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A BOUNDARY AND FINITE ELEMENT COUPLING FOR A MAGNETICALLY
NONLINEAR EDDY CURRENT PROBLEM∗

RAMIRO ACEVEDO†, EDGARDO ALVAREZ‡, AND PAULO NAVIA†

Abstract. The aim of this paper is to provide a mathematical and numerical analysis for a FEM-BEM coupling
approximation of a magnetically nonlinear eddy current formulation by using FEM only on the conducting domain,
and by imposing the integral conditions on its boundary. The nonlinear relationship between flux density and the
magnetic field intensity is given by a physical parameter called magnetic reluctivity, which is assumed to depend on
the Euclidean norm of the magnetic induction in the conducting domain. We use the nonlinear monotone operator
theory for parabolic equations to show that the continuous formulation obtained for the coupling is a well-posed
problem. Furthermore, we use Nédélec edge elements, standard nodal finite elements, and a backward-Euler time
scheme, to obtain a fully discrete formulation and to prove quasi-optimal error estimates.

Key words. Time-dependent electromagnetic, eddy current model, nonlinear problems, boundary element
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1. Introduction. The eddy current model is obtained by dropping the displacement
currents from Maxwell equations (see for instance [9, Chapter 8]) and it provides a reasonable
approximation to the solution of the full Maxwell system in the low frequency range [5]. This
model is commonly used in many physical problems such as induction heating, electromagnetic
braking, electric generation, etc.; see [3, Chapter 9].

Among the numerical methods used to approximate eddy current equations, the finite
element method (FEM) and methods combining the FEM and the boundary element method
(FEM-BEM) are the most used; see for instance the recent book by Alonso and Valli [3] for a
survey on this subject, including a large list of references. In applied mathematics, we can
find many papers devoted to the numerical analysis of the linear time dependent eddy current
model, in bounded domains as well as in unbounded domains, by using FEM and FEM-BEM
methods: Meddahi and Selgas [20], Ma [17], Acevedo et al. [2], Kang and Kim [15], Prato
et al. [26, 27], Acevedo and Meddahi [1], Bermudez et al. [10], Camaño and Rodríguez [11].
However, this is not the case for the eddy current problems involving ferromagnetic conducting
materials, where the number of papers is considerably smaller. The computations and the
analysis for the latter case are usually more complicated, because the relationship between
flux density and the magnetic field intensity (which is given by a physical parameter called
magnetic reluctivity, namely, the inverse of the permeability) is nonlinear.

If hysteresis effects and anisotropies are neglected, the reluctivity is a scalar function that
typically has a nonlinear dependence on the absolute value of the magnetic induction. More
precisely, we assume that in the conductor domain this dependence is given by the following
material relationship [7, 8, 19]

(1.1) H = ν(|B|)B,

where, as usual, H and B represent the magnetic field and the magnetic induction field,
respectively, and ν is the reluctivity of the conductor. Among the papers dedicated to the study
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of this nonlinear eddy current problem, we cite the works by Bachinger et al. [7] and Bíró
et al. [8], which are based on the so-called multiharmonic-approach, i.e., the solution of the
problem is approximated by a truncation of the Fourier series. A finite element approach is
presented in the recent paper by Kang and Chen [16], where the authors proposed a T -ψ finite
element method for the eddy current model, considering some kind of inverse relationship
to (1.1). Other important contributions in the context of the nonlinear eddy current model can
be found in [14, 19].

On the other hand, Camaño and Rodríguez [11] studied a FEM-BEM coupling for a linear
eddy current problem by introducing a time-primitive of the electric field as a main unknown
(see [1, 2] for earlier formulations using the same main variable), where the reluctivity appears
as a diffusion coefficient. However, in that work the authors did not consider the nonlinear
case. Consequently, the study of this FEM-BEM coupling by considering the nonlinear case
given by the relationship (1.1) is new. Therefore the analysis of the obtained formulation is
the principal subject of this paper.

The paper is organized as follows: in Section 2, we summarize some results concerning
functional spaces, tangential traces, and integral boundary operators. In Section 3 we introduce
the nonlinear model problem to be studied, and deduce a symmetric FEM-BEM coupling
for this problem. Next, in Section 4 we prove that it is uniquely solvable, by assuming some
reasonable (physical) properties of the reluctivity [14], and using the nonlinear monotone
operator theory for parabolic equations [28]. The construction of a fully discrete approximation
for the problem, by using a backward Euler scheme for time and natural finite element (Nédélec
and Lagrange) subspaces for the corresponding spatial variable, is reported in Section 5.
Finally, error estimates that prove a quasi-optimal convergence are settled in Section 6.

2. Preliminaries. In this paper, Ωc is an open, bounded and connected subset of R3

which represents the domain occupied by a conductive material, with a Lipschitz continuous
boundary Γ := ∂Ωc, and ΩI := R3 \ Ωc is a connected set occupied by insulating materials.
We denote by nC (respectively nI, where nI = −nC) the exterior unit normal vector on Γ,
i.e., from Ωc to ΩI (respectively, from ΩI to Ωc).

Let (f, g)0,Ωj be the usual inner product on L2(Ωj) and ‖ · ‖0,Ωj the corresponding
induced norm with j ∈ {C, I}. As usual, for each s > 0, ‖ · ‖s,Ωc

is the standard norm
of the Sobolev space Hs(Ωc) and | · |s,Ωc

represents the corresponding semi-norm; see [13,
Section 1.1].

The space H1/2(Γ) is defined by localization on the Lipschitz surface Γ; see [22, Def-
inition 3.8]. We denote by ‖ · ‖1/2,Γ the norm in H1/2(Γ) and, for simplicity, we use
the integration symbol on Γ to denote the duality pairing between H1/2(Γ) and its dual
H−1/2(Γ). Furthermore, in what follows boldface symbols will be used to denote a vecto-
rial space which is a Cartesian product of three of the corresponding component Sobolev
spaces. More precisely, L2(Ωc) := (L2(Ωc))3 and, analogously, Hs(Ωc) := (Hs(Ωc))3,
andH1/2(Γ) := (H1/2(Γ))3.

Let γ : H1(Ωc) −→ H1/2(Γ) be the standard trace and γ : H1(Ωc) −→ H1/2(Γ) the
vectorial trace acting by components. We use u|Γ and u|Γ in order to denote γ(u) and γ(u)
for all u ∈ H1(Ωc) and u ∈H1(Ωc) respectively.

We recall that

H(div; Ωc) := {u ∈ L2(Ωc) : divu ∈ L2(Ωc)},
H(curl; Ωc) := {u ∈ L2(Ωc) : curlu ∈ L2(Ωc)},
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are Hilbert spaces with the following inner products, respectively,

(u,v)H(curl;Ωc) := (u,v)0,Ωc
+ (curlu, curlv)0,Ωc

,

(u,v)H(div;Ωc) := (u,v)0,Ωc
+ (divu,div v)0,Ωc

.

The following result about the normal trace of functions in H(div; Ωc) can be found in [6,
Lemma 3.10].

LEMMA 2.1. If ψ ∈ H(div; Ωc), then the restriction of ψ · n to each Σj belongs to
H−1/2(Σj). Furthermore, if Ω0

c :=
⋃L
j=1 Σj , following Green’s formula, it holds for all

χ ∈ H1(Ω0
c) that

(2.1)
∫

Γ

(ψ · n)χdζ +

L∑
j=1

∫
Σj

(ψ · n)[χ]j dζ =

∫
Ω0

c

ψ · ∇χ dx+

∫
Ω0

c

(∇ ·ψ)χ dx,

where [χ]j denotes the jump of χ through Σj .
On the other hand, in order to deal with the functions defined on the unbounded set ΩI,

we need to introduce the Beppo-Levi space

(2.2) W 1(ΩI) :=

{
ϕ ∈ L2

loc(ΩI) :
ϕ√

1 + |x|2
∈ L2(ΩI),∇ϕ ∈ L2(ΩI)

}
,

which is a Banach space with the norm ϕ 7→ ‖∇ϕ‖0,ΩI
; see [23, Theorem 2.5.11]. Another

important space for the analysis is the space of harmonic Neumann vector-fields

(2.3) H(ΩI) :=
{
v ∈ L2(ΩI) : curlv = 0, div v = 0, v · nI = 0 on Γ

}
.

To define a basis of H(ΩI), we assume that there exist open connected surfaces Σext
j ⊂ ΩI,

j = 1, . . . , L, such that Ω0
I := ΩI \ ∪Lj=1Σext

j is simply connected, and the boundary curves
∂Σext

j are in Γ; see [6, Hypothesis 3.3].
Now, we fix a unit normal vector next

j . Then, for each j = 1, ..., L, consider the following
problem, which admits a unique solution:

Find zj ∈W 1(ΩI \ Σext
j ) such that

(2.4)
∆zj = 0 in ΩI \ Σext

j , ∇zj · nI = 0 on Γ,

J∇zj · next
j KΣext

j
= 0, JzjKΣext

j
= 1.

The set {∇̃zj ∈ L2(ΩI) : j = 1, . . . , L}, where ∇̃zj are the extensions to (L2(ΩI))
3 of∇zj ,

is a basis of H(ΩI); see [6, Prop. 3.14].
Next, we introduce on Γ the single and double layer potentials, which are formally defined

by

S : H−1/2(Γ) −→ H1/2(Γ), S(ξ)(x) :=

∫
Γ

1

4π|x− y|
· ξ(y) dζy,

D : H1/2(Γ) −→ H1/2(Γ), D(η)(x) :=

∫
Γ

x− y
4π|x− y|3

· η(y)nC(y) dζy,

respectively, and the hyper-singular operatorH : H1/2(Γ) −→ H−1/2(Γ), formally defined
as the normal derivative

H(η)(x) := −∇x
(∫

Γ

x− y
4π|x− y|3

· η(y)nC(y) dζy

)
· nC(x).
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Notice that the restrictions to the boundary, as well as the normal derivative above, have to be
understood in a weak sense; for rigorous definitions see, for instance, [18]. These operators
are linear and bounded. Denote by D′ : H−1/2(Γ) −→ H−1/2(Γ) the adjoint operator of D,
i.e., ∫

Γ

(D′ξ)η dζ :=

∫
Γ

ξ(Dη) dζ ∀ξ ∈ H−1/2(Γ), ∀η ∈ H1/2(Γ).

The operators above satisfy the following properties; see, e.g., [18, 23] for the corresponding
proofs.

THEOREM 2.2. Let φ ∈W 1(ΩI) be a harmonic function, i.e.,4φ = 0 in ΩI. Then, the
following identities hold on Γ:(

1

2
I − D

)
(φ|Γ)− S

(
∂φ

∂nI

)
= 0, −

(
1

2
I +D′

)(
∂φ

∂nI

)
+H (φ|Γ) = 0.

LEMMA 2.3. There exist k1, k2 > 0 such that∫
Γ

S(η)η dζ ≥ k1‖η‖2−1/2,Γ, ∀η ∈ H−1/2(Γ),∫
Γ

H(φ)φ dζ ≥ k2‖φ‖21/2,Γ, ∀φ ∈ H1/2
0 (Γ),

where

H
1/2
0 (Γ) :=

{
φ ∈ H1/2(Γ) :

∫
Γ

φ dζ = 0

}
.

Furthermore, the operatorsH and S are related by the following identity∫
Γ

(Hψ)φdζ =

∫
Γ

(curlΓ φ)πτ S̃(curlΓ ψ) dζ, ∀ψ, φ ∈ H1/2(Γ),

whereπτu represents the tangential component trace ofu ∈ H(curl; Ωc), S̃ is the continuous
linear operator defined by S̃ := S ◦ iπ , and iπ is the adjoint operator of πτ .

LEMMA 2.4. H(1) = 0, D(1) = −1/2, and∫
Γ

H(η) dζ = 0, ∀η ∈ H1/2(Γ).

THEOREM 2.5. The linear operatorH : H1/2(Γ)/R −→ H
−1/2
0 (Γ), where

H
−1/2
0 (Γ) :=

{
η ∈ H−1/2(Γ) :

∫
Γ

η dζ = 0

}
,

defines an isomorphism.

3. A FEM-BEM coupling formulation for the nonlinear eddy current problem. The
eddy current problem is obtained by neglecting the displacement of the Ampere-Maxwell Law
from the full Maxwell system of equations, more precisely, the eddy current model consists of
the following set of equations (see [5]):

(3.1a) ∂tB + curlE = 0, in R3 × (0, T ),
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(3.1b) curlH − σE = J , in R3 × [0, T ],

(3.1c) B(x, 0) = B0(x), x ∈ R3,

(3.1d) H(x, t),E(x, t) = O(|x|−2), as |x| → ∞,

(3.1e) div(ε0E) = 0, in ΩI × [0, T ],

(3.1f)
∫

Γ

ε0E · n = 0, in [0, T ],

where, E : R3 × [0, T ] −→ R3 is the electric field,H : R3 × [0, T ] −→ R3 is the magnetic
field, andB : R3 × [0, T ] −→ R3 is the magnetic induction. The electric conductivity σ in
the conductor is assumed to be a symmetric and positive definite matrix with bounded entries,
but it vanishes inside the insulator. Furthermore, the coefficient ε0 is the electric permittivity
in the vacuum and J := J(x, t) represents the current density applied to the system, whose
compact support is included in Ωc

suppJ(·, t) ⊆ Ωc, ∀t ∈ [0, T ].

The initial conditionB0 must satisfy1

divB0 = 0, in R3.

From now on, we will use the notation HC := H|Ωc , HI := H|ΩI , EC := E|Ωc ,
EI := E|ΩI . Analogously, BC,0 := B0|Ωc , BI,0 := B0|ΩI , etc. Moreover, to simplify
notation, in some cases the spatial variable x and the time variable t are omitted.

Finally, we suppose that the conductive material of the problem is magnetically nonlinear,
that is, the relationship between the magnetic induction and the intensity of the magnetic field
is nonlinear. More precisely, in a similar way as in [7, 14], we assume that

(3.2) H(x, t) =

{
νC(|BC(x, t)|)BC(x, t), ∀(x, t) ∈ Ωc × [0, T ],

ν1BI ∀(x, t) ∈ ΩI × [0, T ],

where ν1 is a positive constant and νC : R+
0 → R+ represents the magnetic reluctivity (inverse

to magnetic permeability), which characterizes, in a certain way, the resistance exerted to
the passage of magnetic flux when the material is under the influence of a magnetic field.
Furthermore, we assume that νC satisfies

0 < νmin ≤ νC(s) ≤ νmax, ∀s ∈ R+
0 .

To obtain a suitable formulation for problem (3.1), we proceed as in [11] by introducing
the variable

(3.3) AC(x, t) := −
∫ T

0

EC(x, s) ds+AC,0(x),

where AC,0 is a vector potential of BC,0, namely, a vector field (which exists because
div(BC,0) = 0 in Ωc and Γ := ∂Ωc is connected and Lipschitz, see for instance [6,
Lemma 3.5]) such that

(3.4) curlAC,0 = BC,0, in Ωc.

1From this condition and (3.1a), we deduce that divB = 0 in R3 × [0, T ]. Then B satisfies Gauss’s Law for
magnetism.
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We can notice that the new variable AC is defined on Ωc. Moreover, by applying curl
to (3.3), using (3.1a) and (3.4), we obtain

BC = curlAC, in Ωc × [0, T ].

Thus, by replacing this last relationship in (3.1b), we have

σ∂tAC + curl (νC(| curlAC|) curlAC) = J , in Ωc × (0, T ).

Now, in order to rewrite the equations forBI, recalling that supp J ⊆ Ωc and σ = 0 in
ΩI, we notice equations (3.1b) and (3.2) imply

curlBI = 0, in ΩI × [0, T ].

Consequently, we can consider the following representation of curl-free vector-fields in ΩI

(see [12, Remark 7]), given by using the Beppo Levi space W 1(ΩI) defined in (2.2) and the
space of the harmonic Neumann vector-fields H(ΩI).

LEMMA 3.1. The following L2(ΩI)-orthogonal decomposition holds

{u ∈ L2(ΩI) : curlu = 0 in ΩI} = ∇(W 1(ΩI))⊕H(ΩI).

The previous lemma establishes the existence, at each time t ∈ [0, T ], of a function ψI(t)
in W 1(ΩI) and real constants {αj(t)}Lj=1 such that

(3.5) BI(x, t) = ∇ψI(x, t) +

L∑
j=1

αj(t)∇̃zj(x), in ΩI × [0, T ].

Moreover, by taking divergence in this last equation and recalling that ∆zj = 0 in ΩI, we
obtain

4ψI = 0, in ΩI × [0, T ].

On the other hand, multiplying (3.1a) by ∇̃zj , using Green’s formula and (3.5), we obtain∫
Γ

(∂tAC)× nC · ∇̃zj dζ =

∫
ΩI

∂tBI · ∇̃zj dx =

L∑
i=1

α′i(t)

∫
ΩI

∇̃zi · ∇̃zj dx.

Next, by integrating between 0 and s (0 < s < T ), we deduce

L∑
i=1

αi(s)

∫
ΩI

∇̃zi · ∇̃zj dx−
∫

Γ

AC(s)× nC · ∇̃zj dζ

=

L∑
i=1

αi(0)

∫
ΩI

∇̃zi · ∇̃zj dx−
∫

Γ

AC,0 × nC · ∇̃zj dζ,

(3.6)

for all j = 1, . . . , L.
Denoting by nj is the unitary outward normal vector to the cut Σext

j , we define

N =

[∫
Σext

j

∂zi
∂nj

dζ

]
1≤i,j≤L

,(3.7)

Z = [∇̃z1, . . . , ∇̃zL]T ,(3.8)
α = [α1, . . . , αL]T .
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Thus, we can use the Green’s formula (2.1) to write (3.6) as

Nα−
∫

Γ

Z(AC × nC) dζ = Nα0 −
∫

Γ

Z(AC,0 × nC) dζ,

where α0 := α(0) can be computed by using (3.5), the orthogonality of ∇(W 1(ΩI)) with
H(ΩI), and considering that BI(x, 0) is known. Observe that N is symmetric and positive
definite.

In summary, we have the following formulation for the problem (3.1) in terms of the new
variablesAC, ψI and α:

FindAC : Ωc × [0, T ]→ R3, ψI : ΩI × [0, T ]→ R3 and α : [0, T ]→ RL such that

(3.9a) σ∂tAC + curl (νC(| curlAC|) curlAC) = J , in Ωc × (0, T ),

(3.9b) Nα−
∫

Γ

Z(AC × nC) dζ = Nα0 −
∫

Γ

Z(AC,0 × nC) dζ, in [0, T ],

(3.9c) ∆ψI = 0, in ΩI × [0, T ],

(3.9d) νC(| curlAC|) curlAC × nC + ν1(∇ψI +Ztα)× nI = 0, in Γ× [0, T ],

(3.9e) curlAC · nC +∇ψI · nI = 0, on Γ× [0, T ],

(3.9f) AC(x, 0) = AC,0, in Ωc.

It is important to notice that equations (3.9d) and (3.9e) arise from the fact that H ∈
H(curl;R3) andB ∈ H(div;R3).

REMARK 3.2. Equations (3.9a) and (3.9d) include the magnetic reluctivity of the media,
therefore these equations give the nonlinear behavior of the eddy current model. Consequently,
the techniques used to obtain well-posedness as well as theoretical convergence analysis (see
Theorem 4.1, Theorem 5.3 and Section 6 below) differ considerably from the ones used in the
linear case; see [11].

In what follows, we show a FEM-BEM coupling formulation for the previous prob-
lem (3.9). To do this, we assume that (AC, ψI,α) is a solution of (3.9) and introduce the new
variable ψ(t) := ψI|Γ(t)− c(t), where c : [0, T ] −→ R is a function such that

ψ(t) ∈ H
1/2
0 (Γ) :=

{
ϕ ∈ H1/2(Γ) :

∫
Γ

ϕ dζ = 0

}
,

for any t ∈ [0, T ]. Then, by proceeding as in [11, Section 4], we can deduce the following FEM-
BEM coupling weak formulation for (3.9) using the integral operators defined in Section 2:
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FindAC ∈ L2(0, T ;H(curl; Ωc)) ∩H1(0, T ;H(curl; Ωc)′), ψ ∈ L2(0, T ;H
1/2
0 (Γ)), and

α ∈ L2(0, T ;RL) such that

d

dt

∫
Ωc

σAC ·wC dx+

∫
Ωc

(νC(| curlAC|) curlAC) · curlwC dx

+ ν1

∫
Γ

[
−1

2
ψ −D(ψ) + S(curlAC · nC)

]
curlwC · nC dζ

+ ν1α
t

∫
Γ

Z(wC × nC) dζ =

∫
Ωc

J ·wC dx,

(3.10a)

(3.10b)
∫

Γ

[
1

2
curlAC · nC +D′(curlAC · nC) +H(ψ)

]
η dζ = 0,

(3.10c) βtNα− βt
∫

Γ

Z(AC × nC) dζ = βtNα0 − βt
∫

Γ

Z(AC,0 × nC) dζ,

for allwC ∈ H(curl; Ωc), η ∈ H
1/2
0 (Γ), and β ∈ RL, whereAC satisfies the initial condition

AC(0) = AC,0.

For theoretical analysis, it is convenient to eliminate α and ψ from the previous formula-
tion. To achieve this goal, we introduce the linear and bounded operator J : H(curl; Ωc) −→
RL defined by

(3.11) J (wC) :=

∫
Γ

Z(wC × nC) dζ.

Then, we can rewrite (3.10c) as follows

α = N−1J (AC) +α0 −N−1J (AC,0).

On the other hand, to eliminate ψ, we can use Lemma 2.3 to define the linear and bounded
operatorR : H

−1/2
0 (Γ) −→ H

1/2
0 (Γ) characterized by

(3.12)
∫

Γ

H(R(ξ))η dζ =

∫
Γ

ξη dζ, ∀η ∈ H
1/2
0 (Γ), ∀ξ ∈ H

−1/2
0 (Γ).

Then, from (3.10b) it follows

ψ = −R
(

1

2
curlAC · nC +D′(curlAC · nC)

)
,

and, consequently, (3.10) admits the following equivalent reduced form:
FindAC ∈ L2(0, T ;H(curl; Ωc)) ∩H1(0, T ;H(curl; Ωc)′) such that

d

dt
(σAC(t),wC)0,Ωc

+ 〈EAC(t),wC〉+

〈BAC(t),wC〉 =(J(t),wC)0,Ωc + g(wC),

AC(0) =AC,0 in Ωc,

(3.13)
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for allwC ∈ H(curl; Ωc), where E : H(curl; Ωc) −→ H(curl; Ωc)′,K : H(curl; Ωc) −→
H
−1/2
0 (Γ), B : H(curl; Ωc) −→ H(curl; Ωc)′ and g : H(curl; Ωc) −→ R are given by

〈EF ,G〉 :=

∫
Ωc

νC(| curlF |) curlF · curlG dx,(3.14)

K(F ) :=
1

2
curlF · nC +D′(curlF · nC),

〈BF ,G〉 := ν1

∫
Γ

S(curlF · nC) curlG · nC dζ(3.15)

+ ν1

∫
Γ

K(G)R(K(F )) dζ + ν1(J (G))tN−1J (F ),

g(F ) := ν1(J (F ))tN−1J (AC,0)− ν1(J (F ))tα0.(3.16)

We can notice that E is a nonlinear operator because νC is nonlinear, while the bilinear
form B is bounded and nonnegative. On the other hand, to deduce the variational prob-
lem (3.13), we prove that if (AC, ψ,α) is a solution of (3.10), then ψ and α depend onAC

through expressions

(3.17) ψ := −R (K(AC)) , α := N−1(J (AC)− J (AC,0)) +α0.

Therefore, in order to show the existence and uniqueness of solutions to (3.10) it is enough to
show the uniqueness ofAC.

4. Well-posedness of the nonlinear eddy current model. In this section, we will prove
that the problem (3.13) has a unique solution. To this aim we need to add the following
assumption about the reluctivity: νC : R+

0 −→ R+
0 is a continuously differentiable function

and there exist constants m,M > 0 satisfying

(4.1) m ≤ ν′C(s)s+ νC(s) ≤M, ∀s ≥ 0.

Then, by using the Mean Value Theorem we can easily deduce that

(4.2) m ≤ νC(s) ≤M, ∀s ≥ 0.

From now on, we will denote by (·, ·)σ the inner product in L2(Ωc), which is defined by

(F ,G)σ :=

∫
Ωc

σF ·G dx, ∀F ,G ∈ L2(Ωc),

and by ‖ · ‖σ the corresponding induced norm. Since the norm ‖ · ‖0,Ωc
is equivalent to ‖ · ‖σ ,

the norm ‖ · ‖H(curl;Ωc) is equivalent to the norm ‖ · ‖σ + ‖ curl(·)‖0,Ωc .
To show that problem (3.13) has a unique solution, we will use the substitution UC(t) :=

e−tAC(t), which allows to rewrite this problem in an equivalent form, for which it is pos-
sible to apply the theory of nonlinear parabolic equations. In fact, if AC(t) := etUC(t),
from (3.13), the following equivalent variational problem to (3.13), is obtained: Find UC ∈
L2(0, T ;H(curl; Ωc)) ∩H1(0, T ;H(curl; Ωc)′) such that

(4.3)
d

dt
(UC(t),wC)σ + 〈C(t)UC(t),wC〉 = e−t [(J(t),wC)0,Ωc

+ g(wC)] ,

where, for each t ∈ (0, T ), C(t) : H(curl; Ωc) −→ H(curl; Ωc)′ is the nonlinear operator
defined by

〈C(t)w,v〉 := (w,v)σ + 〈D(t)w,v〉+ 〈Bw,v〉,
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with

〈D(t)w,v〉 :=

∫
Ωc

νC(et| curlw|) curlw · curlv dx.

It can be verified that ifUC ∈ H(curl; Ωc) is a solution of (4.3), thenAC(t) := etUC(t)
is the solution of (3.13). Consequently, to deduce the well-posedness it is enough to show that
problem (4.3) has a unique solution, which is proved in the following result.

THEOREM 4.1. Problem (4.3) has a unique solution.
Proof. We are going to use [28, Theorem 30.A] to obtain the well-posedness of the

problem. In fact, we need to prove that C(t) is hemicontinuous, monotone, coercive and
bounded. We only prove here that C(t) is monotone, because the other three conditions can be
easily verified. Taking into account that the operator B is nonnegative, it is enough to prove
that D(t) is monotone. In fact, let α := et curlv, β := et curlw and

G(s) := νC(|sα+ (1− s)β|)(sα+ (1− s)β) · (α− β).

Then, to deduce D(t) is monotone, it is enough to show that G′(s) ≥ 0 for any s, which can
be verified by checking that

G′(s) = {[ν′C(η)η + νC(η)] cos2 θ + νC(η) sin2 θ}|α− β|2,

where

cos θ :=
(sα+ (1− s)β) · (α− β)

|sα+ (1− s)β||α− β|
, η := |sα+ (1− s)β|,

and by recalling that η 7−→ νC(η)η is strictly increasing; see (4.1).
REMARK 4.2. It is a simple matter to show that (AC, ψ,α) is the solution of prob-

lem (3.10), where AC is the unique solution of problem (3.13), and ψ and α are defined
by (3.17). Moreover, by adapting the line of the proof of [11, Theorem 4.3], we can prove that
there exist ψI ∈ L2(0, T ;W 1(ΩI)) and a function C : [0, T ] −→ R such that ψ = ψI|Γ − C
and (AC, ψI,α) is the unique solution of the strong problem (3.9).

5. Fully-discrete scheme. In order to obtain a fully discrete finite element approxima-
tion scheme for problem (3.10), we need to consider a regular family of tetrahedral meshes
{Th(Ωc)}h for the conducting domain Ωc, where h stands for the largest diameter of the tetra-
hedra K in Th(Ωc). Furthermore, let {Th(Γ)}h be the corresponding family of triangulations
induced on Γ, N ∈ N, ∆t := T

N and tn = n∆t, for n = 0, 1, . . . , N .
We will define the fully discrete scheme by using Nédélec finite elements. It is well

known that the local representation on K of the lowest order Nédélec finite elements subspace
is given by

N (K) := {a× x+ b : a, b ∈ R3,x ∈ K},

and its corresponding global Nédélec finite elements subspace Hh(curl; Ωc) is the space of
vector that are local in N (K) for all K ∈ Th(Ωc). Furthermore, we define

Lh(Γ) := {η ∈ H
1/2
0 (Γ) : η|F ∈ P1(F ) ∀F ∈ Th(Γ)},

which is a discrete subspace of H
1/2
0 (Γ), where Pm(F ) is the set of polynomial functions

defined on F of degree not greater than m.
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When Ωc is not simply connected, problem (3.10) involves the matrices N and Z
defined by (3.7) and (3.8), respectively. Consequently, in order to obtain the fully discrete
approximation of (3.10), it is necessary to approximate numerically the basis {∇̃zk}Lk=1 of the
space of harmonic Neumann’s vectorial fields defined in (2.3). In [21], the authors proposed a
FEM-BEM coupling method to calculate the entries of the matrixNh that approximatesN .
Next, we briefly describe this method.

First, we consider a convex polyhedra Ω such that Ωc ∪
(
∪Lk=1Σ

ext
k

)
⊂ Ω and let

Q := Ω \Ωc. For each k = 1, . . . , L, we define pk := ∇̃zk|Q. Thus, given that zk is solution
to (2.4), we deduce that for each k = 1, . . . , L, pk belongs to the closed subspace H(div;Q)
defined by

Y := {q ∈ (L2(Q))3 : div q = 0 in Q and q · nI = 0 on Γ}.

To approximate each pk it is necessary to introduce the space of finite elements of Raviart-
Thomas in Q to approximate H(div;Q). This subspace is defined by

RTh(Q) := {q ∈H(div;Q) : q|K ∈ RT (K), ∀K ∈ Jh(Q)} ,

where

RT (K) :=
{
ax+ b : a ∈ R, b ∈ R3,x ∈ K

}
,

which precisely corresponds to the local representation on K of the subspace of finite elements
of Raviart-Thomas of lowest order. The matrixNh is defined by

(5.1) Nh :=

(∫
∑ext

j

pkh · nj dζ

)
1≤k,j≤L

,

where pkh is calculated by solving the following mixed problem (see [21]):
Find pkh ∈ RT 0

h (Q), φkh ∈ Φh/R, and βkh ∈Mh such that∫
Q

pkh · q dx−
∫

Λ

[
1

2
φkh +D(φkh)

]
q · n dζ

+

∫
∂Ω

S (pkh · n) q · n dζ +

∫
Q

βkh div q dx =

∫
∑ext

k

q · nk dζ,∫
∂Ω

[
1

2
χ+D(χ)

]
pkh · n dζ +

∫
∂Ω

S(curlτ φkh) curlτ χ dζ = 0,∫
Q

div pkhv dx = 0,

for all function q ∈ RT 0
h (Q), χ ∈ Φh/R, and v ∈Mh, where

RT 0
h (Q) := {q ∈ RTh(Q) : q|Γ · nI = 0} ,

Φh :=
{
η ∈ C0(∂Ω) : η|F ∈ P1(F ) ∀F ∈ Jh(∂Ω)

}
,

Mh :=
{
v ∈ L2(Q) : v|K ∈ P0(K) ∀K ∈ Jh(Q)

}
.
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REMARK 5.1. The matrix Nh defined by (5.1) is symmetric and positive definite.
Furthermore, there exists h0 > 0 such that Nh is invertible for all h ∈ (0, h0) and the
following approximation estimate holds

‖N −Nh‖+ ‖N−1 −N−1
h ‖ ≤ Ch

s max
1≤k≤L

(
‖pk‖s,Q + ‖φk‖s+1/2,Λ

)
,

for any s ∈ (1/2, sQ), where sQ ∈ (1/2, 1) denotes the exponent of maximal regularity
in Q of the solution of the Laplace operator with L2(Q) right-hand side and homogeneous
Neumann boundary data; see Theorem 7.1 and Corollary 7.3 of [21] for the details.

On the other hand, it is also necessary to obtain a way to approximate the discrete form
to the operator J defined in (3.11), for which it is necessary to approximate appropriately
the matrix Z. An appropriate approximation for the matrix Z was presented in [11], which
consists of calculating the matrix Zh defined by

(5.2) Zh := [∇̃z1h . . . ∇̃zLh]T ,

where ∇̃zkh (for k = 1, . . . , L) is the zero extension to Q of∇zkh and zkh is the solution of
a weak discrete approximation problem for (2.4). Moreover, in [11, Lemma 5.1] it was proved
that zk and zkh satisfy the following estimate

(5.3) ‖∇̃zk − ∇̃zkh‖0,Q ≤ Chs.

Once the matrix Zh defined in (5.2) has been calculated, let Th : H(curl; Ωc) −→ RL
be the linear and bounded operator given by

Th(w) :=

∫
Γ

Zh(w × nC) dζ.

With the preceding discussion, we can introduce the fully discrete problem associated to (3.10):
For n = 1, . . . , N , find (An

Ch, ψ
n
h ,α

n
h) ∈ Hh(curl; Ωc)× Lh(Γ)× RL such that∫

Ωc

σ∂An
Ch ·wC dx+

∫
Ωc

(νC(| curlAn
Ch|) curlA

n
Ch) · curlwC dx

+ν1

∫
Γ

[
−1

2
ψnh −D(ψnh) + S(curlAn

Ch · nC)

]
curlwC · nC dζ

+ν1(αnh)tTh(wC) =

∫
Ωc

J(tn) ·wC dx,∫
Γ

[
1

2
curlAn

Ch · nC +D′(curlAn
Ch · nC) +H(ψnh)

]
η dζ = 0,

βtNhα
n
h − β

tTh(An
Ch) = βtNhα0 − βtTh(AC,0),

(5.4)

for all (wC, η,β) ∈ Hh(curl; Ωc)×Lh(Γ)×RL, withA0
Ch = ACh,0 in Ωc, whereACh,0 ∈

Hh(curl; Ωc) is an approximation ofAC,0, and

∂An
Ch := (An

Ch −A
n−1
Ch )/∆t.

To prove the existence and uniqueness of the solutions to (5.4), we proceed first as in the
continuous case and obtain the discrete form to the problem (3.13). LetRh : H

−1/2
0 (Γ) −→

Lh(Γ) be the operator defined by

(5.5)
∫

Γ

H(Rh(ξ))η dζ =

∫
Γ

ξη dζ, ∀η ∈ Lh(Γ), ∀ξ ∈ H
−1/2
0 (Γ).

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

242 R. ACEVEDO, E. ALVAREZ, AND P. NAVIA

By using the Lax-Milgram Lemma, we have that Rh is a linear bounded operator which
satisfies

(5.6) ψnh := −Rh(K(An
Ch)).

Furthermore, we can notice that (5.5) is a Galerkin discretization of the elliptic problem (3.12),
hence from (3.12) and (5.5) we have the following Cea estimate: there exists C > 0 such that

(5.7) ‖R(ξ)−Rh(ξ)‖1/2,Γ ≤ C inf
η∈Lh(Γ)

‖R(ξ)− η‖1/2,Γ, ∀ξ ∈ H
−1/2
0 (Γ).

Furthermore, from the third equation in (5.4) we have for all wC ∈ H(curl; Ωc)

(αnh)tTh(wC) = (Th(wC))tN−1
h Th(An

Ch) + (Th(wC))tα0

− (Th(wC))tN−1
h Th(AC,0),

(5.8)

and thus, replacing (5.6) and (5.8) in the first equation of (5.4), we can see that (5.4) is
equivalent to the following problem (which corresponds precisely to the discrete version
of (3.13)):

For n = 1, . . . , N , findAn
Ch ∈ Hh(curl; Ωc) such that

(5.9) (∂An
Ch,wC)σ + 〈EAn

Ch,wC〉+ 〈BhAn
Ch,wC〉 = (J(tn),wC)0,Ωc

+ gh(wC),

for all wC ∈ Hh(curl; Ωc), with A0
Ch = ACh,0 in Ωc, where E : Hh(curl; Ωc) −→

Hh(curl; Ωc)′ is the nonlinear operator defined in (3.14), and Bh : Hh(curl; Ωc) −→
Hh(curl; Ωc)′ and gh : Hh(curl; Ωc) −→ R are respectively given by

〈BhF ,G〉 := ν1

∫
Γ

S(curlF · nC) curlG · nC dζ

+ ν1

∫
Γ

K(G)Rh(K(F )) dζ + ν1(Th(G))tN−1
h Th(F ),

gh(F ) := ν1(Th(F ))tN−1
h Th(AC,0)− ν1(Th(F ))tα0.

It is important to notice that the bilinear form Bh and the operator gh are linear and
bounded operators and they are the discrete versions of B and g respectively; see (3.15)
and (3.16). Moreover, the bilinear form Bh is nonnegative, as it is the same case of its
continuous version B.

In the following result, we show some properties of the nonlinear operator E , which are
necessaries for the analysis of problem (5.9).

LEMMA 5.2. If ν : R+
0 −→ R+

0 is a continuously differentiable function satisfying
(4.1)–(4.2), then the nonlinear operator E defined by (3.14) satisfies

(5.10) 〈E(u)− E(v),u− v〉 ≥ m‖ curl(u− v)‖20,Ωc
, ∀u,v ∈ H(curl; Ωc),

and

(5.11) ‖E(u)− E(v)‖H(curl;Ωc)′ ≤ 3M‖u− v‖H(curl;Ωc), ∀u,v ∈ H(curl; Ωc).

Proof. The proof is based on the ideas presented in [28, Lemma 25.26]; see also [25].
Using (4.1), (4.2), and the Mean Value Theorem we obtain

(5.12) (νC(s)s− νC(t)t) (s− t) ≥ m(s− t)2, ∀s, t ≥ 0,
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and

(5.13) |νC(s)s− νC(t)t| ≤M |s− t|, ∀s, t ≥ 0.

Then, using (5.12), we check

(νC(|p|)p− νC(|q|)q) · (p− q) ≥ m|p− q|2, ∀p, q ∈ R3,

and consequently, by choosing p = curlu and q = curlv in this inequality, we can conclude
that (5.10) holds. Finally, from (3.14) and using (5.13), it is easy to verify (5.11).

5.1. Well-posedness of the discrete problem. We recall that the discrete version of the
problem (3.13) is:

FindAn
Ch ∈ Hh(curl; Ωc), n = 1, . . . , N such that(

An
Ch −A

n−1
Ch

∆t
,wC

)
σ

+ 〈EAn
Ch,wC〉+ 〈BhAn

Ch,wC〉 = (J(tn),wC)0,Ωc
+ gh(wC).

Therefore, for each iteration, we have to findAn
Ch ∈ Hh(curl; Ωc) such that

(5.14) (An
Ch,wC)σ + ∆t〈EAn

Ch,wC〉+ ∆t〈BhAn
Ch,wC〉 = Fn(wC),

for all wC ∈ Hh(curl; Ωc), withA0
Ch = ACh,0 in Ωc, where

Fn(wC) := ∆t [(J(tn),wC)0,Ωc
+ gh(wC)] + (An−1

Ch ,wC)σ.

THEOREM 5.3. The problem (5.14) is well posed, that is, it has a unique solution.
Proof. First, we define the nonlinear operator Ch : Hh(curl; Ωc) −→ Hh(curl; Ωc)′,

given by

〈ChF ,G〉 := (F ,G)σ + ∆t〈EF ,G〉+ ∆t〈BhF ,G〉,

then, problem (5.14) is equivalent to findingAn
Ch ∈ Hh(curl; Ωc) such that

(5.15) 〈ChAn
Ch,wC〉 = Fn(wC),

for all wC ∈ Hh(curl; Ωc), with A0
Ch = ACh,0 in Ωc. To prove the well-posedness

of (5.15) it is enough to show that the nonlinear operator Ch is strictly monotone and Lipschitz
continuous in Hh(curl; Ωc) (see [28, Theorem 25.B]), which can be shown by adapting the
line of the proof of Lemma 5.2.

The proof of the following result is analogous to the continuous case.
THEOREM 5.4. LetAn

Ch ∈ Hh(curl; Ωc) be the solution of (5.9). If

ψnh := −Rh(K(An
Ch)), αnh := α0 +N−1

h (Jh(An
Ch)− Jh(AC,0)),

then (An
Ch, ψ

n
h ,α

n
h) ∈ Hh(curl; Ωc)× Lh(Γ)× RL is the unique solution of (5.4).

6. Error estimates. For any s > 0, consider the Sobolev space

Hs(curl; Ωc) := {v ∈Hs(Ωc) : curlv ∈Hs(Ωc)},

endowed with the norm

‖v‖2Hs(curl;Ωc) := ‖v‖2s,Ωc
+ ‖ curlv‖2s,Ωc

.
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By [4, Lemma 5.1], for each s > 1/2 the Nédélec interpolation operator

INh : Hs(curl; Ωc) −→ Hh(curl; Ωc)

is well defined. Moreover, for 1/2 < s ≤ 1, the following interpolation error estimate holds
(see [4, Prop. 5.6])

‖v − INh v‖H(curl;Ωc) ≤ Chs‖v‖Hs(curl;Ωc), ∀v ∈ Hs(curl; Ωc).

To simplify the notation, for any w ∈ H(curl; Ωc), we introduce

fh(w) := ‖(R−Rh)K(w)‖1/2,Γ.

LEMMA 6.1. Let (AC, ψ,α) and (An
Ch, ψ

n
h ,α

n
h) be the solutions of problems (3.10)

and (5.4), respectively, the last one with initial conditionA0
Ch := INh (AC,0). Suppose that

AC ∈ C1([0, T ];H(curl; Ωc)) ∩ C0([0, T ]; Hs(curl; Ωc)),

with s > 1/2. Furthermore, let

ρn := AC(tn)−INh AC(tn), δn := INh AC(tn)−An
Ch, τn := ∂AC(tn)− ∂tAC(tn).

Then, there exists C > 0 independent of h and ∆t such that

max
1≤n≤N

‖δn‖2σ + ∆t

N∑
k=1

‖ curl δk‖20,Ωc

≤ C
{

(‖AC,0‖2H(curl;Ωc) + |α0|2)

(
max

1≤i≤L
‖∇̃zi − ∇̃zih‖20,Q + ‖N−1 −N−1

h ‖
2

)
+∆t

N∑
k=1

[
‖∂ρk‖2σ + ‖τ k‖2σ + ‖ρk‖2H(curl;Ωc) + fh(AC(tk))2

+‖AC(tk)‖2H(curl;Ωc)

(
max

1≤i≤L
‖∇̃zi − ∇̃zih‖20,Q + ‖N−1 −N−1

h ‖
2

)]}
.

Proof. It is straightforward to show that for all v ∈ Hh(curl; Ωc)

(∂δk,v)σ + 〈EINh AC(tk)− EAk
Ch,v〉+ 〈Bhδk,v〉

=− (∂ρk,v)σ + (τk,v)σ −
〈
EAC(tk)− EINh AC(tk),v

〉
− Bh(ρk,v)

+ Bh(AC(tk),v)− B(AC(tk),v) + g(v)− gh(v),

(6.1)

as well as the following inequalities

(∂δk, δk)σ ≥
1

2∆t

(
‖δk‖2σ − ‖δ

k−1‖2σ
)
,

〈BAC(tk), δk〉 − 〈BhAC(tk), δk〉

≤ C‖AC(tk)‖H(curl;Ωc)‖δk‖H(curl;Ωc)

(
max

1≤i≤L
‖∇̃zi − ∇̃zih‖0,Q + ‖N−1 −N−1

h ‖
)

+ C‖ curl δk‖H(curl;Ωc) fh(AC(tk)),
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and

g(δk)− gh(δk) ≤ C
(
‖AC,0‖H(curl;Ωc) + |α0|

)
‖δk‖H(curl;Ωc)(

max
1≤i≤L

‖∇̃zi − ∇̃zih‖0,Q + ‖N−1 −N−1
h ‖
)
.

Taking v = δk in (6.1), using the fact that Bh is nonnegative and recalling the properties
(5.10) and (5.11) of the nonlinear operator E , we obtain

1

2∆t
(‖δk‖2σ − ‖δ

k−1‖2σ) + ‖ curl δk‖20,Ωc

≤ ‖∂ρk‖σ‖δk‖σ + ‖τk‖σ‖δk‖σ + 3M‖ curlρk‖0,Ωc
‖δk‖H(curl;Ωc)

+ ‖ρk‖H(curl;Ωc)‖δk‖H(curl;Ωc) + C‖ curl δk‖0,Ωc
fh(AC(tk))

+ C‖δk‖H(curl;Ωc)

(
‖AC(tk)‖H(curl;Ωc) + ‖AC,0‖H(curl;Ωc) + |α0|

)(
max

1≤i≤L
‖∇̃zi − ∇̃zih‖0,Q + ‖N−1 −N−1

h ‖
)
.

Thus, by using the Cauchy-Schwarz inequality, we get

‖δk‖2σ − ‖δ
k−1‖2σ + ∆t‖ curl δk‖20,Ωc

≤ ∆t

2T
‖δk‖2σ + C∆t

{
‖∂ρk‖2σ + ‖τk‖2σ + ‖ρk‖2H(curl;Ωc) + fh(AC(tk))2

+
(
‖AC,0‖2H(curl;Ωc) + |α0|2 + ‖AC(tk)‖2H(curl;Ωc)

)
(

max
1≤i≤L

‖∇̃zi − ∇̃zih‖20,Q + ‖N−1 −N−1
h ‖

2

)}
.

(6.2)

Then, by summing over k, recalling that δ0 = 0 and using the discrete Gronwall Lemma
(see [24, Lemma 1.4.2]), it follows that

‖δn‖2σ ≤ C

{
∆t

n∑
k=1

[
‖∂ρk‖2σ + ‖τk‖2σ + ‖ρk‖2H(curl;Ωc) + fh(AC(tk))2

+
(
‖AC,0‖2H(curl;Ωc) + |α0|2 + ‖AC(tk)‖2H(curl;Ωc)

)
(

max
1≤i≤L

‖∇̃zi − ∇̃zih‖20,Q + ‖N−1 −N−1
h ‖

2

)]}
.

Therefore, using the preceding inequality in (6.2) and setting

θk := ‖∂ρk‖2σ + ‖τk‖2σ + ‖ρk‖2H(curl;Ωc) + fh(AC(tk))2

+ ‖AC(tk)‖2H(curl;Ωc)

(
max

1≤i≤L
‖∇̃zi − ∇̃zih‖20,Q + ‖N−1 −N−1

h ‖
2

)
,

we have
1

2∆t

(
‖δk‖2σ − ‖δ

k−1‖2σ
)

+
1

2
‖ curl δk‖20,Ωc

≤ C

4T

(‖AC,0‖2H(curl;Ωc) + |α0|2
)(

max
1≤i≤L

‖∇̃zi − ∇̃zih‖20,Q + ‖N−1 −N−1
h ‖

2

)

+∆t

k∑
j=1

θj

 .
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Then, by summing over n and recalling again that δ0 = 0, we obtain for all n = 1, . . . , N ,

‖δn‖2σ + ∆t

n∑
k=1

‖ curl δk‖20,Ωc

≤ C

{(
‖AC,0‖2H(curl;Ωc) + |α0|2

)(
max

1≤i≤L
‖∇̃zi − ∇̃zih‖20,Q + ‖N−1 −N−1

h ‖
2

)

+ ∆t

n∑
k=1

[
‖∂ρk‖2σ + ‖τk‖2σ + ‖ρk‖H(curl;Ωc) + fh(AC(tk))2

+
(
‖AC(tk)‖2H(curl;Ωc)

)(
max

1≤i≤L
‖∇̃zi − ∇̃zih‖20,Q + ‖N−1 −N−1

h ‖
2

)]}
.

The conclusion of the lemma follows by taking maximum over 1 ≤ n ≤ N on both sides of
the preceding inequality.

LEMMA 6.2. Let (AC, ψ,α) be the solution of (3.10). If we assume that AC ∈
H1(0, T ; Hs(curl; Ωc)), 1/2 < s < sQ, then ψ ∈ H1(0, T ;Hs+1/2(Γ)) and the following
estimate holds

inf
η∈Lh(Γ)

‖ψ(t)− η‖1/2,Γ ≤ Chs‖ curlAC(t)‖s,Ωc.

Proof. The result is obtained using Remark 4.2 and following the lines of [11, Lemma 5.1].

THEOREM 6.3. Let (AC, ψ,α) and (An
Ch, ψ

n
h ,α

n
h), n = 1, . . . , N , be the solutions

of (3.10) and (5.4) respectively. Let us assume that AC ∈ H1(0, T ; Hs(curl; Ωc)) ∩
H2(0, T ; H(curl; Ωc)), with s ∈ (1/2, sQ). Then, there exists h0 > 0 such that, for all
h ∈ (0, h0), the following estimate holds

max
1≤n≤N

‖AC(tn)−An
Ch‖2σ + ∆t

N∑
n=1

‖ curl(AC −An
Ch)‖20,Ωc

≤ Ch2s

{
max

1≤n≤N
‖AC(tn)‖2Hs(curl;Ωc) +

(
‖AC,0‖2H(curl;Ωc) + |α0|2

+ max
1≤n≤N

‖AC(tn)‖2H(curl;Ωc)

)(
max

1≤k≤L
‖∇̃zk‖2s,Q + ‖zk‖2s+1/2,Γ

)
+

∫ T

0

‖∂tAC(t)‖2Hs(curl;Ωc)dt

}
+ (∆t)2

∫ T

0

‖∂ttAC(t)‖2H(curl;Ωc) dt

≤ C
[
h2s + (∆t)2

]
.

Proof. First we need to notice that from (5.7), using the fact that ψ(t) = −R(K(AC(t)))
(see (3.17)) and Lemma 6.2, we can see

(6.3) fh(AC(tn)) ≤ Chs‖ curlAC(tn)‖s,Ωc .

Consequently, the result follows from Lemma 6.1, Remark 5.1, and inequality (5.3), noticing
that

AC(tn)−An
Ch = ρn + δn,

and proceeding as in [11, Theorem 6.1].
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REMARK 6.4. It is a simple matter to deduce that Theorem 6.3 implies quasi-optimal
convergence of the approximation error of the variableAC in the norm given by the discrete
integral on the space L2(0, T ;H(curl; Ωc)). More precisely,

∆t

N∑
k=1

‖AC(tn)−An
Ch‖2H(curl;Ωc) ≤C

[
h2s + (∆t)2

]
.

For the other two variables ψ and α, quasi-optimal convergence of the approximation
error is obtained too. In fact, by recalling

ψ(tn) = −R(K(AC(tn)), ψnh = −Rh(K(An
Ch)),

and using (6.3), the uniform bound ofRh with respect to h and Theorem 6.3, we obtain

∆t

N∑
n=1

‖ψ(tn)− ψnh‖21/2,Γ ≤C
[
h2s + (∆t)2

]
.

Finally, since

α(tn) = α0 +N−1(J (AC(tn)−AC,0)), αnh = α0 +N−1
h (Jh(An

Ch −AC,0)),

using Theorem 6.3 together with [11, Lemma 5.1], it follows that

max
1≤n≤N

|α(tn)− αnh|2 ≤C
[
h2s + (∆t)2

]
.
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