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COERCIVE SPACE-TIME FINITE ELEMENT METHODS FOR INITIAL
BOUNDARY VALUE PROBLEMS*

OLAF STEINBACH AND MARCO ZANK?

Abstract. We propose and analyse new space-time Galerkin-Bubnov-type finite element formulations of
parabolic and hyperbolic second-order partial differential equations in finite time intervals. Using Hilbert-type
transformations, this approach is based on elliptic reformulations of first- and second-order time derivatives, for
which the Galerkin finite element discretisation results in positive definite and symmetric matrices. For the variational
formulation of the heat and wave equations, we prove related stability conditions in appropriate norms, and we discuss
the stability of related finite element discretisations. Numerical results are given which confirm the theoretical results.
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1. Introduction. While for the analysis of parabolic and hyperbolic partial differential
equations a variety of approaches such as Fourier methods, semigroups, or Galerkin methods
are available (see, for example, [22, 27, 28, 32, 44, 46]), standard approaches for the numerical
solution are based on semi-discretisation, where the discretisation in space and time is split
accordingly; see, e.g., [42] for parabolic partial differential equations and [7, 8] for hyperbolic
problems. More recently, there exist space-time approaches as, for example, in [1, 11, 24,
30, 31, 34, 37, 41, 43] for parabolic problems and [3, 5, 13, 17, 21, 29, 47] for hyperbolic
equations.

In this work, we introduce a new Fourier-type method for the analysis of first- and second-
order ordinary differential equations, and we transfer this approach to the corresponding
parabolic and hyperbolic partial differential equations. The aim of this work is to provide space-
time Galerkin-Bubnov-type variational formulations, where unique solvability follows from
related coercivity estimates. This analysis may then serve not only as basis for the development
and the numerical analysis of adaptive space-time finite element methods simultaneously in
space and time and for the construction of time-parallel iterative solution strategies, but also
for the analysis of related boundary integral equation methods for the heat and wave equation,
respectively, and the coupling of finite and boundary element methods.

As a first model problem, we consider the Dirichlet boundary value problem for the heat
equation,

aduu(z,t) — Agu(z,t) = f(x,t) for (z,t) € Q@ :==Q x (0,7),
(1.1) u(z,t) = 0 for (z,t) € ¥ :=T x (0,7,
u(z,0) = 0 for z € Q,

where Q C R?, d = 1,2, 3, is a bounded domain with, for d = 2,3, Lipschitz boundary
I' = 09, a > 0 is a given heat capacity constant, and f(z,¢) is a given right-hand side. Note
that in the spatially one-dimensional case d = 1, we have 2 = (a,b) and T’ = {a, b}.
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A variational formulation of (1.1) is to find w € L*(0, T Hg (2)) N Hy (0, T; H~(2))
such that

T T
/ / adpu(z, t)v(x,t) dxdt+/ /qu(x,t) - Vev(z,t) de dt
0 Q 0 Q

:/OT/Qf(:C,t)v(x,t)dmdt

is satisfied for all v € L?(0,T; H} (£2)), where we assume f € L?(0,T; H~*(2)). Note that
we use the standard Bochner spaces, where u € Hy (0,T; H'(£2)) satisfies u(z,0) = 0 for
x € Q. Related to the variational formulation (1.2), we introduce the bilinear form

(1.2)

T
(1.3) a(u,v) = / / [oz Opu(z, t)v(x, t) + Vyu(z,t) - Vyu(z,t) | dedt.
0 Q

Since (1.2) is a Galerkin-Petrov variational formulation, we need to establish an appropriate
stability condition to ensure unique solvability; see also [14, 15, 34, 37, 43]. In particular,

HUHL2(O,T;H§(Q))HH&(O,T;H*l(Q)) = \/||043tu||2Lz(07T;H_1(Q)) + ||qu||2L2(Q)
defines a norm in L?(0,T; Hg(2)) N H; (0, T; H~'(Q)), and we can prove the stability
condition
a(u,v)

1
—= lull 20,712 (2))nE2 (0,1 H-1(02)) < sup ——
V2 (0.T3Ho (20 Ho, (0,THHED) 0£ver?(0,r:11 (@) 1Vl 220,712 (@)

for u € L?(0,T; H () N Hy (0,73 H~*(£2)). Since the bilinear form (1.3) is continuous,
satisfying

la(u,v)| < \/§HUHLQ(O,T;H(}(Q))ﬂH(}Y(O,T;H—l(Q))HU”LQ(O,T;H&(Q))

for u € L?(0,T; Hj(Q)) N Hy (0,T; H~*(2)) and v € L*(0,T; Hj(R2)), and surjective,
this implies unique solvability of the variational problem (1.2); see, e.g., [6, 14]. The initial
Dirichlet boundary value problem (1.1) therefore defines an isomorphism

(1.4) L:L*0,T;Hy () N Hy (0,T; HH(Q)) — [L*(0,T; Hy ()]

When considering the variational formulation (1.2) and performing integration by parts in
time, this leads to the adjoint variational formulation to find v € L?(0,T; H}(2)) such that

T T
- / / u(z, t)adw(z, t) doe dt + / / Vu(z,t) - Vyu(x,t) de dt
0 Q 0 Q

:/OT/Qf(:c,t)v(x,t)dxdt

is satisfied for all v € L*(0,T; Hy(2)) N H,(0,T; H~'(R)), where the test space includes
the final time condition v(x, T') = 0 for x € 2 and where we assume f € [L2(0,T; H}(Q))N
H(0,T; H-1(Q))]'. As for the primal variational formulation (1.2), we can establish unique
solvability of the adjoint variational formulation (1.5), which then implies an isomorphism

(1.5)

(1.6) L:L*(0,T5 Hy () — [L*(0,T; Hy () N H(0,T; H ()]
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Both the primal variational formulation (1.2) and the adjoint variational formulation (1.5)
are Galerkin-Petrov formulations, where the test space is different from the ansatz space, in
particular with respect to time. This motivates to consider variational formulations for the
initial boundary value problem (1.1), where ansatz and test spaces are of the same order also in
time. Using the isomorphisms (1.4) and (1.6) and some interpolation arguments, one expects
to consider test and ansatz spaces as subspaces of the anisotropic Sobolev space H !/ 2(Q),
e.g., [4,22,23,27,28]. In the case of an infinite time interval, i.e., T' = oo, such an approach
was considered analytically in the Ph.D. thesis of M. Fontes [16] (see also [25] for a related
numerical analysis using wavelets) and the work of D. Devaud [10]. However, here we will
consider only finite time intervals with 7' < co. In the case of time-periodic boundary value
problems, a related approach is considered in [26].

Although the numerical analysis of space-time finite element methods for the variational
formulation (1.2) is well-established (see, e.g., [1, 15, 30, 31, 34, 37, 43]), the analysis of
boundary integral equations and related boundary element methods for the solution of the heat
equation (1.1) relies on Galerkin-Bubnov variational formulations in anisotropic Sobolev trace
spaces of H'1/2(Q); see, e.g., [2, 4]. In particular, instead of a stability condition in the finite
element analysis, an ellipticity estimate in the boundary element analysis is used. So, we are
interested in a unified approach to analyse both finite and boundary element methods within
one framework and allowing a numerical analysis also for the coupling of space-time finite
and boundary element methods.

In addition to the initial boundary value problem (1.1) of the heat equation, we also
consider the related model problem for the wave equation,

Lopu(z,t) — Agu(z,t) = f(z,t) for (z,t) € Q :=Q x (0,7),
(1.7) wz,t) = 0 for (z,t) € ©:=T x (0,T),
u(z,0) = dpu(z,0) = 0 for z € Q,

where ¢ > 0 is a given wave speed constant. A standard approach for a space-time finite
element method to solve (1.7) is to consider an equivalent system with first-order time
derivatives; see, e.g., [3, 13, 29]. Alternatively, one may consider variational formulations of
the wave equation in (1.7) using integration by parts also in time; see, e.g., [5, 17, 47]. Here,
we will consider related variational formulations in suitable subspaces of H'(Q), and we will
prove and discuss stability conditions in appropriate function spaces.

The rest of this paper is organised as follows: In Section 2 we consider simple first-order
ordinary differential equations to motivate the choice of a transformation operator to derive
an elliptic and symmetric bilinear form for the first-order time derivative. We discuss several
properties of the Hilbert-type transformation operator, and we present some numerical results
to illustrate the theoretical results. The results for the first-order ordinary differential equations
are extended in Section 3 to the heat equation in several space dimensions. We prove that the
heat partial differential operator with zero Dirichlet boundary and initial conditions defines an
isomorphism in certain anisotropic Sobolev spaces, implying a stability condition as required
in the numerical analysis of the proposed Galerkin scheme. We comment on the stability of
the numerical scheme and present some numerical results. Second-order ordinary differential
equations are considered in Section 4, where we introduce a different transformation operator,
which is not semi-definite as in the case of first-order equations. Hence, we have to use different
Sobolev norms to establish optimal stability estimates. As for the first-order equation, we
provide a numerical analysis for the finite element discretisation, and we give some numerical
results. Finally, in Section 5 we consider the space-time variational formulation for the wave
equation, we discuss the discretisation scheme, and we provide some numerical results for
illustration.
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2. First-order ordinary differential equations. As a first model problem, for T" > 0,
we consider the simple initial value problem

2.1 Opu(t) = f(t) fort € (0,T7), w(0)=0,

where we aim to derive and analyse a coercive variational formulation, which later will be used
for the discretisation of time-dependent partial differential equations, which are of first-order
in time.

2.1. Primal variational formulation. If we define the Sobolev space
HY(0,T) == {v e HY(0,T): v(0) = 0},

then the primal variational formulation of (2.1) is to find u € H, 3, (0,T) such that

22) /O C opultyo(t) di = /O U ityde forallv e I2(0.7).

Obviously, it is sufficient to assume that f € L*(0,7T') in this case. Recall that

T
Il o = N00aloiry = | Dot

defines a norm in Hy (0, T'). The bilinear form a(-,-) : Hj (0,T) x L*(0,T) — R,

T
(2.3) a(u,v) :z/ Opu(t)v(t) dt,
0
is bounded, i.e.,
la(u, v)| < ||0ull 20,1y IVl 2 (0, 1) forall u € H&y(O,T), v e L*0,7),
and satisfies the stability condition

l0sull 20,1y < sup _alwy) for all u € Hp (0,T).
ozver2(0,1) 1vllz2(0,1) ’

Moreover, it holds true that

a(u,v)

vl z2(0,m) < sup forallv € LQ(O,T).

ozucH (0,7) 101wl L20,7)
As a consequence (see, e.g., [6, Satz 3.6] or [14, Corollary A.45]), we conclude unique
solvability of the primal variational formulation (2.2), and the bilinear form (2.3) implies, by
the Riesz representation theorem, a bounded and invertible operator
Bi: Hg (0,T) — L*(0,T)

satisfying

lull s 07y < 1Brull 2o,y forallu € Hg (0,7).
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2.2. Dual variational formulation. When using integration by parts, instead of the
primal variational formulation (2.2), we may consider the dual variational formulation to find
u € L?(0,T) such that

T
(2.4) / u(t)Opv(t) / f®)v(t)ydt  forallv € Hy(0,T),
0

where

T
HY(0,T) = {v e H'O,7): o(T) =0}, [[ol 0.1 ;:/O B0 (1))? dt

Here, it is sufficient to assume that f € [H ,10(0, T)]'. As for the primal variational formulation,
we conclude unique solvability of the dual variational formulation (2.4), which then implies a
bounded and invertible operator

By: L*(0,T) — [H(0,7)]
satisfying
||u||L2(07T) < ||BOuH[H)1O(O,T)]/ for all u € L?(O7 T)

2.3. Interpolation of operators. Related to the initial value problem (2.1), we consider
the operator By: Hj (0,7) — L*(0,T) of the primal formulation (2.2) and the operator
By: L*(0,T) — [H(0,T)] of the dual formulation (2.4). Hence, using interpolation
arguments for s € (0, 1), we consider an operator

By: [H; (0,T), L*(0,T)]s — [L*(0,T), [H (0, T))')s,

and we may ask for a representation of By, in particular for s = % Recall that the Sobolev
space

Hy/?(0,T) := [H3,(0,T), L*(0,T)]1 /5

is a dense subspace of H'/2(0, T) with the Hilbertian norm

T 2
2 _ [u(s) —u(®)]? [u(®)]
||UHH&/2(O’T) —/0 dt“‘/ / S—t|2 ds dt+/0 P dt.

For By: H (0,T) — L*(0,T), we define the adjoint operator B} : L*(0,T') — [H; (0,T)]
via

(u, Biv)o,r) = (Biu,v) 20,y forallu € Hj (0,T), v € L*(0,7),

where (-, ) (o, 1) denotes the duality pairing defined via the extension of the inner product
in L2(0, 7). Then we introduce

A:=B{B;: Hy(0,T) — [Hy (0,7))".
In particular for v € H (}’ (0,T), we consider the eigenvalue problem

Au= M in[H; (0,7,
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ie., forallv € Hj (0,T), we have

T T
(Au,v) 0,7y = (Biu, B1v)r2(0,1) = / Opu(t) v (t) dt = /\/ u(t)v(t) dt.
0 0

Note that this is the variational formulation of an eigenvalue problem with mixed boundary
conditions,

—O0pu(t) = Au(t) fort € (0,7), u(0)=0, Owu(T)=0.

Hence, we find

2.5) vk(t)_sin<<g+kﬂ>;>, A = ;2( +k7r), k=0,1,2,3,...

Recall that the eigenfunctions v, form an orthogonal basis in L2(0, T') satisfying
T
T
|ttty at = 3 o
0 2
and in Hy (0,7),
T T - 9
Dyon(1)0yve (1) dt = M / os(Opue(t) dt = o (T4 kr) o
0 0

For u € Hg (0,T), this motivates to consider

o w0-Sou(5)7). - [ (G-
k=0

and by Parseval’s identity we have

el 0.0, = ZZukug/ sin ((g—kkw)r}) sm((2 +€7r);> dt

k=0 ¢=0
2
= — u
22 k
k=0
as well as

18l F 20,7y = Zzukué/ Opvr () Opve(t) dt = 2TZ(2—|—k7T>2 uj,.

k=0 £=0

Hence, using interpolation, we define an equivalent norm in H& / 2(0, T),e.g.,[27,45],

1 o0
el 0y = 5 2 (5 + b )k

k=0
as well as an inner product

o0

1 T
(w0 y0m) = 5 2 (5 +Em)wwon
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Analogously, for w € H 710/ 2(O7 T') we consider

0=3 meon ((F4am)7) me= 7 [ woos (5 in) ) o

with the related norm and inner product,

1 — 1
||w||§{10/2(0T B Z ( + k:ﬂ')wk, (w, 2) Y201 = 3 Z ( + k‘ﬂ')wkzk
’ k=0 k=0

Finally, we introduce the dual space [H 1/2 (0, 7))’ with the norm

(fs w>(o T)
sup

Nl g2 = .
[Hg70,T) — 0¢uzeH1/2 (0,T) ||wHHle/2(O,T)

LEMMA 2.1. For f € [H710/2(07T)],’ we have

T -1_9
|m@y@ms>gzxg+m)fk

with

7 = % (fywr)o,r), wk(t) = cos <<g + kﬂ') ;) .

Proof. From the norm definition, using a series representation of w € H ’10/ 2 (0,T), and
with Holder’s inequality, we have

1720,y

(o)
Zw (f,we)o,1)
B (f,w) 0,1 =0
= sup Tl e = sup 72
orwer >0 1IH?01)  orweni*01) (1N (7 L
§Z(§+kw)wk
k=0
7 Z@ljk P . 1/2
k=0 ™ B
= sup < — Z(*"‘]W) fk) )
V2 osuer'om) (S on o i ﬁ(la—o 2
Z(*—f—lm)wk
2
k=0
ie.,
? K /7 -2
112 §2HQ+m)n.

On the other hand, if the coefficients f,, are given, we define

@ = (5 +k71'>71?k
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to prove the opposite direction; we skip the details. 0

The variational formulation of the initial value problem (2.1) is to find u € H, &/ 2(0, T)
such that

@.7) (B, w) 0.1y = (f>w) (0, for all w € H*(0,T),
where f € [H ,10/ %(0,T)]" is given. Note that (2.7) is a Galerkin-Petrov variational formulation

with different trial and test spaces. Hence, we have to establish an appropriate stability
condition, which is equivalent to an ellipticity estimate for the bilinear form (9;u, Hrv) o1

with some transformation operator Hr : Hé / %0,T) - H ’10/ %(0,T) to be specified.

2.4. Transformation operator. To motivate the particular definition of the operator
Hr: Hy*(0,T) — HJ*(0,T), we write, by using (2.6),

T t
Opu(t) TZuk( +k7r) cos <(2+k7r)T>
as distributional derivative, i.e., forw € H’ e 2(O, T), we have

(Oru, w) 0,1y = —/ Z“k +I<:7r) cos(( —i—kw);) w(t) dt.

Defining

2.8) w(t) = (Hru)(t Zw cos ((g +€7r) ;)

we conclude the ellipticity estimate

(Oru, Hru) (0,1

29) = ;ggukw(g + kw) /OT cos ((g + kw) ;) cos ((g +€7r) ;) dt
= (5t km)ud = Nullsn
k=0

REMARK 2.2. The function Hyu € H,lo/2(07 T), as given in (2.8), is the unique solution
of the variational problem

(Hrie,2) 1oy = (G0, 2) 0m) forall z € Hy>(0,T).

Therefore, the definition of the transformation operator Hr coincides with the definition of
the optimal test space as used, e.g., in discontinuous Galerkin-Petrov methods [9]. Indeed, for

we use the ansatz
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and the test function

0=3 seon (5 7)1

to obtain
oo 1 oo

<w7z>H}/2(0 iS %Z ( + kw)wkzk = (Opu, 2) =3 Z ( + kw)ukzk

k=0 k=0

for all Zj, from which we conclude that wy, = ug, for k =0,1,2,...
By construction, we have w = Hpu € H}()/2 (0,7),and Hr: Hé{Z(O, T)— H710/2(0, T)
is norm preserving, i.e.,

1/2
HHTU||H10/2(O7T) = ”uHHé/z(O,T) forall u € Ho,/ (0,7).

Vice versa, if w € Hl/ (0,T) is given,

£) :ki:%wkcos<(;r+k7r>;>, Ty, = ;/OTw(t)cos<(g+k7T);> dt,

then the inverse transformation operator reads

u(t) = (Hp w)(t) = im sin ((g + kﬂ') ;) .
k=0

Next, we are going to prove some properties of the transformation operator . First, we
consider a commutation property with the time derivative operator 0;.

LEMMA 2.3. Foru € H&/Q(O,T), we have

(OrHru,v) 0,1y = —(Hp Lo, V) (0,7) forall v e H&/Q(O,T).

Proof. For an arbitrary ¢ € C*°[0, T with ¢(0) = 0, we first compute

T
(Hro)(t ZS% cos ((g + kw) ;,) y PE = %/0 (t) sin <(72r + kw) ;) dt,

and therefore

" Zw( +kn) sin((gm);)

follows. On the other hand,
Orp(t) = li (z—i-k)cos (E—ﬁ-k )i
g T 0@’“ g T 9 TN T

implies

(H'0r0) (t Zg@k( + kw) sin ((g + lm) ;) ,
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ie.,
OHrp = —H ' Opp for all ¢ € C*°[0, T with ¢(0) = 0.
So, the assertion follows by completion. |

Next, we prove that H is unitary.
LEMMA 2.4. Foru € Hé/Z(O, T)andw € H)lo/Q(O, T'), there holds true that

<HTU w>L2(O T <u HT >L2(0,T)~

Proof. Foru € Hy/*(0,T) and w € H*(0,T), we have

_guksin<(g+kﬂ');>, i ZCOS(( Mﬁ);)’

and
T t 1 . =_ . T t
(Hru)(t Zuk cos ((2 + kw) T) , Hrw)(t) = ;wg sin ((2 + €7r> T) .
Hence, we compute

T
(Horu, ) 201y = /0 (M) (8w (t) dt

=SS [ eos (5 k) ) con (5 40) ) a

T
2
k
oo 00 T
4 4

— kZZuka/o sin <(72T + Imr) T) sin <(72T +€7T)T> dt
— [ a0 dt = K ) e O

0
Using Lemma 2.3 and Lemma 2.4, we conclude the following symmetry relation.
COROLLARY 2.5. For u,v € Hé)/2(0, T), there holds true that

<5‘tu,7-[Tv>(O,T) = <7‘[Tu, atv>(0,T) = (u, > 1/2(0 T

Proof. For ¢, 1 € C*°[0,T] with ©(0) = ¥(0) = 0, we first have (Hre)(T) =
(Hr)(T) = 0, and therefore

(Or0, HT) L2 (0,1) = <H;13t%¢>L2(0,T)
—(OsHrp, ) L20,1)

T
—(Hre)(t)Y(t) o + (Hrw, 0¢) 12(0,1)
= <HT<P75t¢>L2(o,T)
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holds true. So, the assertion follows by completion. O
The next property of Hr is required when considering, instead of (2.1), more general

differential equations.
LEMMA 2.6. There holds true that
(2.10) (0, Hro) 2oy =0 forall ve Hy/*(0,T).

Proof. By using

]ivksin<(g+k7r);), (HTU)(t)iszOS(<g+EW);>v

we have

(v, H1v)1200,7) = kze vkw/ sin ((;T +k7r> ;) cos ((;T +€7r> ;) dt

I I
N N —
[~ M8
M IDMe ©
< <
ES e
g g
c\
— ~
Nl —
+ =
~
+|7 =
—_
byl +
~
+
-
ES
+ ~__
~
+ 7
= B
_—_
N2 =
B
~
S~
&

where the second integral is ignored due to symmetry. When splitting & and ¢ into odd and
even indices, i.e., k = 2i,2i + 1, ¢ = 25,25 + 1, this gives

V2;V2; V2i+1V25+41
(v, H1v)1200,1) = 22[2i+2j+1+2i+2j+3}

M M 1

B z»}linoo > [”2”’23 / P A+ vaig1v2541 /O g2 dl‘]

1=0 j=0
T 1/ M 2 1/ M 2

= — lim vz d:v—i—/ voi 1zt da| > 0. 0

REMARK 2.7. The matrix H as used in the previous proof, i.e.,
. 1 .
H[j,i]= — fori,5=0,1,...,N,
t+j+1

is a Hilbert matrix [19], which is positive definite but ill-conditioned. For our purpose it is
sufficient to use that (2.10) is non-negative.

Next, we will have a closer look at the definition of the transformation operator Hr to see
its relation with the well-known Hilbert transform; see, e.g., [20].

LEMMA 2.8. The operator Hr as defined in (2.8) allows the integral representation

T
(Hru)(t) = V.p‘/0 K(s,t)u(s)ds, te (0,7),
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as a Cauchy principal value integral, where the kernel function is given as

@11 K(s,t) = %

+

1
m@wﬂ'

[N e

sin (5 °7)
Proof. Formally, one finds

o

(pu)() = kzouk cos (( +kr) :tr>
[ (5 )5 e (1))

T
u(s)K(s,t)ds

I
M8
N o

=
Il
=]

I

<

§)
S—

with
Zm«mﬂﬁm%(+mﬁ>
:T;J[sin(( + km )—i—sm((;—kk,ﬁr)s;t)}
By using the formal representation

Zsm(( +hr)a) = énézx)

we further conclude the representation (2.11); see [39] for a more detailed proof. a
REMARK 2.9. For fixed s, t € (0,T), s # t, we consider

forx #0,2,4,...,

2s
A KD = 6T

so that

(Hoou)(t) = v.p. /Oo Lu(s) 2s

ds, t € (0,00),
0o T™s—ts+t

where the kernel function shows for s — ¢ the same behaviour as the Hilbert transform

(Hu)(t) = v.p. /00 1 uls)

d te (0
it € (0,00),

for which all the previous properties are well-known; see, e.g., [20].

2.5. Variational formulations. For the solution of the initial value problem (2.1), we
consider the variational formulation (2.7) to find u € Hé,/ 2 (0,T) such that

(2.12) (O, Hev)ory = (L Hrodory  forallv e Hy/*(0,T),
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where f € [H 1/2(0 T))" is given. Since the bilinear form (J;u, H1v) o, 1) is bounded, i.e.,
for u,v € H1/2(0, T), there holds true that

[Bue, Hro) o) < N0lgags oy 120l 20y = Il o2 19l 2y

:HBl/’zu” 1/2(0 TS
and elliptic (see (2.9)), we conclude unique solvability of the variational formulation (2.12).
REMARK 2.10. From the ellipticity estimate (2.9), we also conclude the stability condition

(Oru, Hru)o,1) < (Oru, w) 0,1)

sup
||HTU||H}O/2

forall u € H1/2(O,T),
01)  orweHY*(0,1) ||wHH}O/2(o,T)

||UHH;=/2(O’T) =

and from which we conclude unique solvability of the Galerkin-Petrov formulation to find
u€ Hé’/Q(O, T') such that

(2.13) (O, w) oy = (frw)ory  forallw e HY?(0,T).

Next, we consider a conforming finite element discretisation for the variational formu-
lation (2.12). For a time interval (0,7") and a discretisation parameter N € N, we consider
nodes

O=th<ti<ta<---<tn_1<tyn=T,

finite elements 7y = (ty—_1, t¢) of local mesh size hy =ty — ty_1,¢ =1,..., N, and a related
finite element space S} (0, T') of piecewise linear continuous basis functions ¢y, k = 0,..., N,
with global mesh size h = maxy hy. Then, the finite element discretisation of the variational

formulation (2.12) is to find uy, € V3, := S1(0,T) N H(},/Q(O7 T) = span{ey }_, such that
(2.14) <8tuh, HTUh>L2(0 T) <f, th>(0,T) for all vy, € V.

Using standard arguments, e.g., [36], we conclude unique solvability of (2.14) as well as the
a priori error estimates

(2.15) lw = unllmg 0,7) < ¢h™ 7 llull e 0,1)

when assuming u € H*(0,T) for some s € [1,2] and for o = 0, 3, 1. Note that for ¢ = 1, the
estimate (2.15) is a consequence of Céa’s lemma and the approximation property of S} (O T),
while for o = 0 we use the Aubin-Nitsche trick, and for o = 1, we have to use an inverse
inequality, i.e., we have to assume a globally quasi-uniform mesh in this case.

The Galerkin-Bubnov finite element formulation (2.14) is equivalent to the linear system
of algebraic equations Kpu = f with a symmetric and positive definite stiffness matrix K,

defined by
Kh[]>k] = <atgok7HT90j>L2(O,T) for ka] = 1a"'7N'

As a numerical example, we consider the solution u(t) = sin (2%¢) for ¢t € (0,2) = (0,7),
where the right-hand side is f(¢) = 27 cos (%t). For the discretisation, we consider a se-
quence of finite element spaces S} (0,7') of uniform mesh size h = 2/N, and N = 27+1,

j =0,...,7. Since the solution u is smooth, we use s = 2 within the error estimate (2.15) to
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conclude second-order convergence in L?(0, 2) and linear convergence in H*(0, 2), respec-
tively. This behaviour is confirmed by the numerical results given in Table 2.1. In addition, we
present the minimal and maximal eigenvalues of the stiffness matrix K, as well as the result-
ing spectral condition number of K, which behave as expected for a first-order differential
operator. Note that these results correspond to the Galerkin discretisation of a hypersingular
boundary integral operator in boundary element methods for second-order elliptic partial
differential equations; see, e.g., [36].

TABLE 2.1
Numerical results for the Galerkin-Bubnov formulation (2.14).

N ||u—uh||L2 €0C ||8t(u—uh)||L2 €oC )\min<Kh) )\maX(Kh) Kz(Kh)
2 1.00473818 - 7.05949197 - 0.4166 0.9602 23

4 0.86127822 0.2 5.88004588 0.3 0.2844 1.1169 39

8 0.16924553 2.3 3.66044528 0.7 0.1688 1.1280 6.7
16 0.03246999 2.4 1.82612730 1.0 0.0915 1.1327 12.4
32 0.00748649 2.1 0.90514235 1.0 0.0475 1.1338 23.9
64 0.00183184 2.0 0.45124173 1.0 0.0241 1.1340 47.0
128 0.00045545 2.0 0.22543481 1.0 0.0122 1.1341 93.2
256 0.00011371 2.0 0.11269290 1.0 0.0061 1.1341 185.6

The evaluation of the transformed basis functions Hry can be done by using the
definition (2.8). Although the piecewise linear basis functions ¢, have local support, the
transformed basis functions Hry, are global (see Figure 2.1), and therefore the stiffness
matrix K, is dense. As in the case of the hypersingular boundary integral operator, one
may use different techniques such as adaptive cross approximation [33] to accelerate the
computations, but this is far beyond the scope of this contribution; see Remark 3.6.

Instead of the initial value problem (2.1), for u > 0, we consider the first-order ordinary
differential equation

(2.16) Opu(t) + pu(t) = f(t) fort € (0,7), wu(0)=0,

and the related variational formulation to find v € H, é / ?(0,T) such that

217 (Osu, Hrv)0,1) + 1w, HTv) L2001y = (f, H1v) (0,1 forall v € Hé’/Q(O, T),
where f € [H’lo/2 (0,7)] is given. When combining (2.9) and (2.10), this gives

(Orv, Hrv)(o,1) + (v, Hrv)r2(0,1) = (000, Hrv)0,7) = ||U||§{1/z(0 -
0, s

forall v € Hé / 2(O7 T), i.e., the bilinear form of the variational problem (2.17) is bounded
and elliptic, implying unique solvability of (2.17). For the solution u € H&/ 2(0, T) of the
variational problem (2.17), we have

||UH12,{3/2(0,T) = (Owu, Hru)(o,1) < (O, Hrw)(o,1) + pluw, Hrw) 20,1

= <f7 HTu>(0,T) < ||f||[H}O/2(O,T)]’ ”HTUHH}O/Q(O,T)v
implying

(2.18) Hu”H&”(QT} < ||f||[H}O/2(O,T)]’ :
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FIG. 2.1. Transformed basis functions Hreg, k=1,...,N, N = 4.

For the analysis of the heat equation, we also need to have appropriate estimates for the
solution v in L2(0,T).

LEMMA 2.11. Let u € H&ﬂ (0,T) be the unique solution of the variational prob-
lem (2.17), where f € [H,IO/Z(O,T)]’ is given. Then,

T & 7
(2.19) ull? <5 : ’
liliom <5 2 Gy
where
_ 2 m t
fr= T<fawk>(0,T)v wy(t) = cos <(2+kW)T) :

Proof. Let (fn)nen C L2(0,T) be a sequence with lim | f — an[Hl/Q 0. We
n—oo

Jomy T
write f,, € L?(0,T) as
= m t
fa(t) = kzzofn’k cos ((2 + kﬂ') T) ,

ok = ;/OT fn(t) cos <(72T + lm) ;) dt .
1/2

Let u, € Hy' (0, T") be the weak solution of the differential equation (2.16) with right-hand
side f,. It follows analogously to (2.18) that

(2.20)

e = wnllgy 20,2y < 1F = Falliryyzo myy
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and therefore u,, — u in H&/Q(O, T) and u,, — win L?(0,T) as n — oc.
Because of f,, € L?(0,T) and using (2.20), we have the representation

t 0 t
Un(t) = / D (s)ds = > Fk / ! cos(ags) dse M
0 k=0 0
o0 7’”‘ 1
:Z@;ﬁﬁﬁwm%ﬂ+mwm@—w“i @ = (5 + 7).

and we obtain, when computing all integrals, that
—2

-2 — 2
TOO fnk 1 —ouT > fnk TOO fnk
lunllZ20m) = 5 L = suft e 7] ) <= ho
L20.1) 2kz=0u2+ai 2 kZ:O;LQJraﬁ 2;:0/12+a£

So, the assertion follows as n — oo. O
REMARK 2.12. From (2.19), we immediately conclude the estimate

T3 X/ -2_9
luleory < 5 D (5 +km) Fi = U Ius oy -

Moreover, when we assume f € L?(0,T), inequality (2.19) gives

T -2 1 .
||U||%2(0,T) < QTLZ ka = p ||f\|%2(o,T)7 e, pllullzor) < Nfllzzo1)-
k=0

The Galerkin-Bubnov discretisation of (2.17) is to find u;, € V3, such that

(2.21) (Ogun, Hrvn) 2(0,7) + 1{un, Hrvn) r20,1) = (f, Hron)o,ry  forall v, € V.

As for the initial value problem (2.1), we have unique solvability of (2.21), but related a priori
error estimates depend on p in general, requiring a sufficient small mesh size h to ensure
convergence for large .

REMARK 2.13. Instead of the Galerkin-Bubnov variational formulation (2.17), we may

also consider the Galerkin-Petrov formulation to find u € H, 3 / 2(0, T)) such that

(2.22) (O, w) 0.1y + plu, w) 2oy = (frw)ory  forallw € Hy*(0,T),

where the ellipticity of (0;v, H1v) o, 1) +1{v, HTv) £2(0,1) implies a related stability estimate,
from which unique solvability of (2.22) follows.
For the finite element discretisation of the Galerkin-Petrov variational formulations (2.13)

and (2.22), we have to define a suitable test space W), C H ,10/ 2(O, T). A first choice is to use

Wy, == S0, T)NH ’10/ 2(0, T'). Although the discrete systems are always uniquely solvable
since the stiffness matrices are regular lower triangular, the resulting scheme is never stable
when considering (2.16). The construction of a more suitable test space is, in particular when
considering partial differential equations such as the heat equation, more challenging.

3. The heat equation. As model problem for a parabolic partial differential equation,
we consider the Dirichlet problem for the heat equation,
Opu(z,t) — Agu(x,t) = f(x,t) for (z,t) € Q :=Q x (0,7),
3.1 u(z,t) = 0 for (z,t) € X:=T x (0,7),
u(z,0) = 0 for z € Q,
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where Q € RY, d = 1,2, 3, is a bounded domain with, for d = 2,3, Lipschitz boundary
I' = 99. To write down a variational formulation, we need to have suitable Sobolev spaces.
In addition to the eigenfunctions v (¢) and eigenvalues Ay as given in (2.5), we consider the
eigenfunctions ¢; € Hg () and the associated eigenvalues 1, i € N, of the spatial Dirichlet
eigenvalue problem

—Npp=pp inQ,  ¢=0 onl,  [¢]r2a =1

Recall that the eigenfunctions ¢; form an orthonormal basis in L?(2) and an orthogonal basis
in H{ (). In addition, we have

O<pp Spe<pus<... and pu; 00 as — o0.

Therefore, for a function u € L?(Q), we find the representation

3.2 u(x,) Z Z s Uk ( Z Ui (t U;(t) = Z ;1 VK ()
k=0

i=1 k=0

with the coefficients

Ui = 2/T/ u(zx, t)vg(t)di(x) dedt
2 / sm( +k7r)T> /Q (e, )bs(x) dad.

Note that we have

|U||L2 ZHU”LQOT) ZZ

and

3

Wl g = Y (10Tl 0.2 + all Uil 0.1

i=1
Z [ (72T+/€7r)2+,ui] uf’k
k=0

This motivates to define the norm, for v € H'(Q) with u(-,0) = ujs; = 0,

i=1

[e.°]

2 2 2
! = Uil illUs
Il = 22 100y + el

i=
THK[1 ym 9
NGRS
and to introduce the anisotropic Sobolev space

Hy2(Q) 1= {u € L2(Q): ull a7z g, < o0}
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Note that H;; 1/2(Q) = 1/2(0, T; L?(Q)) N L?(0,T; H}(Q)). Analogously, we introduce
Hy'$%(Q) = HY?(0,T; L*()) N L?(0, T; Hy (52)), which is equipped with the norm

0;,0
T 1 /m
2 —2
1,1/2 == 7T *+k7)+/£i i k>

and
Wi = —/ cos< +k7r> >/w(ac,t)¢i(ac)dxdt.
T) Ja
LEMMA 3.1. For the dual norm of f € [H, Hy; 1/Q(Q)}’, we have
T ([1yn e
2 4 iy _ :
gy =3 o2 |7 (5 +4m) + ] T
i=1 k=0
with

?z E= <fa wk¢1>

Proof. First, from the norm definition, using a series representation of w € H,/ ! 1/ 2(Q),
and with Holder’s inequality, we have

w
Iy sup W
O;éweHl’l/z(Q) WlaL2(Q)

SN winlf,wedi)g
k=

=1

.

== su

OyéweHll/z(Q) T~ [1 7 v
(222[ (2+kﬁ)+m]w3k>

=1 k=0

1=1 k=0
ie.,
TS /7 R
||f||[H1 1/2(Q)]/ =9 ;];){T (2 +k7r>+,ul:| f?,,k:
The lower estimate follows as in the proof of Lemma 2.1; we skip the details. a

According to the previous sections, we consider the variational formulation of (3.1) to
find u € Hy,/*(Q) such that

(3.3) <8tu, ’U>Q + <VIU, Vzv>L2(Q) = <f, ’U>Q


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

172 O. STEINBACH AND M. ZANK

is satisfied for all v € H1 1/2(Q) where f € [H, H,; 1/2(62)]’ is given, and (-, -) denotes the
duality pairing as the extensmn of the inner product in L?(Q). For the following result, see
also [4, Lemma 2.8], [27, 28], and [35, Corollary 3.9].
THEOREM 3.2. The variational formulation (3.3) implies an isomorphism
1,1/2 1,1/2
£: Hop*(Q) — [Hyg*(Q)
satisfying

(3.4) lll 1,172 < 2 I1Lull forallu € Hyy*(Q).

1 1/2 Q)],

Proof. For the solution u of the variational problem (3.3), we use the ansatz (3.2), where
U, € Hy 1/ 2 (0,T) are unknown functions to be determined. When choosing as test function

v(z,t) =V (t)¢;(z)forafixedj € NwithV € H}O/Z((), T), the variational formulation (3.3)
leads to find U; € Hy/?(0,T) such that

(3.5) (0:U;, Vo) + 15(Us, Ve 0,0y = (f, Vdj)a

is satisfied for all V' € H j(0,T). It holds true that

/ T
‘<fa V¢j>Q| < Hf”[Hé;%?(Q)]/”Vd)j”Hé;,lé?(Q) </l +\7@ Hj ||f|‘[Hé:’}(§2(Q)]’”V”H‘loﬂ(O,T)

forall V€ HY/*(0,T), and so (f;, V)or) := (f,V;)o fulfils f; € [HY*(0,T)]'. The
unique solvability of (3.5) follows analogously as for (2.16). So, for every j € N, we have a
unique solution U; € H, é / 2(0, T') of the variational formulation (3.5) satisfying

= (0:U;, HrUj)o,m)

<0 U;, HrUj) o,y + 15U HrUj) r2(0,1)

= (f,0;HrUj)q

1Vil372 0.2

For M € N, we define

M
un(z,t) = > Uj(t) s (),
j=1
and we conclude that

M M
HuM”iIé/z(O,T;LQ(Q)) = Z ”UJ”iIé/z(O T) Z f? ¢jHTU

' j=1 ' j=1

= <fv HTUM>Q

<
—= HfH[H;;’,lU/z(Q)]’ HHTUMHH(%;}OM(Q)
= g2 oy llenll g g2y -

Hence, using (2.19) for

Tir = 2 <fzawk>(0 T) <fa Piwk)Q,

)
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we obtain

||UMHL2(0 T;HY(Q) — ZMHU HL2(0 T)

=1
M oo
T M —2
<< p fik
M oo 1
<T — 2||f|| 11
- 1/m zk— /2 ,
;;:;M*?(é”) o
where we have used
b 2
@< ot = for0 < a,beR.

a?+b = L(a+b)? a+b
With this, we have
2 2 2
||UMHH3;011/2(Q) = ||UM||H01)/2(0,T;L2(Q)) + ||U‘MHL2(O,T;H6(Q))
2
S Wz oy a2 gy + 21 g e g
and therefore
||UMHH;;’&/2(Q) <2 ||f||[Hé,'10/2(Q)]’

follows for all M € N. The last inequality yields the bound

M

2 _ . 112 X 12
Il o) = Mhinoo; [”UZ”H;P(O,T) + 1illUillz20,7)
<417

= lim ||uMH21,1/2 00,
M— o0 ;

n Hy,?(Q) [Hy; 1/2(@]/

and thus, u € HS;&N(Q) with lim /o0 ups = win H1 1/2(62).

The existence of a solution of the variational formulation (3.3) is proven by inserting
the constructed function u into the variational formulation (3.3) and using the approximating
sequence (ups)aren- The uniqueness of a solution of the variational formulation (3.3) is a
consequence of the uniqueness of the coefficient functions U;. a

COROLLARY 3.3. As a direct consequence of (3.4), we zmmedlately conclude the stability
estimate

<8tu, UJ>Q + <V1’LL, wa>L2 Q)

1
(3.6) = ||| 112 sup
2 M@ = 0£weHY | *(Q) el 2@

Sforallu € H1 1/Q(Q).
The variational formulation (3.3) is equivalent to find u € H; ! 1/ 2(Q) such that

3.7 (Oru, Hrv) g + (Vou, Vo Hrv) 12(g) = (f, HTU>Q

is satisfied for all v € H&;é,/ 2 (@), where the operator H acts only on the time variable ¢. The
stability estimate (3.6) implies the stability estimate

< sup OmHtrvie t{Vou VoHro)ixg

0£vEHE2(Q) 1ol

5 ”uHHé;(}’m(Q)
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forall u € H, é;(},/ %(Q), and therefore unique solvability of the variational formulation (3.7)

follows.
When using some conforming space-time finite element space V;, = span{¢y }L, C

Hé;’é,/ 2 (@), the Galerkin variational formulation of (3.7) is to find uj, € V}, such that

(3.8) (Orun, Hrvn) 12(Q) + (Vatn, VaHrvn) 12(@) = (f, Hrvn)q

is satisfied for all v, € V},, which is equivalent to the linear system of algebraic equations,
Kpu = f. The stiffness matrix is given as K}, = A, + By, with

Apll, k] = (Ocdr, Hrde) 12(0),  Bull k] = (Vadr, VoHrde) 12(Q), kL =1,..., M.

Note that A, is symmetric and positive definite, while in general, By, is not symmetric but
positive definite and ill-conditioned. Hence, K}, is positive definite, and unique solvability
of (3.8) follows for any conforming choice of the space-time basis functions ¢;. However,
to perform the temporal transformation # easily and to be able to present an a priori error
analysis, here we will consider a space-time tensor-product finite element space only.

Let Wy, = span{¢;}}12 < HJ(2) be some spatial finite element space, e.g., of piece-
wise linear or bilinear continuous basis functions v;, which are defined with respect to
some admissible and globally quasi-uniform finite element mesh with mesh size h,. As
before, Vi, = S;,(0,T) N H&/Q(O, T) = span{ipy } 2", is the space of piecewise linear func-
tions, which are defined with respect to some globally quasi-uniform finite element mesh
with mesh size h;. Hence, we introduce the tensor-product space-time finite element space
Vy, = Whm ® Vh,,-

Foragivenv € Hé/Z(O, T; L?(9)), we define the Hé’/2-pr0jecti0n Q}fv € L2(Q)®V,,
as the unique solution of the variational problem '

<8tQ,11{21)7 'HTU}H >L2(Q) = <8tv7 HTU;H >Q

for all vy, € L?(2) ® V4,. Moreover, for v € L%(0,T; H}(12)), we define the H}-projection
Qv € Wy, ® L*(0,T) as the unique solution of the variational problem

T T
/ / V@, v(2,t) - Vavp, (z,t) dodt = / / Vav(x,t) - Vyop, (z,t) de dt
o Jo 0o Jo

for all v,, € Wy, ® L?(0,T). It turns out that Q}ILZ 2Q}sz € V), is well-defined when

assuming dyv € L2(0,T; H} () and Vv € H&/Q(O, T; L*(9)), respectively, and that the
projection operators Q,ll{ %, Q}lm and partial derivatives 0;, V, commute in space and time [45].

THEOREM 3.4. Let u € Hé;’é’/Q (Q) and uy, € V}, be the unique solutions of the varia-
tional problems (3.7) and (3.8), respectively. If u is sufficiently regular and the spatial domain
Q is assumed to be either convex or has a smooth boundary T, then there hold true the error
estimates

3/2
= unll 220,z < 1l oz + e2h* ol a2 o2 ey
(3.9) +Ci’)himhmHatvmu”L"’(Q) + C4h?/2|‘atAmuHL2(Q)
and

lu —unllr2 Q) < C1h?||u\|H2(o,T;L2(Q)) + C2hi‘|u”L2(0,T;H2(Q)) + c3hihe||0:V ul| 12(g)

(3.10) +eah2 |0vull L2 0,112 () + eshi | Acull m20,:02(0) -
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Proof. With the norm representation in H, / 2(0,T; L2(12)), the positivity (2.10), and
the Galerkin orthogonality of the variational formulations (3.7) and (3.8), we have for

vy = Q}l{ 2Q}lapu € Vy, using the definitions of the projections Q,ll{ % and @}, and integration
by parts spatially,

lun = Q2 Qi ull 2 gy = (Oelem = Q7 Qi) Mo (un = Q@i w)e

< (Du(un — Q)7 Q}, u), He(un — Q3°Q} u))g
H(Valun — Q2 Qh ), VoHr (un — Q1Qh w)r2(0)

= (0w — Q) Q} w), Hr(un — Q,/°Q} w)g
+H(Va(u— 1/2Qh u), Vo Hr (un —th Qh u))12(Q)

= ((u— Q} u), Hr(un — Q°Q} w))q
H(Va(u — Q) %u), VoHr (un — Q) Q) w)r2(q)

G.11) = (9,(u— Qb u), Hr(un — Q Qb u))g

— (Ao (u — Q%) o (un — Q12 QL w)a

1/2
[l — Q%Lzu||H1/2(O,T~L2(Q )”uh @y / Qh, uHHl/Q(OTL2(Q))

IN

1/2 1/2
1A (= Q1P a2 2y 1o — @t Qg2 20 1120
ie.,

1/2
l|un — Q / Qllzzu|‘Hé7/2(07T;L2(gz))

1/2
< lu— Q/llzu||H3{2(0,T;L2(Q)) + | Ay (u — Qh{ u)||[H10/2(0,T;L2(Q))]/ .

Hence, we have

lu— “hHHl/Q(o T;L2(2))

1/2 1/2
< Hu - Q / Q}lzwuHHé’/z(oyT;Lz(Q)) + ||Uh - Qh{ Qim”“Hé?(O,T;lﬂ(Q))
1/2
< Jlu— Q12 @hull g1/ 2 ge)
1 2
Hllu = Q@ ull a2 0 7,2 0y) 18 (1 = Q12w 41720 13
<

1/2
lu = Q1 ull 72 0 20y + 1w = Qhtllgar2 71200

1/2
+||<I Q / )(U_Q]]:LI'U/)”HI/2(OT_L2(Q))
1/2
+||U Qh U||H1/2(0 T;L2(Q)) + ||A (u - Q / )H 1/2 (0,T;L2(Q))]"

and the energy error estimate (3.9) follows from standard error estimates for the involved
projection operators.
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With a Poincaré-Friedrichs-type inequality and relation (3.11), we also have

1 1/2 A1 2 1/2 ~1 2
E ||uh - Q}“ thu”L2(Q) S Huh - th Qhwu”Hol’/z(O,T;Lz(Q))

< {O¢(u— Q}Lw w), Hr(up — Q}L?Q}Lm u))q
—(Ay(u— ,Zzu), Hr(up — Q}L{QQ}%“»L?(Q)
< 0 = Qh, 2@ lun — Q1 Qh ull2(o)
1AL (= Q1) |2y lun — Q1 2Qh, ull L2 ()

which implies

1/2 1/2
lun — Q Qb ullr2(0) < lld(u— Q. w)llrz(o) + ¢ [Au(u — Q) *u) || 12(0)-
Therefore

2 2
lu = unllz2) < llu— Q@) ull 2oy + lun — Q1 Qh ullr2(q)

1/2 1/2

< lu-— Qh{ Qn, ullr2(@) + cllOe(u — Qh u)llL2(g) + | Ag(u — th ullz2(@)
1/2 1/2

< Jlu— Qi ullzag) + Ilu = @bl + 11 (1 = @47 (u = @h.u) 2oy

1/2
+e[0n(u — Qb w)l|2(Q) + ¢ 1 Aa(u — Q2w L2(q)-

Finally, (3.10) follows again from standard error estimates for the projection operators. 0

As a numerical example, we consider the solution u(z,t) = sin (2Ft) sin (7z) for
(x,t) € Q with Q := (0,1) x (0, 2). For a uniform discretisation of the Galerkin variational
formulation (3.8) with the tensor-product space-time finite element space V, = Wj, @ V4,
we use the mesh sizes h, = 1/M, and hy = 2/N; with M, = N; = 27,5 =1,...,8. Since
the solution v is smooth, we expect second-order convergence in LQ(Q) (see (3.10)) and
first-order convergence in H'(QQ). Note that the latter follows by standard arguments when
using the H'(Q)-projection and an inverse inequality. The predicted convergence orders are
confirmed by the numerical results given in Table 3.1. There, we also present numerical results
for the spectral condition number of the discretised system, which behaves asymptotically as
h, 2, as expected.

TABLE 3.1
Convergence rates of the Galerkin-Bubnov formulation (3.8).
M, Ny dof ha he llu —wupllrz eoc |u—wup|lgr eoc ko(Kp)
2 2 05000 1.0000 0.9108053 - 4.48437 - 2.5
4 12 0.2500 0.5000 0.1577439 25 1.89083 1.2 19.8
8 56 0.1250 0.2500 0.0293609 24 0.84239 1.2 63.3

16 240 0.0625 0.1250 0.0068950 2.1 0.41496 1.0 170.9
32 992 0.0312 0.0625 0.0016957 2.0 0.20679 1.0 484.0
64 4032 0.0156 0.0312 0.0004220 2.0 0.10331 1.0 1691.4
128 16256 0.0078 0.0156  0.0001054 2.0 0.05165 1.0 66233
256 65280 0.0039 0.0078  0.0000263 2.0 0.02582 1.0 263559
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REMARK 3.5. Numerical results [45] indicate that the stability constant cg of the discrete
inf-sup condition

(Orun, Hron)r2(Q) + (Vatn, VaHron) 12(Q)

cs ||u , < su
slunllpgpreg) < sup lonllg1.1/2g

for all up, € V), is mesh dependent, i.e., cs = O(max{hy, h,}). However, it seems to be
possible to derive almost optimal energy error estimates also in this case. Since this is far
beyond the scope of this paper, this will be discussed elsewhere.

REMARK 3.6. The use of tensor-product approximations allows the implementation of the
transformation H by the series representation (2.8). Based on the kernel representation (2.11),
one can derive alternative representations [39] for the bilinear forms including Hr, e.g.,

/OT /Q Opu(x, t)(Hrv)(x,t) de dt

1 r T t t—
:7;/9/0 8tu(9:,t)/0 In {tan W(Z; )tan 7r|4Ts| Opv(z, s)dsdtdx ,

which admits not only the use of hierarchical matrices for acceleration but can also be used for
more general space-time finite element meshes.

4. Second-order ordinary differential equations. As in (2.1), we consider the initial
value problem

4.1) Onu(t) = f(t) fort € (0,7), wu(0)= du(0)=0.
When multiplying the differential equation with a test function w satisfying w(7") = 0,

integrating over (0, T"), and applying integration by parts once, this results in the variational
formulation to find u € Hy (0,T) such that

T
(4.2) - /O Ou(t)dyw(t) di = (f, w)o,r)

is satisfied for all w € H,(0,T), where f € [H{(0,T)]" is given. Note that the initial
condition %(0) = 0 is considered in the strong sense, whereas the initial condition 9;u(0) = 0
is incorporated in the variational formulation. The bilinear form

T
a(u,w) == —/ Opu(t)Opw(t) dt for u € H&(O, T), we H)lo(O,T)
0

is obviously bounded, and therefore it remains to establish some stability or ellipticity estimate
to ensure unique solvability of the variational formulation (4.2). For this, we use the concept
of an optimal test function; see Remark 2.2. It turns out that for u € H 3) (0,T), we can define

the transformation Hpu € H(0,T),
4.3) (Hru)(t) :== u(T) — u(t), te(0,T).
The operator Hr, as defined in (4.3), is obviously norm preserving satisfying

[Hrullim, o = lullm o) forall ue Hy (0,T),
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and for u,v € H017 (0,T), there holds true the symmetry relation

T
a(u, Hrv) = a(v, Hru) = /0 Opu(t) Opu(t) dt,

which also implies ellipticity,
a(u, Hru) = ||8tu||2L2(o,T) forall u € Hj (0, 7).

Howeyver, the form
o T
(u, Hru) 20,1y = / w(t) [u(T) — u(t)] dt
0

is indefinite, i.e., a result as (2.10) for the transformation 7 does not hold true for Hr.

For a finite element discretisation of the variational formulation (4.2), we use the same
notations as in Section 2. In particular, we have to find u, € Vj, := S}(0,T) N Hj (0,7T)
such that

(4.4) —(Oyun, O Hron)r20,r) = (fs Hoon)o,ry  forall vy € V.

As before, we have unique solvability of (4.4), and the a priori error estimate (2.15) remains
valid, where for o = 1, this corresponds to the energy error estimate, while for o = 0, we
have to apply a Nitsche-type argument.

For the numerical example, we consider the solution u(t) = sin® (2nt), for t € (0,T),
with 7' = 2. The numerical results are given in Table 4.1, where we observe optimal order of
convergence as predicted.

TABLE 4.1
Numerical results for the Galerkin-Bubnov formulation (4.4).

N fu—unlze eoc [|Ox(u—un)lre e0c Amin(Kn) Amax(Kn) #2(Kn)

4 0.49700 - 3.4650 - 0.2412 7.1 29

8 0.16170 1.6 2.0880 0.7 0.1362 15.5 114
16 0.04307 1.9 1.0950 0.9 0.0724 31.7 438
32 0.01094 2.0 0.5542 1.0 0.0374 63.9 1709
64 0.00275 2.0 0.2780 1.0 0.0189 127.9 6741
128 0.00069 2.0 0.1391 1.0 0.0095 256.0 26765
256 0.00017 2.0 0.0696 1.0 0.0048 512.0 106655

The stiffness matrix of the Galerkin-Bubnov finite element formulation (4.4) is symmetric
and positive definite, and its spectral behaviour is as known for finite element discretisations of
second-order partial differential equations. Moreover, due to (4.3), we have for the piecewise
linear basis functions ¢, € Hg (0,T),k=1,...,N,

(Hrow)(t) = —or(t) fork=1,...,N —1,

and

o 1 fort € [O,t]v_l],
(Hron)(t) = T—t

e fort € (tny—1,T
T*tN_l or G(N 1 ]a
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and hence

4.5) HrVi, = span{pp g

Instead of (4.1), for ;1 = v? > 0, we consider the second-order ordinary differential equation
(4.6) Opu(t) + pu(t) = f(t) fort € (0,7), u(0) = dyu(0) = 0,

and the variational formulation to find u € Hg (0, T) such that
4.7

a(u, Flgv) == — / Oyu(t)0, (Flrv) (£) dt + / u(t) (Fro) (t) dt = (. FHro)o.r

is satisfied for all v € Hj (0,T), where f € [H,(0,T)]" is given.
THEOREM 4.1. For given f € [H},(0,T)], the variational formulation (4.7) admits a
unique solution u € H&_’(O7 T) satisfying

el a2 0.7y < ¢ f iy 0,y

Proof. By using the Riesz representation theorem, we rewrite the variational problem (4.7)
as an operator equation

Au + pCu = f,
where A: Hj (0,T) — [Hg (0,T)]', defined via
(Au,v) = —(8tu,8tﬁTv>Lz(0,T) for u,v € H&(O,T)7
is elliptic, and hence invertible, and C: Hg (0, T) — [H; (0,T)]’, defined via
(Cu,v) = <u,gTv>Lz(0’T) for u,v € H&(O,T)7
is compact. Hence, we can apply the Fredholm alternative, and it remains to ensure the
injectivity of A + uC. Let u € Hj (0,T) be a solution of the homogeneous equation
(A+ puCu=0,ie.,
(Byu, Byw) 20,7y = plu, w) 20y  forallw € H(0,T).
This is the weak formulation of the eigenvalue problem
—Ou(t) = pu(t) fort € (0,7), wu(0)=du(0)=0,

which only admits the trivial solution u = 0. 0

While the result of Theorem 4.1 ensures unique solvability of the variational formula-
tion (4.7), it does not include an explicit dependence on the parameter . Hence, we will
provide a stability estimate from which we can conclude such a result.

LEMMA 4.2. Foru € H& (0,T) there holds true the stability estimate

a(u,v
(48) ||3tu||L2(0,T) < sup ( )

24+ vT 0#£vEH Y, (0,T) ||atv||L2(o,T) '
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Proof. For given u € H; (0,T) and suitable chosen w € H%(0,T), we consider the test
function v := Hpu +w € H(0,T). Then,

a(u,v) = — /0 ()0 [—u(t) + w(t)] dt + 1 /O w(®[u(T) — u(t) + w(t)] dt

T T T
- / Ou(t)]? dt — / () (t) dt + i / w(®)[u(T) — u(t) + w(t)] dt
0 0 0
_ / () dt - u(t)atw(t)‘T + / () Ow(t) dt
0 0 0
T
+p /0 W) [u(T) = u(t) + w(t)] d
- /0 ()] dt — u(T)0w(T)
T
+ A ut)[Bue(t) + 1 (w(T) = u(t) +w(t)) | at
_ / () dt,
0
if
Opw(t) + pw(t) = plu(t) —u(T)] fort e (0,T), w(T) = 0w(T) =0

2

is satisfied. Using 1 = v~, we obtain

w(t)=v ! sin (v(s —1t)) [u(s) — u(T)] ds,
[ s fete=0)

and therefore,

dpw(t) = —1° /t " cos (l/(s - t)) [u(s) — u(T)] ds

T

= —vsin <V(S — t)) [u(t) — u(T)]‘ +v /tT sin (V(s — t)) Osu(s) ds

=v /tT sin (1/(5 - t)) Osu(s)ds

follows. Further, with

t

[Byw(t)]? = 12 [/tT sin (l/(s — t)) Osu(s) ds]
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we conclude that

/OT[atw(t)]th < 12 /OT /tT sin? (V(s —t)) ds dt /()T[atu(,g)}2 dt

1cos?(vT) — 1+ 272 [T
=12 1 ( )V2 / [Opu(t)]? dt
0

1

T
Lo / (b)) dt,
4 0

IN

ie.,
[0sw]| 20,1y < %VT [[0sull L2 (0,1 -
Finally, with this, we have
10wl L2 0,1y = |0sw — Opull £2(0,1)
< lowlsoan + 10l rory < (14 307 ) ol

and therefore,

||5tUHL2(0,T) ||3tv||L2(o,T)

2
a(u,v) = [|0yul| 320 1) > T

follows, which implies the stability condition as stated. a

While Theorem 4.1 implies unique solvability of the variational formulation (4.7), we can
use the stability condition (4.8) to obtain a bound for the solution u, which explicitely depends
on v.

COROLLARY 4.3. For the unique solution u € H&(O, T) of the variational formula-
tion (4.7), there holds true that

1
@9) forulizor < (14 307 Iy

REMARK 4.4. We consider the initial value problem (4.6) for f(t) = sin(vt) with the
solution

u(t) = ﬁ [sin(ut) — vt cos(ut)}7 Opu(t) = %tsin(ut).

For this, we compute
2 L1, ama 22 -
|0¢ull 72007y = 185 {21/ T° 4+ 3vT — 6v=T cos(vT) sin(vT)
: v

—6vT cos®(vT') + 3 cos(vT) sin(vT)

as v — oo. On the other hand, we determine w € H}O(O, T) as unique solution of the
boundary value problem

—Ouw(t) = f(t) forte (0,T), Ow(0) =w(T) =0,
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ie.,
1
Ow(t) = — [cos(ut) - 1} .
1%

Hence, we compute

N |
Tw‘%

11 . .
Hf||[2H}0(0,T)]’ = ||8tw||2L2(07T) =35 [SVT + cos(vT) sin(vT) — 4sin(vT)| ~

as v — oo. In particular, we have

[0ullL20,m) T

1
1f ey 0,y 6

as v — oo, which shows that the estimate (4.9) is sharp with respect to the order of v and T',
respectively.

While for f € [H,(0,T)]’, the bound (4.9) exhibits an explicit dependence on v = /1,
we can prove an estimate independent of ;1 when assuming f € L?(0,T).

LEMMA 4.5. For given f € L*(0,T), the unique solution u € H; (0,T) satisfies

1

(4.10) ||U||§{5,(0,T) +pllullz 0.y < §T2 1172 0,m) -

Proof. For the solution v and its first-order derivative, we find the representations

u(t) = 1 /Ot sin (u(t - s)) f(s)ds

v

and

Opu(t) = tcos v(t—s)) f(s)ds.
0

Hence, we compute
Bru(t)]? + v2 [u(t))? = Uot cos (V(t - s)) £(s) dsr + [/Ot sin (u(t - s)) £(s) dsr

< /Otcos2 (u(ts))ds/ot[f(s)}2d5+/0tsin2 (V(ts)>ds/0t[f(s)}2ds
=i [eras<i [ e

and therefore we obtain

T
Il o+ Welscomy = | {00+ttt }ar
T T 2 1 2 2
< [ ra [ eRds =5 1 - O

REMARK 4.6. As in Remark 4.4, we consider problem (4.6) for f(t) = sin(vt) with the
solution u(t) and its derivative d,u(t) = 1tsin(vt), ie.,
11

1 .
1orulleor = 5T IfI30m) = 55 [vT = cosT) sin(uT)] =

T.

N | =
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Hence, we conclude

HatuHQ]ﬂ(o,T) 1,5
—_—— = =17,
MPagn 12

i.e., the estimate (4.10) is sharp with respect to the order of T'.
The Galerkin-Bubnov finite element formulation of the equivalent variational formula-
tion (4.7) is to find uy, € Vi, := S4(0,T) N Hg (0, T) such that

4.11) a(up, Hron) = —(Opun, OHrvn) r2(0,1) + 1w, Hrvn) 2.y = (f, Hrow) o,

is satisfied for all v;, € V},. Unique solvability and related error estimates follow as for the
numerical solution of elliptic operator equations with compact perturbations, which is based
on a discrete stability condition.

THEOREM 4.7. Let

2v/3
4.12 h< — ———
12 = @+ Jalul

be satisfied. Then, the bilinear form a(-,-) as defined in (4.7) satisfies the stability condition
(4.13) _
4 a(u, Hrop)

Ovup || 2 < sup o/
(24 /pT)?(2 4 pT) 1vunllz=o.m) ovneVi, 10evnllLz(0,7)

for all up, € Vy,.

Proof. For uy, € Vj,, we define w € Hj (0,T) as the unique solution of the variational
problem

T T
@.14) — / Oy ()9 () (t) dt = —p / un(t) (o) (t) dt forall v € H} (0,T),
0 0

ie.,w e Hj (0,T) is the weak solution of the initial value problem
Opw(t) = —pup(t) fort e (0,T), w(0) = dyw(0) = 0.

Then, by using (Hrv)(t) = v(T) — v(t),
— T —_ —
a(up, Hr(up —w)) = —/0 Opup ()0 (Hrup)(t) — (Hrw)(t)] dt

u / an(O[(Frun)(t) — (Fpw) (1) dt
T T
— | Buun(®)[Brun(t) — By (D) dt — | Bw(t)[Brun(t) — dpw(?)] dt

0 0

:/O [Opup, (t) — Opw(t)])* dt .

In addition, let z € H&ﬁ (0, T) be the unique solution of the variational formulation such that
(4.15)

T - T 7 T .
- / 8,2(1), (Hrv)(t) dt = — / O (1) 0y (o) () dt + pu / un (t) (Hoo) (t) dt
0 0 0
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is satisfied for all v € H& (0,T). With (4.14) this is equivalent to

- /T O¢[2(t) — (un(t) — w(t)]0:(Hrv)(t) dt =0 forall v € H&)(O, T),
0

from which we conclude, recalling u,(0) = w(0) = z(0) = 0, that
2(t) = un(t) —w(t),
i.e., we have
a(un, Hr (un — w)) = 1021|720, 7-
On the other hand, the variational formulation (4.15) gives

Ol = S Frd) o, alun Hro)
, ||8tZ||L2(O,T) - 0£veHL (0,T) ||atv||L2(07T)

(0r2,04v) 12 0,7
= sup Toolae ©1 < |02 L2 (0,75
ozvent (0,1  N0wllL20,m)
ie.,

a(up, Hrv)

||8tZHL2((),T) = Sup HatUhHL?(o,T)

ozven (0,1 10020y — 24T

when using (4.8). With this, we conclude

4

a(up, Hr(up — w)) > m

||‘9tuhH2L2(o,T)-
According to (4.14), we define wy, € V}, as the unique solution of
T T -
/ Dywn (H)dron (t) dt = —p / wun () (Hrvn) (B dt forall v, € V.
0 0
Then, there holds true the Galerkin orthogonality
T
/ [Orw(t) — Opwp ()] Opup(t) dt =0 for all vy, € Vy,
0
and by using Céa’s lemma and standard interpolation error estimates, the error estimate
|0iw — Oywn 20,0y < inf ||Ow — OpvnlL2(0,1)
v E€EVR
1 1
< 0w = Inw)|l 20,7y < 7 h[Owwl|L20,m) = 7 ph[un L2 0,m)

follows. With this, we have

B T T
a(up, Hr(w —wp)) = /0 Oyun (8)0 (w(t) — wy,(t)) dt + M/o up(8)(Hr(w — wp))(t) dt
T

:u/o up () (Hr(w — wy))(t) dt

< pllun |l 20,0 I Hr (w — wy)l L2 0,1)-


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

COERCIVE SPACE-TIME FEM 185

Next, we define ¢» € H (0,T) as the unique solution of the variational formulation

_ /0 Db ()0 (Fyw) (1) dt = /0 (i (w — wi)) () (o) () dt - forall v € HE(0,T),

i.e.,
Fup(t) = (Hr(w —wp))(t) fort € (0,T), P(0) = 9pp(t) =
In particular for v = w — wy, € Hy (0,T), we conclude

T

[Hr(w = wn)l 3201y = /0 (Ho(w —wp)) () (Hr(w — wy))(t) dt
/ 0 (£)0, (L (w — wn)) (1) dit
/ Db (1) [Onw(t) — Bywon (1) dt

/ QL(t) — T (DO (t) — Dpwn (8)] dt

10: (¥ IM/’)HL?(O )10 (w — wp)[ 20,7

IN

| /\

§h2 Hattw”L?(O,T)Hattw”L?(O,T)

1 _
g#h2 I Hr(w —wp)ll 220,7) |unll L2 0,1y

ie.,

— 1
[Hr(w —wn)|L20,7) < guh2HuhHL2(o,T)7

and therefore, by using uy, € H&, (0,7),

— 1 1
a(up, Hr(w —wp)) < 5 3 ph® ||Uh||L2(o ) < pPh*T? ||atuh||L2(o T)

follows. Hence, we conclude

aup, Hr(un —wn)) = alup, He(up, —w)) + alup, He(w — wy))
4 1 22 2
— T 5
(2 + JiT)? e pu*h [0sunlly (0,T)
2

> 7(2+\//7T)2 Hatuh||2L2(o,T)
if
L 900 2
ZuthATE S ——
6! = @2+ JuT)?
is satisfied, i.e.,
9 12
< .
= 2+ aD)%RT?
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Finally, we have
10 (un — wn)ll 220,17y < 0cunllL2(0,7) + [|0:wnll L2(0,1)
and

T T
18swnll72 0.y = 7/0 Oywn ()0 (Hrwn)(t) dt = *u/o up (t)(Hrwn)(t) dt

— 1
< pllunll 20,0 [ Hrwn || 20,1y < oHT 10sunl| 22 0,1 [|10cwhl L2 (0,7) 5

ie.,
1
10 (un, — wn)llz20,r) < | 1+ oHT 9cunllL20,1)-

This concludes the proof. 0
For any w € H; (0,7T), we define wy, = Grw € V, as the Galerkin projection satisfying

a(Grw, Hrop) = a(w, Hrvp) for all vy, € Vp,,

where the stability condition (4.13) implies

4 a(Gpw, Hrvp)

0:Grw|| 12 < sup o

(24 ET)?(2 4 pT) 19:Grvllzzo.z) ozunevi 10nl20,m)
a(w, Hrop)
sup —————
0F#vnp €V HatvhHLZ(O,T)

10swl| 20,1y [|0svn | L2 0,7y + wellwll L2 0,0y [ HronllL20,1)

IN

0AvLEVR ||3tvh||L2(0,T)

1
<1 + QMT) 10sw]| .2 0,7y,

IN

ie.,
1
10, Grw 20,1y < g<2 + T (2 + pT)?|| 0wl 20,y forallw € Hy (0,7).

So, we are in a position to state a convergence result for the finite element solution uy, of the
variational formulation (4.7).

THEOREM 4.8. Let u € H{ (0,T) and up, € Vi, C Hg (0,T) be the unique solutions
of the variational formulations (4.7) and (4.11), respectively. We assume v € H*(0,T), and
let (4.12) be satisfied. Then, there holds true the error estimate

1 1
4.16)  10c(u — un)lL2(0,7) < 7 [1 + §(2 + VET)* (2 + MT)Q} ROl L2 0,7)-

Proof. With uy, = Gpu and vy, = Gy, for all v, € V,, we have by Céa’s lemma,
[0:(w — un)llz20,1) < 10¢(w — vi)llL2(0.1) + [0:Gr(u — vu)l L2 (0,7)
1
< [1+ @+ VAD? @+ uD)?] 0u(u = vl 2o.m)

for all v, € V}, and the assertion follows from standard interpolation error estimates. O
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For the discretisation of the variational formulation (4.11), we use the same notation as in
Section 2 to find uy, € Vj, = span{¢y }4_, such that

T T T
(4.17) —/0 Opun(t)Orpe(1) dt+u/0 un(t)pe(t) dt:/o f()pe(t) dt =: f

is satisfied for all £ = 0,..., N — 1. Since we consider a uniform discretisation, the stiffness
matrix is given by

1 1
. -2 1 ) 4 1
K —-|1 -2 1 o |
e T s
1 -2 1 1 4 1
Obviously, we have unique solvability of (4.17) for all i independent of h.
REMARK 4.9. For / = 2,..., N — 1, we can write the finite element formulation (4.17)

as

1 1 2 2 1 1
4.1 — 4+ —uh - —puh — — — + —uh =
(4.18) (h+6u)ue 1+<3M h>ué+(h+6#)ue+1 fe,

which is a kind of a two-step method [18, Chapter III.2]. This method is zero-stable if and
only if the root condition [18, Chapter II1.3] is satisfied. For (4.18), we therefore obtain the
condition

(4.19) ph? < 12.

For the numerical example, we consider again the solution u(t) = sin® (37t) for
t € (0,T) with T = 2 and x = 10. The numerical results are given in Table 4.2, where
we observe linear convergence in the energy norm as predicted in (4.16) and second-order
convergence in L2(0, T), which can be proven when applying the Nitsche trick. In Table 4.3
we present the related numerical results for the case ¢ = 1000. We observe convergence
only when h is sufficiently small. According to (4.19), we note that \/12/u ~ 0.1095. So,
it remains open to improve assumption (4.12) to ensure the stability condition (4.13). On
the other hand, following [47], it is possible to derive and to analyse a stabilised variational
formulation for the initial value problem (4.6); see [38]. Using the L?-projection QY on
the finite element space SP (0, T') of piecewise constant functions, we may consider, instead
of (4.11), the perturbed variational problem to find w;, € S},(0,7) N Hj (0,T) such that

(4.20) —(0ytn, Dywn) r2(0,7) + 1{Un, Qhwr) 20,1y = (f, wn) 0,1

is satisfied for all wy, € S4(0,T) N H(0,T). The stability and error analysis of (4.20) is
based on a discrete inf-sup condition [38, Lemma 17.6], which then results in an optimal
energy error estimate [38, Theorem 17.1].

5. The wave equation. As model problem for a hyperbolic partial differential equation,
we consider the Dirichlet problem for the wave equation,

Opu(z,t) — Agu(x,t) = f(x,t) for (z,t) € Q :==Q x (0,7),
(5.1) u(z,t) 0 for (z,¢) € ¥ =T x (0,T),
u(z,0) = du(x,0) = 0 for z € Q,
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TABLE 4.2
Numerical results for the Galerkin-Petrov formulation (4.17), i = 10.

[¢]

N h lu —upllrz eoc ||0:(u—up)|rz eoc

4 0.5000000  5.3407e-01 - 3.5365e+00 -

8 0.2500000  1.7632¢-01 1.6 2.1021e+00 0.8

16 0.1250000  4.9649e-02 1.8 1.0979e+00 0.9
32 0.0625000  1.2804e-02 2.0 5.5462e-01 1.0
64 0.0312500 3.2263e-03 2.0 2.7800e-01 1.0
128 0.0156250  8.0816e-04 2.0 1.3909¢-01 1.0
256 0.0078125  2.0214e-04 2.0 6.9555e-02 1.0
512 0.0039062  5.0541e-05 2.0 3.4779¢-02 1.0
1024 0.0019531 1.2636e-05 2.0 1.7390e-02 1.0
2048 0.0009766  3.1589e-06 2.0 8.6948e-03 1.0
4096 0.0004883  7.8972e-07 2.0 4.3474e-03 1.0
8192  0.0002441 1.9737e-07 2.0 2.1737e-03 1.0

TABLE 4.3
Numerical results for the Galerkin-Petrov formulation (4.17), . = 1000.
N h llu—wup|lLz  eoc ||Op(u—up)lz  eoc
4 0.5000000 8.0288e+00 - 4.1323e+01 -

8 0.2500000 2.3961e+02 -4.9 2.4811e+03 -5.9
16 0.1250000 4.4282e+01 2.4 1.1065e+03 1.2
32 0.0625000  9.5909e-03 12.2 6.2095e-01 10.8

64 0.0312500 2.7371e-03 1.8 2.8953e-01 1.1
128 0.0156250  7.1356e-04 1.9 1.4072e-01 1.0
256 0.0078125  1.8124e-04 2.0 6.9765e-02 1.0
512 0.0039062  4.5486e-05 2.0 3.4805e-02 1.0

1024 0.0019531  1.1382e-05 2.0 1.7393e-02 1.0
2048 0.0009766  2.8463e-06 2.0 8.6952¢-03 1.0
4096 0.0004883  7.1162e-07 2.0 4.3474e-03 1.0
8192 0.0002441  1.7791e-07 2.0 2.1737e-03 1.0

where Q C R?, d = 1,2, 3, is a bounded domain with, for d = 2, 3, Lipschitz boundary

I' = 09Q. According to the previous sections, we consider the variational formulation of (5.1)
tofind u € Hyy (Q) == L*(0,T3 H}()) N H{ (0,T; L2(€2)) such that

(5.2) —<8tu, 8tv>L2(Q) + (Vmu, VIU>L2(Q) = <f7 v>L2(Q)

is satisfied for all v € Hé;’}O(Q) = L2(0,T; Hy(Q)) N H(0,T; L?(2)). Note that the
initial condition u(-,0) = 0 is considered in the strong sense, whereas the initial condition

.. . 1.1 R ..
du(-,0) = 0is incorporated in a weak sense. For u € Hy (Q), an appropriate norm is given
by

T
2 _ 2 2
Hu||Hé;&(Q)f/0 /Q“@tu(x,tﬂ + | Vou(z, t))?| da dt.
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As in [22], we state the following result on the unique solvability of the variational formula-
tion (5.2) when assuming f € L2(Q).

THEOREM 5.1. For f € L*(Q), there exists a unique solution u € H&’éy(Q) of the
variational formulation (5.2) satisfying

[l 2.2 7T||fHL2(Q)
o,o,(Q) f

Proof. When using the representation (3.2), any u € Hé;& (Q) can be written as

(5.3) ZZul KUk (1) i (2 ZU

i=1 k=0

where vy, (t) are the temporal eigenfunctions as given in (2.5), and ¢; () are the spatial L?(€2)-
orthonormal eigenfunctions of the Laplacian with homogeneous Dirichlet boundary conditions.
For the solution of the variational problem (5.2), we use the ansatz (5.3), where the functions
U; € H} 0,(0,T') are unknown functions to be determined. When choosing, for a fixed j € N,

v(z,t) = V(t)p;(x) with V € H{(0,T) as test function, the variational formulation (5.2)
results in finding U; € H{ (0,7) such that

/ U,V (1) dt + 1, /OTUj(t)V(t)dt:/OTfj(t)V(t)dt

is satisfied for all V € HY,(0,T), where

- / F(. ) (x)dx
Q

are the coefficients of the Fourier expansion

=2_i)#5()

From this, we conclude

1712y = // £, ) da dt = ZZ/ £ 050 dt [ outa)os(o

=1 j=1

0o T
= / P =S 16 B,
j=1 j=1
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and hence we obtain by using (4.10),
T
s o = | /"|@umaoﬁ+¢vxwx¢nﬂdxm
_ZZU U, dt/@ )¢ (x

+/OU dt/qul Vautj(z) da
= i [/OTOtUi(t)IQde /OTIUi(t)th}

= > (103l 0.2 + mallUl 20

IN

1 1
5T Z | fillZ20,m) = §T2 IflZ2q- D
=1

The variational formulation (5.2) is equivalent to finding u € Hé;’& (Q) such that
(5.4) —(Byu, O Hrv) 12(q) + (Vau, Vo Hrv) 12(0) = (f, Hrv) 12(0)

is satisfied for all v € HS;& (Q), where the transformation operator H7 acts only on the time
variable .

As in the case of the heat equation, we consider the tensor-product space-time finite
element space V), = W, @V}, C H&‘&(Q) with piecewise linear, continuous functions
Wi, = span{¢;} M= C H{(Q) and V3, = S4.(0,T) N Hg (0,T) = span{apk}gil. Then,
the Galerkin-Bubnov finite element discretisation of the variational formulation (5.4) is to find
up, € Vy, such that

(5.5) —(Oun, O Hrvn)r2(Q) + (Vatn, VaHron) r2() = (fs Hrvn)r2(q)
is satisfied for all v, € V). Recall that the transformation ﬁTng is realised by using (4.5).

Since we are using a tensor-product space-time finite element space V, = W}, ® Vj,, we can
write

Ny
Z Z Uy, k@k ’L/)z Z Uz h '(/Jz Uz,h(t) = Z Ui,k Pk (t)
k=1

k=1 i=1

By using

we can write the intermediate step of the semi-discretisation approach for solving (5.1) as

MypduU(t) + KpU(t) = f(t) forte (0,T),  U(0)=aU(0) =0,
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with the spatial finite element mass matrix M, the stiffness matrix K}, and the load vector
f(t),ie,fori,j=1,..., M,

Mylj il = /Q i () () da,
Knlj,i] = /Q Vo) - Vot () da,
£5(t) = /Q £, ) (2) d.

By using

My, = L,L}, Ay =L KL Ly T W =1L}

-
I
—~
~+
~
I
Sl
—
—~
~
~

we further obtain
attw(t) + Ahw(t) = Q(t) fort € (07 T)7 E(O) = 8tw(0) = Q

Since Ay, is symmetric and positive definite, we conclude the diagonal representation

T ' Mo
A = Vi Dp Vi, D, = dlag()\i(Ah)> ,

i=1
Vi, = (yl, . ,QM‘”), Apv' = Ni(Ap) 0.

Finally, by using Z(t) := V,' W (t), we have to solve

OuZ(t) + DrZ(t) =V, g(t) = g(t) forte (0,T),  Z(0)=0:Z(0)=0,
which consists of M, scalar equations of the form (4.6). The related finite element solution is
defined by finding, fori = 1,..., My, zin, € Vi, = S}, (0,T) N Hy (0,T) such that

—(O¢zi by O Hron, ) L2 (0,1) + Ni(AR) (Zihe s Hovn, ) p20.m) = (Gis Hrvn,) (0,1)
is satisfied for all vy, € V},. By construction, we have

Zy(t) =V, LU, (1),

where

Uy(t) = (Ul,h(t)a ce UMz,h(t))T

is the vector of the unknown functions of the approximation uy, (z, t).

Stability and related error estimates for the finite element solutions z; 5, follow for
sufficiently small time mesh sizes h;; see Theorem 4.8. However, as in Remark 4.9, we have
stability, when the condition (4.19) is satisfied, i.e.,

A vt vt Koub. ut Vil ||2 19
Ni(Ap) = (Anv',vf) _ (K u) _ Vathllze )

—— — = - — fori=1,..., M,,
@,v)  (Mp'u') el R

where v’ = L;T v* are the transformed eigenvectors and u}l € Wy, are the related functions.
With the inverse inequality

IVovnlZaay < crhy® lonllizy — forall vy € Wy,
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this condition is satisfied for
crhy? <12h;2.
In the particular case d = 1, we have ¢; = 12, and therefore stability follows for
he < hy .

When W),, C H}(Q) is also of tensor-product structure, for example when considering the
spatial domain 2 = (0, 1)d, we conclude ¢; = 12d, and therefore the stability condition

ha
7

As numerical example, we consider for d = 2 the spatial domain 2 = (0, 1)? and the exact
solution

he <

u(zy, T2,t) = t? sin(mz ) sin(ras) for (z1,22,t) € Q@ =Q x (0,7)

with T = —L. Then, stability follows when choosing

S

hi 1

—_ < —_
he ~ V2
and we observe optimal orders of convergence even for the limit case of the CFL condi-

tion (5.6); see Table 5.1. Note that numerical experiments indicate that the stability condi-
tion (5.6) is sharp; see [45].

(5.6) ~ 0.7071068,

TABLE 5.1
Numerical results for the Galerkin-Bubnov formulation (5.5) for Q = (0,1)? x (0, %).for the limit case of

the CFL condition (5.6).

dof hy ht llu — upllzz  eoc |u—wup|pgr eoc K2
2 0.500000 0.3535534 0.020970 - 0.39813 - 2.6
36 0.250000 0.1767767 0.004890 2.1 0.19798 1.0 32.7

392 0.125000 0.0883883  0.001199 2.0 0.09859 1.0 250.9
3600 0.062500 0.0441942  0.000298 2.0 0.04924 1.0 1543.4
30752 0.031250 0.0220971 0.000074 2.0 0.02461 1.0 89219
254016  0.015625 0.0110485  0.000018 2.0 0.01231 1.0 50750.8

As for the scalar case and following [47], we can formulate and analyse a stabilised version
of the variational formulation (5.5), which is unconditionally stable and which preserves the
optimal order of convergence; see [38].

6. Conclusions. In this paper, we have formulated and analysed new non-standard
variational formulations for finite element discretisations of parabolic and hyperbolic initial
boundary value problems, in particular, for the heat and wave equations. Based on this analysis,
we can analyse related boundary integral equations and boundary element methods, where
we recover known results in the case of the heat equation [12], but we expect to derive new
results in the case of the wave equation. Moreover, using this unified framework, it will be
possible to analyse the coupling of space-time finite and boundary element methods. While the
main focus of this paper was on the stability analysis of space-time variational formulations,
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much more work is required on the design of computationally efficient methods. This covers
the formulation and analysis of inf-sup stable local basis functions for arbitrary space-time
finite elements, of efficient and reliable a posteriori error estimators and adaptive schemes, and
the construction and analysis of preconditioned parallel iterative solution strategies including
domain decomposition methods.
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