
ETNA
Kent State University and

Johann Radon Institute (RICAM)

Electronic Transactions on Numerical Analysis.
Volume 52, pp. 214–229, 2020.
Copyright © 2020, Kent State University.
ISSN 1068–9613.
DOI: 10.1553/etna_vol52s214

ADMM-SOFTMAX: AN ADMM APPROACH FOR
MULTINOMIAL LOGISTIC REGRESSION∗

SAMY WU FUNG†, SANNA TYRVÄINEN‡, LARS RUTHOTTO¶, AND ELDAD HABER§

Abstract. We present ADMM-Softmax, an alternating direction method of multipliers (ADMM) for solving
multinomial logistic regression (MLR) problems. Our method is geared toward supervised classification tasks with
many examples and features. It decouples the nonlinear optimization problem in MLR into three steps that can
be solved efficiently. In particular, each iteration of ADMM-Softmax consists of a linear least-squares problem,
a set of independent small-scale smooth, convex problems, and a trivial dual variable update. The solution of the
least-squares problem can be accelerated by pre-computing a factorization or preconditioner, and the separability in
the smooth, convex problem can be easily parallelized across examples. For two image classification problems, we
demonstrate that ADMM-Softmax leads to improved generalization compared to a Newton-Krylov, a quasi Newton,
and a stochastic gradient descent method.

Key words. machine learning, nonlinear optimization, alternating direction method of multipliers, classification,
multinomial regression

AMS subject classifications. 65J22, 90C25, 49M27

1. Introduction. Multinomial classification seeks to assign the most likely label from a
pre-defined set of three or more classes to all examples in a dataset. Classification is a key
step in a wide range of applications such as data mining [32], neural signal processing [40],
bioinformatics [35, 48], and text analysis [45]. The process can be described mathematically
as a classifier (or hypothesis function) that maps each input feature to a vector in the unit
simplex, whose components represent the predicted probabilities for each class.

In machine learning, the classifier is modeled as a fairly general parameterized function
whose parameters (also called weights) are trained using a number of examples. Depending on
the availability of labels for these data, one distinguishes between supervised learning, where
labels are available for all examples, unsupervised learning, where only input features are
provided, and semi-supervised learning, where only parts of the examples are labeled. Some
well-known optimization problems arising in multinomial classification include multinomial
logistic regression (MLR) [24] and support vector machines (SVMs) [37] for supervised
learning, and k-nearest neighbors [23] for unsupervised learning. In this paper, we are
primarily concerned with the efficient solution of the supervised learning problem arising in
MLR.

When the dimensionality of the feature vector and the number of examples are large, a
key challenge in MLR is the computational expense associated with solving a convex, smooth
optimization problem. In short, the MLR problem consists of minimizing a (regularized) cross-
entropy loss function used to compare the classifier’s outputs to the given class probabilities.
The classifier concatenates a softmax function, which maps a vector to the unit simplex, and
an affine transformation whose weights are to be learned. Since the problem is smooth and
convex, many standard optimization algorithms can be used to train the classifier, e.g., steepest

∗Received July 11, 2019. Accepted February 2, 2020. Published online on April 17, 2020. Recommended by
Marco Donatelli. S.W.F. and L.R.’s work was partially supported by the US National Science Foundation Awards
DMS 1522599 and DMS 1751636.

†Department of Mathematics, UCLA, Los Angeles, California, USA (swufung@gmail.com).
‡Department of Mathematics, University of British Columbia, Vancouver, Canada

(sannatyr@math.ubc.ca).
§Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada

(haber@eoas.ubc.ca).
¶Department of Mathematics, Emory University, Atlanta, GA, USA (lruthotto@emory.edu).

214

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://doi.org/10.1553/etna_vol52s214


ETNA
Kent State University and

Johann Radon Institute (RICAM)

ADMM-SOFTMAX : ADMM FOR MULTINOMIAL LOGISTIC REGRESSION 215

descent [36], inexact-Newton or quasi-Newton methods [39], and perhaps the most commonly
used in the machine learning community, stochastic gradient descent (SGD) [31, 53]. In
practice, the performance of these methods can deteriorate close to the minimizer (manifesting,
e.g., in a larger number of Conjugate Gradient (CG) steps in Newton-CG shown in Figure 4.4)
and, particularly in the case of SGD, the limited potential for parallelization.

It is important to note that MLR is not equivalent to solving the optimization problem
since an effective classifier must generalize well, i.e., it must assign accurate labels to instances
not used during training. A known problem is overfitting, which occurs when the optimal
weights fail to generalize. Hence, the optimization problem is not equivalent to the learning
problem. To gauge the risk of overfitting, we partition the available training set into three
subsets: the training set, which is used in the optimization, the validation set, which is used to
gauge the generalization of the classifier and tune regularization and other parameters through
cross-validation, and the test set, which is not used at all during training but used for the final
assessment. As we will also demonstrate in our numerical experiments, the effect of overfitting
in MLR is similar to the well-known semi-convergence in ill-posed inverse problems. This
motivates the use of iterative regularization methods that have been very successful in inverse
problems; see, e.g., [8, 14, 21, 26, 38].

Our contribution consists of a reformulation of the MLR optimization problem into a
constrained problem and its approximate solution through the alternating direction method
of multipliers (ADMM). Each iteration of the scheme requires the solution of a linear least-
squares (LS) problem, a separable convex, smooth optimization problem, and a trivial dual
update variable; see Section 3. The LS problem arising from the weights can be efficiently
solved using direct or iterative solvers [17, 43]. Due to its separability, the smooth and
convex problem arising from the second step can be solved in parallel for each example
from the training set. We also provide all codes and examples used in this paper at https:
//github.com/swufung/ADMMSoftmax.

We test our method on two popular image classification problems: MNIST [34], a
collection of hand-written digits, and CIFAR-10 [29], a collection of 32× 32 color images
divided into 10 classes. As is common in machine learning, we embed the original data into
a higher-dimensional space before beginning the training process to improve the accuracy
and generalization of the classifier. In particular, we propagate the MNIST dataset through a
convolution layer with randomly chosen weights, which is also known as extreme learning
machines (ELM); see Section 4.1.1 and [25]. For the CIFAR-10 dataset, we propagate the
input data through a neural network which was previously trained on a similar dataset (also
known as transfer learning). The pre-trained network we choose to use is AlexNet [29], which
was trained on the ImageNet dataset [9], a dataset similar to CIFAR-10.

Our paper is organized as follows. In Section 2, we phrase MLR as an optimization
problem and briefly review existing approaches for its solution. In Section 3, we present
the mathematical formulation of the proposed ADMM-Softmax algorithm and discuss its
computational costs and convergence properties. In Section 4, we compare our method to
SGD and Newton-CG on the MNIST and CIFAR-10 datasets. Finally, we conclude our paper
with a discussion in Section 5.

2. Multinomial logistic regression. In this section, we review the mathematical formu-
lation of multinomial logistic regression and discuss some related works. In training, we
are given labeled data (d, c) ∈ Rnf × ∆nc

sampled from a typically unknown probability
distribution. Here, d is the feature vector, nf is the number of features (e.g., number of pixels
in an image), c is the class label vector, and ∆nc denotes the unit simplex in Rnc where nc is
the number of classes. Since the class vector, c, belongs to the unit simplex, we can interpret
it as a discrete probability distribution.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://github.com/swufung/ADMMSoftmax
https://github.com/swufung/ADMMSoftmax


ETNA
Kent State University and

Johann Radon Institute (RICAM)

216 S. WU FUNG, S. TYRVÄINEN, L. RUTHOTTO, AND E. HABER

The softmax classifier used to predict the class labels is given by

(2.1) hW (d) =
exp (Wd)

e>nc
exp (Wd)

.

Here, hW (d) ∈ Rnc is the predicted class label, W ∈ Rnc×nf is a weight matrix, enc ∈ Rnc

is a vector of all ones, and the exponential function is applied component-wise. To simplify
our notation, we assume that (2.1) already contains a bias term that applies a constant shift to
all transformed features and leads to an affine model. A simple way to incorporate the bias
term is by appending the feature vector with a one and adding a new column to the weight
matrix.

In the training, we seek to estimate weights W such that hW (d) ≈ c and that the
predicted label (i.e., the index of the largest component of hW (d)) matches the true label for
all pairs (d, c). To quantify this, we use the expected cross-entropy loss function to measure
the discrepancy between the true probabilities, c, and the predicted probabilities, hW (d). In
particular, we write the expected loss function as

Φ(W) = E
[
−c> log (hW (d))

]
= E

[
−c> log

(
exp (Wd)

e>nc
exp (Wd)

)]
= E

[
−c>Wd +

(
c>enc

) (
log
(
e>nc

exp (Wd)
))]

= E
[
−c>Wd + log

(
e>nc

exp (Wd)
)]
,

where we use the fact that c>enc
= 1 since c ∈ ∆nc

. The expected loss function consists of a
linear term and a log-sum-exp term, and thus is convex and smooth [5]. In general, the loss
couples all components of W, which we will address with our proposed method.

To further aid generalization and avoid overfitting, it is common to add a Tikhonov
regularization term and consider the following stochastic optimization problem of multinomial
logistic regression

(2.2) arg min
W

(
E
[
−c>Wd + log

(
e>nc

exp (Wd)
)]

+
α

2

∥∥∥L (W −Wref)
>
∥∥∥2
F

)
,

where L is a regularization operator that may enforce, e.g., smoothness, and α > 0 is a
regularization parameter that balances the minimization of the loss and the regularity of the
solution. Note here that W has dimensions nc × nf so that each row of W corresponds to
the features of each class. Therefore, we transpose the weights in the regularization term so
that we regularize the features rather than the classes of the weights. The matrix Wref is a
reference solution around which the regularizer is centered and needs to be chosen by the user.
During the training process, we monitor the effectiveness of the weights, for instances in the
validation set to calibrate the regularization parameter and other hyperparameters using cross
validation. After the training, we apply the classifier to the test dataset to quantify its potential
to generalize.

Since we are primarily concerned with the splitting schemes, we focus the discussion
on the quadratic regularizer. This choice also leads to a linear least-squares problem in our
proposed scheme. A common alternative to the quadratic regularizer is `1 regularization,
which is used to enforce sparsity of the weight matrix W and identify and extract the essential
features in the data. Efficient approaches exist to address the non-smoothness introduced
by this regularizer, e.g., interior-point methods [28], iterative shrinkage [20], and hybrid
algorithms [44]; see also the survey by Yuan et al. [51]. These schemes can be incorporated
into ADMM-Softmax.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

ADMM-SOFTMAX : ADMM FOR MULTINOMIAL LOGISTIC REGRESSION 217

Optimization methods for solving (2.2) can be broadly divided into two classes. Stochastic
approximation (SA) methods such as stochastic gradient descent (SGD) and its variants,
iteratively update W using gradient information computed with a single pair (or a small batch
of pairs) randomly chosen from the training set [42]. Upon a suitable choice of the step
size (also called learning rate) these methods can decrease the expected loss. In contrast,
stochastic average approximation (SAA) schemes [27] approximate the expected loss with
an empirical mean computed for a large batch containing N randomly chosen examples
(d1, c1), . . . , (dN , cN ), which leads to the deterministic optimization problem

(2.3) arg min
W

1

N

N∑
j=1

[
−c>j Wdj + log

(
e>nc

exp (Wdj)
)]

+
α

2

∥∥∥L (W −Wref)
>
∥∥∥2
F
.

Since the objective function is convex and differentiable, many standard gradient-based
iterative optimization algorithms are applicable. The method proposed in this work is an
SAA method, and our numerical experiments consider both SGD (an SA method) and several
standard SAA methods for comparison. For an excellent review and discussion about the
advantages and disadvantages of both approaches, we refer to [3].

In general, the objective functions in (2.2) and (2.3) are not separable, i.e., they couple
all the components in W. Due to the coupling, the Hessian cannot be partitioned and also
changes in each iteration depending on the nonlinearity of the problem. The above reasons
can render their solution computationally challenging, especially for high-dimensional data,
and in the case of SAA methods, a large number of samples, N .

2.1. Related work. The wide-spread use of MLR in classification problems has led to
the development of many numerical methods for its solution. A common thread is efforts
to decouple the optimization problems (2.2) and (2.3) into several subproblems that can be
solved efficiently and in parallel.

For example, [4, 18], use an upper bound based on the first-order concavity property of
the log-function to decouple (2.3) into nc subproblems associated with the different classes.
The new optimization problem, however, is no longer convex. Other possible upper bounds
that allow for a separable reformulation of MLR include quadratic upper bounds and a product
of sigmoids. Detailed comparison of these and analytical solutions in a Bayesian setting can
be found in [4]. In [18], Gopal and Yang use the concavity bound to solve multinomial logistic
regression in parallel and show that their iterative optimization of the bounded objective
converges to the same optimal solution as the unbounded original model. Related to the
concavity bound, Fagan & Iyengar [12] and Raman et al. [41] use the convex conjugate of the
negative log to reformulate the problem as a double-sum that can be solved iteratively with SA
methods like SGD.

A method closely related to ours is [18], which reformulates the MLR problem (2.3)
as a constrained optimization problem that decouples the linear and nonlinear terms of the
cross-entropy loss and approximately solves the problem using an ADMM approach. Our
method uses a similar splitting and parallelization scheme. As in [18], the existing optimization
methods slightly outperform our scheme in terms of minimizing the expected loss over the
training set; however, the obtained solutions of our scheme generalize better. Both approaches
are inspired by the work of Boyd et al. [5], who solve sparse logistic regression problems in
parallel by splitting it across features with ADMM.

Splitting techniques have also been applied to non-convex classification problems, e.g.,
the training of neural networks [46]. Here, the examples concentrate on binomial regression,
which allows one to use a quadratic loss function and closed-form solutions for each iteration
step. Another related approach to train neural networks is the method of auxiliary coordinates

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

218 S. WU FUNG, S. TYRVÄINEN, L. RUTHOTTO, AND E. HABER

(MAC) [6]. In MAC, new variables are introduced to decouple the problem. Unlike ADMM,
however, MAC breaks the deep nesting (i.e., function compositions) in the objective function
with the new parameters.

3. ADMM-Softmax. In this section, we derive ADMM-Softmax, which is an SAA
method for MLR. The main idea of our method is to introduce an auxiliary variable and
associated constraint in (2.3) to obtain a separable objective function and then solve the
problem approximately using an ADMM method. As common, the iterations of the ADMM
method break down into easy-to-solve subproblems; see [5] for an excellent introduction to
ADMM. In our case, we obtain a regularized linear least-squares problem, a separable convex,
smooth optimization problem, and a trivial dual variable update. Efficient solvers exist for the
first two subproblems.

By introducing global auxiliary variables z1, z2, . . . , zN ∈ Rnc , we reformulate (2.3) as

arg min
W,z1,...,zN

1

N

N∑
j=1

[
−c>j zj + log

(
e>nc

exp (zj)
)]

+
α

2

∥∥∥L (W −Wref)
>
∥∥∥2
F

s.t. zj = Wdj , j = 1, . . . , N.

(3.1)

Note that this problem is equivalent to the SAA version of MLR in (2.3).

To solve (3.1) using ADMM-Softmax, we first consider the augmented Lagrangian

Lρ (W, z1, . . . , zN ,y1, . . . ,yN ) =

1

N

N∑
j=1

[
− c>j zj + log

(
e>nc

exp (zj)
)

+
α

2

∥∥∥L (W −Wref)
>
∥∥∥2
F

+ y>j (zj −Wdj) +
ρ

2
‖zj −Wdj‖22

]
,

where yj ∈ Rnc is the Lagrange multiplier associated with the jth constraint, and ρ > 0 is
a penalty parameter. The ADMM algorithm aims at finding the saddle point of the Lρ by
performing alternating updates. Denoting the values of the primal and dual variables at the
kth iteration by W(k), z

(k)
1 , . . . , z

(k)
N ,y

(k)
1 , . . . ,y

(k)
N , respectively, the scheme consists of the

following three steps:

W(k+1) = arg min
W

Lρ
(
W, z

(k)
1 , . . . , z

(k)
N ,y

(k)
1 , . . . ,y

(k)
N

)
,

z
(k+1)
j = arg min

zj

Lρ
(
W(k+1), z

(k)
1 , . . . , z

(k)
j−1, zj , z

(k)
j+1 . . . , z

(k)
N ,y

(k)
1 , . . . ,y

(k)
N

)
,

j = 1, . . . , N,

y
(k+1)
j = y

(k)
j + ρ

(
z
(k+1)
j −W(k+1)dj

)
, j = 1, . . . , N.

Note that in the second step we have used the fact that the Lagrangian does not couple the
variables zj1 and zj2 for j1 6= j2 to obtain N independent subproblems that can be solved in
parallel. By introducing the scaled Lagrange multipliers uj = (1/ρ)yj and dropping constant

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

ADMM-SOFTMAX : ADMM FOR MULTINOMIAL LOGISTIC REGRESSION 219

Algorithm 1 ADMM-Softmax
Require: training data (dj , cj), j = 1, . . . , N

1: initialize W(1), z
(1)
1 , . . . , z

(1)
N ,u

(1)
1 , . . . ,u

(1)
N , ρ, and k = 1

2: compute factorization or preconditioner for the Gram matrix (3.5)
3: while k < maximum number of iterations do
4: compute W(k+1) by solving least-squares problem (3.2) (use pre-factorized coefficient

matrix)
5: compute z

(k+1)
1 , . . . , z

(k+1)
N by solving convex smooth problem (3.3) (potentially in

parallel)
6: compute u

(k+1)
j = u

(k)
j +

(
z
(k+1)
j −Wd

(k+1)
j

)
, j = 1, . . . , N,

7: if stopping criteria (3.4) is satisfied then
8: break
9: end if

10: k ← k + 1
11: end while

terms in the respective optimization problems, the steps simplify to

W(k+1) = arg min
W

ρ

2

N∑
j=1

(∥∥∥z(k)j −Wdj + u
(k)
j

∥∥∥2
2

)
+
α

2

∥∥∥L (W −Wref)
>
∥∥∥2
F

(3.2)

z
(k+1)
j = arg min

zj

−c>j zj + log
(
e>nc

exp (zj)
)

+
ρ

2

∥∥∥zj −W(k+1)dj + u
(k)
j

∥∥∥2
2
,(3.3)

j = 1, . . . , N,

u
(k+1)
j = u

(k)
j +

(
z
(k+1)
j −W(k+1)dj

)
, j = 1, . . . , N,

The first subproblem (3.2) is a linear least-squares problem whose coefficient matrix is
independent of k (see Section 3.1), and the second subproblem (3.3) decouples into N
independent problems, each of which is a convex, smooth optimization problem and involves
nc variables; see Section 3.2.

Let us note in passing that a different regularization in the original optimization prob-
lem (2.3) would only impact the least-squares subproblem in (3.2), and the formulation of the
z-steps in (3.3) would remain unchanged. Therefore, one can use any existing algorithms to
efficiently solve least-square problems with different types of regularization terms.

To terminate the ADMM iteration, a common stopping criteria is described in [5], where
the norms of the primal and dual residuals are defined as

∥∥∥r(k+1)
∥∥∥
2

=

N∑
j=1

∥∥∥r(k+1)
j

∥∥∥
2

=

N∑
j=1

∥∥∥z(k+1)
j −W(k+1)dj

∥∥∥
2
, and

∥∥∥s(k+1)
∥∥∥
2

=

N∑
j=1

∥∥∥s(k+1)
j

∥∥∥
2

=

N∑
j=1

∥∥∥ρ vec
((

z
(k+1)
j − z

(k)
j

)
d>j

)∥∥∥
2
,

respectively, where for any matrix X, the operator vec(X) returns its vectorized form. The

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

220 S. WU FUNG, S. TYRVÄINEN, L. RUTHOTTO, AND E. HABER

stopping criterion is satisfied when

∥∥∥r(k+1)
∥∥∥
2
≤ ε(k)pri =

√
Nncεabs

+ εrelmax
{∥∥∥z(k)1

∥∥∥
2
, . . . ,

∥∥∥z(k)N

∥∥∥
2
,
∥∥∥W(k)d1

∥∥∥
2
, . . . ,

∥∥∥W(k)dN

∥∥∥
2

}
∥∥∥s(k+1)

∥∥∥
2
≤ ε(k)dual =

√
Nncεabs + εrelmax

{∥∥∥u(k)
1

∥∥∥
2
, . . . ,

∥∥∥u(k)
N

∥∥∥
2

}
,

(3.4)

where εrel > 0 and εabs > 0 are the relative and absolute tolerances chosen by the user. For a
summary of the proposed scheme, we refer to Algorithm 1.

3.1. W-update. Letting

Z(k) =
[
z
(k)
1 z

(k)
2 . . . z

(k)
N

]
∈ Rnc×N ,

U(k) =
[
u
(k)
1 u

(k)
2 . . .u

(k)
N

]
∈ Rnc×N , and

D = [d1 d2 . . .dN ] ∈ Rnf×N ,

we can rewrite the W-update (3.2) as

W(k+1) = arg min
W

ρ

2

∥∥∥Z(k) −WD + U(k)
∥∥∥2
F

+
α

2

∥∥∥L (W −Wref)
>
∥∥∥2
F
,

which amounts to solving nc independent linear least-squares (i.e., one for each row in W).
This is equivalent to solving normal equations

Aα,ρW
> = ρD (Z + U)

>
+ αLL>W>

ref ,(3.5)

where Aα,ρ =
(
ρDD> + αLL>

)
. Noting that the coefficient matrix in (3.5) is not iteration-

dependent, depending on the number of features, the matrix can be factorized once (e.g., using
Cholesky applied to the normal equations or a thin-QR applied to the original least-squares
problem [17]) and its inverse can be quickly applied, leading to trivial solves throughout the op-
timization. We also note that this is only one possible approach for solving (3.5), and that large-
scale problems can be addressed using iterative methods; see, e.g., [1, 2, 13, 15, 16, 17, 43].
As the performance of most iterative methods can be improved using pre-conditioning, we can
compute a preconditioner (e.g., incomplete Cholesky factorization) in an off-line phase and
re-use it in the ADMM iterations.

3.2. z-update. Each of the objective functions in the zj-updates in (3.3) can be written
as

Ψ(zj) = −c>j zj + log
(
e>nc

exp (zj)
)

+
ρ

2
‖zj − zj,ref‖22 ,

where j = 1, . . . , N , and zj,ref = W(k+1)dj − u
(k)
j . In our numerical experiments, we solve

these nc-dimensional convex, smooth optimization problems using a Newton method. The
gradient and Hessian of the objective are

∇zjΨ(zj) = −cj +
exp (zj)

e>nc
exp (zj)

+ ρ (zj − zj,ref) ∈ Rnc ,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

ADMM-SOFTMAX : ADMM FOR MULTINOMIAL LOGISTIC REGRESSION 221

and

∇2
zj

Ψ(zj) =
diag (exp (zj))

e>nc
exp (zj)

− exp (zj) exp (zj)
>(

e>nc
exp (zj)

)2 + ρdiag (zj) ∈ Rnc×nc ,(3.6)

respectively. Here, for a generic vector v, the operator diag(v) returns a diagonal matrix
with v along its diagonal. For examples with many classes, the Newton direction can be
approximated using an iterative solver, e.g., the preconditioned conjugate gradient method
(PCG). In this case, we do not build the Hessian in (3.6) explicitly; instead, we implement its
action on a vector in order to save memory.

3.3. Computational costs and convergence. A computationally challenging step in
ADMM-Softmax is solving the least-squares problem (3.2), for which there is a myriad of
efficient solvers; see, e.g., [17] for an extensive review. Noting that the coefficient matrix,
Aα,ρ in (3.5) is iteration-independent, it could be factorized in the off-line phase with, e.g.,
Cholesky or thin QR, and we can trivially solve least-squares throughout the optimization.

The z-updates in (3.3) can be solved in independently and in parallel for each j = 1, . . . , N .
In our experiments, we solve the z-updates using Newton-CG. Assuming np workers are
available, the cost for each Hessian matrix-vector product from (3.6) is in the order of about
O
(
N
np
n3c

)
FLOPS per worker, leading to very fast computations of the global variable update.

If np = N , that is, if we have a worker for each example, the cost per worker is in the order of
O(n3c) FLOPS. We note that the number of class labels is usually relatively small compared to
the number of features (in our experiments, for instance, nc = 10), making (3.3) negligible
when solved in parallel.

As for convergence, it has been shown that the ADMM algorithm converges linearly
for convex problems with an existing solution regardless of the choice ρ > 0 [11]. If the
subproblems (3.2) or (3.3) are solved inexactly, ADMM still converges under additional
conditions. In particular, the sequences

µ(k) =
∥∥∥W(k+1) −W(k)

∥∥∥
F

and γ
(k)
j =

∥∥∥z(k+1)
j − z

(k)
j

∥∥∥
2
, j = 1, . . . , N,

must be summable. This allows us to solve the subproblems iteratively, especially for large-
scale problems. More details can be found in [11].

FIG. 3.1. Example of hand-written images obtained from the MNIST dataset.

4. Numerical experiments. In this section, we demonstrate the potential of our proposed
ADMM-Softmax method using the MNIST and CIFAR-10 datasets. For both datasets, we first
compare three algorithms: The SAA methods ADMM-Softmax, Newton-CG, and `-BFGS
and the SA method SGD. We then study the behavior of ADMM-Softmax and its dependence

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

222 S. WU FUNG, S. TYRVÄINEN, L. RUTHOTTO, AND E. HABER

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

FIG. 3.2. Example images for the CIFAR-10 dataset.

.

original image propagated images

FIG. 3.3. Feature transformation of a single image from the MNIST dataset. Here, we apply a
convolution layer with randomly chosen weights to increase the dimensionality of each example image
increases from 282 = 784 image (left) to nf = (3× 28)2 = 7056 (right).

on the penalty and regularization parameter. We illustrate the challenges of Newton-CG in
MLR by a comparison of the PCG performance at the first and final nonlinear iteration. We
perform our experiments in MATLAB using the Meganet deep learning package [49] and we
provide our code at https://github.com/swufung/ADMMSoftmax. We perform all
of our experiments on a shared memory computer operating Ubuntu 14.04 with 2 Intel Xeon
E5-2670 v3 2.3 GHz CPUs using 12 cores each, and a total of 128 GB of RAM.

4.1. Setup.

4.1.1. MNIST. The MNIST database consists of 60,000 grey-scale hand-written images
of digits ranging from 0 to 9; see [33, 34]. Here, we set 40,000 examples for training our
digit-recognition system, 10,000 are used for validation, and the remaining 10,000 is used as
testing data. Each image has 28× 28 pixels. A few randomly chosen examples are shown in
Figure 3.1.

Since the MNIST dataset is not linearly separable, we embed the original features into
a higher-dimensional space obtained by a nonlinear transformation to the original variables;
this procedure creates new features, which improves the performance of multinomial logistic
regression. In particular, for each image, we obtain nine transformed images by using a

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://github.com/swufung/ADMMSoftmax


ETNA
Kent State University and

Johann Radon Institute (RICAM)

ADMM-SOFTMAX : ADMM FOR MULTINOMIAL LOGISTIC REGRESSION 223

convolution layer with 3× 3 randomly chosen filters, i.e.,

(4.1) dj,prop = tanh(Kdj) ∈ Rm,

where all 9 vertical blocks of K ∈ R9nf×nf are 2D convolution operators. This process is also
known as extreme learning machines [25]. Here, we assume periodic boundary conditions
which render each block to be a block-circulant matrix with circulant blocks (BCCB) [22].
The transformed features have dimensions m = 9 · nf + 1 = 7057. Expanding the features
increases the effective rank of the feature matrix D and increase the capacity of the classifier.
An illustration of the propagated features is shown in Figure 3.3.

We compare four algorithms: our proposed ADMM-Softmax, Newton-CG, `-BFGS,
and SGD. In SGD, we use Nesterov momentum with minibatch size 300, and learning rate
lr = 10−1. Here, we choose the learning rate and minibatch sizes by performing a grid-search
on [10−12, 103] and [1, 500] to maximize the performance on the validation set, respectively.
The initial learning rate grid-search is done logarithmically, whereas the minibatch sizes are
uniformly spaced. In Newton-CG, we set a maximum number of 20 inner CG iterations per
Newton iteration, with CG tolerance of 10−2. In `-BFGS, we store the 10 most recent vectors
used to approximate the action of the Hessian on a vector at each iteration, and solve the inner
system with the same settings as in Newton-CG.

For the ADMM-Softmax, we perform a grid-search on [10−16, 103] and report the ρ that
led to the best validation accuracy - in this case, ρ = 10−7. To solve the LS system, we
compute a QR factorization in the off-line phase, which for this experiment took about 20
seconds. To solve (3.3), we use the Newton-CG method from the Meganet package using
a maximum of 100 iterations with gradient norm stopping tolerance of 10−8, and initial
condition z

(k)
j (i.e., warm start). Since we do not parallelize step (3.3) in our implementation,

our input for (3.3) is given by Z(k) = [z
(k)
1 , . . . , z

(k)
N ] ∈ Rnc×N , and the resulting Hessian is

block diagonal. As a result, we solve the inner Newton system using a maximum of 50 inner
iterations and stopping tolerance of 10−8. Note that if we solved (3.3) in parallel using N
workers, we would not need more than nc = 10 CG iterations, as each individual Hessian
would have size nc × nc.

For all three methods, we use a discrete Laplace operator as the regularization operator L
with α = 10−6 to enforce smoothness of the images. This choice of regularization operator is
motivated by the interpretation of the rows of W ∈ Rnc×nf as discrete images [19, Section
5.2]. The probability of a sample y ∈ Rnf belonging to the kth class depends on the inner
product w>k y, which occurs inside the softmax function. Thus, we wish to obtain weights that
are insensitive to small displacements in the images, i.e., weights that favor spatially smooth
parameters. We set reference weights to Wref = 0 and choose the α that led to the best
validation accuracy for the Newton-CG method.

4.1.2. CIFAR-10. The CIFAR-10 dataset [29] consists of 60,000 RGB images of size
32× 32 that are divided into ten classes. As in MNIST, we split the data as follows: 40,000
for training, 10,000 as validation, and 10,000 as testing data. The images belong to one of the
following ten classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

For this dataset, we increase the feature space by propagating the input features through
a neural network (AlexNet [30]), which was trained on the ImageNet dataset [9] using
MATLAB’s deep neural networks toolbox - this procedure is also known as transfer learning.
The main difference to the extreme learning machine that we used for MNIST is that instead
of propagating through a random hidden layer as in (4.1), we propagate through a network
whose layers have already been trained on a similar dataset to that of CIFAR-10. In this case,
we extract the features from the pool5 layer in AlexNet. For this dataset, each example dj

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

224 S. WU FUNG, S. TYRVÄINEN, L. RUTHOTTO, AND E. HABER

0 100 200 300

runtime (seconds)

94

96

98

100
Training Accuracy

0 100 200 300

runtime (seconds)

94

96

98

Validation Accuracy 98.47

97.38

97.63

98.12

0 100 200 300

runtime (seconds)

10
-4

10
-2

10
0

Training Misfit

0 100 200 300

runtime (seconds)

0.1

0.15

0.2

0.25
Validation Misfit

ADMM-Softmax

Newton-CG

LBFGS

SGD

FIG. 4.1. For the MNIST dataset, we visualize the accuracy of the classifier (top row) and associated values of
the loss functions (bottom row) computed using the training set (left column) and validation set (right column) at
each iteration of the training algorithms. The x-axes show the runtime in seconds. It can be seen that the proposed
ADMM-Softmax outperforms the other methods both on the training and the validation set.

0 100 200 300

runtime (seconds)

80

85

90

95

100
Training Accuracy

0 100 200 300

runtime (seconds)

76

78

80

82

Validation Accuracy 83.62

82.48

82.78

81.66

0 100 200 300

runtime (seconds)

10
-2

10
0

Training Misfit

0 100 200 300

runtime (seconds)

0.6

0.8

1

1.2

Validation Misfit

ADMM-Softmax

Newton-CG

LBFGS

SGD

FIG. 4.2. For the CIFAR dataset, we visualize the accuracy of the classifier (top row) and associated values of
the loss functions (bottom row) computed using the training set (left column) and validation set (right column) at
each iteration of the training algorithms. The x-axes show the runtime in seconds. In this test, the ADMM-Softmax
method shows inferior performance on the training dataset but leads to a slight improvement of both the loss and
classification accuracy on the validation dataset.

is an RGB image of dimension 32× 32× 3 and the propagated data dj,prop has dimension
6× 6× 256.

As for the optimization, we maintain the same parameter choice as in the MNIST dataset

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

ADMM-SOFTMAX : ADMM FOR MULTINOMIAL LOGISTIC REGRESSION 225

except for the following. For SGD, we repeat our grid-search for the learning rate and
minibatch sizes as in MNIST and report the parameters that led to the best results. This leads
to a smaller learning rate of lr = 10−2 but the same minibatch size of 300. For ADMM-
Softmax, we choose the penalty parameter as ρ = 8 × 10−12 in the same manner as in
Section 4.1.1. In this case, the propagated features no longer correspond to RGB images. As
before, we use the Laplace operator as the regularization operator with Wref = 0 and chose
the α that led to the best results for Newton-CG, in this case, α = 10−1.

4.2. Comparison. In Figure 4.1 and Figure 4.2, we show the training and validation
accuracies and misfits for all algorithms applied to the MNIST dataset and CIFAR-10 dataset,
respectively. The former demonstrates the effectiveness of the optimization scheme, while the
latter gauges the classifier’s ability to generalize, which is the main concern in MLR. Since
the computational work required for each algorithm per iteration is different, we report the
runtimes of each algorithm and provide an equal computational budget of 300 seconds to all
methods and instances. As can be seen, we are able to afford many more ADMM-Softmax
iterations than the other algorithms within the 300-second budget (noting again that the off-line
factorizations took about 20 seconds). This is because the LS-problem and z-updates took
on average 0.9 and 0.6 seconds, respectively, per iteration for the MNIST dataset (despite not
using any parallelization). Similarly, they took 1.6 and 0.5 seconds on average, respectively,
per iteration for the CIFAR-10 dataset. This is dependent on the computational platform and
implementation, but we conducted a serious effort to optimize the standard methods, while not
realizing the parallelization potential of ADMM-Softmax. We also provide all codes needed to
replicate our experiment. To compare the performance of each algorithm, we pick the weights
in the iteration containing the highest validation accuracy for each respective algorithm and
use them to classify the testing dataset. We show these results in Table 4.1.

It is important to note that although the training process is formulated as an optimization
problem, we are not necessarily solving an optimization problem, since this may not mean
better generalization. Instead, we wish for an algorithm that leads to the best validation dataset.
For instance, in Figure 4.2, the Newton-CG method is the most effective algorithm at reducing
the training misfit, however, this makes the algorithm overfit to the training set, leading to
worse performance on the validation dataset. This can be seen in the semi-convergence
behavior of the validation misfits in Figure 4.2, and is a reason why SGD and ADMM are
popular methods in the machine learning community. This situation is analogous to that of
solving ill-posed inverse problems iteratively, where the objective is not necessarily choosing
the parameters that best fit the (potentially noisy) data. Finally, we note that we did not use
any parallelization in any of these experiments; however, we expect that further speedups of
the ADMM-Softmax method can be achieved by computing the z-update (3.3) in parallel,
particularly for larger datasets.

TABLE 4.1
Validation and testing misfits and accuracies for ADMM-Softmax, Newton-CG, `-BFGS, and SGD (row-wise)

for the MNIST and CIFAR-10 datasets. In each case, we show the accuracy computed using the iterate with the best
performance on the validation dataset.

MNIST CIFAR-10
validation testing validation testing

misfit accuracy misfit accuracy misfit accuracy misfit accuracy

ADMM-Softmax 0.066 98.47 % 0.092 97.74 % 0.570 83.62 % 0.590 82.90 %
Newton-CG 0.095 97.63 % 0.130 96.46 % 0.514 82.78 % 0.534 81.58 %
`-BFGS 0.078 98.12 % 0.093 97.34 % 0.570 81.66 % 0.584 81.03 %

SGD 0.093 97.38 % 0.113 96.56 % 0.627 82.48 % 0.664 80.79 %

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

226 S. WU FUNG, S. TYRVÄINEN, L. RUTHOTTO, AND E. HABER

Validation Accuracies

10
-15

10
-10

10
-5

10
0

 values

10
-15

10
-10

10
-5

10
0

 v
a

lu
e
s

55

60

65

70

75

80
Testing Accuracies

10
-15

10
-10

10
-5

10
0

 values

10
-15

10
-10

10
-5

10
0

 v
a

lu
e
s

55

60

65

70

75

80
log of A

 , 
 Condition Numbers

10
-15

10
-10

10
-5

10
0

 values

10
-15

10
-10

10
-5

10
0

 v
a

lu
e
s

15

20

25

30

35

40

FIG. 4.3. Validation accuracies (left), and testing accuracies (right), and condition numbers of Aα,ρ defined
in (3.5) (right) of ADMM-Softmax with respect to different ρ (y-axis) and α (x-axis) values for the CIFAR-10 dataset.
Here, α and ρ are sampled from [10−16, 103].

4.3. Parameter dependence. We study the dependence of ADMM-Softmax on the
penalty and regularization parameters ρ and α, where for brevity, we use only the CIFAR-10
dataset since it is the more challenging dataset; as can be seen in Section 4.2. In Figure 4.3,
we show the validation and testing accuracies for different values of ρ and α sampled from
[10−16, 10−3]. As in Section 4.2, the weights that led to the highest validation accuracy were
chosen to classify the testing dataset. The accuracy behavior is similar for the testing and
validation datasets; thus, the validation dataset gives us a good indication of the generalizability
of our classifier during the optimization. On the right, we show the condition numbers of Aα,ρ

(see (3.5)). As expected, smaller values of α lead a more ill-conditioned Aα,ρ, however, this
can be remedied with sufficiently small ρ.

2 4 6 8 10

Newton Iteration Number

0

0.5

1

CG-Residuals at each Newton iteration

5 10 15 20

CG iteration number

10
-1

10
0

CG Residual for fixed Newton iterations

first iteration

last iteration

FIG. 4.4. We exemplarily show the deterioration of the performance of the CG iteration at the first and final
Newton-CG iteration. The left subplot shows the relative residual of the solution returned by CG at each Newton
iteration. The right subplot shows the relative residuals at each CG step for the first and final Newton iteration. Both
plots demonstrate that the performance of CG tends to be worse at later Newton-CG iterations.

4.4. Deterioration of Newton-CG Performance. As a final experiment, we exemplarily
show that the performance of the inner iteration of Newton-CG deteriorates as we approach the
global minimum. We have observed this phenomenon in many numerical experiments. Recall
that the performance of CG depends mainly on the clustering of the eigenvalues of the Hessian
of the objective function in (2.3), which is iteration-dependent; for an excellent discussion of
CG, see [43]. We note that the Hessians are too large for us to reliably compute a full spectral
decomposition in a reasonable amount of time, so as one indicator, we plot the residuals of
the CG-solver after each Newton iteration on the left of Figure 4.4. The plot shows that CG
is less effective in later Newton-CG iterations. We also show the relative residuals for each

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

ADMM-SOFTMAX : ADMM FOR MULTINOMIAL LOGISTIC REGRESSION 227

inner CG iteration at the first and last Newton-CG iteration. Here, a decrease in performance
is also evident as the last Newton iteration is quicker to stall than the first Newton iteration.
ADMM-Softmax circumvents this problem as the Hessians in the z-update are much smaller
and easier to solve.

5. Conclusion. In this paper, we present ADMM-Softmax, a simple and efficient algo-
rithm for solving multinomial logistic regression (MLR) problems arising in classification. To
this end, we reformulate the traditional MLR problem consisting of an unconstrained optimiza-
tion into a constrained optimization problem with a separable objective function. The new
problem is solved by the alternating direction method of multipliers (ADMM), whose iteration
consists of three simpler steps, i.e., a linear least-squares, a large number of independent
convex, smooth optimization problems, and a trivial dual variable update. ADMM-Softmax
allows the use of standard method for each of these substeps. In our experiments, we solve the
resulting least-squares problems using a direct solver with a pre-computed factorization, and
the nonlinear problems using a Newton method; see Section 3.

Our method is also inspired by the successful applications of ADMM to `1-regularized
linear inverse problems, also known as lasso [47, 52] and basis pursuit [7]. Here, ADMM
breaks the lasso problem into two subproblems: one containing a linear least-squares problem,
and the other containing a decoupled nonlinear, non-smooth term, which amends a closed-
form solution given by soft thresholding [10]. Our problem can be similarly divided into a
linear least-squares problem and a set of decoupled smaller problems involving a nonlinear
cross-entropy loss minimization. One distinction is that our second substep is solved using a
Newton scheme.

Our numerical results show improved generalization when compared to Newton-CG,
`-BFGS, and SGD for the MNIST and CIFAR-10 datasets. Further benefits are to be expected
for large datasets where parallelization is necessary. We note that better accuracies, especially
for the CIFAR-10 dataset, could be achieved if we re-train the parameters of pre-trained
AlexNet [50] (rather than keeping them fixed). To this end, our method can accelerate block-
coordinate algorithms that alternate between updating the network weights and the classifier.
This is a direction of our future work. Our results can be reproduced using the codes provided
at https://github.com/swufung/ADMMSoftmax.

Acknowledgments. This material is supported by the U.S. National Science Foundation
(NSF) through awards DMS 1522599 and DMS 1751636. We also thank the Isaac Newton
Institute (INI) for Mathematical Sciences for the support and hospitality during the programme
on generative models, parameter learning, and sparsity.

REFERENCES

[1] M. BENZI, Preconditioning techniques for large linear systems: a survey, J. Comput. Phys., 182 (2002),
pp. 418–477.

[2] M. BENZI AND M. TŮMA, A robust incomplete factorization preconditioner for positive definite matrices,
Numer. Linear Algebra Appl., 10 (2003), pp. 385–400.

[3] L. BOTTOU, F. E. CURTIS, AND J. NOCEDAL, Optimization methods for large-scale machine learning, SIAM
Rev., 60 (2018), pp. 223–311.

[4] G. BOUCHARD, Efficient bounds for the softmax function, applications to inference in hybrid models, pre-
sentation at the workshop for approximate Bayesian inference in continuous/hybrid systems at NIPS-07,
Whistler, Canada, Dec. 2007.

[5] S. BOYD, N. PARIKH, E. CHU, B. PELEATO, AND J. ECKSTEIN, Distributed optimization and statistical
learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3 (2010),
pp. 1–122.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://github.com/swufung/ADMMSoftmax


ETNA
Kent State University and

Johann Radon Institute (RICAM)

228 S. WU FUNG, S. TYRVÄINEN, L. RUTHOTTO, AND E. HABER

[6] M. Á. CARREIRA-PERPIÑÁN AND W. WANG, Distributed optimization of deeply nested systems, in Proceed-
ings of the 17th International Conference on Artificial Intelligence and Statistics Reykjavik, S. Kaski and
J. Corander, eds., vol. 33 of Proceedings of Machine Learning Research, PMLR, 2014, pp. 10–19.

[7] S. S. CHEN, D. L. DONOHO, AND M. A. SAUNDERS, Atomic decomposition by basis pursuit, SIAM Rev., 43
(2001), pp. 129–159.

[8] J. CHUNG, J. G. NAGY, AND D. P. O’LEARY, A weighted-GCV method for Lanczos-hybrid regularization,
Electron. Trans. Numer. Anal., 28 (2007/08), pp. 149–167.
http://etna.mcs.kent.edu/vol.28.2007-2008/pp149-167.dir/pp149-167.pdf

[9] J. DENG, W. DONG, R. SOCHER, L.-J. LI, K. LI, AND L. FEI-FEI, Imagenet: A large-scale hierarchical
image database, in 2009 IEEE Conference on Computer Vision and Pattern Recognition, IEEE Conference
Proceedings, Los Alamitos, 2009, pp. 248-255.

[10] D. L. DONOHO AND I. M. JOHNSTONE, Adapting to unknown smoothness via wavelet shrinkage, J. Amer.
Statist. Assoc., 90 (1995), pp. 1200–1224.

[11] J. ECKSTEIN AND D. P. BERTSEKAS, On the Douglas-Rachford splitting method and the proximal point
algorithm for maximal monotone operators, Math. Programming, 55 (1992), pp. 293–318.

[12] F. FAGAN AND G. IYENGAR, Unbiased scalable softmax optimization, Preprint on arXiv, 2018.
https://arxiv.org/abs/1803.08577

[13] S. GAZZOLA, P. C. HANSEN, AND J. G. NAGY, IR Tools: a MATLAB package of iterative regularization
methods and large-scale test problems, Numer. Algorithms, 81 (2019), pp. 773–811.

[14] S. GAZZOLA, S. NOSCHESE, P. NOVATI, AND L. REICHEL, Arnoldi decomposition, GMRES, and precondi-
tioning for linear discrete ill-posed problems, Appl. Numer. Math., 142 (2019), pp. 102–121.

[15] S. GAZZOLA, P. NOVATI, AND M. R. RUSSO, On Krylov projection methods and Tikhonov regularization,
Electron. Trans. Numer. Anal., 44 (2015), pp. 83–123.
http://etna.mcs.kent.edu/vol.44.2015/pp83-123.dir/pp83-123.pdf

[16] S. GAZZOLA, E. ONUNWOR, L. REICHEL, AND G. RODRIGUEZ, On the Lanczos and Golub-Kahan reduction
methods applied to discrete ill-posed problems, Numer. Linear Algebra Appl., 23 (2016), pp. 187–204.

[17] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, 3rd ed., Johns Hopkins University Press,
Baltimore, 1996.

[18] S. GOPAL AND Y. YANG, Distributed training of large-scale logistic models, in Proceedings of the 30th
International Conference on Machine Learning Atlanta, S. Dasgupta and D. McAllester, eds., vol. 28 of
Proceedings of Machine Learning Research, PMLR, pp. 289–297.

[19] E. HABER AND L. RUTHOTTO, Stable architectures for deep neural networks, Inverse Problems, 34 (2018),
Art. 014004, 22 pages.

[20] E. T. HALE, W. YIN, AND Y. ZHANG, Fixed-point continuation for l1-minimization: methodology and
convergence, SIAM J. Optim., 19 (2008), pp. 1107–1130.

[21] P. C. HANSEN, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion,
SIAM, Philadelphia, 2005.

[22] P. C. HANSEN, J. G. NAGY, AND D. P. O’LEARY, Deblurring Images: Matrices, Spectra, and Filtering,
SIAM, Philadelphia, 2006.

[23] T. HASTIE AND R. TIBSHIRANI, Discriminant adaptive nearest neighbor classification and regression, in
Advances in Neural Information Processing Systems 8 (NIPS 1995) , D. S. Touretzky, M. C. Mozer, and
M. E. Hasselmo, eds., MIT Press, Cambridge, 1996, pp. 409–415.

[24] T. HASTIE, R. TIBSHIRANI, AND J. FRIEDMAN, The Elements of Statistical Learning, Springer, New York,
2001.

[25] G.-B. HUANG, Q.-Y. ZHU, AND C.-K. SIEW, Extreme learning machine: theory and applications, Neuro-
computing, 70 (2006), pp. 489–501.

[26] M. E. KILMER AND D. P. O’LEARY, Choosing regularization parameters in iterative methods for ill-posed
problems, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 1204–1221.

[27] A. J. KLEYWEGT, A. SHAPIRO, AND T. HOMEM-DE MELLO, The sample average approximation method for
stochastic discrete optimization, SIAM J. Optim., 12 (2001/02), pp. 479–502.

[28] K. KOH, S.-J. KIM, AND S. BOYD, An interior-point method for large-scale l1-regularized logistic regression,
J. Mach. Learn. Res., 8 (2007), pp. 1519–1555.

[29] A. KRIZHEVSKY, Learning multiple layers of features from tiny images, Tech. Report, Department of Computer
Science, University of Toronto, 2009.

[30] A. KRIZHEVSKY, I. SUTSKEVER, AND G. E. HINTON, Imagenet classification with deep convolutional neural
networks, in Proceedings of the 25th International Conference on Neural Information Processing Systems
Vol. 1, F Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds., Curran Associates, Red Hook,
2012, pp. 1097–1105.

[31] Q. V. LE, J. NGIAM, A. COATES, A. LAHIRI, B. PROCHNOW, AND A. Y. NG, On optimization methods
for deep learning, in Proceedings of the 28th International Conference on International Conference on
Machine Learning, ICML’11, L. Getoor and T. Scheffer, eds., Omnipress, Madison, 2011, pp. 265–272.

[32] T. H. LE, T. T. TRAN, AND L. K. HUYNH, Identification of hindered internal rotational mode for complex

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://etna.mcs.kent.edu/vol.28.2007-2008/pp149-167.dir/pp149-167.pdf
https://arxiv.org/abs/1803.08577
http://etna.mcs.kent.edu/vol.44.2015/pp83-123.dir/pp83-123.pdf


ETNA
Kent State University and

Johann Radon Institute (RICAM)

ADMM-SOFTMAX : ADMM FOR MULTINOMIAL LOGISTIC REGRESSION 229

chemical species: A data mining approach with multivariate logistic regression model, Chemometrics
Intell. Lab. Sys., 172 (2018), pp. 10–16.

[33] Y. LECUN, L. BOTTOU, Y. BENGIO, AND P. HAFFNER, Gradient-based learning applied to document
recognition, Proc. IEEE, 86 (1998), pp. 2278–2324.

[34] Y. LECUN, C. CORTES, AND C. J. BURGES, The MNIST database of handwritten digits, Online recource,
1998. http://yann.lecun.com/exdb/mnist/

[35] J. LIAO AND K.-V. CHIN, Logistic regression for disease classification using microarray data: model selection
in a large p and small n case, Bioinformatics, 23 (2007), pp. 1945–1951.

[36] R. MALOUF, A comparison of algorithms for maximum entropy parameter estimation, in Proceedings of the
6th Conference on Natural Language Learning COLING-02, Vol. 20, Association for Computational
Linguistics, 2002, pp. 1–7.

[37] F. MELGANI AND L. BRUZZONE, Classification of hyperspectral remote sensing images with support vector
machines, IEEE Trans. Geosci. Remote Sens., 42 (2004), pp. 1778–1790.

[38] J. G. NAGY, K. PALMER, AND L. PERRONE, Iterative methods for image deblurring: a Matlab object-oriented
approach, Numer. Algorithms, 36 (2004), pp. 73–93.

[39] J. NOCEDAL AND S. J. WRIGHT, Numerical Optimization, Springer, New York, 1999.
[40] L. PARRA, C. SPENCE, AND P. SAJDA, Higher-order statistical properties arising from the nonstationarity of

natural signals, In Advances in Neural Information Processing Systems 13 (NIPS 2000), T.K. Leen, T.G.
Dietterich, and V. Tresp., eds., NIPS Proceedings, 2001, pp. 786–792.

[41] P. RAMAN, S. MATSUSHIMA, X. ZHANG, H. YUN, AND S. V. N. VISHWANATHAN, DS-MLR: exploiting
double separability for scaling up distributed multinomial logistic regression, Preprint on arXiv/CoRR,
2016. http://arxiv.org/abs/1604.04706

[42] H. ROBBINS AND S. MONRO, A stochastic approximation method, Ann. Math. Statistics, 22 (1951), pp. 400–
407.

[43] Y. SAAD, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.
[44] J. SHI, W. YIN, S. OSHER, AND P. SAJDA, A fast hybrid algorithm for large-scale l1-regularized logistic

regression, J. Mach. Learn. Res., 11 (2010), pp. 713–741.
[45] M. TADDY, Distributed multinomial regression, Ann. Appl. Stat., 9 (2015), pp. 1394–1414.
[46] G. TAYLOR, R. BURMEISTER, Z. XU, B. SINGH, A. PATEL, AND T. GOLDSTEIN, Training neural networks

without gradients: a scalable ADMM approach, in Proceedings of the 33rd International Conference on
Machine Learning, M. F. Balcan and K. Q. Weinberger, eds., JMLR, New York, 2016, pp. 2722–2731.

[47] R. TIBSHIRANI, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B, 58 (1996),
pp. 267–288.

[48] Y. TSURUOKA, J. MCNAUGHT, J. TSUJII, AND S. ANANIADOU, Learning string similarity measures for
gene/protein name dictionary look-up using logistic regression, Bioinformatics, 23 (2007), pp. 2768–2774.

[49] XTRACTOPEN, Meganet, Matlab package, 2018. https://github.com/XtractOpen,
[50] J. YOSINSKI, J. CLUNE, Y. BENGIO, AND H. LIPSON, How transferable are features in deep neural networks?,

in Proceedings of the 27th International Conference on Neural Information Processing Systems NIPS’14,
Vol. 2, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, eds., MIT Press,
Cambridge, 2014, pp. 3320–3328.

[51] G.-X. YUAN, K.-W. CHANG, C.-J. HSIEH, AND C.-J. LIN, A comparison of optimization methods and
software for large-scale L1-regularized linear classification, J. Mach. Learn. Res., 11 (2010), pp. 3183–
3234.

[52] M. YUAN AND Y. LIN, Model selection and estimation in regression with grouped variables, J. R. Stat. Soc.
Ser. B Stat. Methodol., 68 (2006), pp. 49–67.

[53] T. ZHANG, Solving large scale linear prediction problems using stochastic gradient descent algorithms, in
Proceedings of the 21st International Conference on Machine Learning, ICML ’04, ACM, New York,
2004, pp. 116–124.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1604.04706
https://github.com/XtractOpen

