Electronic Transactions on Numerical Analysis. Volume 52, pp. 195–202, 2020. Copyright © 2020, Kent State University. ISSN 1068–9613. DOI: 10.1553/etna_vol52s195

INCOMPLETE BETA POLYNOMIALS*

MANUEL BELLO-HERNÁNDEZ[†]

Abstract. We study some properties of incomplete beta polynomials, in particular, their zero asymptotic distribution. These polynomials satisfy a three-term recurrence relation, so they can be written as the sum of two terms each one leading to their asymptotic behavior in a region.

Key words. incomplete beta function, zero distribution, asymptotics, recurrence relations, potential theory

AMS subject classifications. 33B20, 41A58, 41A80

1. Introduction and main result. Given $\alpha > 0$, we consider the polynomials

$$C_{n,\alpha}(z) = C_n(z) := \sum_{j=0}^n \binom{n}{j} \frac{z^j}{\alpha j + 1}, \qquad n \in \mathbb{Z}_{\ge 0}.$$

Then

(1.1)
$$\zeta C_n(-\zeta^{\alpha}) = \int_0^{\zeta} (1-x^{\alpha})^n \, dx = \frac{B_{\zeta^{1/\alpha}}(1/\alpha, n+1)}{\alpha} =: \mathbf{B}_n(\zeta),$$

where $B_x(p,q)$ is the incomplete beta function

$$B_x(p,q) := \int_0^x t^{p-1} (1-t)^{q-1} dt.$$

For definiteness, in (1.1) we consider the main branch of ζ^{α} in $\mathbb{C} \setminus (-\infty, 0]$ taking the value 0 at 0, and we take as integration contour the line from 0 to ζ or any path of integration Γ from 0 to ζ with $\Gamma \setminus \{0\}$ in the region of holomorphy of ζ^{α} .

The incomplete beta function is widely used in statistics as a probability measure (see, for instance, [6, Chapter 25]). There are several papers and books about this function (see [5, 14] and the references therein).

The object of this paper is to study the zero distribution and asymptotic properties of the polynomials C_n and the functions \mathbf{B}_n as n goes to infinity. These polynomials satisfy a three-term recurrence relation, so they can be written as the sum of two terms, each one leading to their asymptotic behavior in a region; see formula (3.1). The zero asymptotic behavior of a sequence of polynomials can be linked with either the analytic properties of their limit function (see [3, Jentzsch-Szegő's Theorem]) or with a curve where their asymptotic behavior changes drastically (see [9, Szegő's theorem and related results], [13, 15]).

With the aim of stating our main result, let us set some notations:

$$\mathbf{D}_r(z_0) := \{ z \in \mathbb{C} : |z - z_0| < r \}, \qquad \mathbf{D}_r(z_0) := \{ z \in \mathbb{C} : |z - z_0| \le r \}, \\ \partial \mathbf{D}_r(z_0) := \{ z \in \mathbb{C} : |z - z_0| = r \}, \quad \text{and} \quad (\overline{\mathbf{D}}_r(z_0))^c := \{ z \in \mathbb{C} : |z - z_0| > r \}.$$

THEOREM 1.1. Assume that $\alpha \neq 1$. Then, we have

(1.2)
$$C_n(z) = \frac{\Gamma(1/\alpha)}{\alpha n^{1/\alpha} (-z)^{1/\alpha}} (1+o(1)) \qquad \text{as } n \to \infty,$$

^{*}Received July 20, 2019. Accepted January 29, 2020. Published online on April 2, 2020. Recommended by F. Marcellan. Research partially supported in part by 'Ministerio de Economía y Competitividad', Project MTM2014-54043-P

[†]Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain (mbello@unirioja.es).

uniformly on compact subsets of $\mathbf{D}_1(-1)$, where the branch of $(-z)^{1/\alpha}$ is taken such that $1^{1/\alpha} = 1$. It holds that

(1.3)
$$C_n(z) = \frac{(1+z)^{n+1}}{\alpha n z} (1+o(1)) \quad \text{as } n \to \infty,$$

uniformly on compact subsets of $(\mathbf{D}_1(-1))^c$.

If $0 < \alpha < 1$, then (1.3) also holds uniformly on compact subsets of $\partial \mathbf{D}_1(-1) \setminus \{0\}$ and the zeros of C_n lie in $\mathbf{D}_1(-1)$, while if $\alpha > 1$, then (1.2) also holds uniformly on compact subsets of $\partial \mathbf{D}_1(-1) \setminus \{0\}$ and their zeros lie in $(\overline{\mathbf{D}}_1(-1))^c$. They cluster on $\partial \mathbf{D}_1(-1)$, and these are the only limit points of the zeros, and their asymptotic distribution is the normalized arc-length on $\partial \mathbf{D}_1(-1)$.

Theorem 1.1 is proved in Section 3. The case $\alpha = 1$ is easy and is included in Remark 3.1. The next section contains several properties of the polynomials C_n such as recurrence relations and zero location. Section 4 includes all results for the incomplete beta polynomials.

2. Auxiliary results. The incomplete beta function can be written in terms of hypergeometric functions, and it satisfies some recurrence relations; see [14, p. 288–313]. We have the following result for C_n :

LEMMA 2.1.

1. It holds that

 $(\alpha n + 1)C_n(z) - \alpha nC_{n-1}(z) = (1+z)^n, \quad n > 1.$ (2.1)

2. For $n \ge 1$,

(2.2)
$$(\alpha n + \alpha + 1)C_{n+1}(z) - ((\alpha n + 1)(1+z) + \alpha(n+1))C_n(z) + \alpha n(1+z)C_{n-1}(z) = 0,$$

- where $C_0(z) = 1$ and $C_1(z) = 1 + \frac{z}{\alpha+1}$. 3. For $n \ge 1$, we have $C_n(z) = P_n(1+z)$, where $P_n(\zeta) = a_{0,n,\alpha} + a_{1,n,\alpha}\zeta + \dots$ $+a_{n,n,\alpha}\zeta^n$ is a polynomial of degree n with positive coefficients and $a_{n,n,\alpha} = \frac{1}{\alpha n+1}$. If $0 < \alpha < 1$, then the coefficients of P_n are increasing, i.e., $0 < a_{j,n,\alpha} < a_{j+1,n,\alpha}$, for j = 0, 1, ..., n - 1. On the other hand, if $1 < \alpha$, then the coefficients of P_n are decreasing, i.e., $a_{j,n,\alpha} > a_{j+1,n,\alpha} > 0$, for j = 0, 1, ..., n - 1.
- 4. If $0 < \alpha < 1$, then the zeros of C_n lie in $\mathbf{D}_1(-1)$ and for $\alpha > 1$ in $(\overline{\mathbf{D}}_{-1}(1))^c$.
- 5. If $C_{n-1}(z_0) = 0$, then $C_n(z_0) \neq 0$. Moreover,

(2.3)
$$C_n(z) + \alpha z C'_n(z) = (1+z)^n,$$

and the zeros of C_n are simple.

Proof. Statement 1 follows easily by comparing coefficients, and 1 yields 2 straightforwardly. Next, we prove 3. Let us assume that $0 < \alpha < 1$; the other case is similar. The polynomial $C_n(z)$ has degree n and

$$C_1(z) = 1 + \frac{z}{\alpha + 1} = P_1(z + 1),$$

where $P_1(\zeta) = \frac{\alpha}{\alpha+1} + \frac{\zeta}{\alpha+1}$. Thus, statement 3 holds for n = 1. We assume that 3 is true for some n, and it will then be verified for n + 1. According to (2.1),

$$(\alpha n + \alpha + 1)P_{n+1}(\zeta) = (\alpha n + \alpha)P_n(\zeta) + \zeta^{n+1},$$

BETA POLYNOMIALS

so, by the induction hypothesis, the coefficient of ζ^{n+1} in the polynomial P_{n+1} is $\frac{1}{\alpha n+\alpha+1}$, and $a_{n,n+1,\alpha} = \frac{\alpha n+\alpha}{(\alpha n+1)(\alpha n+\alpha+1)} < \frac{1}{\alpha n+\alpha+1} = a_{n+1,n+1,\alpha}$. Thus, 3 follows by induction. Now, we obtain 4. It holds that¹

$$(1-\zeta)P_n(\zeta) = a_{0,n,\alpha} + (a_{1,n,\alpha} - a_{0,n,\alpha})\zeta + \dots + (a_{n,n,\alpha} - a_{n-1,n,\alpha})\zeta^n - a_{n,n,\alpha}\zeta^{n+1},$$

so, if $P_n(\zeta_0) = 0$ and $|\zeta_0| > 1$, then

(2.4)
$$a_{n,n,\alpha} = a_{0,n,\alpha} \frac{1}{\zeta_0^{n+1}} + (a_{1,n,\alpha} - a_{0,n,\alpha}) \frac{1}{\zeta_0^n} + \ldots + (a_{n-1,n,\alpha} - a_{n,n,\alpha}) \frac{1}{\zeta_0^n}$$

which yields

(2.5)
$$a_{n,n,\alpha} < a_{0,n,\alpha} + (a_{1,n,\alpha} - a_{0,n,\alpha}) + (a_{2,n,\alpha} - a_{1,n,\alpha}) + \dots + (a_{n,n,\alpha} - a_{n-1,n,\alpha}) = a_{n,n,\alpha},$$

which is impossible. So the zeros of P_n are in $\overline{\mathbf{D}}_1(0)$, which is equivalent to the zeros of C_n lying in $\overline{\mathbf{D}}_1(-1)$. Moreover, observe that $C_n(1) \neq 0$ because of $a_{j,n,\alpha} > 0$ for all j, and $C_n(-1) \neq 0$ from $C_0(z) = 1 \neq 0$ and (2.1). Likewise, if $C_n(\zeta_0) = 0$ and $|\zeta_0| = 1$, $\zeta_0 \neq \pm 1$, then $\Re(\zeta_0) < 1$, and taking the real part of (2.4), we get again the contradiction in (2.5). So, $C_n(z) \neq 0$ in $\partial \mathbf{D}_1(-1)$, and this completes the proof of 4.

If $C_n(z_0) = 0$, then $z_0 \notin (\partial \mathbf{D}_1(-1))$, and conclusion 5 also follows from (2.1). Taking the derivative in (1.1), we get (2.3) which implies that the zeros of C_n are simple.

REMARK 2.2. Figure 2.1 displays the result of some numerical experiments with a visualization of the zeros of C_n for several values of n and $\alpha = 1/2$ and 3/2.

LEMMA 2.3. Let $z \in (\overline{\mathbf{D}}_1(-1) \setminus \{0\})$. Then 1. $\lim_{n\to\infty} C_n(z) = 0$, 2.

$$\sum_{n=1}^{\infty} \frac{C_n(z)}{n} = \alpha - \log(-z),$$

where $\log(\cdot)$ is the main branch of the logarithm function. The above statements hold uniformly on compact subsets of $\overline{\mathbf{D}}_1(-1) \setminus \{0\}$. If z = -1, we get

$$\sum_{n=1}^{\infty} \frac{\Gamma(n)}{\Gamma(n+1+\frac{1}{\alpha})} = \frac{\alpha^2}{\Gamma(1/\alpha)}.$$

Moreover, we have

(2.6)
$$\begin{aligned} |C_n(-1)| &\leq \max\{|C_n(z)| : z \in \overline{\mathbf{D}}_1(-1)\} \leq 1, \\ C_n(-1) &\sim \frac{\Gamma(1/\alpha)}{\alpha n^{1/\alpha}} \quad \text{as } n \to \infty. \end{aligned}$$

Proof. By the dominated convergence theorem, statement 1 follows from (1.1). Since $C_0(z) = 1$ and $\sum_{n=1}^{\infty} \frac{x^n}{n} = -\log(1-x)$, $|x| \le 1, x \ne 1$, summing up in (2.1) yields statement 2. The first inequality in (2.6) is obviously true; the second inequality is a consequence of (1.1) since $|1 + z| \le 1$ is equivalent to $|1 - \zeta^{\alpha}| \le 1$ with $z = -\zeta^{\alpha}$ and

$$|\zeta C_n(-\zeta^{\alpha})| = |\int_0^{\zeta} (1-x^{\alpha})^n \, dx| \le \int_0^{\zeta} |1-x^{\alpha}|^n \, |dx| \le |\zeta|.$$

¹See Enestrőm-Kakeya's theorem [10, pp. 255, 271].

On other hand, taking z = 1 in (1.1), we get

$$C_n(-1) = \frac{1}{\alpha} \int_0^1 t^{(1/\alpha)-1} (1-t)^{(n+1)-1} dt = \frac{1}{\alpha} \frac{\Gamma(1/\alpha)\Gamma(n+1)}{\Gamma(n+1+\frac{1}{\alpha})}$$

hence from Stirling's asymptotic formula it follows readily that $C_n(-1) \sim \frac{\Gamma(1/\alpha)}{\alpha n^{1/\alpha}}$ as $n \to \infty$.

FIG. 2.1. Left: the zeros of C_n for $n = 10, 11, \ldots, 40$ with $\alpha = 1/2$. Right: the zeros of C_n for $n = 10, 11, \ldots, 40$ with $\alpha = 3/2$. The zeros are colored from cyan to magenta according to the degree of the polynomials varying from 10 to 40. In red we indicate the circumference |1 + z| = 1.

3. Proof of Theorem 1.1. Let us assume that $\alpha > 1$; the other case is similar. The change of variable $\frac{t^2}{n} = \frac{x^{\alpha} - \zeta^{\alpha}}{1 - \zeta^{\alpha}}$ in (1.1) yields

(3.1)

$$\begin{aligned} \zeta C_n(-\zeta^{\alpha}) &= C_n(1) + \int_1^{\zeta} (1 - x^{\alpha})^n \, dx \\ &= \frac{\Gamma(n+1)\Gamma(1/\alpha)}{\alpha\Gamma(n+1+1/\alpha)} \\ &- \frac{2(1-\zeta^{\alpha})^{n+1}}{\alpha n} \int_0^{\sqrt{n}} (1 - \frac{t^2}{n})^n \frac{t}{((1-\zeta^{\alpha})\frac{t^2}{n} + \zeta^{\alpha})^{(\alpha-1)/\alpha}} \, dt \end{aligned}$$

Then, from the dominated convergence theorem, it readily follows that (1.2) holds uniformly on compact subsets of $\mathbf{D}_1(-1)$ and on compact subsets of $\partial \mathbf{D}_1(-1) \setminus \{0\}$, and also that (1.3) holds true. See also (4.1).

Let $\nu[C_n] := \frac{1}{n} \sum_{z:C_n(z)=0} \delta_z$ be the zero counting measure of C_n . Define the monic polynomial $\widehat{C}_n(z) := (\alpha n + 1)C_n(z)$. Let μ be a weak-* limit of $\nu[C_n]$, i.e., there exists a subsequence $(\nu[C_{n_j}])$ such that $\lim_{j\to\infty} \int f(\zeta) d\nu[C_{n_j}](\zeta) = \int f(\zeta) d\mu(\zeta)$ for all continuous function f in \mathbb{C} with compact support. To simplify the notation, instead of n_j we write n. We are going to prove that μ is the equilibrium measure of $\partial \mathbf{D}_1(-1)$, i.e., the normalized arc-length on $\partial \mathbf{D}_1(-1)$.

By (2.6), $\lim_{n\to\infty} (\max\{|C_n(z)|: |z| \le 1\})^{1/n} = 1$, hence according to [3, Lemma 3.1], at most o(n) of the zeros of C_n could tend to infinity. Thus, by (1.2) and (1.3), we have

BETA POLYNOMIALS

 $\operatorname{supp} \mu \subset \partial \mathbf{D}_1(-1)$, where $\operatorname{supp} \mu$ denotes the support of the measure μ . Also, it is well known that $\operatorname{cap} (\partial \mathbf{D}_1(-1)) = 1$; see [11, Theorem 5.2.5]. By (2.6) and the principle of descent ([12, Theorem 6.8, p. 70]), we have²

$$V(\mu, z) \le 0 = \lim_{n \to \infty} V(\nu[C_n], z) = \lim_{n \to \infty} \frac{1}{n} \log \frac{1}{|\widehat{C}_n(z)|}, \qquad z \in \partial \mathbf{D}_1(-1).$$

Since μ is a probability measure, $I(\mu) = \int V(\mu, z) d\mu(z) \leq 0 = \log(\operatorname{cap}(\partial \mathbf{D}_1(-1)))$. But the equilibrium measure of $\partial \mathbf{D}_1(-1)$, $\mu_{\partial \mathbf{D}_1(-1)}$, is the unique measure which minimizes the energy between the probability measures with support in $\partial \mathbf{D}_1(-1)$, and $I(\mu_{\partial \mathbf{D}_1(-1)}) = \log(\operatorname{cap}(\partial \mathbf{D}_1(-1))) = 0$ ([12, Theorem 1.3, p. 27]). Therefore, we have $\mu = \mu_{\partial \mathbf{D}_1(-1)}$ and

$$\operatorname{w-lim}_{n \to \infty} \nu[C_n] = \mu_{\partial \mathbf{D}_1(-1)}.$$

It is well known that the equilibrium measure for a circle is the normalized arc-length on $\partial \mathbf{D}_1(-1)$. Therefore, the zeros of $\{C_n\}$ are dense in $\partial \mathbf{D}_1(-1)$, these are the only limit points of the zeros, and their asymptotic distribution is the normalized arc-length on $\partial \mathbf{D}_1(-1)$. REMARK 3.1.

1. Now we outline another way to obtain (1.3). From (2.2),

$$C_{n+1}(z) = \frac{(\alpha n+1)(1+z) + \alpha(n+1)}{\alpha n+\alpha+1} C_n(z) - \frac{\alpha n(1+z)}{\alpha n+\alpha+1} C_{n-1}(z),$$

which is a three-term recurrence relation with $C_0(z) = 1$ and $C_1(z) = 1 + \frac{z}{\alpha+1}$. Moreover, the coefficients have the limits

$$\lim_{n \to \infty} \frac{(\alpha n+1)(1+z) + \alpha (n+1)}{\alpha n+\alpha+1} = 2+z, \qquad \lim_{n \to \infty} \frac{\alpha n(1+z)}{\alpha n+\alpha+1} = 1+z,$$

Thus, the characteristic polynomial of the limit recurrence relation is

$$p(\lambda) = \lambda^2 - (2+z)\lambda + (1+z),$$

whose roots are $\lambda_1(z) = 1$ and $\lambda_2(z) = 1 + z$. Given a point $z \in (\overline{\mathbf{D}}_1(-1))^c = \{z \in \mathbb{C} : |\lambda_1(z)| < |\lambda_2(z)|\}$, by Poincaré's theorem [8] (see also [1, 2, 4]), either the sequence $\{C_n(z) : n \in \mathbb{Z}_{\geq 0}\}$ is the zero sequence for n large enough or $\lim_{n\to\infty} \frac{C_{n+1}(z)}{C_n(z)} = \lambda_2(z)$ uniformly on compact subsets of $(\overline{\mathbf{D}}_1(-1))^c$. The former cannot occur because of item 5 in Lemma 2.1. The proof of (1.3) follows from (2.1). Moreover, if $\alpha \neq 1$, we have $\lim_{n\to\infty} \frac{C_{n+1}(z)}{C_n(z)} = \begin{cases} (1+z) & \text{if } 0 < \alpha < 1, \\ 1 & \text{if } \alpha > 1, \end{cases}$ formly on compact subsets of $\partial \mathbf{D}_1(-1) \setminus \{0\}$.

2. If $\alpha = 1$, then

$$C_n(z) = \frac{(1+z)^{n+1} - 1}{(n+1)z},$$

and the statements about their asymptotic behavior in $\mathbb{C} \setminus \partial \mathbf{D}_1(-1)$ are trivially true. The zeros of C_n lie on $\partial \mathbf{D}_1(-1)$.

²Hereafter, if ν is a positive measure with compact support in the complex plane, then its logarithm potential and energy are denoted by $V(\nu, z) := \int \log \frac{1}{|z-x|} d\nu(x)$ and $I(\nu) := \int V(\nu, z) d\nu(z)$.

Moreover, the recurrence relation

(3.2)
$$f_{n+1} = (z+2)f_n - (z+1)f_{n-1}, \qquad n = 0, 1, \dots$$

with initial conditions $f_0 = 1$, $f_{-1} = 0$, has the solution

$$u_n(z) = \sum_{j=0}^n (z+1)^j = \frac{(z+1)^{n+1} - 1}{z}.$$

On the other hand, if the initial conditions are $f_0 = 0$, $f_{-1} = 1$, then the solution of (3.2) is

$$v_n(z) = -\sum_{j=1}^n (z+1)^j = -(z+1)\frac{(z+1)^n - 1}{z}.$$

By the Euler-Wallis theorem for continued fractions (see, for example, [7, p. 8]), we have partial continued fractions:

$$\mathbf{K}_{k=1}^{n}\left(\frac{-(z+1)}{(z+2)}\right) := \frac{v_{n}(z)}{u_{n}(z)}$$

and

$$\mathbf{K}_{k=1}^{\infty}\left(\frac{-(z+1)}{(z+2)}\right) := \lim_{n \to \infty} \frac{v_n}{u_n} = \begin{cases} -(z+1) & \text{if } z \in (\mathbf{D}_1(-1))^c, \\ -1 & \text{if } z \in \mathbf{D}_1(-1). \end{cases}$$

4. Results for incomplete beta polynomials. Let $\mathcal{I}_{\alpha} := \{z \in \mathbb{C} : |1 - z^{\alpha}| < 1\},$ $\partial \mathcal{I}_{\alpha} := \{z \in \mathbb{C} : |1 - z^{\alpha}| = 1\}, \overline{\mathcal{I}}_{\alpha} := \mathcal{I}_{\alpha} \cup \partial \mathcal{I}_{\alpha}, \text{ and } \mathcal{E}_{\alpha} := \{z \in \mathbb{C} : |1 - z^{\alpha}| > 1\}.$ As a consequence of Theorem 1.1 and (1.1), we obtain:

COROLLARY 4.1. Assume that $\alpha \neq 1$. We have

(4.1)
$$\mathbf{B}_n(z) = \frac{\Gamma(1/\alpha)}{\alpha n^{1/\alpha}} (1 + o(1))$$

uniformly on compact subsets of \mathcal{I}_{α} . Moreover, it holds that

(4.2)
$$\mathbf{B}_{n}(z) = -\frac{(1-z^{\alpha})^{n+1}}{\alpha n z^{\alpha-1}} (1+o(1)),$$

uniformly on compact subsets of \mathcal{E}_{α} .

If $0 < \alpha < 1$, then (4.2) holds uniformly on compact subsets of $\partial \mathcal{I}_{\alpha} \setminus \{0\}$, the zeros of \mathbf{B}_n different from zero lie in \mathcal{I}_{α} , and if $\alpha > 1$, then (4.1) holds uniformly on compact subsets of $\partial \mathcal{I}_{\alpha} \setminus \{0\}$ and the zeros of \mathbf{B}_n different from zero lie in \mathcal{E}_{α} . They cluster on $\partial \mathcal{I}_{\alpha}$, these are the only limit points of the zeros, and their asymptotic distribution is the measure which is the pre-image of the normalized arc-length on $\partial \mathbf{D}_1(-1)$ under the mapping $\varphi_{\alpha}(z) = -z^{\alpha}$.

As an illustration, Figures 4.1 and 4.2 display the zeros of \mathbf{B}_n for several values of n and α . From Lemma 2.1, we have

COROLLARY 4.2.

1. It holds that

$$(\alpha n+1)\mathbf{B}_n(z) - \alpha n\mathbf{B}_{n-1}(z) = z(1-z^{\alpha})^n, \qquad n \ge 0.$$

BETA POLYNOMIALS

FIG. 4.1. Left: the zeros of \mathbf{B}_n , for $n = 5, 6, \dots, 100$, $\alpha = 2$, and in red the curve $|1 - z^2| = 1$. Right: the zeros of \mathbf{B}_{50} for $\alpha = 4$ and the curve $|1 - z^4| = 1$. Points are colored from cyan to magenta according to the degree of the polynomials.

FIG. 4.2. Left: the zeros of \mathbf{B}_n , for $n = 20, 21, \ldots, 25$, $\alpha = 1/2$, and the curve $|1 - z^{1/2}| = 1$. Right: the zeros of \mathbf{B}_n , for $n = 45, 46, \ldots, 50$, $\alpha = 3/2$, and the curve $|1 - z^{3/2}| = 1$. Points are colored from cyan to magenta according to the degree of the polynomials.

2. For $n \ge 1$,

$$(\alpha n + \alpha + 1)\mathbf{B}_{n+1}(z) - ((\alpha n + 1)(1 - z^{\alpha}) + \alpha(n + 1))\mathbf{B}_n(z) + \alpha n(1 - z^{\alpha})\mathbf{B}_{n-1}(z) = 0,$$

where $\mathbf{B}_0(z) = z$ and $\mathbf{B}_1(z) = z - \frac{z^{\alpha+1}}{\alpha+1}$. 3. For $n \ge 1$, we have $\mathbf{B}_n(z) = zQ_n(1-z^{\alpha})$, where $Q_n(\zeta) = a_{0,n,\alpha} + a_{1,n,\alpha}\zeta + \dots$ $+a_{n,n,\alpha}\zeta^n$ is a polynomial of degree n with positive coefficients. If $0 < \alpha < 1$, then the coefficients of Q_n are increasing, i.e., $0 < a_{j,n,\alpha} < a_{j+1,n,\alpha}$, for $j = 0, 1, \dots, n-1$ and $a_{n,n,\alpha} = \frac{1}{\alpha n+1}$. On the other hand, if $1 < \alpha$, then the coefficients

of Q_n are decreasing, i.e., $a_{j,n,\alpha} > a_{j+1,n,\alpha} > 0$, for $j = 0, 1, \ldots, \alpha n - 1$ and $a_{n,n,\alpha} = \frac{1}{\alpha n+1}$.

4. If $\mathbf{B}_{n-1}(z_0) = 0$ and $z_0 \neq 0$, then $\mathbf{B}_n(z_0) \neq 0$. Their zeros different from zero are simple.

Acknowledgments. The author would like to thank the referees for helping us to improve the presentation of this paper.

REFERENCES

- R. P. AGARWAL, Difference Equations and Inequalities. Theory, Methods, and Applications, 2nd ed., Marcel Dekker, New York, 2000.
- [2] D. BARRIOS ROLANÍA AND G. LÓPEZ LAGOMASINO, Asymptotic behavior of solutions of general three term recurrence relations, Adv. Comput. Math., 26 (2007), pp. 9–37.
- [3] H. P. BLATT, E. B. SAFF, AND M. SIMKANI, Jentzsch-Szegő type theorems for the zeros of best approximats, J. London Math. Soc., 38 (1988), pp. 397–316.
- [4] J. BORCEA, S. FRIEDLAND, AND B. SHAPIRO, Parametric Poincaré-Perron Theorem with applicactions, J. Anal. Math., 113 (2011), pp. 197–225.
- [5] C. FERREIRA, J. L. LÓPEZ, AND E. PÉREZ SINUSÍA, Uniform representations of the incomplete beta function in terms of elementary functions, Electron. Trans. Numer. Anal., 48 (2018), pp. 450–461. http://etna.math.kent.edu/vol.48.2018/pp450-461.dir/pp450-461.pdf
- [6] N. L. JOHNSON, S. KOTZ, AND N. BALAKRISHNAN, Continuous Univariate Distributions. Vol. 2, 2nd ed., Wiley, New York, 1995.
- [7] S. KHRUSHCHEV, Orthogonal Polynomials and Continued Fractions, Cambridge University Press, Cambridge, 2008.
- [8] H. POINCARÉ, Sur les équations liéaires aux différentielles et aux différences finies, Amer. J. Math., 7 (1885), pp. 203–258.
- [9] I. E. PRITSKER AND R.S. VARGA, *The Szegő curve, zero distribution and weighted approximation*, Trans. Amer. Math. Soc., 349 (1997), pp. 4085–4105.
- [10] Q. I. RAHMAN AND G. SCHMEISSER, Analytic Theory of Polynomials, Oxford University Press, Oxford, 2002.
- [11] T. RANSFORD, Potential Theory in the Complex Plane, Cambridge University Press, Cambridge, 1995.
- [12] E. B. SAFF AND V. TOTIK, Logarithmic Potentials with External Fields, Springer, Berlin, 1997.
- [13] K. SOUNDARARAJAN, Equidistribution of zeros of polynomials, Amer. Math. Monthly, 126 (2019), pp. 226– 236.
- [14] N. M. TEMME, Special Functions, Wiley, New York, 1996.
- [15] R. S. VARGA, Scientific Computation on Mathematical Problems and Conjectures, SIAM, Philadelphia, 1990.