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A BLOCK J-LANCZOS METHOD FOR HAMILTONIAN MATRICES*

ATIKA ARCHIDT, ABDESLEM HAFID BENTBIB, AND SAID AGOUJILS

Abstract. This work aims to present a structure-preserving block Lanczos-like method. The Lanczos-like
algorithm is an effective way to solve large sparse Hamiltonian eigenvalue problems. It can also be used to
approximate exp(A)V for a given large square matrix A and a tall-and-skinny matrix V' such that the geometric
property of V' is preserved, which interests us in this paper. This approximation is important for solving systems of
ordinary differential equations (ODESs) or time-dependent partial differential equations (PDEs). Our approach is based
on a block J-tridiagonalization procedure of a Hamiltonian and skew-symmetric matrix using symplectic similarity
transformations.
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1. Introduction. The Lanczos method is an efficient tool for computing a few eigenval-
ues and associated eigenvectors of a large and sparse matrix. In this paper, we introduce a
structure-preserving block Lanczos method called block J-Lanczos algorithm. This algorithm
is applied to reduce a large sparse 2n x 2n Hamiltonian matrix to a small Hamiltonian block
J-tridiagonal matrix in the form

E * %
* *
* % * % ’
. * * -

where * are matrices of size s x s. With this structure, we can derive a set of four-six-term
recurrence relation of block J-Lanczos, and find four components of this matrix at the same
iteration.

Gerstner and Mehrmann proposed in [8] the reduction of Hamiltonian matrices to Hamilto-
nian J-Hessenberg form to solve the real algebraic Riccati equation via the symplectic Q) R-like
algorithm. This form is also used by Benner and Fassbender in [4] to create a family of implic-
itly restarted Lanczos methods for Hamiltonian and symplectic matrices; see also [5],[8]. It is
similar to the basic means used by Ferng, Lin, and Wang ([15],[16]) to construct a .J-Lanczos
algorithm for solving large sparse Hamiltonian eigenvalue problems. We refer to [1] for more
details on the symplectic Lanczos algorithm for Hamiltonian matrices. The main purpose of
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this paper is to introduce new methods for computing the Hamiltonian block J-tridiagonal
form. Our approach is based on using R?"*2* as free module on (R%*25 4, x).

We organize this paper as follows. We first introduce some definitions that are related
to the J-structure matrices. Some notation and terminology are reviewed in Section 2. In
Section 3, we propose two different block J-Lanczos methods using two types of normal-
ization. An issue related to the J-reorthogonalization in the J-Lanczos algorithm is also
discussed. In Section 4, we give an approximation of exp(A)V using the block Krylov sub-
space K,,(A,V) = blockspan{V, AV, ..., A™~1V} (see [14]) generated by the proposed
block J-Lanczos algorithm. Numerical examples are presented in Section 5 to demonstrate
the efficiency of our methods.

2. Terminology, notation, and some basic facts. A ubiquitous matrix in this work is

. . 1 . .
the skew-symmetric matrix Js, = [0}' 0"} , where [, and 0,, denote the n x n identity
n n
and zero matrices, respectively. Note that J{r} = JI = —Js,. In the following, we will drop

the subscripts n and 2n whenever the dimension is clear from its context. The J-transpose of
any 2n-by-2p matrix M is defined by M7 = J3,M™.J5, € R?*?" A Hamiltonian matrix
A
G
n x n matrices and G = GT, R = RT. By straightforward algebraic manipulation, we
can show that a Hamiltonian matrix M is equivalently defined by M’ = —M. Likewise, a
matrix M is skew-Hamiltonian if and only if M7 = M and it has the explicit block structure

M = {é :FT} , where A, G, R are real n X n matrices and G = -GT, R =—RT. Any
matrix S € R2"*?P satisfying ST J2, S = Jo, (or S7S = I,) is called a symplectic matrix.
This property is also called J-orthogonality. Symplectic similarity transformations preserve
the Hamiltonian and skew-Hamiltonian structure.

M € R?"%2" has the explicit block structure M = [ flT]’ where A, G, R are real

REMARK 2.1. If the matrix S = My e is symplectic, then
| Ho1  Hao
(1T 0 0 0
0 0 I O
10 Hay 0 Hao

is also symplectic.
PROPOSITION 2.2. Let E; = [e;, en14| fori =1,...,n, where e; denotes the i-th unit
vector of length 2n. Then
EiJy = JonEi, B} = El and E[E; = 6,1,

K3

where

0 ifi#j.

More generally, given m, s € N such that n = ms, we define the set (F;), ., ,, as

E} = JJEl' s, and 5@3‘_{1 ifi=j,

: 2n X2
F; = [6(1—1)s+1» €(i—1)s+2y -+ Cis - Cnp(i—1)s+1) Cnt(i—1)s+25- -+ 7en+is] € RT"7%,
Then we have

FiJQS = JQnFi, F-J = FlT and FlvTFj = (51‘]']25,

K3
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where

J_ 1T T 1 =y
F) = J5 F; Joy, and 51]—{ 0 ifi]

PROPOSITION 2.3. Any 2n X 2s real matrix U can be expressed uniquely as a finite
linear combination of (Fy),.,,.., U = >."" | F;C;, where

C; =
U(—1)s4+1,1 " U(i—1)s+1,s U(—1)s+1,s+1 " U(i—1)s+1,25
Uis,1 o Uis,s Ujs,s+1 o Uis,2s
Un+(i—1)s+1,1 " Uni(i—1)s+1,s Up+(i—1)s+1,54+1 " Uni(i—1)s+1,2s
L Un+is,1 s Un+is,s Untis,s+1 ce Un4is,2s 1
c RQSX?S.

PROPOSITION 2.4. Let M be a 2n-by-2n real matrix, where n = ms with m,s € N.
Then M can be represented uniquely as M = 27;1 Z;”:l i M;; F]-T, where M;; € R*$*2s
is given by

ﬁl(i—l).@+1,(j—1).€+1 e m’(i—l)s+1,j.§ 771(i71)5+1,71+(j—1)s+1 T 771(7:71)s+1,n,+js
Mis,(j—1)s+1 e Mis js Misnt(G—1)s+1 e Misntjs
Myt (i—1)s+1,(i—1)s+1  ~°  Mpi(i—1)s+1,j5s Mpt(i—1)s+1,n+G-1)s+1 """ Mni(i—1)s+1,n+js
mn+is,(jf1)s+l o Thn+is,js mn+is,n+(jf 1)s+1 e ﬁln+is,n+js

PROPOSITION 2.5. The matrix M from the previous proposition is Hamiltonian (respec-
tively, skew-Hamiltonian) if Ml‘; = —DM;; respectively, if Mé = Mj;.
m m
. . . J _ J T
Proof. The result is obvious since M’ = 2:1 ZlFiMjiFj . d
i=1j=

m m

DEFINITION 2.6. A matrix M = Y Y F;MyF] € R***" is said to be in block
i=1j=1

upper J-triangular form if M;; = 02, for ij> 7 and M;; is upper triangular. It is called in
J-Hessenberg form if M;; = Qa4 for i > j + 1, and in block J-tridiagonal form if M;; = 0o,
wheni <j—1lori>j+ 1

REMARK 2.7. A Hamiltonian block .J-Hessenberg matrix is in block .J-tridiagonal form.

2.1. Symplectic reflector. We recall that the symplectic reflector on R?"*?2 is defined in
parallel with elementary reflectors as given in the following proposition from [2].

PROPOSITION 2.8. Let U,V be 2n-by-2 real matrices satisfying U'U = VIV = I, If
the 2-by-2 matrix C = I + VU is nonsingular; then S = (U + V)OO~ Y (U + V)7 — Iy, is
symplectic and transforms U to V', hence it is called the symplectic reflector that takes U to V.

LEMMA 2.9. Let W = [w; ws] € R%"*2 be a non-isotropic matrix (det (WJW) #0),
and let U = Wq(W) ™! be its normalized matrix where, with o = w{ Jws,

\/512 l.fOé > 07
gqW) = 1

0
V—a 0 1 ifa <O0.
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Then there exists a symplectic reflector S that takes U to E1, and therefore W to E1q(W).
The 2n-by-2 real matrix SW is of the form

* 0
0
0 0
SW = 0 * v n+1.
0
._0 0—

REMARK 2.10. Applying symplectic reflectors to a matrix A € R27%2n e obtain the
Rii Rip 2 .
€ R2nX2n jg
Ry1 Rap
upper J-triangular (here s = 1) and in addition R;5 is strictly upper triangular. More precisely,
the matrix R is of the form

factorization A = SR, where S € R2"*2" is symplectic and R = [

* ok * | 0 = *
*
0
RiO* * % *
*
L 0 _

3. The block J-Lanczos method. In this section, we propose a block symplectic Lanc-
zos method to compute the reduced Hamiltonian form for 2n-by-2n real Hamiltonian matrices
and construct a block J-orthogonal basis of the block Krylov subspace. Recall that the Krylov
subspace method is an efficient tool for computing a few eigenvalues and associated eigen-
vectors of a large and sparse matrix. In the following, the dimension of (F}), ,,,, is given
according to the context.

Let for Qp := [q1,- -, qk : Qry1,- - - Gox) € RZ*2F be a 2n-by-2sk symplectic matrix
for k < m, where ¢; € R?"*% fori = 1,2,---,2k, and n = ms. Let Hy, be a 2sk-by-2sk
Hamiltonian block J-tridiagonal matrix (Hamiltonian .J-Hessenberg form) computed by the .J-
Lanczos recursion such that M Qy, = Qi Hy+ W L, |, where W), € R?"*2¢ is J-orthogonal
to Q; i.e., QiWk = 094k x2s Which also means qiTJWk = Ogxos fort =1,2,...,2k. That
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is, Hy, is in the form

_ . i
ay ¢ b1 aq
T
by ax c ar B2 a;
S T
Ck—1 : : Q1
H, = b1 ax ap_1 P
= T T T ;
moh 4T
61 P}’Q 62 _Cl _a/2 _b2
T - . T
01 : g *b/ch
L Ok—1 Vk —cF . —al

with blocks o, 8;, Vi, 04, ai, b;, ¢; € R®*% where (; and 7; are symmetric, and b; # O,
c; # 0, a; # 04,and 0; # 0, fori =1,... k.

Subsequently, our goal is to use the block Lanczos process to compute the 2n-by-2sk sym-
plectic matrix @) and the 2sk-by-2sk Hamiltonian block J-tridiagonal matrix H},. The block
J-Lanczos method is presented here in two different ways with two normalization methods,
one based on the SR decomposition, and the other one based on the R’R decomposition.

3.1. The first approach. Here, 2n-by-s block vectors instead of single vectors and s-
by-s matrix coefficients instead of scalars are used. Since M Qy = QrHyr + Wi F kT 11, by
comparing the i-th and (k + ¢)-th block columns on both sides of the equality, we obtain, for
i=1,...,k,

Mg; = qi—1¢i—1 + ¢i0; + Giv1bi + Qeri—16;—1 + QetiVi + Qerit104,
M@iyi = G101 + @B + G106 — Qei—1b; 1 — Qei@; — Qetis1Cr -

Note that by = 0s, ¢g = 05, g = Og, and 6y = 05. From the symplecticity of the matrix Qy,
we have

ql Jqryi = I, and q;‘Fqu =0, for j # k + 1.
The s-by-s matrix coefficients a;, 7;, and 3; can be determined via
a; = —qjp ;T Mg,
Bi = —q;fHJquﬂ-,

fori = 1,..., k. Itis well-known that the Hamiltonian matrix M satisfies (JM)T = JM.
Therefore, the matrix coefficients «; and 3; are symmetric. Indeed, we have

B = (~GipiI Mar+i)" = i (JM)" qers = Bi,
——

JM
v = (g IMg)" =gl (JTM)"q; = ;.
——
JM

Set

w; = Mg; — qi—1Ci—1 — ¢ — Qrri—101—1 — Qe+iVi»
Vi = Magyi — Gi—104—1 — ¢iBi — Qreyi-1bi_1 — qrriar .
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Then we get

{ U = qi+10; + Qryit16:,

T
Vi = i+104 — k+i4+1C; -

The J-orthogonality condition holds for both u; and v;, i.e.,

@ Ju; =q] IMq; — =05,
q£+ijui = quriJMQi + a; =0,
a1 Ju; = q;_ JMgq; — 6], =— (Mgi—1)"Jg; — 61, =0,,

qgﬂﬂjui = qg%»iflJMQi +ci-1 =-— (MQIH»ifl)TJQi +ci—1 =0,
and
¢/ Jvi = ¢f IMqy1s +af =— (Mq;)" Jqti +al =0,
Gy i Vi = Gy I M iy + B =— (Mar))" Tqiti + Bi =0,,
a1 Jvi =4 IMqeyi + b, =— (Mgi—1)" Jqeyi + b}, =04,
T
qg%»ifljvi = _q{+i71JMq/€+i +o]y =(Mgrti-1) Jgrri + ol =0,
with quJui = qgﬂ-Jui = qJTJUi = q,{HJvi =0sforj=1,...,%

The 2n-by-s matrices ¢;+; and gx4;41 are computed by normalizing the 2n-by-2s matrix
W; = [u; v;]. Normalization is presented below in two ways. The first one is a normalization
based on the SR decomposition by using symplectic reflectors as recalled above (see [2]),
and the second one is a normalization based on the symplectic Cholesky R’ R decomposition
using the LU J-factorization; see [3].

3.1.1. Normalization by using the S R decomposition. At step i of the block .J-Lanczos
method given above, we decompose W; = [u; v;] € R?"*2% into a product W; = S'R’ by
using the SR decomposition based on symplectic reflectors given in Section 2.1, where the

. o . . ; Ri, R! . .
matrix S¢ € R?"%2" js symplectic and R’ = [ H }2] € R27*2s is upper J-triangular.
21 g

We set, using Matlab notation,

{ Giv1 = S5"(,1:5),

Qerit1 =S (,n+1:n+s),
and

=R'(1:5,1:5),
=R'(1:5,5+1:2s),
Si=R'(n+1:n+s,1:5),
cF =R'(n+1:n+s,5+1:2s).

'I

This leads to the block J-Lanczos algorithm in Algorithm 1.
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Algorithm 1 The block J-Lanczos method

Input: Hamiltonian matrix M € R?"*2" and symplectic matrix V; = [q1 qr41] € R?"*2s
withn = msand k < m.
Initialize: by = Og, ¢o = 05, g = 05, 69 = 05, Qi (:,1: 8) = ¢q1,
Qr (G k+1:k+5)=qre-
Fori=1,2,--- k-1
a; = _qiz.;.iJMQi
Yi = qiTJMQi
B = —qF i T Mgyri
u; = Mgq; — qi—1¢i-1 — q;a; — Qk+i—15iT,1 — Qk+i7i
vy = Mqpyi — Qiflazl1 — qiffi — Qk+i71b;‘1:1 - QkJria;‘T
W; = [u; v;] = S*R* (SR decomposition
by using symplectic reflectors)

Normalization step: {

bi=R(1:s,1:8)
ci:—[Ri(n—i—l:n—i—s,s—i—l:Qs)]T
a;=R'(1:s,5+1:2s)
Si=R'(n+1:n+s,1:5)
Git1=S'(,115)
Qrtiv1 = S*(,n+1:n+s)

End For

Output: The symplectic matrix Qr = [q,, - ,qk : Qet1s- - Qo] € R>¥?FS and the
Hamiltonian block J-Hessenberg matrix Hj, € R?*$*2Fs such that Q] MQy, = Hj,.

REMARK 3.1. In order to prevent the loss of J-orthogonality in the block J-Lanczos
type Algorithm 1, we do J-reorthogonalization by computing the SR decomposition of

Wi = [Q(,1:is),uiiQ(:, k + 1 : k +1s), v;] € R2"*2(+1)s instead of taking W; = [u; v;].
Then we obtain

bi=R'(is+1:(i+1)s,is+1:(i+1)s),
¢ = — Ri(n—l—is—&—l:n—&—(i—i—1)5,(22’—1—1)3:2(@'—1—1)5)]T7
;= R'(is+1:(i+1)s,(2i +1)s:2(i +1)s),
Si=R(n+is+1:n+(i+1)s,dis+1:(i+1)s),
and
Q(yis+1:(i+1)s)=S8(,is+1:(i+1)s),
QG k+is+1:k+(i+1)s)=SE,n+is+1:n+(i+1)s).

3.1.2. Normalization by using the R’ R decomposition. At step i of the block .J-
Lanczos algorithm given above, we compute R; € R?°*2 such that Wi‘] W; = R;’ R; where
Wi = [u; v;] € R?"¥25 thus [g; 41, qrriv1] = WZ—RJI. The square matrix R; € R25%2¢ ig
derived from the LU .J-decomposition with the pivoting strategy as presented in the following
theorem. See [3] for more details on the LU J-decomposition.

THEOREM 3.2. [3] Let M be a 2n-by-2n real skew-Hamiltonian, J-definite matrix (i.e.,
XTMX = al,, where o # 0 for each matrix X = [x1 x5 € R?"*2 that is not J-isotropic
(that is, xT Jxy #0)), and let M = LU be its LU J-factorization. The matrix R = (LD)”,
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where D is a diagonal matrix defined by

D_ ZEz ( v/ sign(ug)ug; 0 )EzT
i=1

0 sign(ug; )/ sign(ug;)ug;

with u;; = el'Ue; and E; = [e; enyi] € R?*™*2 is lower J-triangular. It holds that
M =R’R.
REMARK 3.3. In the same manner as in the previous remark, to avoid the loss of J-

orthogonality, we normalize W; = [Q(:,1 : is),ui:Q(:, k + 1 : k + is), v;] € R2x2(+1)s
instead of taking W; = [u; v;].

3.2. The second approach. Here, 2n-by-2s blocks of vectors instead of single vectors
and 2s-by-2s matrix coefficients instead of scalars are used. Since at iteration ¢ we have, for
1=1,...,k,

{ Mq; = gi—1¢i—1 + Qi@ + qiv1bi + Qrri—10 1 + QeriVi + Qerit10is

T T T T
Maiyi = gi—104_1 + @B + Gig106 — Qrti—1b;_1 — QutiQ; — Qrti+1C; »

we can combine the two equations into

Ci— OéT_ a; i
M (g qr+i] = [gi-1 Qr+i—1] [5_1“1 _[;le + [ Q1] [ ) BT:|

Vi T4
—_—— —_———
hi—1,: hi
b; oy
+ (i1 Qrtiv] [51 _gT:|'
i i
——
hit1,i
Let
Viei = (@1 Grri-1] s
‘/:i = qi qk‘+i:| )
Vier = (@41 Grtiv]
and
. _ ; Bi
hz,z *711 - i _azT )
b, «
hiz1:.=0C:=h?, = ! ol
i+1,2 7 3,5+1 5;’ _C;r
C;—1 oz
hi—1i=—C; = |7 %1}
o ot i1 —biy
Oy = bi-1  a; o — bi—1 a1 _ _|G-1 Qg
i Si_1 —C?_l -1 di—1 —Ci1 61T—1 _bz—l

Hence, MV; = —V;_1C{_, 4+ ViT; + V;41C;. This leads to Algorithm 2.
i—1 +
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Algorithm 2 The compact block .J-Lanczos method.

Input: Hamiltonian matrix M € R?"*2" and symplectic matrix V; = [g1 qr1] € R?"*%s
withn = msand k < m.
Initialize: Vi = 09,25, h071 = CO =09, V] € R27*2s guch that VlJvl = Is,.
Fori=1,2,...,k—1
hii =T, =V MV,
Ay =MV, + V1G] — ViT,.
A; = S'R? (SR decomposition
by using symplectic reflectors)
V;.H = SiFl and hi+1,i =C; = h%{i+1 = FlTRz (such that A; = ViHCi).

Normalization step: {

End For
k k  min(j+1,k)
Qk = ZV;FZT and Hk = Z Z th”F]T
i=1 j=li=min(j—1,1)
Output: The symplectic matrix Q. = [q,, -,k : Qer1s- - Qo] € R>¥?FS and the

Hamiltonian block .J-Hessenberg matrix Hj, € R2#$*2ks guch that Q{ M Qy = Hy.

REMARK 3.4. In the normalization step of the compact block J-Lanczos algorithm,
instead of using the SR decomposition one can use the LU J-decomposition with the piv-
oting strategy presented in [3] to compute R; € R**2 such that A A; = R/ R;, where
A; = MV; +V;_1C{_ | — V;T; € R*"*?5_ We then obtain C; = R; and V;1, = AR
Otherwise, in order to prevent loss of J-orthogonality, we normalize

Wi =Y ViF] + A Fly, e R720HDs

j=1

instead of taking W; = A;. By using the SR decomposition, we obtain V;,; = S‘F;
and C; = FZTHRiFiH. When we use the R’ R decomposition to compute Z = W; R, L
where R; € R2(+1)sx2(+1)s guch that W/ W; = R/ R;, we then get Vi1 = ZF,,; and
hiiv1 =C; = FL RiFiiq.

4. Exponential block approximation method. The approximation of exp(A)V for a
given tall matrix V' and a square matrix A is recommended in many applications. It is the
key element of many exponential integrators to solve systems of ODEs or time-dependent
PDE:s [6]. The use of Krylov subspace approaches in this context has been proposed in the
literature; see [9], [10], [12], [13], [16], [17] [20]. The approximation procedure for exp(A)V
that preserves structural properties of V' is more efficient and accurate in the case when A
is Hamiltonian and skew-symmetric or simply Hamiltonian. The preservation of geometric
properties is necessary for the effectiveness of certain geometric integration methods; see [11],
[19]. Structure-preserving methods can be used, for example, to calculate Lyapunov exponents
of dynamical systems and geodesics; see [7], [10]. Our goal in this section is to present
a structure-preserving block Krylov method for approximating the matrix-matrix product
exp(A)V using the block Krylov subspace K,,,(A,V) = blockspan{V, AV, ..., A=V},
for a given 2n-by-2n Hamiltonian, skew-symmetric matrix A and a 2n-by-2s rectangular
matrix V' where s << n.

The algorithm may suffer from breakdown if the matrix A; computed in the algorithm
is isotropic at a certain step 7. Suppose that the algorithm goes until the iteration m. By
construction, the matrices V; generated by the algorithm are symplectic and .J-orthogonal to
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each other, i.e.,

ViV = Ins and V;”Vj = Oag, fori,j =1,...,m; i # j.

Let Q=Y. V;Fl and H,, = > > Fihii F, where h;; € R?$72%,
i=1 i=1 j=max(i—1,1)
From Algorithm 2 we can easily obtain

AQm = QumHp + Vi1 hing1,m Fos.
Then
Q,{LAQm =H,,.
The matrix H,, is in 2ms x 2ms block J-Hessenberg form, h;; = 02, fori > j41. Therefore,

AV = AQumFiDy = QuH,FiDy + Viyi1h i1 m FLFL Dy
——
0
The 2s-by-2s real matrix D, defined above satisfies Di] D, = V/V, which comes from the
normalization of V' using the decomposition R’ R, and since H,, is in block .J -Hessenberg

form (i.e., hy; = 02, for i > j + 1), we have

A%V

AQmHmFlDl
= QuH2AF1 D1+ Vi1 hmy1,m P Hy By Dy
——

0

By induction this implies that p,,—1(A)V = Aypm—1(Hp ) F1 Dy for all polynomials p,, 1
of degree <m — 1. This relation suggests using the approximation

exp(A)V ~ Qm exp(Hm)FlDl-

5. Numerical examples. The numerical examples given below demonstrate the effec-
tiveness of the proposed block .J-Lanczos method using the block symplectic SR and R’ R-
factorizations. By using the Frobenius norm, we compute the accuracy of the resulting
symplectic matrix Qy, (i.e., || loxs — Q‘k’ Qk || F) and the Hamiltonian J-Hessenberg 2k s-by-2ks
matrix Hy, (i.e., | Hr — QM Q|| r). We show the error as the dimension k increases. We
also show the error obtained when approximating exp(A)V by Q,, exp(H,,)F1 D1, and we
examine the error of the symplecticity and orthogonality preserving property of the expo-
nential approximation. We display the error as the dimension m increases. The 2n-by-2s
matrix V' is given by V = [U, —JU], where U = exp(G)I2, x5, with G being a 2n-by-2n
skew-symmetric and Hamiltonian matrix derived in a way similar to A. Here, I5,, s consists
of the first s columns of the identity matrix 5. Since G is a skew-symmetric and Hamiltonian
matrix, V' = [U, —JU] is ortho-symplectic. We remark that an ortho-symplectic matrix V'
satisfies VJ = JV. The matrices in Example 5.1 are constructed in a way similar to the
matrices of [18, Example 3.2] by L. Lopez and V. Simoncini. All numerical experiments are
performed in Matlab 2015a.
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Block symplectic Lanczos method with s=5, n=1000.

-120 1
—%— SR without J-reorthogonalization
—+— SR with J-reorthogonalization
-125 | —©S—RR without J-reorthogonalization
;‘- —¥— R’R with J-reorthogonalization
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*
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~ E 140
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X
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-150
155 . . . . |
0 5 10 15 20 25
Block Krylov subspace dimension m
00 Block symplectic Lanczos method with s=5, n=1000.
-1 r
—*¥— SR without J-reorthogonalization
—+— SR with J-reorthogonalization
051 o iR without J-reorthogonalization
< —¥— R’R with J-reorthogonalization
=E -110
(o4
*
< -115
*
- E
(,} -120
£
L
= 1257 7
o)
o
& 130
-
-135
-140 . . . . |
0 5 10 15 20 25

Block Krylov subspace dimension m

FI1G. 5.1. Example 5.1: s =5,k =1,...,25.

EXAMPLE 5.1. We consider a 2000-by-2000 skew-symmetric and Hamiltonian matrix
defined as

_ A A
A= )

where A; and As are the n-by-n skew-symmetric and symmetric parts, respectively. For
s = b, varying m from 1 to 25, we obtain the error displayed in Figure 5.1 and Figure 5.2.
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» <1014 Approximation of exp(A)*V
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10714 Approximation of exp(A)*V
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T T T T T 1

loss of orthogonality
-
[

08 | | | | )
0 5 10 15 20 25

Block Krylov space dimension m

FI1G. 5.2. Example 5.1: s =5, m=1,...,25.

EXAMPLE 5.2. In this example, we consider a 2000 x 2000 skew-symmetric and
Hamiltonian matrix A constructed as

| A Ay
ah ]

The blocks A; and As are the n-by-n skew-symmetric and symmetric parts, respectively. A;
is taken as a random matrix with normally distributed numbers and Ay = gallery('ris’,n) is
a 1000 x 1000 symmetric Hankel matrix, with elements A(¢,j) = 0.5/(n —i — j + 1.5) for
ij=1,...,n.

For s = 5, varying k from 1 to 20, we obtain Figure 5.3 and Figure 5.4. For n = 1000
and s = 10, varying k from 1 to 25, the results are displayed in Figure 5.5 and Figure 5.6.
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Block symplectic Lanczos method with s=5, n=1000.

128 —%— SR without J-reorthogonalization
—+— SR with J-reorthogonalization

130 H —&—R'R without J-reorthogonalization
—¥— R’R with J-reorthogonalization

-135

10%l0g, ,(I1Qy, *Q, -eye(2*m*s|| )
i i
B Ey
[6)] o

KN
[
o

155 L L L L L
2 4 6 8 10 12 14 16 18 20

Block Krylov subspace dimension m

110 Block symplectic Lanczos method with s=5, n=1000.

—*¥— SR without J-reorthogonalization
—+— SR with J-reorthogonalization
—&—R'R without J-reorthogonalization
—¥— R’R with J-reorthogonalization

-115

-120

-125

-130

1009, (IH,, - Q7 *A*Q_ IIp)

2 4 6 8 10 12 14 16 18 20
Block Krylov subspace dimension m

FIG. 5.3. Example 5.2: s =5,k =1,...,20.

6. Conclusion. The block J-Lanczos method is well adapted to compute a preserving
geometric structure approximation of the exponential operator matrix-matrix product exp(A)V.
The presented numerical examples show the efficiency of the proposed algorithms. The J-
reorthogonality seems to be promising to get higher accuracy.
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Block symplectic Lanczos method with s=10, n=1000.
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