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APPROXIMATION OF GAUSSIANS BY SPHERICAL GAUSS-LAGUERRE BASIS
IN THE WEIGHTED HILBERT SPACE*

NADIIA DEREVIANKO"# AND JURGEN PRESTIN®

Abstract. This paper is devoted to the study of approximation of Gaussian functions by their partial Fourier
sums of degree N € N with respect to the spherical Gauss-Laguerre (SGL) basis in the weighted Hilbert space
La(R3, wy), where wy (|z|) = exp(—|x|2/A). A > 0. We investigate the behavior of the corresponding error of
approximation with respect to the scale factor A and order of expansion N. As interim results we obtained formulas
for the Fourier coefficients of Gaussians with respect to SGL basis in the space Lz (R3, wy ). Possible application of
obtained results to the docking problem are described.
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1. Introduction. Our goal in this paper is to study the behavior of the error of approxi-
mation of Gaussians by their partial Fourier sums with respect to the spherical Gauss-Laguerre
(or shorter SGL) basis in the weighted Hilbert space Lo (R?,wy ), where

wa(lz]) = exp(=|z[*/A), A > 0, x = (z,9,2) €R® and |z|= /2% +y? + 22

Motivation of our research comes from a wide range of applications of Gaussian in life
sciences, in particular, in molecular modeling; see Section 5. The investigation of the behavior
of the Fourier coefficients of Gaussians with respect to SGL basis functions in the space
Lo(R3, wy) is of special interest to us.

We denote the SGL basis by H* := {H?, : R3> = C, n € N, (I,m) € /,,}, where
the parameter A\ > 0 and v/, := {(I,m) € Z> : | = 0,...,n—1,|m| = 0,...,1}; see
Section 2 for details. For a function f € Lo(R3,wy), by Ex(f, H*) we denote the error of
approximation of this function by its partial Fourier sum of order N € N with respect to the
basis H* in the space Ly(R?,w)), i.e.,

N
5N(f7 HA) = f - Z Z /;)L\lmH'r)L\lm )

n=1 \(,m)eVn L2 (R3,wy)

where ﬁlm are Fourier coefficients of the function f with respect to the basis H*.

Our aim in this paper is to investigate the behavior of the quantity £y (g, H*) for the
Gaussians g(x — @) = exp (—Bl|x — zo|?), where B > 0 is fixed and a point ¢y € R? is
given, with respect to the parameters N € N and A > 0.

Let us motivate our choice of basis. The SGL basis is constructed by using a separation-of-
variables approach from the spherical harmonics and Laguerre polynomials. In the spherical
coordinates

Hélm (Tv 0, 90) = Rr);l(r)yim(ea 30),
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the radial part R, (r) is defined via Laguerre polynomials, A\ > 0 is a scale factor and the
spherical part Y;,,, (6, o) is the spherical harmonic.

By A( we denote the Laplace-Beltrami operator, i.e., the spherical part of the Laplace
operator, that in spherical coordinates is given by

A — 1 2 sm@g +ii2
0" Sind 96 00 sin? 0p?

The spherical harmonics Y}, are eigenfunctions of Ay, i.e.,
DoYim(0,¢) = —I( + 1)Yim (0, ¢).

It is also known that spherical harmonics constitute an orthonormal basis of the space
Ly(S?) of square-integrable functions on the unit sphere S? and are orthonormal in the sense
that (see [4, Chap. 1])

/ /)/lm }/l’m (9 ) sin 0 ded(ﬁ 6”’6mm’

Because of these properties of spherical harmonics they are important in many areas
of science and are widely used as a shape descriptor; see, for example, [18]. On the other
hand, spherical harmonics are suitable for the approximation of smooth functions defined on
the unit sphere S?. Problems of linear and nonlinear approximation of Sobolev classes of
smooth functions defined on S¢~!, where d is the dimension of the space R, by aggregates
constructed by using spherical harmonics in the space Lq(Sdfl), 1 < ¢ < o0, are investigated
by many authors, for instance, by Kamzolov [10], Romanyuk [17], Dai and Xu [4], and
Atkinson and Han [3]. From the viewpoint on practical applications in this paper we consider
the case d = 3.

In order to obtain full sampling of the space R®, we use a radial function that extends
spherical harmonics to polynomials in this space. Different choices of radial functions are
possible. As Ritchie and Kemp [16] (see also [14]), we employ the radial part constructed by
using associated Laguerre polynomials L¢, k = 0,1, ..., and a > 0, that can be defined by
the Rodrigues formula [7, p. 1051]

£ expl(t) d¥ (exp(—t) )
k! dtk

L(t) == ,teR.

Other radial functions such as Zernike polynomials may also be used; see [12] and [13] for
details. Similarly to the angular zeros of the spherical harmonics, the Laguerre polynomials
exhibit radial zeros and they are orthogonal with respect to a weight factor exp(—t)t®, i.e.,

I'k+a+1)

exp(— taL(o‘)( )ng)( t)dt = X

Okt -

In more general frameworks this basis is described in [5, Section 5.1.2].

Let us sketch the main results of the paper. The basic ingredient to investigate the behavior
of the quantity Ex(g, H?) is to use Parseval’s equality and representation formulas for the
SGL Fourier coefficients that we also obtain in this paper; see Section 3 and 4 for details.
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At first we consider the function g(x — x¢) = exp (—B|z — o|?) in the case where
xo = 0. For the quantity £y (g, H*), we have that

2rD(N +3)  Af ( BA )N
O(N+1) (1+BX2 \1+BA

f Bx \?
X 2F1 (1,N+§,N+1,<1_’_‘B)\> >,

where I is the gamma function and 5 F} is the hypergeometric function; see the end of this
section for a definition.
For N — oo the asymptotic behavior of this quantity is described by (see Figure 3.1, left)

Bx \V
1+ B ’

gN(gaH)\) =

(1.1)

e

(1.2) Enl(g,HY) ~ C(\, B)(N +1)

where the constant C' (), B) can be estimated as follows

C(\B) = ﬁ ¢(\, B)
(14+BX)?

and

1+ BA <o\ B) < 2 (1+BN? = (1+2BNF\" 1+BX
V1+2BA B (BA)2V1 + 2B VI+2BX'

With respect to the parameter ), the quantity Ex (g, H?*) is increasing on the segment
(0, +00) for all fixed N € N. Moreover, for all N € N (see Figure 3.1, right)

3
T\ 1
(1.3) lim Ex(e, M) = (55) -

For the function g(x — o) = exp (—Bl|x — xo|?) where xo # 0, we have numerical
confirmation of the fact that the quantity £y (g, H*) keeps its behavior with respect to the
parameter A > 0 when the point x is shifted from the origin. Unfortunately, due to the
complex form of the SGL Fourier coefficients of Gaussians g(x — o) in case &y # 0 it was
not possible to get an analytical proof of this effect; see Section 4 for details. Note that with
respect to N € N it is easily seen from Parseval’s equality that Ex (g, H*) decays with respect
to N,ie., En(g, H) > Eny1(g, H?) forall N € N.

The present paper has the following structure. In Section 2 we give the main definitions
that are used in the paper. Section 3 contains a proof of the relations (1.1), (1.2) and (1.3)
as well as formulas for the spherical Gauss-Laguerre Fourier coefficients for the function
g(x) = exp (—B|w\2). In Section 4 we obtain formulas for the SGL Fourier coefficients of
the functions g(x — o) = exp (—B|x — x|?) in case when o # 0 and show numerical
results with respect to the behavior of the quantity Ex (g, H*) for these functions. In Section 5
we describe one possible application of the obtained results to the docking problem.

Notation. As usual N = {1,2,3,...}, R, and C denote the natural, real, and com-
plex numbers, respectively. Consequently, R? is the set of all vectors * = (z,, z) and
|z| = \/2? + y? + 22 is the Euclidean norm of a vector x. Letters C;, i = 1,2, ..., denote
positive constants. We indicate in the brackets dependency on some parameters. By I we
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denote the gamma function. Let (¢),, = F(If(t)" ). neN,and (t)o = 1 be the Pochhammer

symbol [1, p. 256]. By 2 F; we denote the hypergeometric function [7, §9.1]

= (@) (b)n t"
(1.4) 2 Fi(a,b, e t) = ;Wg It| < 1.

Further, for given functions f and h we define a binary relation f(t) ~ h(t) as t — oo if and

only if tlim % = 1. The symbol §;; is the Kronecker delta and as usual
—00

0 ifij,
dij = DO
1 ifi=j.

2. Preliminaries. As stated in the introduction the main goal of this paper is to investi-
gate the behavior of the error of approximations of Gaussians by their partial Fourier sums
with respect to the spherical Gauss-Laguerre (or SGL) basis in the weighted Hilbert space
Lo(R3, w)). In this section we give the definition of this basis.

By Lo(R? wy), where wy(|z|) = exp(—|z|?/A), z € R® and A > 0, we denote the
weighted Hilbert space

Ly(R3 wy) =< f: R® = C, /|f(w)|2w>\(|w|) dx < oo
R3

The inner product in this space is defined as

2.1 <f, h>L2(]R3,w>\) = /f(a:)@uaﬂa:b dx, f, h € LQ(RS,W)\)
R3

and the norm as

||fHL2(]R3,wx) = <f7 f>L2(]R3,w)\)7 f S LQ(RBW‘-]A)'

Further, we define the SGL basis functions. To this end we use the spherical coordinates
(r,0,p), where r € [0, 00) is aradius, 0 € [0, 7] is a polar angle, ¢ € [0, 27) is an azimuthal
angle, to write the Cartesian coordinates x, y, and z as

x = rsinf cos @,
y = rsinfsin g,
z =rcosf.
In the following we write f(x) = f(r, 0, p) if (r, 0, ¢) are spherical coordinates of the point

x = (x,y, z), in which case we simply write = (1,0, ).
Then the inner product (2.1) can be rewritten as

co m 2T

(fo ) Lo (3 wy) = ///f(r,@,gp)h(r,@,<p)w>\(r)r281n9d<pd9dr, fy h € Ly(R3, wy),

000

where 72 sin 6 is the Jacobian of the transform from Cartesian to spherical coordinates.
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Let us recall that 57,, denotes the following set of indices
Un={(l,m)€Z*:1=0,....n—1,|m|=0,...,1}.

For A > 0by H* = {H),, : R® = C,n € N, (I,m) € v,} we denote the system of
functions

Hr)L\lm(T707<p) R ( ) lm(0 (p)a

where the radial part R} -, is defined as

(n—1-1)!

(l+ 2
m (r/VN'L, 2 1( /)

-

where the L' are associated Laguerre polynomials and A > 0 is a scale factor. The spherical
part Y7, is represented by spherical harmonics that are given by

W] ’ Py (cos ) exp(imep),

Yim (0, 0) = { Ar(l+m)!

_ (71)” ) 'm. dl+m 2 1 . .
where Py, (t) = S (1 — %) 2 $p (1% — 1)" are associated Legendre polynomials. Note
that in the case m = 0, we simply write P, instead of Pjg.

By J?E\zm we denote the Fourier coefficients of the function f € Lo(R?, wy) with respect
to the system H e

co m 2T

:///f (r,0,¢) nlm(r 0, p)wx (r)r? sin 6 dp dé dr.
000

The following theorem holds.
THEOREM 2.1. [14] The system H> constitutes an orthonormal basis in the space
Lo(R3,w)), i.e., each function f € Ly(R3,wy) can be uniquely decomposed into the series

n=1 \ (I,m)EVn

with the convergence in the sense of the space Lo(R3, wy).

Although the authors in [14] consider only the case A = 1, the scale factor A does not
influence on orthogonality and completeness of the system .

As was mentioned in the introduction, the basis H* is called a spherical Gauss-Laguerre
basis or shorter SGL basis and the coefficients f”lm SGL Fourier coefficients of the function f.
More detailed information about this basis can be found in [14] and [15].

3. Approximation of the function exp (—B|x|?) in the space Ly (R®,wy). In this
section we investigate the behavior of the quantity Ex (g, H*), where g(x) = exp (—B|z|?)
with respect to the parameters N € Nand A > 0.

At first we formulate results regarding the SGL Fourier coefficients of the function g.
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THEOREM 3.1. The SGL Fourier coefficients of the function g(x) = exp(—Blz|?),
x € R3, B > 0, can be written as

onl(n + L Ai Bx \"!
G.1) oo = mn+3) i ( ) . A>0,

I'(n) (1+B/\)% 1+ B
and g, = 0forl #0, m # 0.
Proof. With g(x) = g(r,0,¢) = exp(—Br?), we obtain

co T 2T

g?ﬁlm:///exp(fBTQ)Hfl‘lm(r,t?,<,0)exp(—7“2//\)1"2 sinf dpdf dr
000

co m 2T

:///exp(fBﬁ)Ri‘Ll(r) Yim (0, ) exp(—r%/A)r? sin 0 dp 6 dr.
000

Since

T 2T

. ) o
//Yzm(Q,tp)sinﬁdgodez{ VT, m=1=0,
0

0, otherwise,
0

we have that g, = 0if [ # 0, m # 0.
Letnow n € Nand [ = m = 0. After two changes of variables (r/ VA= tand 12 — y)
we obtain

(87r(n_1)'> /9\200 = /exp (—BT2) Léfl(ﬁ/)‘) exp (_72/)‘) r¥dr

=\ /exp(—t2(1 + B))) L,%_l(ﬁ)ﬂdt

0
[es)

A / exp (—y(1+ BN) LE () y¥dy.
0

N~

Using formula [7, 7.414 (7)] for 3 > —1and s > 0

B+DT(a+n+1)
n!T(a+1)

7 r
/exp(—st) tﬂLgf‘)(t) dt = ( s A1 oF1(—n, 8+ 1, a+1,1/s),
0

where 9F; is the hypergeometric function (see [1, Chap. 15]), we obtain

2rl(n+ 1) A% < 1 >
[N 2 3 3

700 = Fi{—n+1,5,35 .
Jnoo (n—1! (1+BN:2"

From the following property of the hypergeometric function oF; [1, p. 556]

2Fl(aacv & b) = (1 - b)iaa
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we get that
o orl(n+3) A% S N
noo (n—1)! (1_|_B)\)% 1+ B)

By using simple transformations and the definition of the Gamma function, we obtain the
desired formula (3.1). a

Note that we can express the asymptotic behavior of the coefficients §\,, when n — oo
and ) is fixed and vice versa when A — oo and n is fixed.

Let at first A > 0 be fixed. According to the expansion (4.15) from [6] the quantity

F(%;)/Q) behaves at infinity (when n — co) as
L(n+ 1) 1
a2 TH)Q ~ni.

From this we have that

_ o Bx O\
9200 ~ C1(\,B)n4 <1+B/\) , N — 00,

3
where C; (A, B) = Y211
(1+BX)2
Let now n € N be fixed and A\ — oo. From (3.1) it is easy to see that in this case

Gnoo ™~ 02(7173)/\_%,

where Cy(n, B) = B~ 1 %
Now we are ready to prove the following results on the error of approximation Ex (g, H?).
THEOREM 3.2. For the function g(x) = e*B‘z|2, xeR3 B>0,and ) >0, NeN,

we have
2rD(N +3) A% Bx \V
5N(91H/\) = ( 2) 3 ( )
(N +1) (1+ BX)>2 1+ BA

B)x \?
X 2F1 (1,N+3,N+1,<HB)\> >

Proof. Applying Parseval’s equality, we obtain

N
g— Z Z /g\?zlmez\lm

n=1 \(I,m)EVn Lo (R3,w3)

2

Ex(g. 1Y)

oo

Z Z |:q\7)1\lm|2

n=N+1 \(L,m)ev,

(3.3)

Substituting the SGL Fourier coefficients (3.1) in (3.3) we get

. 2
> Al > T(n+i)/ Bx 2V
M) = D Gl =2r | ———=] D : ( )
~( ) n:N-‘,—l‘ ool (1+ BN} o T(n) TF B

2 .
) Al ( B )2Nir(k+N+g)( B )2‘“
= 4T g .
(1+B))3 1+BX) & T(k+N+1) \1+BA
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Using the expansion of the hypergeometric function o F; (1.4)

L'(k+a) o I'(a)
= (1 ; 1
1—\ k+b F(b) 2 1( 7a‘7b7x)7 |x| < b

(34
we obtain the necessary equality. |
Before formulation of the next theorem we give a proof of one property of the hypergeo-
metric function that we will use few times.
LEMMA 3.3. For the hypergeometric function o F1 (1, b, c; t), the following representation
Fe)b—c+1) ,_
B (1,b,ct) =—————=t (1
2471 ( ,0,C ) F(b) (
(3.5 c—2
B L K e
— kl(c—2—k)!b—c+14+k

_ t)c—b—l

holds forc e Nand 0 < t < 1.
Proof. Let

B.(a,b) = /t“’l(l — )7 ldt, a,b >0, |2] < 1,
0

be the incomplete beta function [7, 8.39]. By using transformation formulas for the hypergeo-
metric function o F [7,9.131]

(3.6) oF1 (a,b,c;t) = (1 =) "7 Fy (c —a,c— b,c; 1),
we obtain
oF1 (1,b,c;t) = (1 =) " 1oF (e —1,c—b,c;t) .
Applying the following formula [7, 8.391]
21 (p,1—q,p+15t) = pt "By(p, q)
withp=c—1landg=0—c+ 1, we get
oFy (1,b,c;t) = (e — Dt ¢(1 =) > 'By(c = 1,b— ¢+ 1).

Finally, from [1, 6.6.2] and [1, 26.5.6] we have

— 1) (1 -tk
Bt(nvﬁ):B( ]‘_t Zk[n_gb_k)' (ﬁ+t]3; 7n€N7

where B(a, 8) = ng)_{(lf)) is the beta function [7, 8.384 (1)], which implies (3.5). ul

The next theorem describes the asymptotic behavior of the quantity Ex (g, H*) with
respect to the parameter N € N for fixed A\, B > 0; see Figure 3.1, left.

THEOREM 3.4. The quantity Ex(g, H*) for g(x) = exp (—B|w|2), B, A > 0, behaves
asymptotically like

(3.7) Enlg, H) ~ C5(\, B)(N +1)7 B Y N =
. N\Z, 3\ ].+B)\ ’ o,
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where C3(\, B) = (ﬂijiﬂ C4(\, B) and

3
2

1+ BA < Cy(\B) < g(1+B)\)3—(1+2B)\) 1+ B
Jita2Bx V3  (BN2VI+2BN  VI+2BA
Proof. To prove (3.7) we use Theorem 3.2 together with (3.2) and the boundedness of the
2
function o F} <1 N + , N +1; (1 5 /\) ) with respect to the parameter N that we show

below.
From (3.2) we have

(N +2)

1
) (N 1)E N -
vt VA N —=ec

(3.8)
2
Let us further prove that o F} <1 N + , N +1; (1 B A) ) is bounded with respect to

N € N for all fixed positive values B and A. For an arbitrary N € N, we consider a sequence
ay = oF; (1,N + %,N + 1;t), 0 <t < 1and prove that ayy > any41 forall N € N.
According to (3.4) we obtain

aN —AaN41 = 2F1 (17N+%,N+1;t> - 2F1 (1,N+g,N+2;t>

(N +1) iF(k+N+%) . T(N+2) ir(k:+N+%) .
CD(N+3) &= T(k+N+1) D(N+3) & T(k+ N +2)

) I'(N+%5)

Let us denote f(N) = XeE=Y (any — an+1)- Then

5) ir(k+N+g)tk T(N+2) il“(kJrN—F 3)
r prrd I'(k+ N +2)
From the following property of the Gamma function

(2n)!

(3.9) L(n+3) = yT V7, neN,
we have that
I'(N+32 2
(3.10) F( + g)
(N+3) 2N+3

By using this equality, we get

f(N) =

= T(k+ N T(k+ N
2N + 3 (k+N+3) s N+ Z +N+3),
2 k:OF(k+N+1) ZT(k+N+2)

& T(k+N+3) 3F(k+N+§) (k+N+1)
_l;)].—‘(k'f'N'Fl) <(N §>1“(k+N+’) (N+1)F(k+N+2)> '
& T(k+N+3) Ktk

_ZF(k+N+1) (2N +3+2k)(N +1+k)’
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which implies that f(N) > 0 and consequently ay > any1, N € N. From this, for all
N € N, we have

Bx 1\’ Bx \?
3 : < 5
o Fy (1,N+ 3N +1; (1 B)\) ) < oF (1,2,2,(1 B}\) )

(14 BX)?3 — (142B)\)2 (1+ B))?
(BA\)2y/1+ 2BX 1+2BX\

The last equality is due to (3.5). On the other hand, by using (3.9) we get

B \? I(N+1) S Tk+N+3) /1 Bx ™
A1 N+3N+1; = :

© 2N +2k+ 1)/ Bx \*
_1+Z( + +)< )

2
(3.11) =3

2N+ 2k \1+BA

=/ Bx \** (14 B))?

3.12 22 ) TP
(312) >kzzo 1+B>\> 1+ 2BA

From (3.11) and (3.12) we have that for all N € N

2 (1+BA)? — (1+2BN)? (1+ B))?
3 (BA2VI+2BA 1+2BX

From relations (3.8), (3.13) and Theorem 3.2 we get the asymptotic (3.7). a

(14 BN)?
1+ 2B\

(3.13) <C3(\,B) <

8N 8N
08y, o8 —
.*I. __________________
XU T e T T T e
_______
R T Y P e
0.6 . X - .
* ", 0.6 s Lot
** . * — A=3 e ad
4
* "a /
* «—A=5 ’ — N=
04 N " 0.4 ¥4 2
*, " H - N=5
. *** "-. /o -9
02 *e Mg, e, o2/ /7 o=
o.. **** ...... ', K
.... ********* LTI )
............ RIS Aok N A L . . — A
10 20 30 40 5 10 15 20

FIG. 3.1. Graphics of the behavior of En (g, ’HA) (B = 2) with respect to N (left) and with respect to X (right).

The next theorem describes the behavior of the quantity Ex (g, H*) with respect to the
parameter A > 0 for fixed N € N and B > 0; see Figure 3.1, right.

THEOREM 3.5. The quantity Ex (g, H*) for g(x) = exp (—B|z|?), as a function of X,
A > 0, is increasing on the segment (0, +00) for all N € N. Moreover,

3
14 i Ay = (i)“ N eN.
(3.14) ,\EEOEN(Q’H ) 55) eN
Proof. At first we prove (3.14). Let us find

3

(3.15) Jom tim —2r (1Nt N1 (B i
' TS (T4 BABI T T "\1+Bx) |-
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To this end we use the following limit (see Theorem 2.1.3 [2, p. 63])

I'e)'(a+b—c)

()T (0) ,c—b—a<0.

(3.16) iiﬂa — 2) 7, Fi(a,b,¢;2) =

B\
1+BA

2
From (3.16) taking into account that ( ) — 1 as A — oo, we have

(3.17)

3
Bx \*\® Bx \?\ TWN+1r(®)
lm [1-(—o FLN+3 N+1;(—2) | = ——L1220
Q“&( <1+B)\>> 2 1(’ T ’<1+B)\>> T(N + 3)

By using (3.17) we get for (3.15)

3
Bx \*\° Bx \?
o AlLNv+3 Ny (22
X( (1+B)\)> 21(’ T +’(1+B/\)
3
2

, TN+ 1T(3) (1)
T(N+2) b (142BNE  D(N+2) \2B)

(3.18)

From (3.15), (3.18) and Theorem 3.2, using that F(%) = % T, we obtain

‘ 2rl(N+ %) [TIN+ D)D) /1 \F /74
AILTOSN(Q’HA):\/ (N +1) \/ T(N +3) (23) _(ﬁ> ’

forall N € N.
Our further goal is to prove that Ex (g, H?*) is increasing for A € (0; +00). Let us first

find %&’HA)). Note that a derivative of the hypergeometric function o} can be found by
the formula [1, 15.2.1]:

F .
w — ngFl(a+1,b+ 1)0—}—1;1‘)_
ox c

Taking this into account, we get

AEn(g, 1Y)  [2al(N+3) /1 Bx "
O SV T(NV+1) <1+B)\>

BA% x R(N,\)

2
41 +BA)3\/2F1 <1,N+ 3N+ 1, (%) >

X

)

where

1+ BA

Bx \’N+3 s Bx \°
+4<1+B)\> S 2’N+2’N+2’<1+B)\> :

2
R(N,)\) :=(3+4N — 3B\) o Fy (1,N+§,N+1;< B ))
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and we prove that R(N, \) > 0 for A > 0 and all choices of parameters [V and B.
For simplicity we let 7 B y = t. Then we get a new function R for 0 < ¢ <1

R(N,t) = (3+4N3t) 2Fy (LN + 3, N + 1;12)

3

N+2
1 4> 2,F (2,N+ 2, N +2;t%).
(3 9) +tN+121(a +27 +7t)
By using the following expansions of the hypergeometric functions
 (2)x(N + 2
Fi(2,N+ 5 N+2i#%) =) =242
2F1 (2N + 5, N +2t) kZ:O (N +2)5k!
I(N +2) °°( H)r(k+N+g)t2k
(N +3) & I'(k+ N +2)
:F(N+2)t,2ikr(k;+1v+§) 2%
I(N+3) & Tk+N+1)
I(N+1) <T(k+N+3)
Fi(LLN+ 3 N+1;¢%) = 257k
21 ( 2 ) F(N+%)kzzol“(k+N+1)

and (3.10), we obtain that

B 3t \ I(N
R(N,t)<3+4N 1_t> v

) N~ Pk + N +3) o
— T(k+N+1)

)
N+3T(N+2) i T(k+N+3)
(

+4
N+1F(N+)k0Fk N+1)
T(N+1) =T(k+N+2) 3t "
3.20 = 3+4N — —— + 4k | t°%.
(5:20) F(NJr%)kz_:_OF(k+N+l) * =i
Let us consider the series
T(k+N+3) 3t
3.21 34+ 4N — —— + 4k | t?*.
( ) Fk+N+1 <+ 1—t+ )

By S(IV, t) we denote the sum of the series (3.21) and we prove by induction with respect to
N that S(N,t) > 0forall 0 <t < 1.

Let N = 1. Then from (3.19) and (3.20) by using (3.6), we get
r'(3)
I'(2)

_ 3w 5 .42
4 <1—t 2F1(13232t)

S(17t): 4 1—¢ IR Et]

3 — 10t
R(1,t) = \F( oF1(1,2,2:4%) + 520 Fy (2, 2, 3; t2)>
5t2 Lo
m2F1(177§737t )) .
By using (3.5) we continue
— 10t 2(1 — (1 —12)2 4(=2 452 +2(1 — 12)3
S(Lt):i%ﬁ 7—10t2(1 — ( 2,2)+5t2( + 5t% + 2( - )2)
4\ 11—t 312(1—2)3 15¢4(1 — 2)3
C3VT (2t +3) VI -2+ 1 - V1 —12)
B 21— )2(1+ )21 — 12 '



http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

APPROXIMATION OF GAUSSIANS BY SPHERICAL GAUSS-LAGUERRE BASIS 261

Since (2t +3)t2V/1—t2+1 > land V1—t2 < 1for 0 < t < 1, we have that
(2t +3)t2v/1 —t2+1— /1 —12 > 0 and consequently S(1,¢) > 0,0 < t < 1.

Further we assume that for N € N the sum S(V, t) is positive and prove that S(N + 1, )
is also positive. From (3.10) and the definition of the Gamma function we have

k+N+3) 3t 2k
S(N +1,t) = ]j_+N+2)<3+MNA)1+M)t
Fk+N+3)(k+N+32) 3t ok
4N+1)— = +4 :
T+ N+ N+ Y (WA 1) =gy +ak ) o

By using simple transformations, we proceed as follows

2 T(k+N+32) 1 3t
S(N +1,1) 1 T+4AN — ——— 4k | %
+ Z%mk+N+¢)(‘F%+2N+2)<‘+ 1—¢ >
“T(k+N+32)
344N — ——— 44k | %
kzzol“(k+N+1)( + it >

I(k+N +3) % 2k
AR VY P s =2
+;%%+N+D 4'2k+N+1
(3.22) =S(N,t) + o(N, 1),

where

Z D(k+N+32) 3 =
Nt)y=S o2 (g 0 IE ) g2k
oN =D Ny ST R r N T

If 0 < ¢t < 1/2, then it is obvious that ¢(N,t) > O forall N € N. Letnow 1/2 <t < 1. The
sum o (N, t) can be rewritten in the following way

o0

(k+ N+ %% 2#—122 k+N+%M%
(k+N+1) 2(1-1¢) Fk+N+2)

(3.23) JVt—6§:F

Let us further prove that o(N + 1,t) > o(N,t), N € N. By h(N) we denote
h(N)=0(N +1,t) —o(N,t), 5 < t < 1, and prove that h(N) > 0 for all N € N.
We have

1
2

h(N) =o(N +1,t) — o(N,t)

_ﬁz:k+N+) k+N+%_lﬁk
«T(k+N+1) \k+N+1
%—1§:( +N+§)1_k+N+§ 2K
2(1—t) &= T(k+N +2) k+ N +2
irmma b
T(k+N+1)k+N+1

=0

32t —1) =T(k+N+32) 1L ok
(3:24) 21— t)z FhENTo TN
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From (3.24) we see that h(N) > 0 forall N € N. Therefore, o(N,t) > o(1,t) forall N € N.
By using (3.4) and (3.23), we obtain

5 5
5 2t— 1) T'(3
7;) 211(1 3 2;152)—73( )7(2) 211(1,%,3;t2).

o1,t) =6 2(1—t) T(3)

By using (3.5) and simple transformations, we have

3T - (1 -2)VI=1?) 3ym(2t—1)2- 2+ )VI-F)
2 -2)1-f 41— )41 — 2
CBVT (24 (2t + 82 + 6tV — 12 — (2t + 2+ 17)V1 — 12))

B 4t4(1 — 12)3 '

o(1,t)

(3.25)

Our further goal is to prove that for % <t<l1

24 (2t + 13+ 6t1) V1 — 12 > 2t + (2 + 12V 1 — 12,
which follows from
2-2t> 22t +1* —tHV1 - 12 = (1 —1)(2+3)V/1 — 12,

which for 0 < ¢ < 1is equivalent to 4 > 4 — 3t* — ¢5.
From this and (3.25) we have that o(1,¢) > Ofor + < ¢ < 1. Since 0(N, t) > o(1,t) > 0
that together with the assumption S(N,¢) > 0 and (3.22) implies S(N + 1,¢) > 0. 0

4. Approximation of the function exp (—B|x — x¢|?) in the space L2 (R3,wy).
In this section we prove formulas that show the behavior of SGL Fourier coefficients of
Gaussian functions g(x — o) = exp (—B|x — xo|?) in the space Ly(R3,wy) and present
numerical results with respect to the behavior of the quantity Ex (g, H?*) for these functions.
We consider two cases in the spherical coordinates: I. g = (r9,0,0); Il. g = (79, 6o, Yo)-
Further we use the following notations: Let

2BV o omNF (20 4+ D(n—1—-1)|7
p)\>,:7 )\::
sTo /72B)\+2, nl F(n-i—%) s
and by @, ; ;(¢), t > 0, we denote
By (1) = 1 1—2i+1 14+2j+3 1 1-2i+3 £
LT Ty yr(EEN P\ T2 T 2 e 2 2
V2t g (L2142 142j+4 3 1-2i+4 2
(1 — 2 + 2)T(E2E8) 77 2 ' 2 2 2 2)

where o F5 is the generalized hypergeometric function [7, 9.14] defined by

o0

2F5(ar, az; by, bast) = Z
k=0

(a1)k (az)y 2

(b1)k (b2)k k!
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L Let first o = (7, 0, 0).
THEOREM 4.1. For the function g(x — x¢) = exp(—B|z — xo|?), T, 2o € R3, &g =
(ro,0,0), B >0, and \ > 0, we have

A 2 A n—i—-1 (—l)j n _% s
9nio :exp(—BTo)Cnl Z (n —1— j) (4B)\ + 4) 3
(—1)F4(20 — 20)1(1 + (—1)172)

“ X TU+2)+3) 3 2L(1 — 1)l(l — 20)]

=0

X @y j.i(PAro)-

and g, =0, if m # 0.
Proof. The function g(x — @) = exp (—B|x — xo|?) can be rewritten in the spherical
coordinates « = (, 8, ) in the following way

g(r,0) = exp(=B(rZ + 1% — 2rrg cos )).

Since Y., (6, ») = (—=1)™Y; (0, ¢), we have

T 2T 00
Gniom = / / g(r, 0, (1.0, ) exp(—r2/\)r? sin 0 dr g d
0 0 O
3 1 27
2(n—1—D!|° [@2+D(+m)]? / ,
= _1 m _
[)\gf(n—F%) [ 4m(l —m)! (=1 / exp(—imgp)dp

42 x g(r,0) exp (—1°/)) (r/ﬁ)l Lij__%l_l(rQ/)\) Py (cos0)r?sin 0 dr d.

Ot~y

Taking into account that

2T

. 2, m =0,
/eXp(—lmw)dtp = {0 m 0
O ) )

we obtain g, = 0if m # 0.
Let now m = 0. For simplicity we let

=

2mAT(n—1—1)!(20 4+ 1)
L(n+ 1)

X\
Gnlo-

wi, := exp(Brd)

Making the change of variables r/ VA — tin (4.2), we obtain
1
Wy = // exp (23\[\257"0 cos 0) exp(—(BX + 1)tH)t! Li:"lfl(tg) Py(cos 0)t* sin 6 dt db.
00
Using the closed form for the associated Laguerre polynomials [7, 8.970 (1)]

Ly(z) = zn:(fl)j <th> @

f';
i=0 I
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we get
n—Ii—1 . 1
=S G nh )
n i 11—
= n—Il—1—j
s

X //t(”QjJr?’)*1 exp (ZBﬁtro cos 9) exp(—(BX + 1)t?) P/(cos 6) sin 6 dt d6.
00

From the formula [7, 3.462 (1)] for B, v > 0

766”_1 oxp(—f2* —yx)dz = (26)"F T(v) exp (g;) D_, (\/%) :
0

where D is the parabolic cylinder function (see [7, 9.24-9.25]), we have

AA
|gn/ml

0.00025 | ,—\\
‘0
*»

-
0.00020 *

.
.

)
0.00015
)

)

0.00010

.
-
0.00005 -+ =
-

o
i n

20 40 60 80

gG. 4.1. Graphic of the behavior of\ﬁzlm\ (B=2r10=100= ¢, @o= %) withrespectton (I = 4,
m=3).

n—Ii—1 : 1
A (-1)7 n—; _i42j43 .
= 2B\ 42 (1 +25+3
== 3 5 (, i3, )emr e a2+
4.3) X /exp (ipimo cos? 9) D_i—2j—3 (—pPx.r, cosB) Pi(cosf) sinddé,
0
where py , = %.
Let us define
4.4) I:= /exp (%pim cos? 0) D_;_2j—3 (—=px,r, cos8) Pi(cosh) sinf dd

Parot’) Doi—2j—s (—paret) Pu(t) dt.

=

0
1
:/exp(
Z1
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By using the monomial representation of the Legendre polynomial [7, 8.911 (1)]

L1/2]

; 21 — 27)! —2
Ri(t) = ;(—1) inz(z(z‘)!(l%)!tl ’

we have
L1/2] .
_ i (QZ - 21) 1,2 2 1—2i
I= z; (-1) S0 — 71 = 23] exp (D% .t7) Doi—2j—3 (—pa s t) £ dt.

1=

Making a change of variables —pj ,,t — y, we obtain

/2 1—2it1 PAro

2l — 2¢)! < 1 > / 1—2i 2
Z _ y' " exp (y°/4) D_i—2j—3(y)dy.
i=0 (= 20)! PAro —DPx,rg

From the formula'
_ 2% 21 v v 1
u-l 2/4) D, (2)dz =Y, (B0
/Z exp(z~/4) D, (2)dz MF(1EV)2 2573y

et
2
VATl 1w 3 pt3 2
(w+Dr ()22 72 72 2 72

we obtain
L1/2]
45 I=+r Z

(20 — 20))1(1 + (=1)172) __1a2ea
l z

2 By i (Par).
20i1(1 — 4)1(1 — 23)! 2 X Py i(Par)

Relations (4.3), (4.4) and (4.5), taking into account definition of wﬁl, imply (4.1). O

II. Before formulating our next results let us first describe the main ideas of the rotational
invariance property of spherical harmonics. We consider the expansion of a function f €
Lo (JR?’7 wy) in the SGL Fourier series. Taking into account the definition of the set v/,, we
obtain

oo n—1 oo n—1
T 9790 Z Z Z fnlm T 0 90 Z Z Z fnlmRnl Yzm(g )
11=0 m=—1 n=11=0 m=—1

where the convergence is understood in the sense of the space Ly (R?,wy).

Applying to the function f the Euler rotation operator ﬁ(a, B,7), a, v € [0,27) and
B € [0, 7], we get (see, for example, [15, p. 37-44] for detailed information on the Euler
rotation operator and the transformations below)

oo n—1 1

fi(a,ﬁ,’y)f(r 0 90 Z Z Z nlmR fg(aaﬁa’}/)}/lm(97<p)
n=11=0 m=

oo n—1 1 l

=300 D PmBulr) Y2 Yuw(0,9)Dy),,(a,5.7)
n=1 =0 m=—1 m=—1
co n—1 l l

l

:Z <ZD() (Oz B, )fnlm)R ()Ylm/(a )

n=11=0 m'=—1 \m=—
IWolfram website: http://functions.wolfram.com/HypergeometricFunctions/

ParabolicCylinderD/21/01/01/02/0001/
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where Dgfl),m are the Wigner rotation matrices defined as follows

D{),. (0, 8,7) = exp (—im'a) dS}),,(B) exp (—im7)

and

N

(i(l)

m’'m

(B) = [l +m" (1 —m" (I +m) (1 —m)!]

min{l—m’',l+m}

<)

k=max{0,m—m’}

(_1)k+m’7m [Cos(g)]2l+m7m’72k[Sin(g)}ZkerLm
(I+m—k)E(m —m+ k)l —m'—k)!

In order words, if Janlm are the SGL Fourier coefficients of a function f, the SGL Fourier
coefficients of the function h = R(«a, 8,7)f can be found by the formula

l
(4.6) W =Y DY) (0, 8,79) -

m'=—1

Finally, using the relation (4.6) and Theorem 4.1 we obtain formulas for the SGL Fourier
coefficients of the function g( — @) = exp(—B|x — o|?), where in the spherical coordi-
nates &y = (7o, 00, ¥0), and

g(r,0,¢) = exp(—Br2 — Br? + 2Brrq(sin 0 sin 6y cos(¢ — ¢g) + cos 6 cosby)).

COROLLARY 4.2. For the function g(x —x) = exp(—B|x — zo|?), B > 0, ¢,z € R?,
xo = (10, 60, o) and A > 0, the following formulas hold

~ ! ~
g'r/}lm = Dgn)O(SOO? bo, 0)92107

where G, is defined by (4.1).
The behavior of [g,, | with respect to the indices 7, [, and m with fixed values for the
other indices is illustrated in Figures 4.1 and 4.2.

) 15l
|g/r\1/m| 7.x10718
0.00030 |- e (%)
0-A=15 6.x107"8
0.00025 - o0
- A=22 5.x10718 F 0- A=41
0.00020 | :
4x10718 1 *-A=47
0.00015 |
3.x107"8 ¢ 0
0.00010
2.x10718 g
0.00005 [ 9] ?
s 1.x10718 | + | |ee
I o' ¢! 6006000000060/ can 0t ] 14a
m
° 10 s -5 10 -5 5 10 15
FIG. 4.2. Graphics of the behavior of [gy;,,| (B = 2,70 = 1, 6o = §, po = §) with respect to  (left,

n = 20, m = 3) and with respect to m (right, n = 20, [ = 18).

For the case when x, # (0,0,0) it seems to be impossible to write results similar
to Theorems 3.2, 3.4, and 3.5 due to complex analytic representation of the SGL Fourier
coefficients of Gaussians (see Theorem 4.1 and Corollary 4.2). Therefore, in this case we use
a computational method to investigate the behavior of the quantity £x (g, H™). Let us describe
the main ideas of this method.
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By Parseval’s equality, we have
N
A ~\ A
EN(Q,H ) =19 — Z Z gnlmHnlm
n=1 \ (I,m)Evn Lo (R3,wy)
oo

= Z Z ‘/g\rkzlm 2

n=N+1 (l,m)GVn

Let us choose Ny € N from the condition

S Gl < for > N
(I,m)ETn

where € is a very small positive number. Then we can assume that

No

4.7) En(gHN ~ | Y S Gl

n=N+1 \(l,m)€Vn

By using (4.7) and the formulas for the SGL Fourier coefficients g?\,,, from the Corol-
lary 4.2, we can numerically compute approximate values of £x (g, H*). Analyzing numerical
data we can conclude that in case when g(x — xg) = exp(—B|z — xo|?) and z¢ # 0 the
quantity Ex (g, H*) keeps its behavior with respect to the parameter A (compare Figure 3.1

(right) and Figure 4.3 (right)).

J A
[ &n(g. ")
0.005} JRPTRITIILELLALAL
0.025 Lot
. L asasdd
. csssoeee
0.004 R, . JPRRRe
S 0.020 . o
H RN AR A4
L o °
0003 [/, ~3n, 0015l e o N=28
l’:' Sl R
IH — n=10 SNl RS - N=23
0.002| [£f -- n=13 ~lt, ootof  +,° =
3 v p=15 ~<2 .
13 .
0.001 fJ¢f 0.005 ¢ *
*
3
A - A
2 4 6 8 2 4 6 8 10 12 14

FIG. 4.3. Graphics of the behavior of\@\;\ﬂm\ (left, B = 2, o = (1,0, 0) in the spherical coordinates, | = 2,

m = 0)and En (g, ’H/\) (right, B = 2 and o = (1,0, 0) in the spherical coordinates) with respect to \.

5. Discussion, conclusions, and possible applications. In this section we describe one
possible application of the obtained results to the problem of molecular docking. Let us start

with some known facts.
Gaussian functions are often used to approximate the electron density distribution of

molecules ([8], [9]). For example, for the kth atom we have
B _ 2
K(x — x.r) = exp <|$Tzﬂfk| - B> ,
k

where B < 0 is the rate of decay parameter, 7y, is the Van der Waals radius of the kth atom and
|z —xx|? = (x —21)? + (y — yr)? + (2 — 2z )2, where & = (z1, Yk, 2 ) is the center of the
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kth atom. A volumetric representation of the molecule may now be obtained by summing the
contributions from each single atom, i.e., the electron density for a molecule with M atoms is
described as

l l B|:L'—ac |2
E K(x — xx) E exp < k B) .
k=1

The choice of a suitable scoring function is the crucial part in all docking approaches.
Some papers (see, for instance, [11]) consider the approach of separating the affinity functions
into core and skin regions with the further goal to penalize core-core clashes and add positive
skin—skin overlaps. By using positive real values as the weights for the smooth particle
representation of the affinity function defined over the skin and imaginary values in the
representation of the core regions, we will obtain negative numbers for core-core overlaps
and positive numbers for skin-skin overlaps during the convolution. So, the weighted affinity
function for the molecule A takes the form

Z’yk w—wk

where

A _ )1, xr €SkinA,
Tk = pi, xp € Core A,

and p > 1. R
Let R(a, B,7) and R'(0, 3,~") be the Euler rotation operators (see Section 4 and [15, p.
37-44]). The notation Q% means that we apply the operator R to the function Q. By T™

we denote the operator of the shift on the vector 7 = (7,0,0), i.e., TTQA(x) = Q*(x — 7).
We consider the search algorithm suggested by Ritchie [15, Chapter 4]. The main ideas of this
algorithm is to use a Fast Rotational Matching approach, i.e., considering of the 6D search
space (a, 8,7, 8,7, T), where two molecules A and B to be docked are understood to be
flexible during the docking.

By Re ¢ we denote the real part of the complex number ¢ € C. Then the convolution
search scoring is defined by

5.1 C(R,R,t /QA )TTQE, (z)w (z)de

and the solution of the docking problem is the pair (ﬁmax, ]%;nax, Tmax) for which

~ ~

C(Rumax, Ry, Tmax) = max C’(R R, T).
(R,R'\7)

By using expansions of the corresponding scoring functions in the SGL Fourier series we get

C(R,R,7) ~ Re ZZ/QA nl

nlm n’l’m’RS

— A
(T7QB)  H @) H )y @)n () da

m

The docking integral (5.1) depends on the scale factor A\. For the optimization of the
computations of scoring for given molecules A and B one should use a suitable value for the
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parameter A. In [15, p. 34] it is shown that with the order of expansion N = 28, the SGL
basis functions give good level of recovery of the molecular shape. To translate and scale the
docking region to the unit ball S? and to be oriented on the most distant atom one can choose
values of A based on Figure 4.3 (right). However, values really close to zero, probably, cannot
be used since then the weighted Gaussian function together with basis functions tend to zero
and the basis elements cannot provide good sampling for the recovery of the molecular shape.
On the other hand, using a small A in naive computations can cause computational inaccuracy.
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