made sufficiently small on [a, b] by choosing u and v suitably large [36]. Although the local
fractional Taylor expansion can approximate a non-smooth function, its accuracy is confined
by the local properties in the full interval, which is similar to the standard Taylor expansion
approximating a smooth function. Therefore, interpolation is essential for approximating a
function in order to obtain uniform accuracy in the full interval.

In this paper, we construct a fractional Hermite interpolation method based on the local
fractional Taylor expansions for non-smooth functions such that the local approximation
property of the Taylor expansion can be extended to the whole interval. To this end, we choose
(x− x0)αi (i = 1, 2, . . . , n ≤ u) in (1.1) or (x0 − x)αi (i = 1, 2, . . . , n ≤ v) in (1.2) as the
basis functions to construct the fractional Hermite interpolation function. We will prove the
existence and uniqueness of this function and give the corresponding explicit formula and its
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error remainder. The proposed fractional Hermite interpolation can achieve higher accuracy
than traditional Hermite interpolation near singular points.

The rest of the paper is organized as follows. In Section 2, we prove the unique existence
of a fractional Hermite interpolation function for non-smooth functions when suitable inter-
polation conditions are imposed and give the corresponding explicit form as well as its error
remainder. In Section 3, a combination of fractional Hermite interpolation and traditional
Hermite interpolation is developed. In Section 4, some numerical examples are given to show
that fractional Hermite interpolation is superior to traditional Hermite interpolation when the
functions are not sufficiently smooth at the endpoints, and it is illustrated that the convergence
order of fractional Hermite interpolation is consistent with the theoretical result. We give a
brief conclusion in the last section. By the way, we note that lightface Latin and Greek letters
denote scalars and boldface uppercase Latin letters denote matrices throughout the paper.

2. Fractional Hermite interpolation. The goal of this paper is to construct an efficient
fractional Hermite interpolation function Hαn(x) for a non-smooth function f(x) defined on
the bounded interval (a, b). Without loss of generality, we suppose that f(x), x ∈ (a, b] (or
[a, b)), is sufficiently smooth except at x = a (or x = b), where f(x) has the local fractional
Taylor expansion (1.1) (or (1.2)). Otherwise, we can take the singularities of f(x) as the
nodes and split (a, b) into subintervals, on each of which f(x) is singular at the left (or right)
endpoint. In the following, we will discuss the case that f(x) has the local fractional Taylor
expansion (1.1) at the left endpoint x = a in detail. The case of the right endpoint x = b is
treated in an analogous way.

At first, we give the following definition of fractional Hermite interpolation.
DEFINITION 2.1. Suppose that f(x), x ∈ (a, b], has a local fractional Taylor expan-

sion (1.1) at x = a, where the exponents αi (i = 1, 2, . . . , n ≤ u) and the coefficients ai
(i = 1, 2, . . . , σ ≤ n) are known and some of the αi may be negative. Then, the fractional
Hermite interpolation function has the form

(2.1) Hαn(x) =

σ∑
i=1

ai(x− a)αi +

n∑
i=σ+1

bi(x− a)αi

satisfying

(2.2) H(j)
αn (b) = f (j)(b), j = 0, 1, . . . , k, k = n− σ − 1.

We next provide a fundamental lemma to show existence and uniqueness of the function
Hαn(x) in (2.1). We will use the Pochhammer k-symbol

(
x
)
n,k

, which is defined as

(
x
)
n,k

= x(x+ k)(x+ 2k) · · · (x+ (n− 1)k) =

n∏
i=1

(
x+ (i− 1)k

)
for n ∈ N+ with the initial setting

(
x
)
0,k

= 1.
LEMMA 2.2. For α1 < α2 < · · · < αn, the following determinant satisfies

(2.3) Dn =

∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1
α1 · · · αn

α1(α1 − 1) · · · αn(αn − 1)
...

...(
α1

)
n−1,−1 · · ·

(
αn
)
n−1,−1

∣∣∣∣∣∣∣∣∣∣∣
=

n∏
i=2

i−1∏
j=1

(αj − αi) 6= 0.
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Proof. We prove this by mathematical induction. If n = 1, 2, then Dn 6= 0 is obviously
true since α1 < α2. Now, suppose as induction hypothesis that n ≥ 2 and that (2.3) holds for
n− 1. We have

Dn =

∣∣∣∣∣∣∣∣∣∣∣

1
−αn 1

−(αn − 1) 1
. . . . . .

−(αn − n+ 2) 1

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1
α1 · · · αn

α1(α1 − 1) · · · αn(αn − 1)
...

...(
α1

)
n−1,−1 · · ·

(
αn
)
n−1,−1

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 1
α1 − αn · · · αn−1 − αn 0

α1(α1 − αn) · · · αn−1(αn−1 − αn) 0
...

... 0(
α1

)
n−2,−1(α1 − αn) · · ·

(
αn−1

)
n−2,−1(αn−1 − αn) 0

∣∣∣∣∣∣∣∣∣∣∣
.

Expanding the determinant Dn at the last column and extracting the common factor (αj −αn)
from column j (j = 1, 2, . . . , n− 1), we can deduce that

Dn =

n−1∏
j=1

(αj − αn)Dn−1 = · · · =
n∏
i=2

i−1∏
j=1

(αj − αi) 6= 0,

since α1 < α2 < · · · < αn. This completes the induction argument.
With the above preparation, we prove the unique existence of the fractional Hermite

interpolation function Hαn(x) in (2.1), summarized in the following theorem.
THEOREM 2.3. Supposed that f(x), x ∈ (a, b], is sufficiently smooth except at the

endpoint x = a, where f(x) has the local fractional Taylor expansion (1.1). Then, the
fractional Hermite interpolation function Hαn(x) in Definition 2.1 exists and is unique.

Proof. Let

(2.4)

G(x) := Hαn(x)−
σ∑
i=1

ai(x− a)αi =

n∑
i=σ+1

bi(x− a)αi ,

F (x) := f(x)−
σ∑
i=1

ai(x− a)αi .

Then G(x) satisfies the k + 1 interpolation conditions

G(j)(b) = F (j)(b), j = 0, 1, . . . , k,

which means that

(2.5)



n∑
i=σ+1

(b− a)αibi = F (b),

n∑
i=σ+1

αi(b− a)αi−1bi = F ′(b),

· · ·
n∑

i=σ+1

(
αi
)
k,−1(b− a)αi−kbi = F (k)(b).
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The coefficient matrix for the linear system (2.5) is

(2.6) A :=


(b− a)ασ+1 · · · (b− a)αn

ασ+1(b− a)ασ+1−1 · · · αn(b− a)αn−1

...
...(

ασ+1

)
k,−1(b− a)ασ+1−k · · ·

(
αn
)
k,−1(b− a)αn−k

 = C1DC2,

where

C1 := diag
(
1, (b− a)−1, · · · , (b− a)−k

)
,

C2 := diag
(
(b− a)ασ+1 , (b− a)ασ+2 , · · · , (b− a)αn

)
,

D :=


1 · · · 1

ασ+1 · · · αn
...

...(
ασ+1

)
k,−1 · · ·

(
αn
)
k,−1

 .

Since n = σ + k + 1, we know from Lemma 2.2 that

det (D) =

k+1∏
i=2

i−1∏
j=1

(ασ+j − ασ+i) 6= 0.

Because det (C1) = (b− a)
−k(k+1)

2 6= 0 and det (C2) = (b− a)

n∑
l=σ+1

αl
6= 0, we obtain

(2.7)

det (A) = det (C1) det (D) det (C2)

= (b− a)

n∑
l=σ+1

αl− k(k+1)
2

k+1∏
i=2

i−1∏
j=1

(ασ+j − ασ+i) 6= 0.

Thus, the solution (bσ+1, · · · , bn)T of the linear system (2.5) exists and is unique, from which
we conclude that the fractional Hermite interpolation function Hαn(x) in (2.1) is uniquely
determined by the interpolation conditions (2.2). The theorem is proved.

By denoting A = det (A), we deduce via Cramer’s rule that

bσ+j =
1

A

∣∣∣∣∣∣∣∣∣
(b− a)ασ+1 · · · F (b) · · · (b− a)αn

ασ+1(b− a)ασ+1−1 · · · F ′(b) · · · αn(b− a)αn−1

...
...

...
(ασ+1)k,−1(b− a)ασ+1−k · · · F (k)(b) · · · (αn)k,−1(b− a)αn−k

∣∣∣∣∣∣∣∣∣
=

1

A

k+1∑
i=1

F (i−1)(b)Aij , j = 1, 2, . . . , n− σ,

where Aij is the algebraic complement of the entry aij = (ασ+j)i−1,−1(b− a)ασ+j−(i−1) in
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the determinant of the matrix A defined in (2.6). Substituting bσ+j into (2.1), we have

(2.8)

Hαn(x) =

σ∑
j=1

aj(x− a)αj +
1

A

k+1∑
j=1

[ k+1∑
i=1

F (i−1)(b)Aij

]
(x− a)ασ+j

=

σ∑
j=1

aj(x− a)αj +
1

A

k+1∑
i=1

F (i−1)(b)
[ k+1∑
j=1

Aij(x− a)ασ+j
]

=

σ∑
j=1

aj(x− a)αj +
1

A

k+1∑
i=1

F (i−1)(b)(−1)i−1Ai(x),

where

(2.9)

k+1∑
j=1

Aij(x− a)ασ+j

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(b− a)ασ+1 · · · (b− a)αn

ασ+1(b− a)ασ+1−1 · · · αn(b− a)αn−1

...
...

(ασ+1)i−2,−1(b− a)ασ+1−(i−2) · · · (αn)i−2,−1(b− a)αn−(i−2)

(x− a)ασ+1 · · · (x− a)αn

(ασ+1)i,−1(b− a)ασ+1−i · · · (αn)i,−1(b− a)αn−i

...
...

(ασ+1)k,−1(b− a)ασ+1−k · · · (αn)k,−1(b− a)αn−k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)i−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(x− a)ασ+1 · · · (x− a)αn

(b− a)ασ+1 · · · (b− a)αn

ασ+1(b− a)ασ+1−1 · · · αn(b− a)αn−1

...
...

(ασ+1)i−2,−1(b− a)ασ+1−(i−2) · · · (αn)i−2,−1(b− a)αn−(i−2)

(ασ+1)i,−1(b− a)ασ+1−i · · · (αn)i,−1(b− a)αn−i

...
...

(ασ+1)k,−1(b− a)ασ+1−k · · · (αn)k,−1(b− a)αn−k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
:= (−1)i−1Ai(x).

Substituting F (b) defined in (2.4) into (2.8), we obtain an explicit formula for the fractional
Hermite interpolant:
(2.10)

Hαn(x) =

σ∑
j=1

aj(x− a)αj

+
1

A

k+1∑
i=1

[
f (i−1)(b)−

σ∑
j=1

aj(αj)i−1,−1(b− a)αj−(i−1)
]
(−1)i−1Ai(x)

=

σ∑
j=1

[
(x− a)αj − 1

A

k+1∑
i=1

(αj)i−1,−1(b− a)αj−(i−1)(−1)i−1Ai(x)
]
aj

+
1

A

k+1∑
i=1

(−1)i−1Ai(x)f (i−1)(b).
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The above arguments can be summarized in the following theorem.
THEOREM 2.4. Under the conditions of Theorem 2.3, the fractional Hermite inter-

polant (2.1) is given by (2.10).
We further discuss the error remainder for the fractional Hermite interpolant (2.1)

with (2.2). Let us begin with an important lemma about the corresponding basis functions.
LEMMA 2.5. For f(x) = (x− a)αi , x ∈ (a, b],

(2.11) (x− a)αi −Hαn(x) =

{
0, i = 1, 2, . . . , σ,
(−1)kCi(x)

A , i = σ + 1, σ + 2, . . . ,

where

Ci(x) =∣∣∣∣∣∣∣∣∣∣∣

(x− a)ασ+1 · · · (x− a)αn (x− a)αi

(b− a)ασ+1 · · · (b− a)αn (b− a)αi

ασ+1(b− a)ασ+1−1 · · · αn(b− a)αn−1 αn(b− a)αi−1

...
...

...(
ασ+1

)
k,−1(b− a)ασ+1−k · · ·

(
αn
)
k,−1(b− a)αn−k

(
αn
)
k,−1(b− a)αi−k

∣∣∣∣∣∣∣∣∣∣∣
.

(2.12)

Proof. We note that the local Taylor expansion of f(x) = (x− a)αi is identical to this
function itself and f (l−1)(x) = (αi)l−1,−1(x− a)αi−(l−1), l ≥ 1.

When i ∈ {1, 2, . . . , σ}, we use (2.10) and obtain the fractional Hermite interpolant of
f(x) = (x− a)αi as

Hαn(x) =
[
(x− a)αi − 1

A

k+1∑
l=1

(αi)l−1,−1(b− a)αi−(l−1)(−1)l−1Al(x)
]

+
1

A

k+1∑
l=1

(−1)l−1Al(x)f (l−1)(b)

=(x− a)αi .

Therefore, (x− a)αi −Hαn(x) = 0, for i ∈ {1, 2, . . . , σ}.
Likewise, when i ∈ {σ + 1, σ + 2, . . .}, we also obtain

Hαn(x) =
1

A

k+1∑
l=1

(−1)l−1Al(x)f (l−1)(b)

=
1

A

k+1∑
l=1

(−1)l−1Al(x)(αi)l−1,−1(b− a)αi−(l−1)

and

(x− a)αi −Hαn(x) =
1

A

[
A(x− a)αi +

k+1∑
l=1

(−1)lAl(x)(αi)l−1,−1(b− a)αi−(l−1)
]
.
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On the other hand, expanding Ci(x) with respect to the last column yields

(2.13)

Ci(x) = (−1)k+2A(x− a)αi +

k+1∑
l=1

(−1)k+2+lAl(x)(αi)l−1,−1(b− a)αi−(l−1)

= (−1)k
[
A(x− a)αi +

k+1∑
l=1

(−1)lAl(x)(αi)l−1,−1(b− a)αi−(l−1)
]
.

Comparing the above two formulas, we deduce that

(x− a)αi −Hαn(x) =
(−1)kCi(x)

A
, i ∈ {σ + 1, σ + 2, . . .}.

Hence, formula (2.11) holds, and the lemma is proved.
Noting that Ci(x) = 0 in (2.12) when σ + 1 ≤ i ≤ n, we have

(x− a)αi −Hαn(x) = 0, 1 ≤ i ≤ n.

Hence, we obtain the following error remainder:
THEOREM 2.6. Under the conditions of Theorem 2.3, the error remainder of the fractional

Hermite interpolant Hαn(x) in (2.1) is
(2.14)
Rαn(x) = f(x)−Hαn(x)

=
(−1)k

A

u∑
i=n+1

aiCi(x) +
[
ra(x)− 1

A

k+1∑
j=1

(−1)j−1Aj(x)r(j−1)a (b)
]
, x ∈ (a, b],

where A = det (A), Ci(x) is the determinant (2.12), and ra(x) and Aj(x) are defined in
(1.1) and (2.9), respectively.

Proof. From (1.1), (2.10), and (2.11) we have

Rαn(x) = f(x)−Hαn(x)

=

u∑
i=σ+1

ai(x− a)αi + ra(x) +

σ∑
i=1

ai
A

k+1∑
j=1

(−1)j−1Aj(x)(αi)j−1,−1(b− a)αi−(j−1)

− 1

A

k+1∑
j=1

(−1)j−1Aj(x)f (j−1)(b)

=

u∑
i=σ+1

ai(x− a)αi + ra(x) +

σ∑
i=1

ai
A

k+1∑
j=1

(−1)j−1Aj(x)(αi)j−1,−1(b− a)αi−(j−1)

− 1

A

k+1∑
j=1

(−1)j−1Aj(x)
[ u∑
i=1

ai(αi)j−1,−1(b− a)αi−(j−1) + r(j−1)a (b)
]

=

u∑
i=σ+1

ai(x− a)αi + ra(x)−
u∑

i=σ+1

ai
A

k+1∑
j=1

(−1)j−1Aj(x)(αi)j−1,−1(b− a)αi−(j−1)

− 1

A

k+1∑
j=1

(−1)j−1Aj(x)r(j−1)a (b)
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=

u∑
i=σ+1

ai
A

[
A(x− a)αi −

k+1∑
j=1

(−1)j−1Aj(x)(αi)j−1,−1(b− a)αi−(j−1)
]

+ ra(x)

− 1

A

k+1∑
j=1

(−1)j−1Aj(x)r(j−1)a (b)

=
(−1)k

A

u∑
i=σ+1

aiCi(x) +
[
ra(x)− 1

A

k+1∑
j=1

(−1)j−1Aj(x)r(j−1)a (b)
]
.

Here we used equation (2.13) to obtain the last equality. The proof is complete.
REMARK 2.7. More generally, we can divide the interval [a, b] into a mesh Th with nodes

a = x0 < x1 < x2 < · · · < xm = b. By analogy with the above process, we can also
construct the fractional Hermite interpolant

Hαn(x) =

σ∑
i=1

ai(x− a)αi +

n∑
i=σ+1

bi(x− a)αi

satisfying the interpolation conditions

H(j)
αn (xl) = f (j)(xl), j = 0, 1, 2, . . . , k, l = 1, 2, . . . ,m, n = m(k + 1) + σ.

As it is well known, the local fractional Taylor expansion has a local approximation
property just as the standard one, which means that the fractional Taylor expansion may not be
accurate enough when the variable is far away from the expansion point. This phenomenon is
clearly illustrated in Example 4.1, which shows that this problem can be effectively overcome
by fractional Hermite interpolation.

In addition, by observing Theorem 2.6, we expand Ci(x) in (2.12) with respect to the first
row

Ci(x) =

k+1∑
j=1

(−1)j+1(x− a)ασ+jC1j + (−1)k+2(x− a)αiA,

where C1j is the algebraic complement of the entry c1j = (x− a)ασ+j in Ci(x). Substituting
the above equation and (2.9) into (2.14) gives

Rαn(x) =

u∑
i=n+1

ai

[ k+1∑
j=1

(−1)k+j+1C1j

A
(x− a)ασ+j + (x− a)αi

]

+
[
ra(x)− 1

A

k+1∑
j=1

(−1)j−1Aj(x)r(j−1)a (b)
]
, x ∈ (a, b].

According to (2.6), (2.7), and (2.12), we have

C1j

A
= (b− a)αi−ασ+j

k+1∏
l=1,l 6=j

(ασ+l − αi)

j−1∏
l=1

(ασ+l − αj)
k+1∏
l=j+1

(αj − ασ+l)
, i = 1, 2, . . . , u.
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Let us assume for a moment that b− a < 1, and let

δ := max

1,

∣∣∣∣∣∣∣∣∣
k+1∏

l=1,l 6=j
(ασ+l − αi)

j−1∏
l=1

(ασ+l − αj)
k+1∏
l=j+1

(αj − ασ+l)

∣∣∣∣∣∣∣∣∣ , i = 1, 2, . . . , u

 .

We have ∣∣∣∣∣∣
u∑

i=n+1

ai

[ k+1∑
j=1

(−1)k+j+1C1j

A
(x− a)ασ+j + (x− a)αi

]∣∣∣∣∣∣
≤

u∑
i=n+1

|ai|δ
[ k+1∑
j=1

(b− a)αi−ασ+j (x− a)ασ+j + (x− a)αi
]
,

≤
u∑

i=n+1

|ai|δ(k + 1)(b− a)αi .

Since ra(x) = o((x − a)αu), we choose u suitably large such that ra(x) = C(x − a)αu+1

holds, where C is a constant. A similar analysis gives∣∣∣∣∣ra(x)− 1

A

k+1∑
i=1

(−1)i−1Ai(x)r(i−1)a (b)

∣∣∣∣∣ ≤ |C|δ̃(k + 1)(b− a)αu+1 = o((b− a)αu),

where δ̃ is a constant depending on ασ+j (j = 1, 2, . . . , k + 1) and αu+1. It follows from the
above analysis that the error remainder can be written as

(2.15) |Rαn(x)| ≤
u∑

i=n+1

|ai|δ(k + 1)(b− a)αi + o
(
(b− a)αu

)
with the leading error term |an+1|O((b− a)αn+1).

By summarizing the above analysis, we have the following result for the fractional Hermite
interpolation function Hαn(x):

THEOREM 2.8. Assume that f(x), x ∈ (a, b], is sufficiently smooth and has a local
fractional Taylor expansion (1.1) at x = a which is absolutely convergent as x → a. Then
the fractional Hermite interpolant Hαn(x) is convergent to the non-smooth function f(x) as
b→ a in the interval (a, b], and the convergence order is αn+1.

It is noted that the precision of the fractional Hermite interpolant (2.1) may deteriorate
when the length of the interval is larger than one. Simultaneously, because the coefficients |ai|
in the local fractional Taylor expansion (1.1) are not always monotonically decreasing (see
Example 4.2), in practical approximation we usually use low-degree piecewise hybrid Hermite
interpolation of non-smooth functions, which is introduced in the next section.

3. Piecewise hybrid Hermite interpolation. In this section, we discuss piecewise hy-
brid Hermite interpolation by combining fractional Hermite interpolation with traditional
Hermite interpolation. Generally speaking, if a non-smooth function f(x) has a local fractional
Taylor expansion at some points of [a, b], we should apply fractional Hermite interpolation
in the subintervals that contain these singularities. At other subintervals, we use traditional
Hermite interpolation.
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Here is a practical case to illustrate the use of piecewise hybrid Hermite interpolation.
Suppose that f(x), x ∈ (a, b], is sufficiently smooth except at x = a, where at this point the
local fractional Taylor expansion (1.1) holds. Generate a mesh with nodes a = x0 < x1 <
x2 < · · · < xN = b. Let hi = xi − xi−1 , i = 1, 2, . . . , N , and h = max

1≤i≤N
hi. We suppose

that h < 1 and that the values of f(x) and f ′(x) are given at the nodes xi, i = 1, 2, . . . , N .
In the subintervals [xi−1, xi], i = 2, 3, . . . , N , we use the cubic Hermite interpolating

polynomial (cf. [22])

(3.1) h3(x) = λi−1(x)f(xi−1) + µi−1(x)f ′(xi−1) + f(xi)λi(x) + f ′(xi)µi(x),

where

λi−1(x) =
1

h3i

(
hi + 2(x− xi−1)

)
(x− xi)2, µi−1(x) =

1

h2i
(x− xi−1)(x− xi)2,

λi(x) =
1

h3i

(
hi − 2(x− xi)

)
(x− xi−1)2, µi(x) =

1

h2i
(x− xi−1)2(x− xi).

In the first subinterval (x0, x1], using the values of f(x1) and f ′(x1), we can construct the
fractional Hermite interpolant Hασ+2

(x) via Theorem 2.3,

(3.2)
Hασ+2

(x) =

σ∑
j=1

[
(x− x0)αj − h

αj
1 A1(x)

A
+
αjh

αj−1
1 A2(x)

A

]
aj

+
A1(x)

A
f(x1)− A2(x)

A
f ′(x1),

where

A =

∣∣∣∣ h
ασ+1

1 h
ασ+2

1

ασ+1h
ασ+1−1
1 ασ+2h

ασ+2−1
1

∣∣∣∣ ,
A1(x) =

∣∣∣∣ (x− x0)ασ+1 (x− x0)ασ+2

ασ+1h
ασ+1−1
1 ασ+2h

ασ+2−1
1

∣∣∣∣ ,
A2(x) =

∣∣∣∣ (x− x0)ασ+1 (x− x0)ασ+2

h
ασ+1

1 h
ασ+2

1

∣∣∣∣ .
This leads to the result that the piecewise hybrid Hermite interpolation function for the
non-smooth function f(x) is given by

H(x) =

{
Hασ+2(x), x ∈ (x0, x1],

h3(x), x ∈ [xi−1, xi], i = 2, 3, . . . , N.

The remainder of h3(x) defined in (3.1) is [22]

(3.3)
R3(x) = f(x)− h3(x) =

1

4!
f (4)(ξi)(x− xi−1)2(x− xi)2

= O((hi)
4), x, ξi(x) ∈ (xi−1, xi).

From Theorem 2.6, the remainder of (3.2) is

Rασ+2
(x) = − 1

A

u∑
i=σ+3

ai

∣∣∣∣∣∣
(x− x0)ασ+1 (x− x0)ασ+2 (x− x0)αi

h
ασ+1

1 h
ασ+2

1 hαi1
ασ+1h

ασ+1−1
1 ασ+2h

ασ+2−1
1 αih

αi−1
1

∣∣∣∣∣∣+ o(hαu1 )

=

u∑
i=σ+3

aiO(h
ασ+3

1 ) + o(hαu1 ).
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REMARK 3.1. In order to obtain uniform accuracy over the whole interval (a, b], we
should choose ασ such that the truncation error of the fractional Hermite interpolation is the
same as the maximum error of (3.1). The detailed choice of ασ will be discussed in Section 4.

4. Numerical examples. In this section, some typical examples are provided to illustrate
that fractional Hermite interpolation is more powerful than traditional Hermite interpolation for
approximating non-smooth functions. We also show that it is necessary to use the piecewise
hybrid Hermite interpolation method with a nonuniform mesh in practical computations.
Because the exact values of numerous integrals cannot be obtained by analytic methods, it is
extremely important to obtain the approximate values with high enough accuracy in practical
simulations. As an application of fractional Hermite interpolation, we use interpolation to
compute an integral and get a highly accurate result. The following examples are implemented
in Mathematica 10.1.

We start with the construction of the fractional Hermite interpolation function for a
singular function leading to high precision results.

EXAMPLE 4.1. Construct fractional Hermite interpolation for the singular function

f(x) =
1

e
√
x sin(x1/3)

, x ∈ (0, 0.5].

Since f(x) is singular at the point x = 0, we can not apply traditional Hermite interpolation
in the interval (0, 0.5]. It is easy to find the local fractional Taylor expansion of f(x) at x = 0
using Mathematica, which gives

(4.1)
f(x) =

1

x1/3
+
x1/3

6
− x2/3

2
+

7x

360
− x4/3

12
+

1921x5/3

15120
− 7x2

720
+

12727x7/3

604800

− 661x8/3

30240
+

8389x3

3421440
+ · · · , x→ 0+.

According to Theorem 2.3 and the above expansion, we use the interpolation conditions with
f(0.5), f ′(0.5), and f ′′(0.5) to construct fractional Hermite interpolants Hασ+3

(x). Here we
simply take ασ = 4/3 and obtain

(4.2)
H7/3(x) =

1

x1/3
+
x1/3

6
− x2/3

2
+

7x

360x
− x4/3

12
+ 0.115691x5/3

+ 0.0304425x2 − 0.0281134x7/3.

We take the first eight terms of the fractional Taylor expansion in (4.1) to approximate the non-
smooth function f(x), denoted by s7/3(x). We display the errors of the truncated fractional
Taylor expansion s7/3(x) and the fractional Hermite interpolation H7/3(x) in Figure 4.1.
Obviously, H7/3(x) is superior to s7/3(x) when they are used to approximate the singular
function f(x). In addition, the error of the truncated Taylor expansion s7/3(x) increases fast
when x is away from zero, which verifies the local property of the fractional Taylor expansion.

In addition, we choose some values of h and compute the maximum error

εh = max
0≤x≤h

|f(x)−H7/3(x)|

and the convergence order Oh = log2(εh/εh/2) of the fractional Hermite interpolation
function H7/3(x) in the interval (0, h]. We present the results in Table 4.1. Note that the
theoretical convergence order of H7/3(x) is Oh = 8/3 ≈ 2.666 . . . from Theorem 2.8.
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|f(x)-H7/3(x)|

|f(x)-s7/3(x)|

0.1 0.2 0.3 0.4 0.5
x

-0.001

0.000

0.001

0.002

0.003

Error

FIG. 4.1. The errors of H7/3(x) and s7/3(x).

TABLE 4.1
The maximum error and convergence order of H7/3(x) near x = 0.

h εh Oh
0.5 1.10872E-5
0.5/2 2.24189E-6 2.3061
0.5/22 3.87358E-7 2.53297
0.5/23 6.31746E-8 2.61625
0.5/24 1.00855E-8 2.64706
0.5/25 1.59871E-9 2.6573
0.5/26 2.52973E-10 2.65985

Table 4.1 shows that the convergence order of the fractional Hermite interpolant H7/3(x) is
consistent with the theoretical result as h→ 0.

We finally take some values of ασ and construct a series of fractional Hermite interpolants
in different intervals. We also obtain their maximum absolute errors and display these errors
in Table 4.2, where εh = max

0<x≤h
|f(x)−Hασ+3(x)|. From Table 4.2, it is easy to see that the

accuracy improves if a larger σ6 or a smaller h are used.

TABLE 4.2
The maximum absolute errors of Hσ+3(x) in different intervals.

ασ

εh h

1.0 0.5 0.1

0 1.80356E-2 7.65776E-3 1.17603E-3
1/3 6.11154E-4 7.66619E-4 8.78003E-5
2/3 1.09545E-3 1.80134E-4 1.64608E-6
1 2.67558E-4 5.09412E-5 5.19636E-7

4/3 3.16056E-5 1.10872E-5 2.16896E-7
5/3 2.85861E-5 2.21069E-6 4.03282E-9

EXAMPLE 4.2. Construct the piecewise hybrid Hermite interpolation for the function

f(x) = ln(1 + arcsin(x1/3)), x ∈ [0, 1].

A straightforward computation shows that

f ′(x) =
1

3x2/3
√

1− x2/3(1 + arcsinx1/3)
, x ∈ (0, 1).
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Hence, the derivatives of f(x) do not exist at x = 0 and x = 1. The local fractional Taylor
expansions at x = 0 and x = 1 are denoted by fl(x) and fr(x), respectively, which read

fl(x) =x1/3 − 0.5x2/3 + 0.5x− 0.416667x4/3 + 0.441667x5/3 − 0.422222x2

+ 0.456944x7/3 − 0.465476x8/3 + · · · , x→ 0+;

fr(x) =0.944216− 0.317605
√

1− x− 0.0504363(1− x)− 0.0724356(1− x)3/2

− 0.0221579(1− x)2 − 0.0369454(1− x)5/2 + · · · , x→ 1−.

We first construct the piecewise hybrid Hermite interpolant H(x) with a uniform mesh

(4.3) {xi = i/10 : i = 0, 1, 2, . . . , 10}

over [0, 1]. We can now use (3.1) to obtain the traditional cubic Hermite interpolating poly-
nomial hci3 (x) with the interpolation conditions f(xi−1), f ′(xi−1), f(xi), and f ′(xi) on
[xi−1, xi], i = 2, 3, . . . , 9. The maximum absolute error of the piecewise cubic Hermite
polynomial hc3(x) is computed as

(4.4) max
x1≤x≤x9

|f(x)− hc3(x)| = 2.59228× 10−4.

In order to make the error uniformly distributed over [0, 1], the values ασl = 5/3 and
ασr = 1/2 are chosen by comparing (4.4) with the truncation errors of fl(x) and fr(x),
respectively.

By means of Theorem 2.3 with f(x1), f ′(x1), and the expansion fl(x), we have

(4.5)
H l

7/3(x) =x1/3 − 0.5x2/3 + 0.5x− 0.416667x4/3 + 0.441667x5/3

− 0.380615x2 + 0.225788x7/3, x ∈ [x0, x1].

Similarly, with f(x9), f ′(x9), and the expansion fr(x), we have

(4.6)
Hr

3/2(x) =0.944216− 0.317605
√

1− x− 0.0450847(1− x)

− 0.317605(1− x)3/2, x ∈ [x9, x10].

Then, the piecewise hybrid Hermite interpolation function H(x) is

H(x) =


H l

7/3(x), x ∈ [x0, x1],

hci3 (x), x ∈ [xi−1, xi], i = 2, 3, . . . , 9,

Hr
3/2(x), x ∈ [x9, x10].

A straightforward computation shows that

(4.7)
max

x0≤x≤x1

|f(x)−H l
7/3(x)| = 3.07971× 10−6,

max
x9≤x≤x10

|f(x)−Hr
3/2(x)| = 3.96730× 10−5.

We also plot the error in Figure 4.2. It can be seen from (4.7) and Figure 4.2 that the fractional
Hermite interpolation functionsH l

7/3(x) andHr
3/2(x) are more accurate near the left and right

endpoints, respectively, which proves our treatment for the singularity successful. It can also
be seen that the maximum error of the traditional cubic Hermite interpolant hc3(x) is relatively
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|f(x)-H(x)|

0.2 0.4 0.6 0.8 1.0
x

-0.00005
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0.00005

0.00010

0.00015

0.00020

0.00025

Error

log10 |f(x)-H(x)|

0.0 0.2 0.4 0.6 0.8 1.0
x-10
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-4

-2

0
log10 |Error|

FIG. 4.2. The error (left) and the absolute error on a logarithmic scale (right) of H(x).

large near x = 0.15. So we try to generate a non-uniform mesh to arrive at uniform accuracy
in the whole interval. To the end, the simple function

x(t) = 0.1 +
21− 211−2t

25(1 + 211−2t)
, t ∈ [0, 1]

transforms the nodes {xi = i/10 : i = 1, 2, . . . , 9} to a nonuniform mesh

(4.8) {x′i : i = 0, 1, 2, . . . , 10} = {x0, x(t1), x(t2), · · · , x(t9), x10}, tj =
j − 1

8
.

We construct the piecewise hybrid Hermite interpolation function H̃(x) at these nonuniform
points in a similar manner as before. Since the maximum absolute error of the piecewise cubic
Hermite polynomial h̃c3(x) is

max
x1≤x≤x9

|f(x)− h̃c3(x)| = 5.27115× 10−5,

we still choose the functions H l
7/3(x) from (4.5) and Hr

3/2(x) from (4.6) on the intervals
[x0, x1] and [x9, x10], respectively. The errors are displayed in Figure 4.3. It can be seen from
Figure 4.3 that the error of the piecewise hybrid Hermite interpolation function H̃(x) is clearly
reduced, and the error distributions of H̃(x) is more uniform than the one for H(x). If we
further refine the mesh, the result will be more conspicuous.

|f(x)-H(x)|

|f(x)-H
˜
(x)|

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.
x

-0.00005

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

Error

log10|f(x)-H(x)|

log10|f(x)-H
˜
(x)|

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.
x-10

-8

-6

-4

-2

0
log10|Error|

FIG. 4.3. The error (left) and the absolute error on a logarithmic scale (right) of H̃(x) and H(x).

In addition, the convergence orders for fractional Hermite interpolants are calculated for
this example. In the interval [0, h1] ⊆ [0, 1], we compute the maximum error

εh1
= max

0≤x≤h1

|f(x)−H l
7/3(x)|
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and the convergence order Oh1
= log2(εh1

/εh1/2) of H l
7/3(x). We choose some values of h1

and present the results in Table 4.3. Note that the theoretical convergence order of H l
7/3(x)

is Ol = 8/3 ≈ 2.666 . . . from (2.15). Similarly, in the interval [1− hn, 1] ⊆ [0, 1], we also
choose some values of hn with the results of Hr

3/2(x) presented in Table 4.4. The theoretical
convergence order of Hr

3/2(x) is Or = 2. Table 4.3 and Table 4.4 show that the convergence
orders are consistent with the theoretical results of Theorem 2.8 as h1 → 0 and hn → 0,
respectively.

TABLE 4.3
The maximum error and convergence order of Hl

7/3
(x).

h1 εh1 Oh1

0.1 3.0797E-6
0.1/2 6.41581E-7 2.26309
0.1/22 1.23817E-7 2.37342
0.1/23 2.28515E-8 2.43785
0.1/24 4.08555E-9 2.48368
0.1/25 7.12701E-10 2.51916
0.1/26 1.21902E-10 2.54757

TABLE 4.4
The maximum error and convergence order of Hl

3/2
(x).

h1 εhn Ohn
0.1 3.96730E-5
0.1/2 7.45828E-6 2.41125
0.1/22 1.5191E-6 2.29562
0.1/23 2.39009E-7 2.66808
0.1/24 5.36471E-8 2.15549
0.1/25 1.23975E-8 2.11345
0.1/26 2.92689E-9 2.08261

Finally, we consider the convergence of the piecewise hybrid Hermite interpolant. In order
to guarantee the precision of the cubic Hermite interpolating polynomial hc3(x) in [0.1, 0.9],
we choose suitably large values ασl and ασr such that the maximum errors of the fractional
Hermite interpolants H l

ασl+3
(x), x ∈ [0, 0.1], and Hr

ασr+3
(x), x ∈ [0.9, 1.0], are of the order

of machine precision. We take different stepsizes h = max
2≤i≤n−1

{hi = xi − xi−1} and display

the convergence order of hc3(x) in Table 4.5. It is clearly seen that hc3(x) converges to f(x)
with Oc = 4 as h → 0, theoretically from (3.3) and numerically from Table 4.5. So the
piecewise hybrid Hermite interpolation converges to the original function f(x) fast.

EXAMPLE 4.3. We give an effective application of fractional Hermite interpolation to the
computation of the integral∫ 1

0

f(x)dx =

∫ 1

0

ln(1 + arcsin(x1/3)) dx.

Apparently, the integral cannot be computed analytically, so we must evaluate it numerically.
Here, we compute approximate values with high enough accuracy by the "NIntegrate" com-
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TABLE 4.5
The maximum error and convergence order of hc3(x).

h1 εh Oh

0.1 2.59228E-4
0.1/2 2.90655E-5 3.15684
0.1/22 2.59609E-6 3.48489
0.1/23 1.98492E-7 3.70919
0.1/24 1.38197E-8 3.84428
0.1/25 9.09039E-10 3.92624
0.1/26 5.87373E-11 3.95199

mand of Mathematica using 20-digits precision, from which we obtain the true errors. The
fractional Hermite interpolation functions H(x) and H̃(x) of f(x) can be integrated analyt-
ically. The results are compared with the composite trapezoidal rule for the corresponding
meshes (4.3) and (4.8), respectively. We provide the errors in Table 4.6, where FHI-error and
CTR-error represent the absolute errors computed by fractional Hermite interpolation and
the composite trapezoidal rule, respectively. It can be seen form Table 4.6 that the results
of fractional Hermite interpolation are far superior to the composite trapezoidal rule with
the same mesh. This is attributed to the property that fractional Hermite interpolation can
accurately characterize the singular features of non-smooth functions.

TABLE 4.6
The absolute error of the numerical integral

∫ 1
0 f(x)dx.

Mesh (4.3) Mesh (4.8)
FHI-error 1.46014E-5 8.77327E-6
CTR-error 9.41746E-3 9.43063E-3

5. Conclusion. In this paper, we develop a fractional Hermite interpolation method
for non-smooth functions. The corresponding explicit formula and the error remainder are
presented and its convergence order is verified. A piecewise hybrid Hermite interpolant is
developed. The proposed methods have the following features.

• The basis functions of the fractional Hermite interpolation method are adaptively
chosen from the Puiseux series of the function at its singularity.

• The proposed fractional Hermite interpolant extends the local property of the Taylor
expansion to the full interval such that the precision of the interpolant significantly
increases away from the singularities.

• In practical computation, we usually apply piecewise hybrid Hermite interpolation
with low degree to the whole interval and also use a non-uniform mesh to arrive at
uniform accuracy on the whole interval.

Typical numerical examples are implemented, and accurate results are obtained for non-
smooth functions with singular points. The methods can be used to efficiently solve a broad
class of integral equations with singular kernels, which will be discussed in the near future.
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