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PRESSURE-ROBUSTNESS IN QUASI-OPTIMAL A PRIORI ESTIMATES FOR
THE STOKES PROBLEM∗

ALEXANDER LINKE†, CHRISTIAN MERDON†, AND MICHAEL NEILAN‡

Abstract. Recent analysis of the divergence constraint in the incompressible Stokes/Navier-Stokes problem
has stressed the importance of equivalence classes of forces and how they play a fundamental role for an accurate
space discretization. Two forces in the momentum balance are velocity-equivalent if they lead to the same velocity
solution, i.e., if and only if the forces differ by only a gradient field. Pressure-robust space discretizations are designed
to respect these equivalence classes. One way to achieve pressure-robust schemes is to introduce a non-standard
discretization of the right-hand side forcing term for any inf-sup stable mixed finite element method. This modification
leads to pressure-robust and optimal-order discretizations, but a proof was only available for smooth situations and
remained open in the case of minimal regularity, where it cannot be assumed that the vector Laplacian of the velocity
is at least square-integrable. This contribution closes this gap by delivering a general estimate for the consistency
error that depends only on the regularity of the data term. Pressure-robustness of the estimate is achieved by the fact
that the new estimate only depends on the L2-norm of the Helmholtz-Hodge projector of the data term and not on the
L2-norm of the entire data term. Numerical examples illustrate the theory.

Key words. incompressible Stokes equations, mixed finite elements methods, a-priori error estimates, stability
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1. Introduction. Classical mixed finite element theory for the steady Stokes problem

−ν∆v +∇p = f ,

−div v = g,
(1.1)

with inhomogeneous Dirichlet boundary data, f ∈ L2(Ω), and g ∈ L2(Ω) emphasizes that
the divergence constraint −div v = g requires an appropriate discrete mimicking of the
surjectivity of the divergence operator div: H1(Ω)→ L2(Ω) in order to guarantee optimal
convergence properties; see, e.g., [3, 11]. Recently, it has been stressed that the divergence
constraint in the Stokes problem naturally induces a semi-norm and corresponding equivalence
classes of forces, which represent a second challenge for an accurate space discretization: two
forces f1 ∈ L2(Ω) and f2 ∈ L2(Ω) are velocity-equivalent [8]

f1 ' f2,

if they lead to the same velocity solution v in the Stokes problem (1.1)—and this happens if
and only if both forces differ by a gradient field [1, 11], i.e.,

f1 ' f2 ⇔ ∃φ ∈ H1(Ω)/R : f2 = f1 +∇φ.

The argument is straightforward: denote by (v1, p1) and (v2, p2) the pairs of velocity and
pressure solutions corresponding to the forces f1 and f2 = f1 +∇φ. Then, the difference of
the solutions (δv, δp) := (v2 − v1, p2 − p1) ∈H1

0 (Ω)× L2
0(Ω) fulfills the incompressible

Stokes equations −ν∆(δv) + ∇(δp) = ∇φ, div(δv) = 0 with homogeneous Dirichlet
boundary data. This problem has the unique solution (δv, δp) = (0, φ), and thus f1 and
f2 = f1 +∇φ are velocity-equivalent due to δv = 0.
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In conclusion one observes that the velocity solution v of (1.1) is determined by the
following data:

1. Dirichlet boundary data,
2. the data g,
3. the Helmholtz-Hodge projector of the data f , which is defined by

P(f) := f − arg min
w=∇φ

φ∈H1(Ω)\R

‖f −w‖L2(Ω),

while the data term f − P(f) only influences the pressure.
The recently introduced notion of pressure-robustness [15] allows to discriminate between

space discretizations for (1.1) whose discrete velocity solutions vh depend on P(f) and not
on the entire data f . Such schemes lead to a priori error estimates for the discrete velocity
that depend only on v and not on (v, 1

ν p)—as in nearly all classical mixed finite element
methods [11].

This contribution focuses on applying this improved understanding of the relevant data
in the Stokes problem in order to derive a priori error estimates for various discretely inf-sup
stable mixed methods in cases of minimal regularity. A special focus is put on a recent modified
pressure-robust mixed method [12, 14], where the modification introduces a consistency error
that can be optimally estimated in a straightforward manner by Chk|∆v|Hk−1(Ω) provided
that ∆v ∈ Hk−1(Ω), where k ≥ 1 is the degree of the velocity space. For the lowest-
order methods (k = 1), this requires ∆v ∈ L2(Ω). In situations of minimal regularity, i.e.,
v ∈H1+s(Ω), with 0 < s < 1, we provide an estimation of the consistency error by a more
sophisticated argument involving the Helmholtz-Hodge projector of the data ν−1P(f). This
term is obviously in L2(Ω) whenever it holds that f ∈ L2(Ω), and it is shown to be equal
to P(−∆v). Thus, although it holds in general that ∆v 6∈ L2(Ω), one can exploit in the
numerical analysis that at least the divergence-free part of ∆v is in L2(Ω). This observation
also leads to a seemingly new estimate for classical mixed methods, which can be sharper
than classical a priori estimates; see Theorem 6.1. Eventually, all classical conforming finite
element methods yield an estimate of the form

‖∇(vh − Sh(v))‖L2(Ω) ≤ CAhs‖P(−∆v)‖L2(Ω) +
CBh

ν
‖f − P(f)‖L2(Ω),

where Sh is the discrete Stokes projector. On the other hand, their pressure-robust siblings
allow for estimates of the form

‖∇(vh − Sh(v))‖L2(Ω) ≤ (C1h+ CAh
s)‖P(−∆v)‖L2(Ω),

with C1 > 0, CA > 0, and CB > 0 being constants that do not depend on h. Note that for
divergence-free conforming methods (see, e.g., [10, 17]), it holds that C1 = CA = CB = 0,
but for these, the only nontrivial part of the numerical analysis is the proof of the discrete
inf-sup stability. Further structurally identical results are obtained for the classical and a
modified pressure-robust nonconforming Crouzeix-Raviart finite element method.

The rest of this paper is structured as follows. In Section 2 the Stokes problem is introduced
as well as the framework for the modified finite element method and the assumptions that
are crucial for the theoretical results. Section 3 focuses on the Helmholtz-Hodge projector
and its application in stability estimates. Section 4 provides the notation and statements
for conforming finite element methods, and in Section 5 the continuous and discrete Stokes
projectors and their properties are introduced. In Section 6 the tools of the previous sections
are applied to obtain quasi-optimal estimates for classical finite element methods that only
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depend on the data. In Section 7 the same is done for the modified pressure-robust finite
element methods where now the error is additionally independent of the pressure and the
inverse of the viscosity ν. In Section 8 quasi-optimal and pressure-robust error estimates for
the nonconforming Crouzeix-Raviart finite element method are revisited. Finally, we perform
some numerical experiments in Section 9 and compare these empirical results with the theory.

2. Preliminary results. In this section some notation is introduced, some preliminaries
are recalled, and an assumption that is fundamental for the presented theory is formulated. We
adopt standard space notation and denote vector-valued functions and vector-valued function
spaces in boldface. We use (·, ·) to denote the L2-inner product over Ω ⊂ Rn and by 〈·, ·〉 the
duality pairing between some Hilbert space and its dual. We denote by L2

0(Ω) the Hilbert-space
of square-integrable scalar functions with zero average and

H(div; Ω) = {w ∈ L2(Ω) : divw ∈ L2(Ω)},
H0(div; Ω) = {w ∈H(div; Ω) : v · n|∂Ω = 0},

where n denotes the outward unit normal of ∂Ω.

2.1. The Stokes problem and the weak elliptic regularity assumption. In the follow-
ing, we study finite element methods for the model problem: seek (v, p) ∈H1

0 (Ω)× L2
0(Ω)

for f ∈ L2(Ω) such that it holds that

−ν∆v +∇p = f , and div v = 0 in Ω.(2.1)

The extension to the more general divergence constraint div v = g with g ∈ L2
0(Ω) is

straightforward, and we refer to [11] for details.
A weak formulation of the problem is given by: search for (v, p) ∈ H1

0 (Ω) × L2
0(Ω)

such that it holds that

ν(∇v,∇w)− (p,divw) = (f ,w),

(div v, q) = 0
(2.2)

for all (w, q) ∈ H1
0 (Ω) × L2

0(Ω). The space of divergence-free H1
0 (Ω)-vector fields is

denoted by

V 0 := {w ∈H1
0 (Ω) : ∇ ·w = 0}.

ASSUMPTION 2.1. Throughout the paper, we assume that the Stokes problem inherits
H1+s(Ω)×Hs(Ω)-elliptic regularity for some s ∈ (0, 1] and that

ν‖v‖H1+s(Ω) + ‖p‖Hs(Ω) ≤ Cell,s‖f‖L2(Ω).

3. The Helmholtz-Hodge projector. According to theL2-orthogonal Helmholtz-Hodge
decomposition (see, e.g., [9]), any vector field f ∈ L2(Ω) can be uniquely decomposed into

f = ∇α+ P(f),(3.1)

where α ∈ H1(Ω)/R, and

P(f) ∈ L2
σ(Ω) := {w ∈ L2(Ω) : (∇q,w) = 0 for all q ∈ H1(Ω)}

is the Helmholtz-Hodge projector of f . Note, that the Helmholtz-Hodge projector of f is
divergence-free and is the orthogonal L2-projection of f onto L2

σ(Ω), i.e.,

(P(f),w) = (f ,w) for all w ∈ L2
σ(Ω).
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Moreover, for the Stokes velocity solution v it holds that

(3.2) ν(∇v,∇w) = (f ,w) = (P(f),w) for all w ∈ V 0.

The domain of the Helmholtz-Hodge projector can be extended to H−1(Ω) with range
in (V 0)∗, the space of bounded linear functionals on V 0. Indeed, for every functional
f ∈H−1(Ω), the Helmholtz-Hodge projector can be defined as the restriction to V 0, i.e., it
holds

(3.3) 〈P(f),w〉 = 〈f ,w〉 for all w ∈ V 0.

Condition (3.3) defines an extension of the Helmholtz-Hodge projector from L2(Ω) to
H−1(Ω). Assume that the functional f̂ ∈ H−1(Ω) has a representation f ∈ L2(Ω) with
f = ∇α+ P(f). Then it holds for all w ∈ V 0 that

〈P(f̂),w〉 = 〈f̂ ,w〉 = (f ,w) = (P(f),w).

LEMMA 3.1. Denote by −∆ : H1
0 (Ω)→H−1(Ω) the operator defined via

〈−∆w,ψ〉 := (∇w,∇ψ) for all ψ ∈H1
0 (Ω).

Then the weak velocity solution v of (2.2) satisfies

P(−∆v) =
1

ν
P(f).

Proof. This follows directly from a combination of (3.2) and (3.3).
Thus, although the regularity of the functional −∆v is not better in general than the one

of −∆v ∈H−1(Ω), its divergence-free part P(−∆v) has the better L2(Ω)-regularity .
REMARK 3.2. We emphasize that Lemma 3.1 is of central importance for the derivation

of pressure-robust a priori error estimates in case of minimal regularity. We also stress that
the quantity ν−1P(f), which appears naturally in the analysis of pressure-robust methods,
does in fact not scale with the inverse of ν if it is regarded as a function of a prescribed
velocity v since it only depends on v due to 1

νP(f) = P(−∆v). On the contrary, the quantity
1
νf = −∆v + 1

ν∇p, which appears in classical mixed methods, does depend on the inverse
of ν if it is regarded as a function of a prescribed velocity v and a prescribed pressure p.

An immediate consequence of Lemma 3.1 is the following result that bounds the norm of
the velocity field by the norm of the Helmholtz-Hodge projector of the data f .

LEMMA 3.3 (Continuous stability estimate). The exact solution of problem (2.1) satisfies

‖∇v‖L2(Ω) ≤
CPF
ν
‖P(f)‖L2(Ω) = CPF ‖P(∆v)‖L2(Ω),

where CPF is the constant from the Poincaré-Friedrichs inequality.
Proof. The result follows directly from testing (3.2) withw = v and using the Poincaré-

Friedrichs inequality.
REMARK 3.4. Here, we emphasize that the right-hand side of the stability estimate is

given by a semi-norm of the data f . This is a crucial point, which arguably has not been fully
exploited in classical mixed theory [3, 9].
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4. Notation and setting for conforming finite element methods. In the following, we
introduce some notation for the finite element methods used in this contribution. We denote by
Xh ×Qh ⊂H1

0 (Ω)× L2
0(Ω) a discretely inf-sup stable finite element pair [3] for the Stokes

problem with homogeneous Dirichlet boundary conditions with respect to a conforming,
shape-regular, and simplicial triangulation Th with h = maxT∈Th diam(T ). The L2 best-
approximation onto the discrete pressure space L2

0(Ω) is denoted by πh : L2
0(Ω)→ Qh, i.e.,

for all r ∈ L2
0(Ω) it holds that

(4.1) (πhr, qh) = (r, qh) for all qh ∈ Qh.

We assume that Qh satisfies the approximation property

(4.2) ‖r − πhr‖L2(Ω) = inf
qh∈Qh

{
‖r − qh‖L2(Ω)

}
≤ Cπh,sh

s‖r‖Hs(Ω)

for all r ∈ Hs(Ω) ∩ L2
0(Ω) and s ∈ (0, 1].

Let divh : Xh → Qh with divh = πhdiv denote the discrete divergence operator. Due
to the assumed discrete inf-sup stability of the pairXh ×Qh, divh is surjective with bounded
right-inverse [3]. We define the space of discretely divergence-free functions as

V 0
h := {vh ∈Xh : divhvh = 0}.

4.1. Some modified finite element methods. As shown in [12, 13, 14], a certain modi-
fication of the discrete right-hand side of the incompressible Stokes problem renders inf-sup
stable mixed methods pressure-robust. These pressure-robust finite element methods employ a
reconstruction operator with the properties stated in the following assumption:

ASSUMPTION 4.1. We assume that there exists an auxiliary finite element space denoted
by Yh ⊂H0(div; Ω) and a reconstruction operator Ih : H1

0 (Ω)→ Yh such that

(i) div (Ihvh) = divhvh for all vh ∈Xh,

(ii) ‖vh − Ihvh‖L2(Ω) ≤ C1h‖∇vh‖L2(Ω) for all vh ∈Xh,(4.3)

where C1 depends only on the shape regularity of the mesh.
The modified finite element method for the Stokes problem applies the reconstruction

operator at the right-hand side. The resulting scheme seeks (vh, ph) ∈Xh ×Qh such that

ν(∇vh,∇wh)− (divhwh, ph) = (f , Ihwh) for all wh ∈Xh,(4.4)
(divhvh, qh) = 0 for all qh ∈ Qh.

Testing (4.4) with discretely divergence-free velocity test functions yields

(4.5) ν(∇vh,∇wh) = (f , Ihw) = (P(f), Ihwh) for all wh ∈ V 0
h ,

since for wh ∈ V 0
h it holds that Ihwh ∈ L2

σ(Ω). This last identity is characteristic for
pressure-robustness and in general not true for non-divergence-free classical finite element
methods. It tells us that the discrete velocity solution vh of (4.4) depends on the appropriate
continuous data ν−1P(f) of the problem.

In the case of discontinuous pressure spaces Qh, the standard interpolation operators
of the Raviart-Thomas or Brezzi-Douglas-Marini finite element spaces can be employed as
a reconstruction operator Ih; see [11, 14, 15] for details. For instance, in the case of the
Bernardi-Raugel finite element method [2], the standard interpolator into the BDM space
of order one can be used. For continuous pressure spaces, the design of the reconstruction
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operator is more involved; see [12] for details in case of the Taylor-Hood or MINI finite
element family. Reconstruction operators inspired from hybrid high-order methods are also
constructed in [7].

REMARK 4.1. The classical finite element method is obtained by taking Ih = 1 (the
identity operator). However, only divergence-free H1-conforming finite element methods (see,
e.g., [10, 17]) satisfy Assumption 4.1 with C1 = 0. In the results below it will be specified
which results rely on this assumption.

LEMMA 4.2 (Discrete stability estimates). Let (vh, ph) ∈ Xh × Qh satisfy (4.4) and
write f = ∇α+ Pf (cf. (3.1)). Then, if the discrete scheme satisfies Assumption 4.1, there
holds

‖∇vh‖L2(Ω) ≤ (CPF + C1h)‖ν−1P(f)‖L2(Ω) = (CPF + C1h)‖P(∆v)‖L2(Ω).

If the discrete scheme with Ih = 1 does not satisfy Assumption 4.1, then there only holds

‖∇vh‖L2(Ω) ≤ CPF ‖ν−1P(f)‖L2(Ω) +
1

ν
‖α− πhα‖L2(Ω)

≤ CPF ‖P(∆v)‖L2(Ω) +
Cπh,1h

ν
‖f − P(f)‖L2(Ω).

Proof. Testing (4.5) with wh = vh, a discrete Poincaré-Friedrichs inequality, and (4.3)
yield

ν‖∇vh‖2L2(Ω) = (P(f), Ihvh) ≤ ‖P(f)‖L2(Ω)

(
‖vh‖L2(Ω) + ‖vh − Ihvh‖L2(Ω)

)
≤ (CPF + C1h)‖P(f)‖L2(Ω)‖∇vh‖L2(Ω).

If Ih = 1 and Assumption 4.1 is not satisfied, then inserting the Helmholtz-Hodge decompo-
sition of f and integration by parts give

ν‖∇vh‖2L2(Ω) = (P(f),vh) + (∇α,vh)

= (P(f),vh)− (α,div vh)

= (P(f),vh)− (α− πhα,div vh)

≤
(
CPF ‖P(f)‖L2(Ω) + ‖α− πhα‖L2(Ω)

)
‖∇vh‖L2(Ω).

Property (4.2) shows that ‖α− πhα‖L2(Ω) ≤ Ch‖∇α‖L2(Ω) = Ch‖f − P(f)‖L2(Ω). This
concludes the proof.

5. Continuous and discrete Stokes projectors. In preparation for the a priori error
estimates, in this section the continuous and the discrete Stokes projectors are studied. They
are defined as the H1-seminorm best-approximations in the (discretely) divergence-free
functions, i.e., Sh : H1

0 (Ω)→ V 0
h and S : Xh → V 0 are defined by

(∇Sh(v),∇wh) = (∇v,∇wh) ∀wh ∈ V 0
h ,(5.1)

(∇S(vh),∇w) = (∇vh,∇w) ∀w ∈ V 0.(5.2)

The rest of this section collects useful properties of these projectors.
LEMMA 5.1 (Stokes projector identity). For any v ∈H1

0 (Ω) and vh ∈Xh, the following
identity holds:

(∇Sh(v),∇wh) = (∇v,∇S(wh)) ∀v ∈ V 0, wh ∈ V 0
h .
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Proof. This follows directly from the combination of the definitions of Sh and S.
LEMMA 5.2. Suppose that the Stokes problem satisfies Assumption 2.1. Then there holds

‖wh − S(wh)‖L2(Ω) ≤ C2h
s‖∇ ·wh‖L2(Ω) ∀wh ∈ V 0

h .(5.3)

Proof. Let (ψ, r) ∈H1
0 (Ω)×L2

0(Ω) solve the Stokes problem with sourcewh −S(wh)
and unit viscosity:

(∇ψ,∇z)− (∇ · z, r) = (wh − S(wh), z) ∀z ∈H1
0 (Ω),

(∇ ·ψ, q) = 0 ∀q ∈ L2
0(Ω).

Testing the first equation with z = wh − S(wh) and employing (5.2) lead to

‖wh − S(wh)‖2L2(Ω) = (∇ψ,∇(wh − S(wh)))− (∇ · (wh − S(wh)), r)

= −(∇ ·wh, r).

Recall that πhr is the L2-projection of r defined by (4.1), and note that, since wh ∈ V 0
h , it

holds (∇ ·wh, πhr) = 0. Consequently, by (4.2), we have

‖wh − S(wh)‖2L2(Ω) = −(∇ ·wh, r − πhr) ≤ ‖∇ ·wh‖L2(Ω)‖r − πhr‖L2(Ω)

≤ Cπh,sh
s‖∇ ·wh‖L2(Ω)‖r‖Hs(Ω).

Finally, the elliptic regularity of Assumption 2.1 yields ‖r‖Hs(Ω) ≤ Cell,s‖wh−S(wh)‖L2(Ω),
and so

‖wh − S(wh)‖2L2(Ω) ≤ Cell,sCπh,sh
s‖∇ ·wh‖L2(Ω)‖wh − S(wh)‖L2(Ω).

Dividing the last inequality by ‖wh − S(wh)‖L2(Ω) gives the desired result.

6. Quasi-optimal a priori error estimates for classical finite element methods. In
this section we derive a priori error estimates for classical finite element methods that are not
pressure-robust, i.e., do not satisfy Assumption 4.1 with Ih = 1, like the Bernardi-Raugel,
MINI, or Taylor-Hood finite element methods. In the proof of the estimates, the error of the
best-approximation is bounded by the right-hand side data.

THEOREM 6.1. Suppose that the Stokes problem satisfies Assumption 2.1, the reconstruc-
tion operator is taken to be the identity Ih = 1, and that Ih does not satisfy Assumption 4.1.
Then there holds

‖∇(vh − Sh(v))‖L2(Ω) ≤ C2h
s‖ν−1P(f)‖L2(Ω) +

Cπh,1h

ν
‖f − P(f)‖L2(Ω)

= C2h
s‖P(−∆v)‖L2(Ω) +

Cπh,1h

ν
‖f − P(f)‖L2(Ω),

with C2 > 0 given by (5.3).
Proof. Write eh := vh − Sh(v) and note that eh ∈ V 0

h . Hence, it follows from
Lemmas 5.1 and 5.2 that

‖∇eh‖2L2(Ω) = (∇vh,∇eh)− (∇Sh(v),∇eh)

= (∇vh,∇eh)− (∇v,∇S(eh))

= ν−1(f , eh − S(eh))

= ν−1(P(f) +∇α, eh − S(eh))
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= (P(−∆v), eh − S(eh))− ν−1(α− πhα,div(eh − S(eh)))(6.1)

≤
(
C2h

s‖P(−∆v)‖L2(Ω) + ν−1‖α− πhα‖L2(Ω)

)
‖∇eh‖L2(Ω),

where α stems from the Helmholtz-Hodge decomposition (3.1) of f . The best-approximation
property of πhα leads to ‖α− πhα‖L2(Ω) ≤ Cπh,1h‖∇α‖L2(Ω) = Cπh,1h‖f − P(f)‖L2(Ω).
This concludes the proof.

REMARK 6.2. Classical results for conforming mixed methods [9, p. 116] allow for the a
priori estimate

‖∇(vh − Sh(v))‖L2(Ω) ≤
1

ν
inf

qh∈Qh

{
‖p− qh‖L2(Ω)

}
,

which scales like ν−1hs under the given regularity assumptions. Such an estimate is sometimes
sharper than Theorem 6.1, but also may be less sharp.

i) If it holds that, e.g., p ∈ Qh, then the error at the right-hand side of the classical estimate
is zero. This property is also preserved in the calculations for the new estimate until (6.1),
since in the special case f = −ν∆v, (6.1) can be shown to vanish identically.

ii) If it holds that p 6∈ Qh and if the solution (v, p) ∈H1+s(Ω)×Hs(Ω) has low regularity
with s < 1, then the new estimate can be sharper, e.g., for ν � 1, since it predicts an
a priori error O(hs + ν−1h) while the classical estimate predicts an error decay like
O(ν−1hs).

We remark that the pressure-dependent consistency error is influenced by two different contri-
butions, one determined by −∆v and another one determined by 1

ν (f − P(f)).
THEOREM 6.3 (A priori error estimate). Under the assumptions of Theorem 6.1, it holds

that

‖∇(v − vh)‖2L2(Ω) ≤ (1 + CF )2 inf
wh∈Xh

{
‖∇(v −wh)‖2L2(Ω)

}
+

(
C2h

s‖P(−∆v)‖L2(Ω) +
Cπh,1h

ν
‖f − P(f)‖L2(Ω)

)2

,

where CF ≥ 1 denotes the stability constant of the Fortin operator of the mixed method; see,
e.g., [9, 11].

Proof. The proof starts with the Pythagoras theorem (using (5.1))

‖∇(v − vh)‖2L2(Ω) = ‖∇(v − Sh(v))‖2L2(Ω) + ‖∇(vh − Sh(v))‖2L2(Ω).

The second term can be estimated by Theorem 6.1 and the first term can be bounded by the
best-approximation error inXh by the standard argument

‖∇(v − Sh(v))‖L2(Ω) ≤ inf
wh∈V 0

h

{
‖∇(v −wh)‖L2(Ω)

}
≤ (1 + CF ) inf

wh∈Xh

{
‖∇(v −wh)‖L2(Ω)

}
.

7. Quasi-optimal pressure-robust a priori error estimates. This section is concerned
with novel quasi-optimal a priori error estimates for conforming divergence-free and pressure-
robustly modified finite element methods. Here, the distance between the discrete solution and
the discrete Stokes projector can be bounded by ‖P(−∆v)‖L2(Ω), which is in general much
smaller than the bound in Theorem 6.1, especially for small ν.

THEOREM 7.1. Suppose that the Stokes problem satisfies Assumption 2.1 and that the
reconstruction operator Ih satisfies Assumption 4.1. Then there holds

‖∇(vh − Sh(v))‖L2(Ω) ≤ (C1h+ C2h
s)‖P(−∆v)‖L2(Ω),
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with C1 > 0 and C2 > 0 given by (4.3) and (5.3), respectively. Note, that there is no
dependency on ν−1.

Proof. Write eh := vh − Sh(v) and note that eh ∈ V 0
h . Hence,

(∇vh,∇eh) =
1

ν
(f , Iheh) = (P(−∆v), Iheh)

= (P(−∆v), Iheh − eh) + (P(−∆v), eh).

The latter term is split up into (using also Lemma 5.1)

(P(−∆v), eh) = (P(−∆v), eh − S(eh)) + (P(−∆v),S(eh))

= (P(−∆v), eh − S(eh)) + (∇v,∇S(eh))

= (P(−∆v), eh − S(eh)) + (∇Sh(v),∇eh).

It then follows from Lemma 5.2 and (4.3) that

‖∇eh‖2L2(Ω) = (∇vh,∇eh)− (∇Sh(v),∇eh)

= (P(−∆v), Iheh − eh) + (P(−∆v), eh − S(eh))

≤ ‖P(−∆v)‖L2(Ω)

(
‖Iheh − eh‖L2(Ω) + ‖eh − S(eh)‖L2(Ω)

)
≤ (C1h+ C2h

s)‖P(−∆v)‖L2(Ω)‖∇eh‖L2(Ω).

This concludes the proof.
THEOREM 7.2 (A priori error estimate). Under the assumptions of Theorem 7.1, it holds

that

‖∇(v − vh)‖2L2(Ω) ≤ (1 + CF )2 inf
wh∈Xh

{
‖∇(v −wh)‖2L2(Ω)

}
+
(
(C1h+ C2h

s)‖P(−∆v)‖L2(Ω)

)2
,

where CF ≥ 1 denotes the stability constant of the Fortin operator of the mixed method; see,
e.g., [9, 11].

Proof. The proof starts with the Pythagoras theorem (using (5.1))

‖∇(v − vh)‖2L2(Ω) = ‖∇(v − Sh(v))‖2L2(Ω) + ‖∇(vh − Sh(v))‖2L2(Ω).

The second term can be estimated by Theorem 7.1 and the first term can be bounded by the
best-approximation error inXh by the standard argument

‖∇(v − Sh(v))‖L2(Ω) ≤ inf
wh∈V 0

h

{
‖∇(v −wh)‖L2(Ω)

}
≤ (1 + CF ) inf

wh∈Xh

{
‖∇(v −wh)‖L2(Ω)

}
.

8. Estimates for the nonconforming Crouzeix-Raviart finite element method. In
this section we consider the spaceXh 6⊂H1

0 (Ω) of nonconforming Crouzeix-Raviart func-
tions, i.e., piecewise affine vector fields that are weakly continuous across edges (2D) or faces
(3D) in the triangulation; see, e.g., [5, 6]. To describe this space in detail we require some
notation. Recall that Th is a conforming, shape-regular, and simplicial triangulation of Ω
parameterized by h = maxT∈Th diam(T ). We denote by Eh the set of (n− 1)-dimensional
simplices in Th, i.e., Eh is either the set of edges (2D) or faces (3D) in Th. Let Pm(T )
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denote the space of polynomials of degree ≤ m on T , and let Pm(T ) = (Pm(T ))n. Then
the Crouzeix-Raviart space Xh consists of all functions wh ∈ L2(Ω) with the properties
wh|T ∈ P1(T ),

∫
E
wh is single-valued for all E ∈ Eh, and

∫
E
wh = 0 for all boundaries

E ∈ Eh. The discrete pressure space Qh is the space of piecewise constants with vanishing
mean. It is well-known that the pairXh ×Qh is inf-sup stable.

Note that Crouzeix-Raviart functions wh ∈ V 0
h are not divergence-free in a H(div)-

sense (as their normal traces are not continuous), but their piecewise divergence vanishes.
PossibleH(div)-conforming reconstruction operators Ih for this method are the lowest-order
Raviart-Thomas or BDM interpolation operators; see [4] for details.

In order to show the same quasi-optimal a priori error estimates for the Crouzeix-
Raviart method, some arguments have to be slightly modified. First, the Stokes projectors
Sh : H1

0 (Ω)→ V 0
h and S : Xh → V 0 are now defined by using the piecewise gradients∇h,

i.e.,

(∇hSh(v),∇hwh) = (∇v,∇hwh) ∀wh ∈ V 0
h ,

(∇S(vh),∇w) = (∇hvh,∇w) ∀w ∈ V 0.(8.1)

Recall the Crouzeix-Raviart Fortin interpolation

ICRv ∈Xh defined by
∫
E

ICRv =

∫
E

v for all E ∈ Eh,

which satisfies the approximation property

(8.2) ‖∇h(v − ICRv)‖L2(Ω) ≤ CCRh
s‖v‖H1+s(Ω)

for all s ∈ [0, 1]. This definition of the interpolant yields the well-known property [5]∫
T

∇(v − ICRv) = 0 for all T ∈ Th

and in particular
∫
T

div(v − ICRv) = 0 for any T ∈ Th. Since ∇hwh is piecewise constant,
this also reveals that we have Sh = ICR, i.e., the Crouzeix-Raviart interpolator is the discrete
Stokes projector. Also note that the Stokes projector identity holds in the form

(∇hSh(v),∇hwh) = (∇v,∇S(wh)) ∀v ∈ V 0, wh ∈ V 0
h .

However, in general ICRv ∈Xh does not imply ICRv ∈H(div,Ω), and therefore Lemma 5.2
has to be modified as well.

The analysis also needs another mapping that projects a discretely divergence-free
Crouzeix-Raviart function to some H1-conforming divergence-free function. Such an operator
was introduced in [16] and is based on rational bubble functions.

LEMMA 8.1. Suppose that the Stokes problem satisfies Assumption 2.1. Then there holds

‖wh − S(wh)‖L2(Ω) ≤ C3h
s‖∇hwh‖L2(Ω) ∀wh ∈ V 0

h .(8.3)

Proof. Consider the H1
0 -conforming and H1-stable operator Eh from [16] with the

properties

∇ · (Ehwh) = 0 for all wh ∈ V 0
h ,(8.4a)

(∇huh,∇(Ehwh −wh)) = 0 for all wh,uh ∈Xh,(8.4b)

‖∇Ehwh‖L2(Ω) + h−1‖Ehwh −wh‖L2(Ω)

≤ CEh
‖∇hwh‖L2(Ω) for all wh ∈Xh.(8.4c)

The second property follows from [16, I2 = 0 in the proof of Theorem 5.1]. As in Lemma 5.2,
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we look at a solution (ψ, r) ∈ H1
0 (Ω) × L2

0(Ω) of the Stokes problem with the modified
source Ehwh − S(wh) and unit viscosity:

(∇ψ,∇z)− (∇ · z, r) = (Ehwh − S(wh), z) ∀z ∈H1
0 (Ω),

(∇ ·ψ, q) = 0 ∀q ∈ L2
0(Ω).

Testing the first equation with z = Ehwh − S(wh) ∈ H1
0 (Ω) and using (8.1), (8.4), and

(8.2) lead to

‖Ehwh − S(wh)‖2L2(Ω) = (∇ψ,∇(Ehwh − S(wh)))

= (∇(ψ − ICRψ),∇h(Ehwh −wh))

≤ CCR(1 + CEh
)hs‖ψ‖H1+s(Ω)‖∇hwh‖L2(Ω).

The elliptic regularity assumption implies ‖ψ‖H1+s(Ω) ≤ Cell,s‖Ehwh − S(wh)‖L2(Ω) and
yields

‖Ehwh − S(wh)‖L2(Ω) ≤ CCR(1 + CEh
)Cell,sh

s‖∇hwh‖L2(Ω).

Finally, a triangle inequality gives

‖wh − S(wh)‖L2(Ω) = ‖Ehwh −wh‖L2(Ω) + ‖Ehwh − S(wh)‖L2(Ω)

≤ (CEh
h+ CCR(1 + CEh

)Cell,sh
s)‖∇hwh‖L2(Ω).

This concludes the proof.
The previous result and similar arguments as in the conforming case enable us to prove

the following theorem.
THEOREM 8.2. Suppose that the Stokes problem satisfies Assumption 2.1 and that the

reconstruction operator Ih satisfies Assumption 4.1. Then there holds that

‖∇h(vh − Sh(v))‖L2(Ω) ≤ (C1h+ C3h
s)‖P(−∆v)‖L2(Ω),

with C1 > 0 and C3 > 0 given by (4.3) and (8.3), respectively. Without Assumption 4.1, a
result similar to Theorem 6.1 is valid, i.e.,

‖∇h(vh − Sh(v))‖L2(Ω) ≤ C3h
s‖P(−∆v)‖L2(Ω) +

CEh
h

ν
‖f − P(f)‖L2(Ω).

Proof. The proof of the first result is nearly identical to the proof of Theorem 7.1 with slight
changes concerning the application of ∇h and the replacement of Lemma 5.2 by Lemma 8.1.
Likewise, the proof of the second result is almost identical to the proof of Theorem 6.1.
However, one term has to be estimated differently; see below. With divS(eh) = 0 and (8.4),
it holds that

1

ν
(∇α, eh − S(eh)) =

1

ν
(∇α, eh −Eh(eh))

≤ 1

ν
‖∇α‖L2(Ω)‖eh −Eh(eh)‖L2(Ω)

≤ CEh
h

ν
‖f − P(f)‖L2(Ω)‖∇heh‖L2(Ω).
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TABLE 9.1
Errors for the classical Bernardi-Raugel finite element method for f = ∇(sin(xyπ)) and ν = 1.

ndof ‖∇(v − vh)‖L2(Ω) order ‖∇(vh − Sh(v))‖L2(Ω) order
379 1.4151e+00 - 5.0351e-02 -

1414 9.7300e-01 0.542 3.0576e-02 0.722
5458 6.7235e-01 0.535 1.6366e-02 0.905

21442 4.6297e-01 0.540 8.4114e-03 0.964
84994 3.1819e-01 0.543 4.2567e-03 0.986
338434 2.1844e-01 0.545 2.1402e-03 0.996

1350658 1.4988e-01 0.546 1.0729e-03 1.000

TABLE 9.2
Errors for the modified Bernardi-Raugel finite element method for f = ∇(sin(xyπ)) and ν = 1.

ndof ‖∇(v − vh)‖L2(Ω) order ‖∇(vh − Sh(v))‖L2(Ω)

379 1.4142e+00 - 8.5800e-11
1414 9.7261e-01 0.542 1.2467e-13
5458 6.7218e-01 0.535 1.9887e-14
21442 4.6290e-01 0.540 4.3878e-14
84994 3.1816e-01 0.543 9.8787e-14

338434 2.1844e-01 0.545 2.2136e-13
1350658 1.4988e-01 0.546 4.4909e-13

9. Numerical examples. This sections gives a short numerical example to illustrate
the theory. We consider an L-shaped domain Ω := (−1, 1)2 \ ((0, 1) × (−1, 0)) and the
manufactured solution

v(r, ϕ) := rγ
(

(γ + 1) sin(ϕ)ψ(ϕ) + cos(ϕ)ψ′(ϕ)
−(γ + 1) cos(ϕ)ψ(ϕ) + sin(ϕ)ψ′(ϕ)

)T
,

p0(r, ϕ) := νr(γ−1)((1 + γ)2ψ′(ϕ) + ψ′′′(ϕ))/(1− γ),

where

ψ(ϕ) :=
1

γ + 1
sin((γ + 1)ϕ) cos(γω)− cos((γ + 1)ϕ)

− 1

γ − 1
sin((γ − 1)ϕ) cos(γω) + cos((γ − 1)ϕ)

and γ = 856399/1572864 ≈ 0.54, ω = 3π/2 taken from [18]. Note, that this yields
−ν∆v+∇p0 = 0. To have a nonzero right-hand side we add p+ := sin(xyπ) to the pressure,
i.e., p := p0 + p+ and f := ∇(p+). Note that the exact solutions satisfy v ∈ H1+s(Ω)
and p ∈ Hs(Ω) for any s < γ. Moreover, we set the viscosity parameter to either ν = 1,
ν = 10−2, or ν = 10−4.

Tables 9.1–9.6 compare the H1 errors of the classical Bernardi-Raugel finite element
method and its pressure-robust sibling for a series of unstructured uniformly red-refined
meshes for ν = 1 (Tables 9.1 and 9.2), ν = 10−2 (Tables 9.3 and 9.4), and ν = 10−4

(Tables 9.5 and 9.6). For the classical method, the distance between the discrete Stokes
projector and the discrete solution is non-zero and scales with ν−1 but asymptotically converges
with h instead of hs. At first glance this seems better than expected in Theorem 6.1, but the
first term vanishes due to P(−∆v) = ν−1P(∇p0) = 0 in this example. This also pre-
asymptotically leads to a slightly higher convergence order of the full error than in case
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TABLE 9.3
Errors for the classical Bernardi-Raugel finite element method for f = ∇(sin(xyπ)) and ν = 10−2.

ndof ‖∇(v − vh)‖L2(Ω) order ‖∇(vh − Sh(v))‖L2(Ω) order
379 4.5794e+00 - 5.0351e+00 -

1414 2.8168e+00 0.704 3.0576e+00 0.722
5458 1.5663e+00 0.850 1.6366e+00 0.905

21442 8.6350e-01 0.862 8.4114e-01 0.964
84994 4.8756e-01 0.828 4.2567e-01 0.986
338434 2.8682e-01 0.768 2.1402e-01 0.996

1350658 1.7650e-01 0.703 1.0729e-01 1.000

TABLE 9.4
Errors for the modified Bernardi-Raugel finite element method for f = ∇(sin(xyπ)) and ν = 10−2.

ndof ‖∇(v − vh)‖L2(Ω) order ‖∇(vh − Sh(v))‖L2(Ω)

379 1.4142e+00 - 8.5800e-09
1414 9.7261e-01 0.542 1.2516e-11
5458 6.7218e-01 0.535 6.5365e-13
21442 4.6290e-01 0.540 1.3425e-12
84994 3.1816e-01 0.543 2.7291e-12

338434 2.1844e-01 0.545 5.5018e-12
1350658 1.4988e-01 0.546 1.1034e-11

of ν = 1 at least for ν = 10−2 and ν = 10−4 where the O(h)-error dominates at first.
The numbers of the modified pressure-robust variant convey that the discrete solution of the
modified method and the discrete Stokes projector are identical as predicted by Lemma 7.1
(again due to P(−∆v) = ν−1P(∇p0) = 0). The numerical results confirm that for pressure-
robust methods, the discrete velocity is independent of ν. However, this ν-independence
only holds up to a quadrature error in the right-hand side, which scales with ν−1, and up to
round-off errors.
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