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COERCIVE SPACE-TIME FINITE ELEMENT METHODS FOR INITIAL
BOUNDARY VALUE PROBLEMS∗

OLAF STEINBACH† AND MARCO ZANK‡

Abstract. We propose and analyse new space-time Galerkin-Bubnov-type finite element formulations of
parabolic and hyperbolic second-order partial differential equations in finite time intervals. Using Hilbert-type
transformations, this approach is based on elliptic reformulations of first- and second-order time derivatives, for
which the Galerkin finite element discretisation results in positive definite and symmetric matrices. For the variational
formulation of the heat and wave equations, we prove related stability conditions in appropriate norms, and we discuss
the stability of related finite element discretisations. Numerical results are given which confirm the theoretical results.
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1. Introduction. While for the analysis of parabolic and hyperbolic partial differential
equations a variety of approaches such as Fourier methods, semigroups, or Galerkin methods
are available (see, for example, [22, 27, 28, 32, 44, 46]), standard approaches for the numerical
solution are based on semi-discretisation, where the discretisation in space and time is split
accordingly; see, e.g., [42] for parabolic partial differential equations and [7, 8] for hyperbolic
problems. More recently, there exist space-time approaches as, for example, in [1, 11, 24,
30, 31, 34, 37, 41, 43] for parabolic problems and [3, 5, 13, 17, 21, 29, 47] for hyperbolic
equations.

In this work, we introduce a new Fourier-type method for the analysis of first- and second-
order ordinary differential equations, and we transfer this approach to the corresponding
parabolic and hyperbolic partial differential equations. The aim of this work is to provide space-
time Galerkin-Bubnov-type variational formulations, where unique solvability follows from
related coercivity estimates. This analysis may then serve not only as basis for the development
and the numerical analysis of adaptive space-time finite element methods simultaneously in
space and time and for the construction of time-parallel iterative solution strategies, but also
for the analysis of related boundary integral equation methods for the heat and wave equation,
respectively, and the coupling of finite and boundary element methods.

As a first model problem, we consider the Dirichlet boundary value problem for the heat
equation,

(1.1)
α∂tu(x, t)−∆xu(x, t) = f(x, t) for (x, t) ∈ Q := Ω× (0, T ),

u(x, t) = 0 for (x, t) ∈ Σ := Γ× (0, T ),

u(x, 0) = 0 for x ∈ Ω,

where Ω ⊂ Rd, d = 1, 2, 3, is a bounded domain with, for d = 2, 3, Lipschitz boundary
Γ = ∂Ω, α > 0 is a given heat capacity constant, and f(x, t) is a given right-hand side. Note
that in the spatially one-dimensional case d = 1, we have Ω = (a, b) and Γ = {a, b}.
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A variational formulation of (1.1) is to find u ∈ L2(0, T ;H1
0 (Ω)) ∩H1

0,(0, T ;H−1(Ω))
such that∫ T

0

∫
Ω

α∂tu(x, t)v(x, t) dx dt+

∫ T

0

∫
Ω

∇xu(x, t) · ∇xv(x, t) dx dt

=

∫ T

0

∫
Ω

f(x, t)v(x, t) dx dt

(1.2)

is satisfied for all v ∈ L2(0, T ;H1
0 (Ω)), where we assume f ∈ L2(0, T ;H−1(Ω)). Note that

we use the standard Bochner spaces, where u ∈ H1
0,(0, T ;H−1(Ω)) satisfies u(x, 0) = 0 for

x ∈ Ω. Related to the variational formulation (1.2), we introduce the bilinear form

(1.3) a(u, v) :=

∫ T

0

∫
Ω

[
α∂tu(x, t)v(x, t) +∇xu(x, t) · ∇xv(x, t)

]
dx dt .

Since (1.2) is a Galerkin-Petrov variational formulation, we need to establish an appropriate
stability condition to ensure unique solvability; see also [14, 15, 34, 37, 43]. In particular,

‖u‖L2(0,T ;H1
0 (Ω))∩H1

0,(0,T ;H−1(Ω)) :=
√
‖α∂tu‖2L2(0,T ;H−1(Ω)) + ‖∇xu‖2L2(Q)

defines a norm in L2(0, T ;H1
0 (Ω)) ∩ H1

0,(0, T ;H−1(Ω)), and we can prove the stability
condition

1√
2
‖u‖L2(0,T ;H1

0 (Ω))∩H1
0,(0,T ;H−1(Ω)) ≤ sup

0 6=v∈L2(0,T ;H1
0 (Ω))

a(u, v)

‖v‖L2(0,T ;H1
0 (Ω))

for u ∈ L2(0, T ;H1
0 (Ω)) ∩H1

0,(0, T ;H−1(Ω)). Since the bilinear form (1.3) is continuous,
satisfying

|a(u, v)| ≤
√

2 ‖u‖L2(0,T ;H1
0 (Ω))∩H1

0,(0,T ;H−1(Ω))‖v‖L2(0,T ;H1
0 (Ω))

for u ∈ L2(0, T ;H1
0 (Ω)) ∩ H1

0,(0, T ;H−1(Ω)) and v ∈ L2(0, T ;H1
0 (Ω)), and surjective,

this implies unique solvability of the variational problem (1.2); see, e.g., [6, 14]. The initial
Dirichlet boundary value problem (1.1) therefore defines an isomorphism

(1.4) L : L2(0, T ;H1
0 (Ω)) ∩H1

0,(0, T ;H−1(Ω))→ [L2(0, T ;H1
0 (Ω))]′ .

When considering the variational formulation (1.2) and performing integration by parts in
time, this leads to the adjoint variational formulation to find u ∈ L2(0, T ;H1

0 (Ω)) such that

−
∫ T

0

∫
Ω

u(x, t)α∂tv(x, t) dx dt+

∫ T

0

∫
Ω

∇xu(x, t) · ∇xv(x, t) dx dt

=

∫ T

0

∫
Ω

f(x, t)v(x, t) dx dt

(1.5)

is satisfied for all v ∈ L2(0, T ;H1
0 (Ω)) ∩H1

,0(0, T ;H−1(Ω)), where the test space includes
the final time condition v(x, T ) = 0 for x ∈ Ω and where we assume f ∈ [L2(0, T ;H1

0 (Ω))∩
H1
,0(0, T ;H−1(Ω))]′. As for the primal variational formulation (1.2), we can establish unique

solvability of the adjoint variational formulation (1.5), which then implies an isomorphism

(1.6) L : L2(0, T ;H1
0 (Ω))→ [L2(0, T ;H1

0 (Ω)) ∩H1
,0(0, T ;H−1(Ω))]′.
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Both the primal variational formulation (1.2) and the adjoint variational formulation (1.5)
are Galerkin-Petrov formulations, where the test space is different from the ansatz space, in
particular with respect to time. This motivates to consider variational formulations for the
initial boundary value problem (1.1), where ansatz and test spaces are of the same order also in
time. Using the isomorphisms (1.4) and (1.6) and some interpolation arguments, one expects
to consider test and ansatz spaces as subspaces of the anisotropic Sobolev space H1,1/2(Q),
e.g., [4, 22, 23, 27, 28]. In the case of an infinite time interval, i.e., T =∞, such an approach
was considered analytically in the Ph.D. thesis of M. Fontes [16] (see also [25] for a related
numerical analysis using wavelets) and the work of D. Devaud [10]. However, here we will
consider only finite time intervals with T <∞. In the case of time-periodic boundary value
problems, a related approach is considered in [26].

Although the numerical analysis of space-time finite element methods for the variational
formulation (1.2) is well-established (see, e.g., [1, 15, 30, 31, 34, 37, 43]), the analysis of
boundary integral equations and related boundary element methods for the solution of the heat
equation (1.1) relies on Galerkin-Bubnov variational formulations in anisotropic Sobolev trace
spaces of H1,1/2(Q); see, e.g., [2, 4]. In particular, instead of a stability condition in the finite
element analysis, an ellipticity estimate in the boundary element analysis is used. So, we are
interested in a unified approach to analyse both finite and boundary element methods within
one framework and allowing a numerical analysis also for the coupling of space-time finite
and boundary element methods.

In addition to the initial boundary value problem (1.1) of the heat equation, we also
consider the related model problem for the wave equation,

(1.7)

1
c2 ∂ttu(x, t)−∆xu(x, t) = f(x, t) for (x, t) ∈ Q := Ω× (0, T ),

u(x, t) = 0 for (x, t) ∈ Σ := Γ× (0, T ),

u(x, 0) = ∂tu(x, 0) = 0 for x ∈ Ω,

where c > 0 is a given wave speed constant. A standard approach for a space-time finite
element method to solve (1.7) is to consider an equivalent system with first-order time
derivatives; see, e.g., [3, 13, 29]. Alternatively, one may consider variational formulations of
the wave equation in (1.7) using integration by parts also in time; see, e.g., [5, 17, 47]. Here,
we will consider related variational formulations in suitable subspaces of H1(Q), and we will
prove and discuss stability conditions in appropriate function spaces.

The rest of this paper is organised as follows: In Section 2 we consider simple first-order
ordinary differential equations to motivate the choice of a transformation operator to derive
an elliptic and symmetric bilinear form for the first-order time derivative. We discuss several
properties of the Hilbert-type transformation operator, and we present some numerical results
to illustrate the theoretical results. The results for the first-order ordinary differential equations
are extended in Section 3 to the heat equation in several space dimensions. We prove that the
heat partial differential operator with zero Dirichlet boundary and initial conditions defines an
isomorphism in certain anisotropic Sobolev spaces, implying a stability condition as required
in the numerical analysis of the proposed Galerkin scheme. We comment on the stability of
the numerical scheme and present some numerical results. Second-order ordinary differential
equations are considered in Section 4, where we introduce a different transformation operator,
which is not semi-definite as in the case of first-order equations. Hence, we have to use different
Sobolev norms to establish optimal stability estimates. As for the first-order equation, we
provide a numerical analysis for the finite element discretisation, and we give some numerical
results. Finally, in Section 5 we consider the space-time variational formulation for the wave
equation, we discuss the discretisation scheme, and we provide some numerical results for
illustration.
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2. First-order ordinary differential equations. As a first model problem, for T > 0,
we consider the simple initial value problem

(2.1) ∂tu(t) = f(t) for t ∈ (0, T ), u(0) = 0,

where we aim to derive and analyse a coercive variational formulation, which later will be used
for the discretisation of time-dependent partial differential equations, which are of first-order
in time.

2.1. Primal variational formulation. If we define the Sobolev space

H1
0,(0, T ) :=

{
v ∈ H1(0, T ) : v(0) = 0

}
,

then the primal variational formulation of (2.1) is to find u ∈ H1
0,(0, T ) such that

(2.2)
∫ T

0

∂tu(t)v(t) dt =

∫ T

0

f(t)v(t) dt for all v ∈ L2(0, T ).

Obviously, it is sufficient to assume that f ∈ L2(0, T ) in this case. Recall that

‖u‖2H1
0,(0,T ) := ‖∂tu‖2L2(0,T ) =

∫ T

0

[∂tu(t)]2 dt

defines a norm in H1
0,(0, T ). The bilinear form a(·, ·) : H1

0,(0, T )× L2(0, T )→ R,

(2.3) a(u, v) :=

∫ T

0

∂tu(t)v(t) dt,

is bounded, i.e.,

|a(u, v)| ≤ ‖∂tu‖L2(0,T )‖v‖L2(0,T ) for all u ∈ H1
0,(0, T ), v ∈ L2(0, T ),

and satisfies the stability condition

‖∂tu‖L2(0,T ) ≤ sup
06=v∈L2(0,T )

a(u, v)

‖v‖L2(0,T )
for all u ∈ H1

0,(0, T ).

Moreover, it holds true that

‖v‖L2(0,T ) ≤ sup
06=u∈H1

0,(0,T )

a(u, v)

‖∂tu‖L2(0,T )
for all v ∈ L2(0, T ).

As a consequence (see, e.g., [6, Satz 3.6] or [14, Corollary A.45]), we conclude unique
solvability of the primal variational formulation (2.2), and the bilinear form (2.3) implies, by
the Riesz representation theorem, a bounded and invertible operator

B1 : H1
0,(0, T )→ L2(0, T )

satisfying

‖u‖H1
0,(0,T ) ≤ ‖B1u‖L2(0,T ) for all u ∈ H1

0,(0, T ).
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2.2. Dual variational formulation. When using integration by parts, instead of the
primal variational formulation (2.2), we may consider the dual variational formulation to find
u ∈ L2(0, T ) such that

(2.4)
∫ T

0

u(t)∂tv(t) dt = −
∫ T

0

f(t)v(t) dt for all v ∈ H1
,0(0, T ),

where

H1
,0(0, T ) :=

{
v ∈ H1(0, T ) : v(T ) = 0

}
, ‖v‖2H1

,0(0,T ) :=

∫ T

0

[∂tv(t)]2 dt.

Here, it is sufficient to assume that f ∈ [H1
,0(0, T )]′. As for the primal variational formulation,

we conclude unique solvability of the dual variational formulation (2.4), which then implies a
bounded and invertible operator

B0 : L2(0, T )→ [H1
,0(0, T )]′

satisfying

‖u‖L2(0,T ) ≤ ‖B0u‖[H1
,0(0,T )]′ for all u ∈ L2(0, T ).

2.3. Interpolation of operators. Related to the initial value problem (2.1), we consider
the operator B1 : H1

0,(0, T ) → L2(0, T ) of the primal formulation (2.2) and the operator
B0 : L2(0, T ) → [H1

,0(0, T )]′ of the dual formulation (2.4). Hence, using interpolation
arguments for s ∈ (0, 1), we consider an operator

Bs : [H1
0,(0, T ), L2(0, T )]s → [L2(0, T ), [H1

,0(0, T )]′]s,

and we may ask for a representation of Bs, in particular for s = 1
2 . Recall that the Sobolev

space

H
1/2
0, (0, T ) := [H1

0,(0, T ), L2(0, T )]1/2

is a dense subspace of H1/2(0, T ) with the Hilbertian norm

‖u‖2
H

1/2
0, (0,T )

=

∫ T

0

[u(t)]2 dt+

∫ T

0

∫ T

0

[u(s)− u(t)]2

|s− t|2
ds dt+

∫ T

0

[u(t)]2

t
dt.

ForB1 : H1
0,(0, T )→ L2(0, T ), we define the adjoint operatorB′1 : L2(0, T )→ [H1

0,(0, T )]′

via

〈u,B′1v〉(0,T ) = 〈B1u, v〉L2(0,T ) for all u ∈ H1
0,(0, T ), v ∈ L2(0, T ),

where 〈·, ·〉(0,T ) denotes the duality pairing defined via the extension of the inner product
in L2(0, T ). Then, we introduce

A := B′1B1 : H1
0,(0, T )→ [H1

0,(0, T )]′.

In particular for u ∈ H1
0,(0, T ), we consider the eigenvalue problem

Au = λu in [H1
0,(0, T )]′,
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i.e., for all v ∈ H1
0,(0, T ), we have

〈Au, v〉(0,T ) = 〈B1u,B1v〉L2(0,T ) =

∫ T

0

∂tu(t)∂tv(t) dt = λ

∫ T

0

u(t)v(t) dt.

Note that this is the variational formulation of an eigenvalue problem with mixed boundary
conditions,

−∂ttu(t) = λu(t) for t ∈ (0, T ), u(0) = 0, ∂tu(T ) = 0.

Hence, we find

(2.5) vk(t) = sin

((π
2

+ kπ
) t
T

)
, λk =

1

T 2

(π
2

+ kπ
)2

, k = 0, 1, 2, 3, . . .

Recall that the eigenfunctions vk form an orthogonal basis in L2(0, T ) satisfying∫ T

0

vk(t)v`(t) dt =
T

2
δk`,

and in H1
0,(0, T ),∫ T

0

∂tvk(t)∂tv`(t) dt = λk

∫ T

0

vk(t)v`(t) dt =
1

2T

(π
2

+ kπ
)2

δk`.

For u ∈ H1
0,(0, T ), this motivates to consider

(2.6) u(t) =

∞∑
k=0

uk sin

((π
2

+ kπ
) t
T

)
, uk =

2

T

∫ T

0

u(t) sin

((π
2

+ kπ
) t
T

)
dt,

and by Parseval’s identity we have

‖u‖2L2(0,T ) =

∞∑
k=0

∞∑
`=0

uku`

∫ T

0

sin

((π
2

+ kπ
) t
T

)
sin

((π
2

+ `π
) t
T

)
dt

=
T

2

∞∑
k=0

u2
k

as well as

‖∂tu‖2L2(0,T ) =

∞∑
k=0

∞∑
`=0

uku`

∫ T

0

∂tvk(t)∂tv`(t) dt =
1

2T

∞∑
k=0

(π
2

+ kπ
)2

u2
k.

Hence, using interpolation, we define an equivalent norm in H1/2
0, (0, T ), e.g., [27, 45],

‖u‖2
H

1/2
0, (0,T )

=
1

2

∞∑
k=0

(π
2

+ kπ
)
u2
k

as well as an inner product

〈u, v〉
H

1/2
0, (0,T )

=
1

2

∞∑
k=0

(π
2

+ kπ
)
ukvk.
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Analogously, for w ∈ H1/2
,0 (0, T ) we consider

w(t) =

∞∑
k=0

wk cos

((π
2

+ kπ
) t
T

)
, wk =

2

T

∫ T

0

w(t) cos

((π
2

+ kπ
) t
T

)
dt,

with the related norm and inner product,

‖w‖2
H

1/2
,0 (0,T )

=
1

2

∞∑
k=0

(π
2

+ kπ
)
w2
k, 〈w, z〉

H
1/2
,0 (0,T )

=
1

2

∞∑
k=0

(π
2

+ kπ
)
wkzk.

Finally, we introduce the dual space [H
1/2
,0 (0, T )]′ with the norm

‖f‖
[H

1/2
,0 (0,T )]′

= sup
06=w∈H1/2

,0 (0,T )

〈f, w〉(0,T )

‖w‖
H

1/2
,0 (0,T )

.

LEMMA 2.1. For f ∈ [H
1/2
,0 (0, T )]′, we have

‖f‖2
[H

1/2
,0 (0,T )]′

=
T 2

2

∞∑
k=0

(π
2

+ kπ
)−1

f
2

k

with

fk =
2

T
〈f, wk〉(0,T ), wk(t) = cos

((π
2

+ kπ
) t
T

)
.

Proof. From the norm definition, using a series representation of w ∈ H1/2
,0 (0, T ), and

with Hölder’s inequality, we have

‖f‖
[H

1/2
,0 (0,T )]′

= sup
06=w∈H1/2

,0 (0,T )

〈f, w〉(0,T )

‖w‖
H

1/2
,0 (0,T )

= sup
06=w∈H1/2

,0 (0,T )

∞∑
k=0

wk〈f, wk〉(0,T )(
1

2

∞∑
k=0

(π
2

+ kπ
)
w2
k

)1/2

=
T√
2

sup
06=w∈H1/2

,0 (0,T )

∞∑
k=0

wkfk( ∞∑
k=0

(π
2

+ kπ
)
w2
k

)1/2
≤ T√

2

( ∞∑
k=0

(π
2

+ kπ
)−1

f
2

k

)1/2

,

i.e.,

‖f‖2
[H

1/2
,0 (0,T )]′

≤ T 2

2

∞∑
k=0

(π
2

+ kπ
)−1

f
2

k .

On the other hand, if the coefficients fk are given, we define

w∗k =
(π

2
+ kπ

)−1

fk
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to prove the opposite direction; we skip the details.
The variational formulation of the initial value problem (2.1) is to find u ∈ H1/2

0, (0, T )
such that

(2.7) 〈∂tu,w〉(0,T ) = 〈f, w〉(0,T ) for all w ∈ H1/2
,0 (0, T ),

where f ∈ [H
1/2
,0 (0, T )]′ is given. Note that (2.7) is a Galerkin-Petrov variational formulation

with different trial and test spaces. Hence, we have to establish an appropriate stability
condition, which is equivalent to an ellipticity estimate for the bilinear form 〈∂tu,HT v〉(0,T )

with some transformation operatorHT : H
1/2
0, (0, T )→ H

1/2
,0 (0, T ) to be specified.

2.4. Transformation operator. To motivate the particular definition of the operator
HT : H

1/2
0, (0, T )→ H

1/2
,0 (0, T ), we write, by using (2.6),

∂tu(t) =
1

T

∞∑
k=0

uk

(π
2

+ kπ
)

cos

((π
2

+ kπ
) t
T

)

as distributional derivative, i.e., for w ∈ H1/2
,0 (0, T ), we have

〈∂tu,w〉(0,T ) =
1

T

∫ T

0

∞∑
k=0

uk

(π
2

+ kπ
)

cos

((π
2

+ kπ
) t
T

)
w(t) dt.

Defining

(2.8) w(t) = (HTu)(t) :=

∞∑
`=0

u` cos

((π
2

+ `π
) t
T

)
,

we conclude the ellipticity estimate

〈∂tu,HTu〉(0,T )

=
1

T

∞∑
k=0

∞∑
`=0

uku`

(π
2

+ kπ
)∫ T

0

cos

((π
2

+ kπ
) t
T

)
cos

((π
2

+ `π
) t
T

)
dt

=
1

2

∞∑
k=0

(π
2

+ kπ
)
u2
k = ‖u‖2

H
1/2
0, (0,T )

.

(2.9)

REMARK 2.2. The functionHTu ∈ H1/2
,0 (0, T ), as given in (2.8), is the unique solution

of the variational problem

〈HTu, z〉H1/2
,0 (0,T )

= 〈∂tu, z〉(0,T ) for all z ∈ H1/2
,0 (0, T ).

Therefore, the definition of the transformation operatorHT coincides with the definition of
the optimal test space as used, e.g., in discontinuous Galerkin-Petrov methods [9]. Indeed, for

u(t) =

∞∑
k=0

uk sin

((π
2

+ kπ
) t
T

)
,

we use the ansatz

w(t) = (HTu)(t) =

∞∑
k=0

wk cos

((π
2

+ kπ
) t
T

)
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and the test function

z(t) =

∞∑
k=0

zk cos

((π
2

+ kπ
) t
T

)
to obtain

〈w, z〉
H

1/2
,0 (0,T )

=
1

2

∞∑
k=0

(π
2

+ kπ
)
wkzk = 〈∂tu, z〉 =

1

2

∞∑
k=0

(π
2

+ kπ
)
ukzk

for all zk, from which we conclude that wk = uk, for k = 0, 1, 2, . . .

By construction, we have w = HTu ∈ H1/2
,0 (0, T ), andHT : H

1/2
0, (0, T )→ H

1/2
,0 (0, T )

is norm preserving, i.e.,

‖HTu‖H1/2
,0 (0,T )

= ‖u‖
H

1/2
0, (0,T )

for all u ∈ H1/2
0, (0, T ).

Vice versa, if w ∈ H1/2
,0 (0, T ) is given,

w(t) =

∞∑
k=0

wk cos

((π
2

+ kπ
) t
T

)
, wk =

2

T

∫ T

0

w(t) cos

((π
2

+ kπ
) t
T

)
dt,

then the inverse transformation operator reads

u(t) = (H−1
T w)(t) =

∞∑
k=0

wk sin

((π
2

+ kπ
) t
T

)
.

Next, we are going to prove some properties of the transformation operator HT . First, we
consider a commutation property with the time derivative operator ∂t.

LEMMA 2.3. For u ∈ H1/2
0, (0, T ), we have

〈∂tHTu, v〉(0,T ) = −〈H−1
T ∂tu, v〉(0,T ) for all v ∈ H1/2

0, (0, T ).

Proof. For an arbitrary ϕ ∈ C∞[0, T ] with ϕ(0) = 0, we first compute

(HTϕ)(t) =

∞∑
k=0

ϕk cos

((π
2

+ kπ
) t
T

)
, ϕk =

2

T

∫ T

0

ϕ(t) sin

((π
2

+ kπ
) t
T

)
dt,

and therefore

∂t(HTϕ)(t) = − 1

T

∞∑
k=0

ϕk

(π
2

+ kπ
)

sin

((π
2

+ kπ
) t
T

)
follows. On the other hand,

∂tϕ(t) =
1

T

∞∑
k=0

ϕk

(π
2

+ kπ
)

cos

((π
2

+ kπ
) t
T

)
implies

(H−1
T ∂tϕ)(t) =

1

T

∞∑
k=0

ϕk

(π
2

+ kπ
)

sin

((π
2

+ kπ
) t
T

)
,
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i.e.,

∂tHTϕ = −H−1
T ∂tϕ for all ϕ ∈ C∞[0, T ] with ϕ(0) = 0.

So, the assertion follows by completion.
Next, we prove thatHT is unitary.
LEMMA 2.4. For u ∈ H1/2

0, (0, T ) and w ∈ H1/2
,0 (0, T ), there holds true that

〈HTu,w〉L2(0,T ) = 〈u,H−1
T w〉L2(0,T ).

Proof. For u ∈ H1/2
0, (0, T ) and w ∈ H1/2

,0 (0, T ), we have

u(t) =

∞∑
k=0

uk sin

((π
2

+ kπ
) t
T

)
, w(t) =

∞∑
`=0

w` cos

((π
2

+ `π
) t
T

)
,

and

(HTu)(t) =

∞∑
k=0

uk cos

((π
2

+ kπ
) t
T

)
, (H−1

T w)(t) =

∞∑
`=0

w` sin

((π
2

+ `π
) t
T

)
.

Hence, we compute

〈HTu,w〉L2(0,T ) =

∫ T

0

(HTu)(t)w(t) dt

=

∞∑
k=0

∞∑
`=0

ukw`

∫ T

0

cos

((π
2

+ kπ
) t
T

)
cos

((π
2

+ `π
) t
T

)
dt

=
T

2

∞∑
k=0

ukwk

=

∞∑
k=0

∞∑
`=0

ukw`

∫ T

0

sin

((π
2

+ kπ
) t
T

)
sin

((π
2

+ `π
) t
T

)
dt

=

∫ T

0

u(t)(H−1
T w)(t) dt = 〈u,H−1

T w〉L2(0,T ).

Using Lemma 2.3 and Lemma 2.4, we conclude the following symmetry relation.
COROLLARY 2.5. For u, v ∈ H1/2

0, (0, T ), there holds true that

〈∂tu,HT v〉(0,T ) = 〈HTu, ∂tv〉(0,T ) = 〈u, v〉
H

1/2
0, (0,T )

.

Proof. For ϕ, ψ ∈ C∞[0, T ] with ϕ(0) = ψ(0) = 0, we first have (HTϕ)(T ) =
(HTψ)(T ) = 0, and therefore

〈∂tϕ,HTψ〉L2(0,T ) = 〈H−1
T ∂tϕ,ψ〉L2(0,T )

= −〈∂tHTϕ,ψ〉L2(0,T )

= −(HTϕ)(t)ψ(t)
∣∣∣T
0

+ 〈HTϕ, ∂tψ〉L2(0,T )

= 〈HTϕ, ∂tψ〉L2(0,T )
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holds true. So, the assertion follows by completion.
The next property of HT is required when considering, instead of (2.1), more general

differential equations.
LEMMA 2.6. There holds true that

(2.10) 〈v,HT v〉L2(0,T ) ≥ 0 for all v ∈ H1/2
0, (0, T ).

Proof. By using

v(t) =

∞∑
k=0

vk sin

((π
2

+ kπ
) t
T

)
, (HT v)(t) =

∞∑
`=0

v` cos

((π
2

+ `π
) t
T

)
,

we have

〈v,HT v〉L2(0,T ) =

∞∑
k=0

∞∑
`=0

vkv`

∫ T

0

sin

((π
2

+ kπ
) t
T

)
cos

((π
2

+ `π
) t
T

)
dt

=
1

2

∞∑
k=0

∞∑
`=0

vkv`

∫ T

0

[
sin

(
(k + `+ 1)π

t

T

)
+ sin

(
(k − `)π t

T

)]
dt

=
1

2

∞∑
k=0

∞∑
`=0

vkv`

[
− T

(k + `+ 1)π
cos

(
(k + `+ 1)π

t

T

)]T
0

=
T

2π

∞∑
k=0

∞∑
`=0

vkv`
1

k + `+ 1

[
1− (−1)k+`+1

]
,

where the second integral is ignored due to symmetry. When splitting k and ` into odd and
even indices, i.e., k = 2i, 2i+ 1, ` = 2j, 2j + 1, this gives

〈v,HT v〉L2(0,T ) =
T

π

∞∑
i=0

∞∑
j=0

[
v2iv2j

2i+ 2j + 1
+
v2i+1v2j+1

2i+ 2j + 3

]

=
T

π
lim
M→∞

M∑
i=0

M∑
j=0

[
v2iv2j

∫ 1

0

x2i+2j dx+ v2i+1v2j+1

∫ 1

0

x2i+2j+2 dx

]

=
T

π
lim
M→∞

∫ 1

0

(
M∑
i=0

v2ix
2i

)2

dx+

∫ 1

0

(
M∑
i=0

v2i+1x
2i+1

)2

dx

 ≥ 0.

REMARK 2.7. The matrix H as used in the previous proof, i.e.,

H[j, i] =
1

i+ j + 1
for i, j = 0, 1, . . . , N,

is a Hilbert matrix [19], which is positive definite but ill-conditioned. For our purpose it is
sufficient to use that (2.10) is non-negative.

Next, we will have a closer look at the definition of the transformation operatorHT to see
its relation with the well-known Hilbert transform; see, e.g., [20].

LEMMA 2.8. The operatorHT as defined in (2.8) allows the integral representation

(HTu)(t) = v.p.

∫ T

0

K(s, t)u(s) ds, t ∈ (0, T ),
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as a Cauchy principal value integral, where the kernel function is given as

(2.11) K(s, t) =
1

2T

[
1

sin
(
π
2
s−t
T

) +
1

sin
(
π
2
s+t
T

)] .
Proof. Formally, one finds

(HTu)(t) =

∞∑
k=0

uk cos

((π
2

+ kπ
) t
T

)

=

∞∑
k=0

2

T

∫ T

0

u(s) sin
((π

2
+ kπ

) s
T

)
ds cos

((π
2

+ kπ
) t
T

)

= v.p.

∫ T

0

u(s)K(s, t) ds

with

K(s, t) =
2

T

∞∑
k=0

sin
((π

2
+ kπ

) s
T

)
cos

((π
2

+ kπ
) t
T

)

=
1

T

∞∑
k=0

[
sin

((π
2

+ kπ
)s− t

T

)
+ sin

((π
2

+ kπ
)s+ t

T

)]
.

By using the formal representation

∞∑
k=0

sin
((π

2
+ kπ

)
x
)

=
1

2

1

sin
(
π
2x
) , for x 6= 0, 2, 4, . . . ,

we further conclude the representation (2.11); see [39] for a more detailed proof.
REMARK 2.9. For fixed s, t ∈ (0, T ), s 6= t, we consider

lim
T→∞

K(s, t) =
1

π

2s

(s− t)(s+ t)

so that

(H∞u)(t) = v.p.

∫ ∞
0

1

π

u(s)

s− t
2s

s+ t
ds, t ∈ (0,∞),

where the kernel function shows for s→ t the same behaviour as the Hilbert transform

(Hu)(t) = v.p.

∫ ∞
0

1

π

u(s)

s− t
ds, t ∈ (0,∞),

for which all the previous properties are well-known; see, e.g., [20].

2.5. Variational formulations. For the solution of the initial value problem (2.1), we
consider the variational formulation (2.7) to find u ∈ H1/2

0, (0, T ) such that

(2.12) 〈∂tu,HT v〉(0,T ) = 〈f,HT v〉(0,T ) for all v ∈ H1/2
0, (0, T ),
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where f ∈ [H
1/2
,0 (0, T )]′ is given. Since the bilinear form 〈∂tu,HT v〉(0,T ) is bounded, i.e.,

for u, v ∈ H1/2
0, (0, T ), there holds true that

|〈∂tu,HT v〉(0,T )| ≤ ‖∂tu‖[H1/2
,0 (0,T )]′︸ ︷︷ ︸

=‖B1/2u‖
[H

1/2
,0 (0,T )]′

‖HT v‖H1/2
,0 (0,T )

= ‖u‖
H

1/2
0, (0,T )

‖v‖
H

1/2
0, (0,T )

,

and elliptic (see (2.9)), we conclude unique solvability of the variational formulation (2.12).
REMARK 2.10. From the ellipticity estimate (2.9), we also conclude the stability condition

‖u‖
H

1/2
0, (0,T )

=
〈∂tu,HTu〉(0,T )

‖HTu‖H1/2
,0 (0,T )

≤ sup
06=w∈H1/2

,0 (0,T )

〈∂tu,w〉(0,T )

‖w‖
H

1/2
,0 (0,T )

for all u ∈ H1/2
0, (0, T ),

and from which we conclude unique solvability of the Galerkin-Petrov formulation to find
u ∈ H1/2

0, (0, T ) such that

(2.13) 〈∂tu,w〉(0,T ) = 〈f, w〉(0,T ) for all w ∈ H1/2
,0 (0, T ).

Next, we consider a conforming finite element discretisation for the variational formu-
lation (2.12). For a time interval (0, T ) and a discretisation parameter N ∈ N, we consider
nodes

0 = t0 < t1 < t2 < · · · < tN−1 < tN = T,

finite elements τ` = (t`−1, t`) of local mesh size h` = t` − t`−1, ` = 1, . . . , N , and a related
finite element space S1

h(0, T ) of piecewise linear continuous basis functions ϕk, k = 0, . . . , N,
with global mesh size h = max` h`. Then, the finite element discretisation of the variational
formulation (2.12) is to find uh ∈ Vh := S1

h(0, T ) ∩H1/2
0, (0, T ) = span{ϕk}Nk=1 such that

(2.14) 〈∂tuh,HT vh〉L2(0,T ) = 〈f,HT vh〉(0,T ) for all vh ∈ Vh.

Using standard arguments, e.g., [36], we conclude unique solvability of (2.14) as well as the
a priori error estimates

(2.15) ‖u− uh‖Hσ0,(0,T ) ≤ c hs−σ‖u‖Hs(0,T )

when assuming u ∈ Hs(0, T ) for some s ∈ [1, 2] and for σ = 0, 1
2 , 1. Note that for σ = 1

2 , the
estimate (2.15) is a consequence of Céa’s lemma and the approximation property of S1

h(0, T ),
while for σ = 0 we use the Aubin-Nitsche trick, and for σ = 1, we have to use an inverse
inequality, i.e., we have to assume a globally quasi-uniform mesh in this case.

The Galerkin-Bubnov finite element formulation (2.14) is equivalent to the linear system
of algebraic equations Khu = f with a symmetric and positive definite stiffness matrix Kh

defined by

Kh[j, k] = 〈∂tϕk,HTϕj〉L2(0,T ) for k, j = 1, . . . , N.

As a numerical example, we consider the solution u(t) = sin
(

9π
4 t
)

for t ∈ (0, 2) = (0, T ),
where the right-hand side is f(t) = 9π

4 cos
(

9π
4 t
)
. For the discretisation, we consider a se-

quence of finite element spaces S1
h(0, T ) of uniform mesh size h = 2/N , and N = 2j+1,

j = 0, . . . , 7. Since the solution u is smooth, we use s = 2 within the error estimate (2.15) to
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conclude second-order convergence in L2(0, 2) and linear convergence in H1(0, 2), respec-
tively. This behaviour is confirmed by the numerical results given in Table 2.1. In addition, we
present the minimal and maximal eigenvalues of the stiffness matrix Kh as well as the result-
ing spectral condition number of Kh, which behave as expected for a first-order differential
operator. Note that these results correspond to the Galerkin discretisation of a hypersingular
boundary integral operator in boundary element methods for second-order elliptic partial
differential equations; see, e.g., [36].

TABLE 2.1
Numerical results for the Galerkin-Bubnov formulation (2.14).

N ‖u− uh‖L2 eoc ‖∂t(u− uh)‖L2 eoc λmin(Kh) λmax(Kh) κ2(Kh)

2 1.00473818 - 7.05949197 - 0.4166 0.9602 2.3
4 0.86127822 0.2 5.88004588 0.3 0.2844 1.1169 3.9
8 0.16924553 2.3 3.66044528 0.7 0.1688 1.1280 6.7

16 0.03246999 2.4 1.82612730 1.0 0.0915 1.1327 12.4
32 0.00748649 2.1 0.90514235 1.0 0.0475 1.1338 23.9
64 0.00183184 2.0 0.45124173 1.0 0.0241 1.1340 47.0

128 0.00045545 2.0 0.22543481 1.0 0.0122 1.1341 93.2
256 0.00011371 2.0 0.11269290 1.0 0.0061 1.1341 185.6

The evaluation of the transformed basis functions HTϕk can be done by using the
definition (2.8). Although the piecewise linear basis functions ϕk have local support, the
transformed basis functions HTϕk are global (see Figure 2.1), and therefore the stiffness
matrix Kh is dense. As in the case of the hypersingular boundary integral operator, one
may use different techniques such as adaptive cross approximation [33] to accelerate the
computations, but this is far beyond the scope of this contribution; see Remark 3.6.

Instead of the initial value problem (2.1), for µ > 0, we consider the first-order ordinary
differential equation

(2.16) ∂tu(t) + µu(t) = f(t) for t ∈ (0, T ), u(0) = 0,

and the related variational formulation to find u ∈ H1/2
0, (0, T ) such that

(2.17) 〈∂tu,HT v〉(0,T ) + µ〈u,HT v〉L2(0,T ) = 〈f,HT v〉(0,T ) for all v ∈ H1/2
0, (0, T ),

where f ∈ [H
1/2
,0 (0, T )]′ is given. When combining (2.9) and (2.10), this gives

〈∂tv,HT v〉(0,T ) + µ〈v,HT v〉L2(0,T ) ≥ 〈∂tv,HT v〉(0,T ) = ‖v‖2
H

1/2
0, (0,T )

for all v ∈ H1/2
0, (0, T ), i.e., the bilinear form of the variational problem (2.17) is bounded

and elliptic, implying unique solvability of (2.17). For the solution u ∈ H1/2
0, (0, T ) of the

variational problem (2.17), we have

‖u‖2
H

1/2
0, (0,T )

= 〈∂tu,HTu〉(0,T ) ≤ 〈∂tu,HTu〉(0,T ) + µ〈u,HTu〉L2(0,T )

= 〈f,HTu〉(0,T ) ≤ ‖f‖[H1/2
,0 (0,T )]′

‖HTu‖H1/2
,0 (0,T )

,

implying

(2.18) ‖u‖
H

1/2
0, (0,T )

≤ ‖f‖
[H

1/2
,0 (0,T )]′

.
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FIG. 2.1. Transformed basis functionsHTϕk , k = 1, . . . , N , N = 4.

For the analysis of the heat equation, we also need to have appropriate estimates for the
solution u in L2(0, T ).

LEMMA 2.11. Let u ∈ H
1/2
0, (0, T ) be the unique solution of the variational prob-

lem (2.17), where f ∈ [H
1/2
,0 (0, T )]′ is given. Then,

(2.19) ‖u‖2L2(0,T ) ≤
T

2

∞∑
k=0

f
2

k

µ2 + 1
T 2 (π2 + kπ)2

,

where

fk :=
2

T
〈f, wk〉(0,T ), wk(t) := cos

((π
2

+ kπ
) t
T

)
.

Proof. Let (fn)n∈N ⊂ L2(0, T ) be a sequence with lim
n→∞

‖f − fn‖[H1/2
,0 (0,T )]′

= 0. We

write fn ∈ L2(0, T ) as

fn(t) =

∞∑
k=0

fn,k cos

((π
2

+ kπ
) t
T

)
,

fn,k =
2

T

∫ T

0

fn(t) cos

((π
2

+ kπ
) t
T

)
dt .

(2.20)

Let un ∈ H1/2
0, (0, T ) be the weak solution of the differential equation (2.16) with right-hand

side fn. It follows analogously to (2.18) that

‖u− un‖H1/2
0, (0,T )

≤ ‖f − fn‖[H1/2
,0 (0,T )]′

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

COERCIVE SPACE-TIME FEM 169

and therefore un → u in H1/2
0, (0, T ) and un → u in L2(0, T ) as n→∞.

Because of fn ∈ L2(0, T ) and using (2.20), we have the representation

un(t) =

∫ t

0

eµ(s−t)fn(s) ds =

∞∑
k=0

fn,k

∫ t

0

eµs cos(aks) ds e
−µt

=

∞∑
k=0

fn,k
µ2 + a2

k

[
ak sin(akt) + µ cos(akt)− µe−µt

]
, ak =

1

T

(π
2

+ kπ
)
,

and we obtain, when computing all integrals, that

‖un‖2L2(0,T ) =
T

2

∞∑
k=0

f
2

n,k

µ2 + a2
k

− 1

2
µ
[
1 + e−2µT

]( ∞∑
k=0

fn,k
µ2 + a2

k

)2

≤ T

2

∞∑
k=0

f
2

n,k

µ2 + a2
k

.

So, the assertion follows as n→∞.
REMARK 2.12. From (2.19), we immediately conclude the estimate

‖u‖2L2(0,T ) ≤
T 3

2

∞∑
k=0

(π
2

+ kπ
)−2

f
2

k = ‖f‖2[H1
,0(0,T )]′ .

Moreover, when we assume f ∈ L2(0, T ), inequality (2.19) gives

‖u‖2L2(0,T ) ≤
T

2µ2

∞∑
k=0

f
2

k =
1

µ2
‖f‖2L2(0,T ), i.e., µ ‖u‖L2(0,T ) ≤ ‖f‖L2(0,T ).

The Galerkin-Bubnov discretisation of (2.17) is to find uh ∈ Vh such that

(2.21) 〈∂tuh,HT vh〉L2(0,T ) +µ〈uh,HT vh〉L2(0,T ) = 〈f,HT vh〉(0,T ) for all vh ∈ Vh.

As for the initial value problem (2.1), we have unique solvability of (2.21), but related a priori
error estimates depend on µ in general, requiring a sufficient small mesh size h to ensure
convergence for large µ.

REMARK 2.13. Instead of the Galerkin-Bubnov variational formulation (2.17), we may
also consider the Galerkin-Petrov formulation to find u ∈ H1/2

0, (0, T ) such that

(2.22) 〈∂tu,w〉(0,T ) + µ〈u,w〉L2(0,T ) = 〈f, w〉(0,T ) for all w ∈ H1/2
,0 (0, T ),

where the ellipticity of 〈∂tv,HT v〉(0,T )+µ〈v,HT v〉L2(0,T ) implies a related stability estimate,
from which unique solvability of (2.22) follows.

For the finite element discretisation of the Galerkin-Petrov variational formulations (2.13)
and (2.22), we have to define a suitable test space Wh ⊂ H1/2

,0 (0, T ). A first choice is to use

Wh := S1
h(0, T ) ∩H1/2

,0 (0, T ). Although the discrete systems are always uniquely solvable
since the stiffness matrices are regular lower triangular, the resulting scheme is never stable
when considering (2.16). The construction of a more suitable test space is, in particular when
considering partial differential equations such as the heat equation, more challenging.

3. The heat equation. As model problem for a parabolic partial differential equation,
we consider the Dirichlet problem for the heat equation,

(3.1)
∂tu(x, t)−∆xu(x, t) = f(x, t) for (x, t) ∈ Q := Ω× (0, T ),

u(x, t) = 0 for (x, t) ∈ Σ := Γ× (0, T ),

u(x, 0) = 0 for x ∈ Ω,
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where Ω ⊂ Rd, d = 1, 2, 3, is a bounded domain with, for d = 2, 3, Lipschitz boundary
Γ = ∂Ω. To write down a variational formulation, we need to have suitable Sobolev spaces.
In addition to the eigenfunctions vk(t) and eigenvalues λk as given in (2.5), we consider the
eigenfunctions φi ∈ H1

0 (Ω) and the associated eigenvalues µi, i ∈ N, of the spatial Dirichlet
eigenvalue problem

−∆xφ = µφ in Ω, φ = 0 on Γ, ‖φ‖L2(Ω) = 1 .

Recall that the eigenfunctions φi form an orthonormal basis in L2(Ω) and an orthogonal basis
in H1

0 (Ω). In addition, we have

0 < µ1 ≤ µ2 ≤ µ3 ≤ . . . and µi →∞ as →∞.

Therefore, for a function u ∈ L2(Q), we find the representation

(3.2) u(x, t) =
∞∑
i=1

∞∑
k=0

ui,kvk(t)φi(x) =

∞∑
i=1

Ui(t)φi(x), Ui(t) =

∞∑
k=0

ui,kvk(t)

with the coefficients

ui,k =
2

T

∫ T

0

∫
Ω

u(x, t)vk(t)φi(x) dxdt

=
2

T

∫ T

0

sin

((π
2

+ kπ
) t
T

)∫
Ω

u(x, t)φi(x) dxdt.

Note that we have

‖u‖2L2(Q) =

∞∑
i=1

‖Ui‖2L2(0,T ) =
T

2

∞∑
i=1

∞∑
k=0

u2
i,k

and

|u|2H1(Q) =

∞∑
i=1

[
‖∂tUi‖2L2(0,T ) + µi‖Ui‖2L2(0,T )

]
=
T

2

∞∑
i=1

∞∑
k=0

[
1

T 2

(π
2

+ kπ
)2

+ µi

]
u2
i,k .

This motivates to define the norm, for u ∈ H1(Q) with u(·, 0) = u|Σ = 0,

‖u‖2
H

1,1/2
0;0, (Q)

:=

∞∑
i=1

[
‖Ui‖2H1/2

0, (0,T )
+ µi‖Ui‖2L2(0,T )

]

=
T

2

∞∑
i=1

∞∑
k=0

[
1

T

(π
2

+ kπ
)

+ µi

]
u2
i,k

and to introduce the anisotropic Sobolev space

H
1,1/2
0;0, (Q) :=

{
u ∈ L2(Q) : ‖u‖

H
1,1/2
0;0, (Q)

<∞
}
.
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Note that H1,1/2
0;0, (Q) = H

1/2
0, (0, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)). Analogously, we introduce

H
1,1/2
0; ,0 (Q) = H

1/2
,0 (0, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)), which is equipped with the norm

‖w‖2
H

1,1/2
0; ,0 (Q)

=
T

2

∞∑
i=1

∞∑
k=0

[
1

T

(π
2

+ kπ
)

+ µi

]
w2
i,k,

and

wi,k =
2

T

∫ T

0

cos

((π
2

+ kπ
) t
T

)∫
Ω

w(x, t)φi(x) dxdt.

LEMMA 3.1. For the dual norm of f ∈ [H
1,1/2
0; ,0 (Q)]′, we have

‖f‖2
[H

1,1/2
0; ,0 (Q)]′

=
T

2

∞∑
i=1

∞∑
k=0

[
1

T

(π
2

+ kπ
)

+ µi

]−1

f
2

i,k

with

f i,k =
2

T
〈f, wkφi〉Q.

Proof. First, from the norm definition, using a series representation of w ∈ H1,1/2
0; ,0 (Q),

and with Hölder’s inequality, we have

‖f‖
[H

1,1/2
0; ,0 (Q)]′

= sup
06=w∈H1,1/2

0;,0 (Q)

〈f, w〉Q
‖w‖

H
1,1/2
0;,0 (Q)

= sup
06=w∈H1,1/2

0;,0 (Q)

∞∑
i=1

∞∑
k=0

wi,k〈f, wkφi〉Q(
T

2

∞∑
i=1

∞∑
k=0

[
1

T

(π
2

+ kπ
)

+ µi

]
w2
i,k

)1/2

=

√
T√
2

sup
06=w∈H1,1/2

0;,0 (Q)

∞∑
i=1

∞∑
k=0

wi,kf i,k( ∞∑
i=1

∞∑
k=0

[
1

T

(π
2

+ kπ
)

+ µi

]
w2
i,k

)1/2

≤
√
T√
2

( ∞∑
i=1

∞∑
k=0

[
1

T

(π
2

+ kπ
)

+ µi

]−1

f
2

i,k

)1/2

,

i.e.,

‖f‖2
[H

1,1/2
0; ,0 (Q)]′

≤ T

2

∞∑
i=1

∞∑
k=0

[
1

T

(π
2

+ kπ
)

+ µi

]−1

f
2

i,k.

The lower estimate follows as in the proof of Lemma 2.1; we skip the details.
According to the previous sections, we consider the variational formulation of (3.1) to

find u ∈ H1,1/2
0;0, (Q) such that

(3.3) 〈∂tu, v〉Q + 〈∇xu,∇xv〉L2(Q) = 〈f, v〉Q
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is satisfied for all v ∈ H1,1/2
0; ,0 (Q), where f ∈ [H

1,1/2
0; ,0 (Q)]′ is given, and 〈·, ·〉Q denotes the

duality pairing as the extension of the inner product in L2(Q). For the following result, see
also [4, Lemma 2.8], [27, 28], and [35, Corollary 3.9].

THEOREM 3.2. The variational formulation (3.3) implies an isomorphism

L : H
1,1/2
0;0, (Q)→ [H

1,1/2
0; ,0 (Q)]′,

satisfying

(3.4) ‖u‖
H

1,1/2
0;0, (Q)

≤ 2 ‖Lu‖
[H

1,1/2
0;,0 (Q)]′

for all u ∈ H1,1/2
0;0, (Q) .

Proof. For the solution u of the variational problem (3.3), we use the ansatz (3.2), where
Ui ∈ H1/2

0, (0, T ) are unknown functions to be determined. When choosing as test function

v(x, t) := V (t)φj(x) for a fixed j ∈ N with V ∈ H1/2
,0 (0, T ), the variational formulation (3.3)

leads to find Uj ∈ H1/2
0, (0, T ) such that

(3.5) 〈∂tUj , V 〉(0,T ) + µj〈Uj , V 〉L2(0,T ) = 〈f, V φj〉Q

is satisfied for all V ∈ H1/2
,0 (0, T ). It holds true that

|〈f, V φj〉Q| ≤ ‖f‖[H1,1/2
0; ,0 (Q)]′

‖V φj‖H1,1/2
0; ,0 (Q)

≤

√
1 +

T√
2
µj ‖f‖[H1,1/2

0; ,0 (Q)]′
‖V ‖

H
1/2
,0 (0,T )

for all V ∈ H1/2
,0 (0, T ), and so 〈fj , V 〉(0,T ) := 〈f, V φj〉Q fulfils fj ∈ [H

1/2
,0 (0, T )]′. The

unique solvability of (3.5) follows analogously as for (2.16). So, for every j ∈ N, we have a
unique solution Uj ∈ H1/2

0, (0, T ) of the variational formulation (3.5) satisfying

‖Uj‖2H1/2
0, (0,T )

= 〈∂tUj ,HTUj〉(0,T )

≤ 〈∂tUj ,HTUj〉(0,T ) + µj〈Uj ,HTUj〉L2(0,T )

= 〈f, φjHTUj〉Q .

For M ∈ N, we define

uM (x, t) =
M∑
j=1

Uj(t)φj(x),

and we conclude that

‖uM‖2H1/2
0, (0,T ;L2(Ω))

=

M∑
j=1

‖Uj‖2H1/2
0, (0,T )

≤
M∑
j=1

〈f, φjHTUj〉Q

= 〈f,HTuM 〉Q
≤ ‖f‖

[H
1,1/2
0;,0 (Q)]′

‖HTuM‖H1,1/2
0;,0 (Q)

= ‖f‖
[H

1,1/2
0;,0 (Q)]′

‖uM‖H1,1/2
0;0, (Q)

.

Hence, using (2.19) for

f i,k =
2

T
〈fi, wk〉(0,T ) =

2

T
〈f, φiwk〉Q,
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we obtain

‖uM‖2L2(0,T ;H1
0 (Ω)) =

M∑
i=1

µi‖Ui‖2L2(0,T )

≤ T

2

M∑
i=1

∞∑
k=0

µi

µ2
i + 1

T 2 (π2 + kπ)2
f

2

i,k

≤ T
M∑
i=1

∞∑
k=0

1

µi + 1
T (π2 + kπ)

f
2

i,k ≤ 2 ‖f‖2
[H

1,1/2
0;,0 (Q)]′

,

where we have used
a

a2 + b2
≤ a+ b

1
2 (a+ b)2

=
2

a+ b
for 0 < a, b ∈ R.

With this, we have

‖uM‖2H1,1/2
0;0, (Q)

= ‖uM‖2H1/2
0, (0,T ;L2(Q))

+ ‖uM‖2L2(0,T ;H1
0 (Ω))

≤ ‖f‖
[H

1,1/2
0;,0 (Q)]′

‖uM‖H1,1/2
0;0, (Q)

+ 2 ‖f‖2
[H

1,1/2
0;,0 (Q)]′

,

and therefore

‖uM‖H1,1/2
0;0, (Q)

≤ 2 ‖f‖
[H

1,1/2
0;,0 (Q)]′

follows for all M ∈ N. The last inequality yields the bound

‖u‖2
H

1,1/2
0;0, (Q)

= lim
M→∞

M∑
i=1

[
‖Ui‖2H1/2

0, (0,T )
+ µi‖Ui‖2L2(0,T )

]
= lim
M→∞

‖uM‖2H1,1/2
0;0, (Q)

≤ 4‖f‖2
[H

1,1/2
0;,0 (Q)]′

<∞,

and thus, u ∈ H1,1/2
0;0, (Q) with limM→∞ uM = u in H1,1/2

0;0, (Q).
The existence of a solution of the variational formulation (3.3) is proven by inserting

the constructed function u into the variational formulation (3.3) and using the approximating
sequence (uM )M∈N. The uniqueness of a solution of the variational formulation (3.3) is a
consequence of the uniqueness of the coefficient functions Uj .

COROLLARY 3.3. As a direct consequence of (3.4), we immediately conclude the stability
estimate

(3.6)
1

2
‖u‖

H
1,1/2
0;0, (Q)

≤ sup
0 6=w∈H1,1/2

0;,0 (Q)

〈∂tu,w〉Q + 〈∇xu,∇xw〉L2(Q)

‖w‖
H

1,1/2
0;,0 (Q)

for all u ∈ H1,1/2
0;0, (Q).

The variational formulation (3.3) is equivalent to find u ∈ H1,1/2
0;0, (Q) such that

(3.7) 〈∂tu,HT v〉Q + 〈∇xu,∇xHT v〉L2(Q) = 〈f,HT v〉Q

is satisfied for all v ∈ H1,1/2
0;0, (Q), where the operatorHT acts only on the time variable t. The

stability estimate (3.6) implies the stability estimate

1

2
‖u‖

H
1,1/2
0;0, (Q)

≤ sup
06=v∈H1,1/2

0;0, (Q)

〈∂tu,HT v〉Q + 〈∇xu,∇xHT v〉L2(Q)

‖v‖
H

1,1/2
0;0, (Q)
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for all u ∈ H1,1/2
0;0, (Q), and therefore unique solvability of the variational formulation (3.7)

follows.
When using some conforming space-time finite element space Vh = span{φk}Mk=1 ⊂

H
1,1/2
0;0, (Q), the Galerkin variational formulation of (3.7) is to find uh ∈ Vh such that

(3.8) 〈∂tuh,HT vh〉L2(Q) + 〈∇xuh,∇xHT vh〉L2(Q) = 〈f,HT vh〉Q

is satisfied for all vh ∈ Vh, which is equivalent to the linear system of algebraic equations,
Khu = f . The stiffness matrix is given as Kh = Ah +Bh with

Ah[`, k] = 〈∂tφk,HTφ`〉L2(Q), Bh[`, k] = 〈∇xφk,∇xHTφ`〉L2(Q), k, ` = 1, . . . ,M.

Note that Ah is symmetric and positive definite, while in general, Bh is not symmetric but
positive definite and ill-conditioned. Hence, Kh is positive definite, and unique solvability
of (3.8) follows for any conforming choice of the space-time basis functions φk. However,
to perform the temporal transformationHT easily and to be able to present an a priori error
analysis, here we will consider a space-time tensor-product finite element space only.

Let Whx = span{ψi}Mx
i=1 ⊂ H1

0 (Ω) be some spatial finite element space, e.g., of piece-
wise linear or bilinear continuous basis functions ψi, which are defined with respect to
some admissible and globally quasi-uniform finite element mesh with mesh size hx. As
before, Vht = S1

ht
(0, T ) ∩H1/2

0, (0, T ) = span{ϕk}Ntk=1 is the space of piecewise linear func-
tions, which are defined with respect to some globally quasi-uniform finite element mesh
with mesh size ht. Hence, we introduce the tensor-product space-time finite element space
Vh := Whx ⊗ Vht .

For a given v ∈ H1/2
0, (0, T ;L2(Ω)), we define theH1/2

0, -projectionQ1/2
ht
v ∈ L2(Ω)⊗Vht

as the unique solution of the variational problem

〈∂tQ1/2
ht
v,HT vht〉L2(Q) = 〈∂tv,HT vht〉Q

for all vht ∈ L2(Ω)⊗ Vht . Moreover, for v ∈ L2(0, T ;H1
0 (Ω)), we define the H1

0 -projection
Q1
hx
v ∈Whx ⊗ L2(0, T ) as the unique solution of the variational problem∫ T

0

∫
Ω

∇xQ1
hxv(x, t) · ∇xvhx(x, t) dx dt =

∫ T

0

∫
Ω

∇xv(x, t) · ∇xvhx(x, t) dx dt

for all vhx ∈ Whx ⊗ L2(0, T ). It turns out that Q1/2
ht
Q1
hx
v ∈ Vh is well-defined when

assuming ∂tv ∈ L2(0, T ;H1
0 (Ω)) and ∇xv ∈ H1/2

0, (0, T ;L2(Ω)), respectively, and that the

projection operators Q1/2
ht

, Q1
hx

and partial derivatives ∂t,∇x commute in space and time [45].

THEOREM 3.4. Let u ∈ H1,1/2
0;0, (Q) and uh ∈ Vh be the unique solutions of the varia-

tional problems (3.7) and (3.8), respectively. If u is sufficiently regular and the spatial domain
Ω is assumed to be either convex or has a smooth boundary Γ, then there hold true the error
estimates

‖u− uh‖H1/2
0, (0,T ;L2(Ω))

≤ c1h3/2
t ‖u‖H2(0,T ;L2(Ω)) + c2h

3/2
x ‖u‖H1/2

0, (0,T ;H3/2(Ω))

+c3h
1/2
t hx‖∂t∇xu‖L2(Q) + c4h

3/2
t ‖∂t∆xu‖L2(Q)(3.9)

and

‖u− uh‖L2(Q) ≤ c1h2
t‖u‖H2(0,T ;L2(Ω)) + c2h

2
x‖u‖L2(0,T ;H2(Ω)) + c3hthx‖∂t∇xu‖L2(Q)

+c4h
2
x‖∂tu‖L2(0,T ;H2(Ω)) + c5h

2
t‖∆xu‖H2(0,T ;L2(Ω)) .(3.10)
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Proof. With the norm representation in H1/2
0, (0, T ;L2(Ω)), the positivity (2.10), and

the Galerkin orthogonality of the variational formulations (3.7) and (3.8), we have for
vh = Q

1/2
ht
Q1
hx
u ∈ Vh, using the definitions of the projections Q1/2

ht
and Q1

hx
and integration

by parts spatially,

‖uh −Q1/2
ht
Q1
hxu‖

2

H
1/2
0, (0,T ;L2(Ω))

= 〈∂t(uh −Q1/2
ht
Q1
hxu),HT (uh −Q1/2

ht
Q1
hxu)〉Q

≤ 〈∂t(uh −Q1/2
ht
Q1
hxu),HT (uh −Q1/2

ht
Q1
hxu)〉Q

+〈∇x(uh −Q1/2
ht
Q1
hxu),∇xHT (uh −Q1/2

ht
Q1
hxu)〉L2(Q)

= 〈∂t(u−Q1/2
ht
Q1
hxu),HT (uh −Q1/2

ht
Q1
hxu)〉Q

+〈∇x(u−Q1/2
ht
Q1
hxu),∇xHT (uh −Q1/2

ht
Q1
hxu)〉L2(Q)

= 〈∂t(u−Q1
hxu),HT (uh −Q1/2

ht
Q1
hxu)〉Q

+〈∇x(u−Q1/2
ht
u),∇xHT (uh −Q1/2

ht
Q1
hxu)〉L2(Q)

= 〈∂t(u−Q1
hxu),HT (uh −Q1/2

ht
Q1
hxu)〉Q(3.11)

−〈∆x(u−Q1/2
ht
u),HT (uh −Q1/2

ht
Q1
hxu)〉Q

≤ ‖u−Q1
hxu‖H1/2

0, (0,T ;L2(Ω))
‖uh −Q1/2

ht
Q1
hxu‖H1/2

0, (0,T ;L2(Ω))

+‖∆x(u−Q1/2
ht
u)‖

[H
1/2
,0 (0,T ;L2(Ω))]′

‖uh −Q1/2
ht
Q1
hxu‖H1/2

0, (0,T ;L2(Ω))
,

i.e.,

‖uh −Q1/2
ht
Q1
hxu‖H1/2

0, (0,T ;L2(Ω))

≤ ‖u−Q1
hxu‖H1/2

0, (0,T ;L2(Ω))
+ ‖∆x(u−Q1/2

ht
u)‖

[H
1/2
,0 (0,T ;L2(Ω))]′

.

Hence, we have

‖u− uh‖H1/2
0, (0,T ;L2(Ω))

≤ ‖u−Q1/2
ht
Q1
hxu‖H1/2

0, (0,T ;L2(Ω))
+ ‖uh −Q1/2

ht
Q1
hxu‖H1/2

0, (0,T ;L2(Ω))

≤ ‖u−Q1/2
ht
Q1
hxu‖H1/2

0, (0,T ;L2(Ω))

+‖u−Q1
hxu‖H1/2

0, (0,T ;L2(Ω))
+ ‖∆x(u−Q1/2

ht
u)‖

[H
1/2
,0 (0,T ;L2(Ω))]′

≤ ‖u−Q1/2
ht
u‖

H
1/2
0, (0,T ;L2(Ω))

+ ‖u−Q1
hxu‖H1/2

0, (0,T ;L2(Ω))

+‖
(
I −Q1/2

ht

)(
u−Q1

hxu
)
‖
H

1/2
0, (0,T ;L2(Ω))

+‖u−Q1
hxu‖H1/2

0, (0,T ;L2(Ω))
+ ‖∆x(u−Q1/2

ht
u)‖

[H
1/2
,0 (0,T ;L2(Ω))]′

,

and the energy error estimate (3.9) follows from standard error estimates for the involved
projection operators.
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With a Poincaré-Friedrichs-type inequality and relation (3.11), we also have

1

c
‖uh −Q1/2

ht
Q1
hxu‖

2
L2(Q) ≤ ‖uh −Q

1/2
ht
Q1
hxu‖

2

H
1/2
0, (0,T ;L2(Ω))

≤ 〈∂t(u−Q1
hxu),HT (uh −Q1/2

ht
Q1
hxu)〉Q

−〈∆x(u−Q1/2
ht
u),HT (uh −Q1/2

ht
Q1
hxu)〉L2(Q)

≤ ‖∂t(u−Q1
hxu)‖L2(Q)‖uh −Q

1/2
ht
Q1
hxu‖L2(Q)

+‖∆x(u−Q1/2
ht
u)‖L2(Q)‖uh −Q

1/2
ht
Q1
hxu‖L2(Q),

which implies

‖uh −Q1/2
ht
Q1
hxu‖L2(Q) ≤ c ‖∂t(u−Q1

hxu)‖L2(Q) + c ‖∆x(u−Q1/2
ht
u)‖L2(Q).

Therefore

‖u− uh‖L2(Q) ≤ ‖u−Q
1/2
ht
Q1
hxu‖L2(Q) + ‖uh −Q1/2

ht
Q1
hxu‖L2(Q)

≤ ‖u−Q1/2
ht
Q1
hxu‖L2(Q) + c ‖∂t(u−Q1

hxu)‖L2(Q) + c ‖∆x(u−Q1/2
ht
u‖L2(Q)

≤ ‖u−Q1/2
ht
u‖L2(Q) + ‖u−Q1

hxu‖L2(Q) + ‖
(
I −Q1/2

ht

)(
u−Q1

hxu
)
‖L2(Q)

+c ‖∂t(u−Q1
hxu)‖L2(Q) + c ‖∆x(u−Q1/2

ht
u)‖L2(Q).

Finally, (3.10) follows again from standard error estimates for the projection operators.
As a numerical example, we consider the solution u(x, t) = sin

(
5π
4 t
)

sin (πx) for
(x, t) ∈ Q with Q := (0, 1)× (0, 2). For a uniform discretisation of the Galerkin variational
formulation (3.8) with the tensor-product space-time finite element space Vh = Whx ⊗ Vht ,
we use the mesh sizes hx = 1/Mx and ht = 2/Nt with Mx = Nt = 2j , j = 1, . . . , 8. Since
the solution u is smooth, we expect second-order convergence in L2(Q) (see (3.10)) and
first-order convergence in H1(Q). Note that the latter follows by standard arguments when
using the H1(Q)-projection and an inverse inequality. The predicted convergence orders are
confirmed by the numerical results given in Table 3.1. There, we also present numerical results
for the spectral condition number of the discretised system, which behaves asymptotically as
h−2
x , as expected.

TABLE 3.1
Convergence rates of the Galerkin-Bubnov formulation (3.8).

Mx, Nt dof hx ht ‖u− uh‖L2 eoc |u− uh|H1 eoc κ2(Kh)

2 2 0.5000 1.0000 0.9108053 - 4.48437 - 2.5
4 12 0.2500 0.5000 0.1577439 2.5 1.89083 1.2 19.8
8 56 0.1250 0.2500 0.0293609 2.4 0.84239 1.2 63.3

16 240 0.0625 0.1250 0.0068950 2.1 0.41496 1.0 170.9
32 992 0.0312 0.0625 0.0016957 2.0 0.20679 1.0 484.0
64 4032 0.0156 0.0312 0.0004220 2.0 0.10331 1.0 1691.4

128 16256 0.0078 0.0156 0.0001054 2.0 0.05165 1.0 6623.3
256 65280 0.0039 0.0078 0.0000263 2.0 0.02582 1.0 26355.9
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REMARK 3.5. Numerical results [45] indicate that the stability constant cS of the discrete
inf-sup condition

cS ‖uh‖H1,1/2
0;0, (Q)

≤ sup
0 6=vh∈Vh

〈∂tuh,HT vh〉L2(Q) + 〈∇xuh,∇xHT vh〉L2(Q)

‖vh‖H1,1/2
0;0, (Q)

for all uh ∈ Vh is mesh dependent, i.e., cS = O(max{ht, hx}). However, it seems to be
possible to derive almost optimal energy error estimates also in this case. Since this is far
beyond the scope of this paper, this will be discussed elsewhere.

REMARK 3.6. The use of tensor-product approximations allows the implementation of the
transformationHT by the series representation (2.8). Based on the kernel representation (2.11),
one can derive alternative representations [39] for the bilinear forms includingHT , e.g.,∫ T

0

∫
Ω

∂tu(x, t)(HT v)(x, t) dx dt

= − 1

π

∫
Ω

∫ T

0

∂tu(x, t)

∫ T

0

ln

[
tan

π(s+ t)

4T
tan

π|t− s|
4T

]
∂tv(x, s) ds dt dx ,

which admits not only the use of hierarchical matrices for acceleration but can also be used for
more general space-time finite element meshes.

4. Second-order ordinary differential equations. As in (2.1), we consider the initial
value problem

(4.1) ∂ttu(t) = f(t) for t ∈ (0, T ), u(0) = ∂tu(0) = 0.

When multiplying the differential equation with a test function w satisfying w(T ) = 0,
integrating over (0, T ), and applying integration by parts once, this results in the variational
formulation to find u ∈ H1

0,(0, T ) such that

(4.2) −
∫ T

0

∂tu(t)∂tw(t) dt = 〈f, w〉(0,T )

is satisfied for all w ∈ H1
,0(0, T ), where f ∈ [H1

,0(0, T )]′ is given. Note that the initial
condition u(0) = 0 is considered in the strong sense, whereas the initial condition ∂tu(0) = 0
is incorporated in the variational formulation. The bilinear form

a(u,w) := −
∫ T

0

∂tu(t)∂tw(t) dt for u ∈ H1
0,(0, T ), w ∈ H1

,0(0, T )

is obviously bounded, and therefore it remains to establish some stability or ellipticity estimate
to ensure unique solvability of the variational formulation (4.2). For this, we use the concept
of an optimal test function; see Remark 2.2. It turns out that for u ∈ H1

0,(0, T ), we can define
the transformationHTu ∈ H1

,0(0, T ),

(4.3) (HTu)(t) := u(T )− u(t), t ∈ (0, T ).

The operatorHT , as defined in (4.3), is obviously norm preserving satisfying

‖HTu‖H1
,0(0,T ) = ‖u‖H1

0,(0,T ) for all u ∈ H1
0,(0, T ),
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and for u, v ∈ H1
0,(0, T ), there holds true the symmetry relation

a(u,HT v) = a(v,HTu) =

∫ T

0

∂tu(t) ∂tv(t) dt ,

which also implies ellipticity,

a(u,HTu) = ‖∂tu‖2L2(0,T ) for all u ∈ H1
0,(0, T ).

However, the form

〈u,HTu〉L2(0,T ) =

∫ T

0

u(t) [u(T )− u(t)] dt

is indefinite, i.e., a result as (2.10) for the transformationHT does not hold true forHT .
For a finite element discretisation of the variational formulation (4.2), we use the same

notations as in Section 2. In particular, we have to find uh ∈ Vh := S1
h(0, T ) ∩ H1

0,(0, T )
such that

(4.4) −〈∂tuh, ∂tHT vh〉L2(0,T ) = 〈f,HT vh〉(0,T ) for all vh ∈ Vh.

As before, we have unique solvability of (4.4), and the a priori error estimate (2.15) remains
valid, where for σ = 1, this corresponds to the energy error estimate, while for σ = 0, we
have to apply a Nitsche-type argument.

For the numerical example, we consider the solution u(t) = sin2
(

5
4πt
)
, for t ∈ (0, T ),

with T = 2. The numerical results are given in Table 4.1, where we observe optimal order of
convergence as predicted.

TABLE 4.1
Numerical results for the Galerkin-Bubnov formulation (4.4).

N ‖u− uh‖L2 eoc ‖∂t(u− uh)‖L2 eoc λmin(Kh) λmax(Kh) κ2(Kh)

4 0.49700 - 3.4650 - 0.2412 7.1 29
8 0.16170 1.6 2.0880 0.7 0.1362 15.5 114

16 0.04307 1.9 1.0950 0.9 0.0724 31.7 438
32 0.01094 2.0 0.5542 1.0 0.0374 63.9 1709
64 0.00275 2.0 0.2780 1.0 0.0189 127.9 6741

128 0.00069 2.0 0.1391 1.0 0.0095 256.0 26765
256 0.00017 2.0 0.0696 1.0 0.0048 512.0 106655

The stiffness matrix of the Galerkin-Bubnov finite element formulation (4.4) is symmetric
and positive definite, and its spectral behaviour is as known for finite element discretisations of
second-order partial differential equations. Moreover, due to (4.3), we have for the piecewise
linear basis functions ϕk ∈ H1

0,(0, T ), k = 1, . . . , N ,

(HTϕk)(t) = −ϕk(t) for k = 1, . . . , N − 1,

and

(HTϕN )(t) =


1 for t ∈ [0, tN−1],

T − t
T − tN−1

for t ∈ (tN−1, T ],
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and hence

(4.5) HTVh = span{ϕk}N−1
k=0 .

Instead of (4.1), for µ = ν2 > 0, we consider the second-order ordinary differential equation

(4.6) ∂ttu(t) + µu(t) = f(t) for t ∈ (0, T ), u(0) = ∂tu(0) = 0,

and the variational formulation to find u ∈ H1
0,(0, T ) such that

(4.7)

a(u,HT v) := −
∫ T

0

∂tu(t)∂t(HT v)(t) dt+ µ

∫ T

0

u(t)(HT v)(t) dt = 〈f,HT v〉(0,T )

is satisfied for all v ∈ H1
0,(0, T ), where f ∈ [H1

,0(0, T )]′ is given.
THEOREM 4.1. For given f ∈ [H1

,0(0, T )]′, the variational formulation (4.7) admits a
unique solution u ∈ H1

0,(0, T ) satisfying

‖u‖H1
0,(0,T ) ≤ c ‖f‖[H1

,0(0,T )]′ .

Proof. By using the Riesz representation theorem, we rewrite the variational problem (4.7)
as an operator equation

Au+ µCu = f,

where A : H1
0,(0, T )→ [H1

0,(0, T )]′, defined via

〈Au, v〉 = −〈∂tu, ∂tHT v〉L2(0,T ) for u, v ∈ H1
0,(0, T ),

is elliptic, and hence invertible, and C : H1
0,(0, T )→ [H1

0,(0, T )]′, defined via

〈Cu, v〉 = 〈u,HT v〉L2(0,T ) for u, v ∈ H1
0,(0, T ),

is compact. Hence, we can apply the Fredholm alternative, and it remains to ensure the
injectivity of A + µC. Let u ∈ H1

0,(0, T ) be a solution of the homogeneous equation
(A+ µC)u = 0, i.e.,

〈∂tu, ∂tw〉L2(0,T ) = µ〈u,w〉L2(0,T ) for all w ∈ H1
,0(0, T ).

This is the weak formulation of the eigenvalue problem

−∂ttu(t) = µu(t) for t ∈ (0, T ), u(0) = ∂tu(0) = 0,

which only admits the trivial solution u ≡ 0.
While the result of Theorem 4.1 ensures unique solvability of the variational formula-

tion (4.7), it does not include an explicit dependence on the parameter µ. Hence, we will
provide a stability estimate from which we can conclude such a result.

LEMMA 4.2. For u ∈ H1
0,(0, T ) there holds true the stability estimate

(4.8)
2

2 + νT
‖∂tu‖L2(0,T ) ≤ sup

06=v∈H1
,0(0,T )

a(u, v)

‖∂tv‖L2(0,T )
.
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Proof. For given u ∈ H1
0,(0, T ) and suitable chosen w ∈ H2

,0(0, T ), we consider the test
function v := HTu+ w ∈ H1

,0(0, T ). Then,

a(u, v) = −
∫ T

0

∂tu(t)∂t[−u(t) + w(t)] dt+ µ

∫ T

0

u(t)[u(T )− u(t) + w(t)] dt

=

∫ T

0

[∂tu(t)]2 dt−
∫ T

0

∂tu(t)∂tw(t) dt+ µ

∫ T

0

u(t)[u(T )− u(t) + w(t)] dt

=

∫ T

0

[∂tu(t)]2 dt− u(t)∂tw(t)
∣∣∣T
0

+

∫ T

0

u(t)∂ttw(t) dt

+µ

∫ T

0

u(t)[u(T )− u(t) + w(t)] dt

=

∫ T

0

[∂tu(t)]2 dt− u(T )∂tw(T )

+

∫ T

0

u(t)
[
∂ttw(t) + µ

(
u(T )− u(t) + w(t)

)]
dt

=

∫ T

0

[∂tu(t)]2 dt,

if

∂ttw(t) + µw(t) = µ[u(t)− u(T )] for t ∈ (0, T ), w(T ) = ∂tw(T ) = 0

is satisfied. Using µ = ν2, we obtain

w(t) = ν

∫ T

t

sin
(
ν(s− t)

)
[u(s)− u(T )] ds,

and therefore,

∂tw(t) = −ν2

∫ T

t

cos
(
ν(s− t)

)
[u(s)− u(T )] ds

= −ν sin
(
ν(s− t)

)
[u(t)− u(T )]

∣∣∣T
t

+ ν

∫ T

t

sin
(
ν(s− t)

)
∂su(s) ds

= ν

∫ T

t

sin
(
ν(s− t)

)
∂su(s) ds

follows. Further, with

[∂tw(t)]2 = ν2

[∫ T

t

sin
(
ν(s− t)

)
∂su(s) ds

]2

≤ ν2

∫ T

t

sin2
(
ν(s− t)

)
ds

∫ T

t

[∂su(s)]2 ds

≤ ν2

∫ T

t

sin2
(
ν(s− t)

)
ds

∫ T

0

[∂tu(t)]2 dt,
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we conclude that∫ T

0

[∂tw(t)]2 dt ≤ ν2

∫ T

0

∫ T

t

sin2
(
ν(s− t)

)
ds dt

∫ T

0

[∂tu(t)]2 dt

= ν2 1

4

cos2(νT )− 1 + ν2T 2

ν2

∫ T

0

[∂tu(t)]2 dt

≤ 1

4
ν2T 2

∫ T

0

[∂tu(t)]2 dt,

i.e.,

‖∂tw‖L2(0,T ) ≤
1

2
νT ‖∂tu‖L2(0,T ) .

Finally, with this, we have

‖∂tv‖L2(0,T ) = ‖∂tw − ∂tu‖L2(0,T )

≤ ‖∂tw‖L2(0,T ) + ‖∂tu‖L2(0,T ) ≤
(

1 +
1

2
νT

)
‖∂tu‖L2(0,T ),

and therefore,

a(u, v) = ‖∂tu‖2L2(0,T ) ≥
2

2 + νT
‖∂tu‖L2(0,T )‖∂tv‖L2(0,T )

follows, which implies the stability condition as stated.
While Theorem 4.1 implies unique solvability of the variational formulation (4.7), we can

use the stability condition (4.8) to obtain a bound for the solution u, which explicitely depends
on ν.

COROLLARY 4.3. For the unique solution u ∈ H1
0,(0, T ) of the variational formula-

tion (4.7), there holds true that

(4.9) ‖∂tu‖L2(0,T ) ≤
(

1 +
1

2
νT

)
‖f‖[H1

,0(0,T )]′ .

REMARK 4.4. We consider the initial value problem (4.6) for f(t) = sin(νt) with the
solution

u(t) =
1

2ν2

[
sin(νt)− νt cos(νt)

]
, ∂tu(t) =

1

2
t sin(νt).

For this, we compute

‖∂tu‖2L2(0,T ) =
1

48

1

ν3

[
2ν3T 3 + 3νT − 6ν2T 2 cos(νT ) sin(νT )

−6νT cos2(νT ) + 3 cos(νT ) sin(νT )
]

' 1

24
T 3

as ν → ∞. On the other hand, we determine w ∈ H1
,0(0, T ) as unique solution of the

boundary value problem

−∂ttw(t) = f(t) for t ∈ (0, T ), ∂tw(0) = w(T ) = 0,
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i.e.,

∂tw(t) =
1

ν

[
cos(νt)− 1

]
.

Hence, we compute

‖f‖2[H1
,0(0,T )]′ = ‖∂tw‖2L2(0,T ) =

1

2

1

ν3

[
3νT + cos(νT ) sin(νT )− 4 sin(νT )

]
' 3

2

T

ν2

as ν →∞. In particular, we have

‖∂tu‖L2(0,T )

‖f‖[H1
,0(0,T )]′

' 1

6
νT

as ν →∞, which shows that the estimate (4.9) is sharp with respect to the order of ν and T ,
respectively.

While for f ∈ [H1
,0(0, T )]′, the bound (4.9) exhibits an explicit dependence on ν =

√
µ,

we can prove an estimate independent of µ when assuming f ∈ L2(0, T ).
LEMMA 4.5. For given f ∈ L2(0, T ), the unique solution u ∈ H1

0,(0, T ) satisfies

(4.10) ‖u‖2H1
0,(0,T ) + µ ‖u‖2L2(0,T ) ≤

1

2
T 2 ‖f‖2L2(0,T ) .

Proof. For the solution u and its first-order derivative, we find the representations

u(t) =
1

ν

∫ t

0

sin
(
ν(t− s)

)
f(s) ds

and

∂tu(t) =

∫ t

0

cos
(
ν(t− s)

)
f(s) ds .

Hence, we compute

[∂tu(t)]2 + ν2 [u(t)]2 =

[∫ t

0

cos
(
ν(t− s)

)
f(s) ds

]2

+

[∫ t

0

sin
(
ν(t− s)

)
f(s) ds

]2

≤
∫ t

0

cos2
(
ν(t− s)

)
ds

∫ t

0

[f(s)]2 ds+

∫ t

0

sin2
(
ν(t− s)

)
ds

∫ t

0

[f(s)]2 ds

= t

∫ t

0

[f(s)]2 ds ≤ t
∫ T

0

[f(s)]2 ds,

and therefore we obtain

‖u‖2H1
0,(0,T ) + µ ‖u‖2L2(0,T ) =

∫ T

0

{
[∂tu(t)]2 + µ[u(t)]2

}
dt

≤
∫ T

0

t dt

∫ T

0

[f(s)]2 ds =
1

2
T 2 ‖f‖2L2(0,T ) .

REMARK 4.6. As in Remark 4.4, we consider problem (4.6) for f(t) = sin(νt) with the
solution u(t) and its derivative ∂tu(t) = 1

2 t sin(νt), i.e.,

‖∂tu‖2L2(0,T ) '
1

24
T 3, ‖f‖2L2(0,T ) =

1

2

1

ν

[
νT − cos(νT ) sin(νT )

]
' 1

2
T.
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Hence, we conclude

‖∂tu‖2L2(0,T )

‖f‖2L2(0,T )

' 1

12
T 2,

i.e., the estimate (4.10) is sharp with respect to the order of T .
The Galerkin-Bubnov finite element formulation of the equivalent variational formula-

tion (4.7) is to find uh ∈ Vh := S1
h(0, T ) ∩H1

0,(0, T ) such that

(4.11) a(uh,HT vh) = −〈∂tuh, ∂tHT vh〉L2(0,T ) +µ〈uh,HT vh〉L2(0,T ) = 〈f,HT vh〉(0,T )

is satisfied for all vh ∈ Vh. Unique solvability and related error estimates follow as for the
numerical solution of elliptic operator equations with compact perturbations, which is based
on a discrete stability condition.

THEOREM 4.7. Let

(4.12) h ≤ 2
√

3

(2 +
√
µT )µT

be satisfied. Then, the bilinear form a(·, ·) as defined in (4.7) satisfies the stability condition
(4.13)

4

(2 +
√
µT )2(2 + µT )

‖∂tuh‖L2(0,T ) ≤ sup
06=vh∈Vh

a(u,HT vh)

‖∂tvh‖L2(0,T )
for all uh ∈ Vh.

Proof. For uh ∈ Vh, we define w ∈ H1
0,(0, T ) as the unique solution of the variational

problem

(4.14) −
∫ T

0

∂tw(t)∂t(HT v)(t) dt = −µ
∫ T

0

uh(t)(HT v)(t) dt for all v ∈ H1
0,(0, T ),

i.e., w ∈ H1
0,(0, T ) is the weak solution of the initial value problem

∂ttw(t) = −µuh(t) for t ∈ (0, T ), w(0) = ∂tw(0) = 0.

Then, by using (HT v)(t) = v(T )− v(t),

a(uh,HT (uh − w)) = −
∫ T

0

∂tuh(t)∂t[(HTuh)(t)− (HTw)(t)] dt

+µ

∫ T

0

uh(t)[(HTuh)(t)− (HTw)(t)] dt

=

∫ T

0

∂tuh(t)[∂tuh(t)− ∂tw(t)] dt−
∫ T

0

∂tw(t)[∂tuh(t)− ∂tw(t)] dt

=

∫ T

0

[∂tuh(t)− ∂tw(t)]2 dt .

In addition, let z ∈ H1
0,(0, T ) be the unique solution of the variational formulation such that

(4.15)

−
∫ T

0

∂tz(t)∂t(HT v)(t) dt = −
∫ T

0

∂tuh(t)∂t(HT v)(t) dt+ µ

∫ T

0

uh(t)(HT v)(t) dt
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is satisfied for all v ∈ H1
0,(0, T ). With (4.14) this is equivalent to

−
∫ T

0

∂t[z(t)− (uh(t)− w(t))]∂t(HT v)(t) dt = 0 for all v ∈ H1
0,(0, T ),

from which we conclude, recalling uh(0) = w(0) = z(0) = 0, that

z(t) = uh(t)− w(t),

i.e., we have

a(uh,HT (uh − w)) = ‖∂tz‖2L2(0,T ).

On the other hand, the variational formulation (4.15) gives

‖∂tz‖L2(0,T ) =
a(uh,HT z)
‖∂tz‖L2(0,T )

≤ sup
06=v∈H1

0,(0,T )

a(uh,HT v)

‖∂tv‖L2(0,T )

= sup
06=v∈H1

0,(0,T )

〈∂tz, ∂tv〉L2(0,T )

‖∂tv‖L2(0,T )
≤ ‖∂tz‖L2(0,T ),

i.e.,

‖∂tz‖L2(0,T ) = sup
0 6=v∈H1

0,(0,T )

a(uh,HT v)

‖∂tv‖L2(0,T )
≥ 2

2 + νT
‖∂tuh‖L2(0,T )

when using (4.8). With this, we conclude

a(uh,HT (uh − w)) ≥ 4

(2 + νT )2
‖∂tuh‖2L2(0,T ).

According to (4.14), we define wh ∈ Vh as the unique solution of∫ T

0

∂twh(t)∂tvh(t) dt = −µ
∫ T

0

uh(t)(HT vh)(t) dt for all vh ∈ Vh.

Then, there holds true the Galerkin orthogonality∫ T

0

[∂tw(t)− ∂twh(t)] ∂tvh(t) dt = 0 for all vh ∈ Vh,

and by using Céa’s lemma and standard interpolation error estimates, the error estimate

‖∂tw − ∂twh‖L2(0,T ) ≤ inf
vh∈Vh

‖∂tw − ∂tvh‖L2(0,T )

≤ ‖∂t(w − Ihw)‖L2(0,T ) ≤
1√
3
h ‖∂ttw‖L2(0,T ) =

1√
3
µh ‖uh‖L2(0,T )

follows. With this, we have

a(uh,HT (w − wh)) =

∫ T

0

∂tuh(t)∂t(w(t)− wh(t)) dt+ µ

∫ T

0

uh(t)(HT (w − wh))(t) dt

= µ

∫ T

0

uh(t)(HT (w − wh))(t) dt

≤ µ ‖uh‖L2(0,T )‖HT (w − wh)‖L2(0,T ).
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Next, we define ψ ∈ H1
0,(0, T ) as the unique solution of the variational formulation

−
∫ T

0

∂tψ(t)∂t(HT v)(t) dt =

∫ T

0

(HT (w − wh))(t)(HT v)(t) dt for all v ∈ H1
0,(0, T ),

i.e.,

∂ttψ(t) = (HT (w − wh))(t) for t ∈ (0, T ), ψ(0) = ∂tψ(t) = 0.

In particular for v = w − wh ∈ H1
0,(0, T ), we conclude

‖HT (w − wh)‖2L2(0,T ) =

∫ T

0

(HT (w − wh))(t)(HT (w − wh))(t) dt

= −
∫ T

0

∂tψ(t)∂t(HT (w − wh))(t) dt

=

∫ T

0

∂tψ(t)[∂tw(t)− ∂twh(t)] dt

=

∫ T

0

∂t[ψ(t)− Ihψ(t)][∂tw(t)− ∂twh(t)] dt

≤ ‖∂t(ψ − Ihψ)‖L2(0,T )‖∂t(w − wh)‖L2(0,T )

≤ 1

3
h2 ‖∂ttψ‖L2(0,T )‖∂ttw‖L2(0,T )

=
1

3
µh2 ‖HT (w − wh)‖L2(0,T )‖uh‖L2(0,T ),

i.e.,

‖HT (w − wh)‖L2(0,T ) ≤
1

3
µh2‖uh‖L2(0,T ),

and therefore, by using uh ∈ H1
0,(0, T ),

a(uh,HT (w − wh)) ≤ 1

3
µ2h2 ‖uh‖2L2(0,T ) ≤

1

6
µ2h2T 2 ‖∂tuh‖2L2(0,T )

follows. Hence, we conclude

a(uh,HT (uh − wh)) = a(uh,HT (uh − w)) + a(uh,HT (w − wh))

≥
[

4

(2 +
√
µT )2

− 1

6
µ2h2T 2

]
‖∂tuh‖2L2(0,T )

≥ 2

(2 +
√
µT )2

‖∂tuh‖2L2(0,T )

if

1

6
µ2h2T 2 ≤ 2

(2 +
√
µT )2

is satisfied, i.e.,

h2 ≤ 12

(2 +
√
µT )2µ2T 2

.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

186 O. STEINBACH AND M. ZANK

Finally, we have

‖∂t(uh − wh)‖L2(0,T ) ≤ ‖∂tuh‖L2(0,T ) + ‖∂twh‖L2(0,T )

and

‖∂twh‖2L2(0,T ) = −
∫ T

0

∂twh(t)∂t(HTwh)(t) dt = −µ
∫ T

0

uh(t)(HTwh)(t) dt

≤ µ‖uh‖L2(0,T )‖HTwh‖L2(0,T ) ≤
1

2
µT ‖∂tuh‖L2(0,T )‖∂twh‖L2(0,T ),

i.e.,

‖∂t(uh − wh)‖L2(0,T ) ≤
(

1 +
1

2
µT

)
‖∂tuh‖L2(0,T ).

This concludes the proof.
For any w ∈ H1

0,(0, T ), we define wh = Ghw ∈ Vh as the Galerkin projection satisfying

a(Ghw,HT vh) = a(w,HT vh) for all vh ∈ Vh,

where the stability condition (4.13) implies

4

(2 +
√
µT )2(2 + µT )

‖∂tGhw‖L2(0,T ) ≤ sup
0 6=vh∈Vh

a(Ghw,HT vh)

‖∂tvh‖L2(0,T )

= sup
06=vh∈Vh

a(w,HT vh)

‖∂tvh‖L2(0,T )

≤ sup
06=vh∈Vh

‖∂tw‖L2(0,T )‖∂tvh‖L2(0,T ) + µ‖w‖L2(0,T )‖HT vh‖L2(0,T )

‖∂tvh‖L2(0,T )

≤
(

1 +
1

2
µT

)
‖∂tw‖L2(0,T ),

i.e.,

‖∂tGhw‖L2(0,T ) ≤
1

8
(2 +

√
µT )2(2 + µT )2‖∂tw‖L2(0,T ) for all w ∈ H1

0,(0, T ).

So, we are in a position to state a convergence result for the finite element solution uh of the
variational formulation (4.7).

THEOREM 4.8. Let u ∈ H1
0,(0, T ) and uh ∈ Vh ⊂ H1

0,(0, T ) be the unique solutions
of the variational formulations (4.7) and (4.11), respectively. We assume u ∈ H2(0, T ), and
let (4.12) be satisfied. Then, there holds true the error estimate

(4.16) ‖∂t(u− uh)‖L2(0,T ) ≤
1√
3

[
1 +

1

8
(2 +

√
µT )2(2 + µT )2

]
h ‖∂ttu‖L2(0,T ).

Proof. With uh = Ghu and vh = Ghvh for all vh ∈ Vh, we have by Céa’s lemma,

‖∂t(u− uh)‖L2(0,T ) ≤ ‖∂t(u− vh)‖L2(0,T ) + ‖∂tGh(u− vh)‖L2(0,T )

≤
[
1 +

1

8
(2 +

√
µT )2(2 + µT )2

]
‖∂t(u− vh)‖L2(0,T )

for all vh ∈ Vh, and the assertion follows from standard interpolation error estimates.
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For the discretisation of the variational formulation (4.11), we use the same notation as in
Section 2 to find uh ∈ Vh = span{ϕk}Nk=1 such that

(4.17) −
∫ T

0

∂tuh(t)∂tϕ`(t) dt+ µ

∫ T

0

uh(t)ϕ`(t) dt =

∫ T

0

f(t)ϕ`(t) dt =: f`

is satisfied for all ` = 0, . . . , N − 1. Since we consider a uniform discretisation, the stiffness
matrix is given by

Kh =
1

h


1
−2 1
1 −2 1

. . . . . . . . .
1 −2 1

+
1

6
µh


1
4 1
1 4 1

. . . . . . . . .
1 4 1

 .

Obviously, we have unique solvability of (4.17) for all µ independent of h.
REMARK 4.9. For ` = 2, . . . , N − 1, we can write the finite element formulation (4.17)

as

(4.18)
(

1

h
+

1

6
µh

)
u`−1 +

(
2

3
µh− 2

h

)
u` +

(
1

h
+

1

6
µh

)
u`+1 = f`,

which is a kind of a two-step method [18, Chapter III.2]. This method is zero-stable if and
only if the root condition [18, Chapter III.3] is satisfied. For (4.18), we therefore obtain the
condition

(4.19) µh2 < 12 .

For the numerical example, we consider again the solution u(t) = sin2
(

5
4πt
)

for
t ∈ (0, T ) with T = 2 and µ = 10. The numerical results are given in Table 4.2, where
we observe linear convergence in the energy norm as predicted in (4.16) and second-order
convergence in L2(0, T ), which can be proven when applying the Nitsche trick. In Table 4.3
we present the related numerical results for the case µ = 1000. We observe convergence
only when h is sufficiently small. According to (4.19), we note that

√
12/µ ≈ 0.1095. So,

it remains open to improve assumption (4.12) to ensure the stability condition (4.13). On
the other hand, following [47], it is possible to derive and to analyse a stabilised variational
formulation for the initial value problem (4.6); see [38]. Using the L2-projection Q0

h on
the finite element space S0

h(0, T ) of piecewise constant functions, we may consider, instead
of (4.11), the perturbed variational problem to find ũh ∈ S1

h(0, T ) ∩H1
0,(0, T ) such that

(4.20) −〈∂tũh, ∂twh〉L2(0,T ) + µ〈ũh, Q0
hwh〉L2(0,T ) = 〈f, wh〉(0,T )

is satisfied for all wh ∈ S1
h(0, T ) ∩ H1

,0(0, T ). The stability and error analysis of (4.20) is
based on a discrete inf-sup condition [38, Lemma 17.6], which then results in an optimal
energy error estimate [38, Theorem 17.1].

5. The wave equation. As model problem for a hyperbolic partial differential equation,
we consider the Dirichlet problem for the wave equation,

(5.1)
∂ttu(x, t)−∆xu(x, t) = f(x, t) for (x, t) ∈ Q := Ω× (0, T ),

u(x, t) = 0 for (x, t) ∈ Σ := Γ× (0, T ),

u(x, 0) = ∂tu(x, 0) = 0 for x ∈ Ω,
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TABLE 4.2
Numerical results for the Galerkin-Petrov formulation (4.17), µ = 10.

N h ‖u− uh‖L2 eoc ‖∂t(u− uh)‖L2 eoc
4 0.5000000 5.3407e-01 - 3.5365e+00 -
8 0.2500000 1.7632e-01 1.6 2.1021e+00 0.8

16 0.1250000 4.9649e-02 1.8 1.0979e+00 0.9
32 0.0625000 1.2804e-02 2.0 5.5462e-01 1.0
64 0.0312500 3.2263e-03 2.0 2.7800e-01 1.0

128 0.0156250 8.0816e-04 2.0 1.3909e-01 1.0
256 0.0078125 2.0214e-04 2.0 6.9555e-02 1.0
512 0.0039062 5.0541e-05 2.0 3.4779e-02 1.0

1024 0.0019531 1.2636e-05 2.0 1.7390e-02 1.0
2048 0.0009766 3.1589e-06 2.0 8.6948e-03 1.0
4096 0.0004883 7.8972e-07 2.0 4.3474e-03 1.0
8192 0.0002441 1.9737e-07 2.0 2.1737e-03 1.0

TABLE 4.3
Numerical results for the Galerkin-Petrov formulation (4.17), µ = 1000.

N h ‖u− uh‖L2 eoc ‖∂t(u− uh)‖L2 eoc
4 0.5000000 8.0288e+00 - 4.1323e+01 -
8 0.2500000 2.3961e+02 -4.9 2.4811e+03 -5.9

16 0.1250000 4.4282e+01 2.4 1.1065e+03 1.2
32 0.0625000 9.5909e-03 12.2 6.2095e-01 10.8
64 0.0312500 2.7371e-03 1.8 2.8953e-01 1.1

128 0.0156250 7.1356e-04 1.9 1.4072e-01 1.0
256 0.0078125 1.8124e-04 2.0 6.9765e-02 1.0
512 0.0039062 4.5486e-05 2.0 3.4805e-02 1.0

1024 0.0019531 1.1382e-05 2.0 1.7393e-02 1.0
2048 0.0009766 2.8463e-06 2.0 8.6952e-03 1.0
4096 0.0004883 7.1162e-07 2.0 4.3474e-03 1.0
8192 0.0002441 1.7791e-07 2.0 2.1737e-03 1.0

where Ω ⊂ Rd, d = 1, 2, 3, is a bounded domain with, for d = 2, 3, Lipschitz boundary
Γ = ∂Ω. According to the previous sections, we consider the variational formulation of (5.1)
to find u ∈ H1,1

0;0, (Q) := L2(0, T ;H1
0 (Ω)) ∩H1

0,(0, T ;L2(Ω)) such that

(5.2) −〈∂tu, ∂tv〉L2(Q) + 〈∇xu,∇xv〉L2(Q) = 〈f, v〉L2(Q)

is satisfied for all v ∈ H1,1
0; ,0(Q) := L2(0, T ;H1

0 (Ω)) ∩ H1
,0(0, T ;L2(Ω)). Note that the

initial condition u(·, 0) = 0 is considered in the strong sense, whereas the initial condition
∂tu(·, 0) = 0 is incorporated in a weak sense. For u ∈ H1,1

0;0,(Q), an appropriate norm is given
by

‖u‖2
H1,1

0;0,(Q)
=

∫ T

0

∫
Ω

[
|∂tu(x, t)|2 + |∇xu(x, t)|2

]
dx dt .
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As in [22], we state the following result on the unique solvability of the variational formula-
tion (5.2) when assuming f ∈ L2(Q).

THEOREM 5.1. For f ∈ L2(Q), there exists a unique solution u ∈ H1,1
0;0,(Q) of the

variational formulation (5.2) satisfying

‖u‖H1,1
0;0,(Q) ≤

1√
2
T ‖f‖L2(Q).

Proof. When using the representation (3.2), any u ∈ H1,1
0;0,(Q) can be written as

(5.3) u(x, t) =

∞∑
i=1

∞∑
k=0

ui,kvk(t)φi(x) =

∞∑
i=1

Ui(t)φi(x),

where vk(t) are the temporal eigenfunctions as given in (2.5), and φi(x) are the spatial L2(Ω)-
orthonormal eigenfunctions of the Laplacian with homogeneous Dirichlet boundary conditions.
For the solution of the variational problem (5.2), we use the ansatz (5.3), where the functions
Ui ∈ H1

0,(0, T ) are unknown functions to be determined. When choosing, for a fixed j ∈ N,
v(x, t) = V (t)φj(x) with V ∈ H1

,0(0, T ) as test function, the variational formulation (5.2)
results in finding Uj ∈ H1

0,(0, T ) such that

−
∫ T

0

∂tUj(t)∂tV (t) dt+ µj

∫ T

0

Uj(t)V (t) dt =

∫ T

0

fj(t)V (t) dt

is satisfied for all V ∈ H1
,0(0, T ), where

fj(t) =

∫
Ω

f(x, t)φj(x)dx

are the coefficients of the Fourier expansion

f(x, t) =

∞∑
j=1

fj(t)φj(x).

From this, we conclude

‖f‖2L2(Q) =

∫ T

0

∫
Ω

[f(x, t)]2 dx dt =

∞∑
i=1

∞∑
j=1

∫ T

0

fi(t)fj(t) dt

∫
Ω

φi(x)φj(x) dx

=

∞∑
j=1

∫ T

0

[fj(t)]
2 dt =

∞∑
j=1

‖fj‖2L2(0,T ),
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and hence we obtain by using (4.10),

‖u‖2
H1,1

0;0,(Q)
=

∫ T

0

∫
Ω

[
|∂tu(x, t)|2 + |∇xu(x, t)|2

]
dx dt

=

∞∑
i=1

∞∑
j=1

[∫ T

0

∂tUi(t)∂tUj(t)dt

∫
Ω

φi(x)φj(x) dx

+

∫ T

0

Ui(t)Uj(t) dt

∫
Ω

∇xφi(x) · ∇xφj(x) dx

]

=

∞∑
i=1

[∫ T

0

|∂tUi(t)|2dt+ µi

∫ T

0

|Ui(t)|2 dt

]

=

∞∑
i=1

[
‖Ui‖2H1

0,(0,T ) + µi‖Ui‖2L2(0,T )

]
≤ 1

2
T 2

∞∑
i=1

‖fi‖2L2(0,T ) =
1

2
T 2 ‖f‖2L2(Q).

The variational formulation (5.2) is equivalent to finding u ∈ H1,1
0;0, (Q) such that

(5.4) −〈∂tu, ∂tHT v〉L2(Q) + 〈∇xu,∇xHT v〉L2(Q) = 〈f,HT v〉L2(Q)

is satisfied for all v ∈ H1,1
0;0, (Q), where the transformation operatorHT acts only on the time

variable t.
As in the case of the heat equation, we consider the tensor-product space-time finite

element space Vh = Whx ⊗ Vht ⊂ H1,1
0;0,(Q) with piecewise linear, continuous functions

Whx = span{ψi}Mx
i=1 ⊂ H1

0 (Ω) and Vht = S1
ht

(0, T ) ∩ H1
0,(0, T ) = span{ϕk}Ntk=1. Then,

the Galerkin-Bubnov finite element discretisation of the variational formulation (5.4) is to find
uh ∈ Vh such that

(5.5) −〈∂tuh, ∂tHT vh〉L2(Q) + 〈∇xuh,∇xHT vh〉L2(Q) = 〈f,HT vh〉L2(Q)

is satisfied for all vh ∈ Vh. Recall that the transformation HTϕk is realised by using (4.5).
Since we are using a tensor-product space-time finite element space Vh = Whx ⊗ Vht , we can
write

uh(x, t) =

Nt∑
k=1

Mx∑
i=1

ui,kϕk(t)ψi(x) =

Mx∑
i=1

Ui,h(t)ψi(x), Ui,h(t) =

Nt∑
k=1

ui,kϕk(t).

By using

ũ(x, t) =

Mx∑
i=1

Ũi(t)ψi(x),

we can write the intermediate step of the semi-discretisation approach for solving (5.1) as

Mh∂ttŨ(t) +KhŨ(t) = f(t) for t ∈ (0, T ), Ũ(0) = ∂tŨ(0) = 0 ,
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with the spatial finite element mass matrix Mh, the stiffness matrix Kh, and the load vector
f(t), i.e., for i, j = 1, . . . ,Mx,

Mh[j, i] =

∫
Ω

ψi(x)ψj(x) dx,

Kh[j, i] =

∫
Ω

∇xψi(x) · ∇xψj(x) dx,

fj(t) =

∫
Ω

f(x, t)ψj(x) dx.

By using

Mh = LhL
>
h , Ah = L−1

h KhL
−>
h , W = L>h Ũ , g(t) = L−1

h f(t),

we further obtain

∂ttW (t) +AhW (t) = g(t) for t ∈ (0, T ), W (0) = ∂tW (0) = 0 .

Since Ah is symmetric and positive definite, we conclude the diagonal representation

Ah = VhDhV
>
h , Dh = diag

(
λi(Ah)

)Mx

i=1
,

Vh =
(
v1, . . . , vMx

)
, Ahv

i = λi(Ah) vi.

Finally, by using Z(t) := V >h W (t), we have to solve

∂ttZ(t) +DhZ(t) = V >h g(t) =: g̃(t) for t ∈ (0, T ), Z(0) = ∂tZ(0) = 0 ,

which consists of Mx scalar equations of the form (4.6). The related finite element solution is
defined by finding, for i = 1, . . . ,Mx, zi,ht ∈ Vht = S1

ht
(0, T ) ∩H1

0,(0, T ) such that

−〈∂tzi,ht , ∂tHT vht〉L2(0,T ) + λi(Ah)〈zi,ht ,HT vht〉L2(0,T ) = 〈g̃i,HT vht〉(0,T )

is satisfied for all vht ∈ Vht . By construction, we have

Zh(t) = V >h L
>
h Uh(t),

where

Uh(t) =
(
U1,h(t), . . . , UMx,h(t)

)>
is the vector of the unknown functions of the approximation uh(x, t).

Stability and related error estimates for the finite element solutions zi,ht follow for
sufficiently small time mesh sizes ht; see Theorem 4.8. However, as in Remark 4.9, we have
stability, when the condition (4.19) is satisfied, i.e.,

λi(Ah) =
(Ahv

i, vi)

(vi, vi)
=

(Khu
i, ui)

(Mhui, ui)
=
‖∇xuih‖2L2(Ω)

‖uih‖2L2(Ω)

<
12

h2
t

for i = 1, . . . ,Mx,

where ui = L−>h vi are the transformed eigenvectors and uih ∈Whx are the related functions.
With the inverse inequality

‖∇xvh‖2L2(Ω) ≤ cI h
−2
x ‖vh‖2L2(Ω) for all vh ∈Whx ,
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this condition is satisfied for

cI h
−2
x < 12h−2

t .

In the particular case d = 1, we have cI = 12, and therefore stability follows for

ht < hx .

When Whx ⊂ H1
0 (Ω) is also of tensor-product structure, for example when considering the

spatial domain Ω = (0, 1)d, we conclude cI = 12d, and therefore the stability condition

ht <
hx√
d
.

As numerical example, we consider for d = 2 the spatial domain Ω = (0, 1)2 and the exact
solution

u(x1, x2, t) = t2 sin(πx1) sin(πx2) for (x1, x2, t) ∈ Q = Ω× (0, T )

with T = 1√
2

. Then, stability follows when choosing

(5.6)
ht
hx

<
1√
2
≈ 0.7071068,

and we observe optimal orders of convergence even for the limit case of the CFL condi-
tion (5.6); see Table 5.1. Note that numerical experiments indicate that the stability condi-
tion (5.6) is sharp; see [45].

TABLE 5.1
Numerical results for the Galerkin-Bubnov formulation (5.5) for Q = (0, 1)2 × (0, 1√

2
) for the limit case of

the CFL condition (5.6).

dof hx ht ‖u− uh‖L2 eoc |u− uh|H1 eoc κ2

2 0.500000 0.3535534 0.020970 - 0.39813 - 2.6
36 0.250000 0.1767767 0.004890 2.1 0.19798 1.0 32.7

392 0.125000 0.0883883 0.001199 2.0 0.09859 1.0 250.9
3600 0.062500 0.0441942 0.000298 2.0 0.04924 1.0 1543.4

30752 0.031250 0.0220971 0.000074 2.0 0.02461 1.0 8921.9
254016 0.015625 0.0110485 0.000018 2.0 0.01231 1.0 50750.8

As for the scalar case and following [47], we can formulate and analyse a stabilised version
of the variational formulation (5.5), which is unconditionally stable and which preserves the
optimal order of convergence; see [38].

6. Conclusions. In this paper, we have formulated and analysed new non-standard
variational formulations for finite element discretisations of parabolic and hyperbolic initial
boundary value problems, in particular, for the heat and wave equations. Based on this analysis,
we can analyse related boundary integral equations and boundary element methods, where
we recover known results in the case of the heat equation [12], but we expect to derive new
results in the case of the wave equation. Moreover, using this unified framework, it will be
possible to analyse the coupling of space-time finite and boundary element methods. While the
main focus of this paper was on the stability analysis of space-time variational formulations,
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much more work is required on the design of computationally efficient methods. This covers
the formulation and analysis of inf-sup stable local basis functions for arbitrary space-time
finite elements, of efficient and reliable a posteriori error estimators and adaptive schemes, and
the construction and analysis of preconditioned parallel iterative solution strategies including
domain decomposition methods.

Acknowledgement: The authors would like to thank the anonymous referees for their
valuable suggestions and remarks.
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