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RUSH-LARSEN TIME-STEPPING METHODS OF HIGH ORDER FOR STIFF
PROBLEMS IN CARDIAC ELECTROPHYSIOLOGY∗

YVES COUDIÈRE†, CHARLIE DOUANLA LONTSI†, AND CHARLES PIERRE‡

Abstract. The stability and accuracy of numerical methods for reaction-diffusion equations still need improve-
ments, which prompts the development of high-order and stable time-stepping methods. This is particularly true in
the context of cardiac electrophysiology, where reaction-diffusion equations are coupled with stiff systems of ordinary
differential equations. So as to address these issues, much research on implicit-explicit methods and exponential
integrators has been carried out during the past 15 years. In 2009, Perego and Veneziani [Electron. Trans. Numer.
Anal., 35 (2009), pp. 234–256] proposed an innovative time-stepping scheme of order 2. In this paper we present an
extension of this scheme to the orders 3 and 4, which we call Rush-Larsen schemes of order k. These new schemes are
explicit multistep methods, which belong to the classical class of exponential integrators. Their general formulation
is simple and easy to implement. We prove that they are stable under perturbation and convergent of order k. We
analyze their Dahlquist stability and show that they have a very large stability domain provided that the stabilizer
associated with the method captures well enough the stiff modes of the problem. We study their application to a
system of equations that models the action potential in cardiac electrophysiology.

Key words. stiff equations, explicit high-order multistep methods, exponential integrators, stability and conver-
gence, Dahlquist stability
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1. Introduction. This article concerns the problem of time integration of stiff reaction-
diffusion equations, in particular when they are coupled to a system of ordinary differential
equations (ODE). As developed below, for such problems the matters of stability and accuracy
are of first importance. As a systemic example of these issues, we will consider the mono-
domain model in cardiac electrophysiology [3, 4, 5]. Given the heart domain Ω and the time
interval [0, T ], it has the general form

(1.1)
∂v

∂t
= Av + f1(v, ζ) + s(x, t),

dζ

dt
= f2(v, ζ),

where A is a diffusion operator. The unknown function v : Ω × [0, T ] → R is the trans-
membrane potential. The unknown function ζ : Ω× [0, T ]→ Rp+q gathers p+ q variables
describing the state of the cell membrane. It incorporates p gating variables and q ionic
concentrations. The source term s(x, t) is an applied stimulation current. The reaction terms
f1 and f2 model ionic currents across the cell membrane and are called ionic models. Ionic
models have originally been developed by Hodgkin and Huxley [19] in 1952. Highly detailed
ionic models specific to cardiac cells have been designed since the 1960’s, such as the Beeler
and Reuter (BR) model [1] or the ten Tusscher, Noble, Noble, and Panfilov (TNNP) model [29].
A comprehensive review is available in [28].

There are two major difficulties for numerical simulations in cardiac electrophysiology.
First, the nonlinear functions f1 and f2 in equation (1.1) induce expensive computations of
the mappings (v, ζ)→ fi(v, ζ). For example, the TNNP model [29] involves the computation
of 50 scalar exponentials, which has to be performed for each mesh node to approximate
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the solutions of the partial differential equation (1.1). They represent the predominant com-
putational load during numerical simulations, and their total computational amount needs
to be maintained as low as possible. Fully implicit time-stepping methods, which require a
nonlinear solver, are therefore avoided. Second, the equations (1.1) are stiff, but since implicit
methods are not affordable, numerical instabilities are challenging to manage. More precisely,
the stiffness is caused by the presence of different space and time scales. The solutions of
equation (1.1) display sharp wavefronts. Typically, the scaling factor between the fast and
slow variables ranges from 100 to 1000. This is commonly coped with by resorting to very
fine space and time discretization grids, associated with high computational costs.

In this context, our strategy for solving problem (1.1) is to use high-order methods, so as
to have accurate simulations with coarser space and time discretization grids. A high-order
time-stepping method that fulfills the two following conditions is required: it must have strong
stability properties and has to be explicit for the reaction terms. To this aim, we will focus on
the time integration of stiff ODE systems of the form

(1.2)
dy

dt
= f(t, y), y(0) = y0,

in which the nonlinear function f : [0,+∞[×RN → RN (e.g.,N = p+q for the ionic models
presented above) may be split as f(t, y) = a(t, y)y+ b(t, y). This leads to a formulation more
suited to our needs,

(1.3)
dy

dt
= a(t, y)y + b(t, y), y(0) = y0.

It involves the nonlinear term b(t, y) and the operator y ∈ RN 7→ a(t, y)y ∈ RN , which
can be easily linearized as, e.g., a(t, yn)y. This function a(t, y) will be inserted into the
numerical scheme in order to stabilize the computations. It will be called the stabilizer in the
sequel. In practice, the function a(t, y) may be related to the Jacobian of the system ∂yf(t, y).
However, no a priori definition of the stabilizer is made (such as a(t, y) = ∂yf(t, y)) because
we plan to analyze the formulation in (1.3) in general. This will allow us, for instance, to
define the stabilizer as an approximation of the Jacobian, for technical reasons detailed below.
This approach is relevant in cardiac electrophysiology, where the fastest variables are gating
variables that are given by the first p equations of the ODE system dζ/dt = f2(v, ζ) in (1.1).
They have the general form

dζi
dt

=
ζi,∞(v)− ζi

τi(v)

(see Section 5.1), which motivates the reformulation (1.3) with the diagonal stabilizer
a = diag(−1/τi).

Exponential integrators are well suited in this framework; we refer to [12, 16, 23] for
general reviews. They have been widely studied for the semilinear equation ∂ty = Ay+b(t, y);
see, e.g., [7, 14, 15, 18, 21, 30]. Exponential integrators commonly define a time iteration
based on the exact solution of an equation of the form ∂ty = Ay + p(t), where p(t) is a
polynomial. It is usually defined with the functions (ϕk)k≥0,

(1.4) ϕ0(z) = ez, ϕj+1(z) =
ϕj(z)− 1/j!

z
,

introduced by Nørsett [24]. In general, it requires to compute a matrix exponential applied to
a vector, like etA y. This is the supplementary cost associated with exponential integrators. A
gain in stability is expected when A is the predominant stiff part of the equation.
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The target equation (1.3) incorporates a non-constant linear part a(t, y), and exponential
integrators have been less studied in that case. Exponential integrators of Adams type for
a non-constant linear part have been first considered by Lee and Preiser [20] in 1978 and
by Chu [2] in 1983. Recently, Ostermann et al. [17] developed and analyzed the linearized
exponential Adams method. In general, the original equation (1.2) is formulated after each
time step as dy

dt = Jny + cn(t, y) involving the Jacobian matrix Jn = ∂yf(tn, yn) and the
correction function cn(t, y) = f(t, y) − Jny. This has several drawbacks. It requires the
computation of a matrix exponential applied to a vector with a different matrix at each time
step. Moreover, stabilization can be performed on the fast variables only in case that they are
known in advance, e.g., because of modeling assumptions or of our physical understanding
of the problem. In this case, using the full Jacobian as the stabilizer will cause unnecessary
computational efforts.

As an alternative, the stabilizer can be set to a part or an approximation of the Jacobian.
This had already been proposed by Nørsett [24] in 1969 and has been analyzed in [31],
[26], and [6] for exponential Rosenbrock, exponential Runge-Kutta, and exponential Adams
methods, respectively. For exponential Adams methods, equation (1.3) is reformulated after
each time step as

dy

dt
= any + cn(t, y), an = a(tn, yn), cn(t, y) = f(t, y)− any.

The resulting scheme with a time step h > 0 is (see the details in [6, 17])

(1.5) yn+1 = yn + h (ϕ1(anh) (anyn + γ1) + ϕ2(anh)γ2 + . . . ϕk(anh)γk) ,

where the numbers γi are the coefficients of the Lagrange interpolation polynomial of cn(t, y)
(in a classical k-step setting) and the functions ϕj are given by (1.4).

Independently, Perego and Veneziani [25] presented in 2009 an innovative exponential
integrator of order 2 of a different nature. They proposed a scheme of the form

(1.6) yn+1 = yn + hϕ1(αnh) (αnyn + βn)

involving two coefficients αn and βn to be computed at each time step. The resulting
scheme has a very simple definition and is, in particular, simpler than the exponential Adams
integrators (1.5). The essential difference with the previous approaches is that αn 6= a(tn, yn)
but instead is fixed for the scheme to be consistent of order 2. Specifically, the coefficients αn
and βn are given by

αn =
3

2
an −

1

2
an−1, βn =

3

2
bn −

1

2
bn−1 with aj = a(tj , yj) bj = b(tj , yj).

Perego and Veneziani presented their scheme as a “generalization of the Rush-Larsen method”
in reference to the Rush-Larsen scheme [27] commonly used in electrophysiology.

This scheme resembles the Magnus integrator introduced by Hochbruck et al. in [13] for
the time-dependent Schrödinger equation iy′ = H(t)y and extended by Gonzàlez et al. in [9]
to parabolic equations with time-dependent linear part y′ = a(t)y + b(t). The second-order
Magnus integrator also formulates as (1.6) but with αn = a(tn+1/2) and bn = b(tn+1/2).
The scheme of Perego and Veneziani generalizes the second-order Magnus integrator to the
case where a = a(t, y) and b = b(t, y): it presents an approximation of the unknown terms
a(tn+1/2, y(tn+1/2)) and b(tn+1/2, y(tn+1/2)) using a two-point interpolation.

In this paper we will study schemes in the form of (1.6). We will show that they also
exist at the orders 3 and 4 and will exhibit explicit definitions of the two coefficients αn and
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βn. The schemes will be referred to as Rush-Larsen schemes of order k (shortly denoted
by RLk) in the continuation of the denomination used in [25]. They will be shown to be
stable under perturbation and convergent of order k. We also present the Dahlquist stability
analysis for the RLk schemes. It is a practical tool that allows one to scale the time step h with
respect to the variations of the function f(t, y) in problem (1.2); see, e.g., [11]. The splitting
f(t, y) = a(t, y)y + b(t, y) may be arbitrary, but obviously the choice of the stabilizer term
a(t, y) is critical for the stability of the method. When considering time-dependent stabilizers,
the stability domain depends on this splitting. We compute stability domains numerically and
show that they are much larger if a(t, y) captures the variations of f(t, y) than in absence of
stabilization (i.e., when a(t, y) = 0). We finally evaluate the performances of the RLk methods
as applied to the membrane equation in cardiac electrophysiology. They are compared to the
exponential Adams integrators (1.5). The two methods have a very similar robustness with
respect to stiffness, allowing stable computations with large time steps. For the considered test
case, the RL3 and RL4 schemes are more accurate for large time steps.

The paper is organized as follows: The RLk schemes are derived in Section 2, and their
numerical analysis is performed in Sections 2 and 3. The Dahlquist stability analysis is
completed in Section 4. The numerical results are presented in Section 5. The paper ends
with a conclusion in Section 6. In the following, h denotes the time step and tn = nh are the
associated time instants starting at t0 = 0.

2. Definition of RLk schemes and consistency. Let us consider a solution y(t) of
equation (1.3) in a time interval [0, T ]. It is recalled that the scheme (1.6) is consistent of order
k if, given a time step h, a time instant kh ≤ tn ≤ T − h, and the numerical approximation
yn+1 in (1.6) computed with yn−j = y(tn−j), for j = 0, . . . , k − 1, we have

|yn+1 − y(tn + h)| ≤ Chk+1,

for a constant C only depending on the data a, b, y0, and T of the problem (1.3).
LEMMA 2.1. Assume that the functions a(t, y) and b(t, y) are Ck regular on [0, T ]×RN .

Moreover, assume that a(t, y) is diagonal (a(t, y) = diag (ai(t, y))) or constant. Then the
scheme in (1.6) is consistent of order k, for k = 2, 3, 4, if

• for k = 2, we have

αn = an +
1

2
a′nh+O(h2), and βn = bn +

1

2
b′nh+O(h2);

• for k = 3, we have

αn = an +
1

2
a′nh+

1

6
a′′nh

2 +O(h3) and

βn = bn +
1

2
b′nh+

1

12
(a′nbn − anb′n)h2 +O(h3);

• for k = 4, we have

αn = an +
1

2
a′nh+

1

6
a′′nh

2 +
1

24
a′′′n h

3 +O(h4), and

βn = bn +
1

2
b′nh+

1

12
(a′nbn − anb′n)h2

+
1

24
(b′′′n + a′′nbn − anb′′n)h3 +O(h4);
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where a′n, a′′n, a′′′n and b′n, b′′n, b′′′n denote the successive derivatives at time tn of the functions
t 7→ a(t, y(t)) and t 7→ b(t, y(t)).

REMARK 2.2. The assumption “a(t, y) is diagonal or constant” in Lemma 2.1 has
the following origin: To analyze the consistency of the scheme, we will compute a Taylor
expansion in h of the scheme in (1.6). This expansion is derived from Taylor expansions of αn
and βn. For the sake of simplicity, assume the simple form αn = αn,0 + hαn,1. We need to
expand ϕ1(αnh) as a power series in h, where the function ϕ1 is analytic on C. However, in
the matrix case, the equality, ϕ1(M +N) = ϕ1(M) +ϕ′1(M)N + . . .+ϕ

(i)
1 (M)N i/i! + . . .

holds if M and N are commutative matrices. Therefore one cannot expand ϕ1(αnh) without
the assumptions that αn,0 and αn,1 commute. This difficulty vanishes if a(t, y) is constant or
a varying diagonal matrix.

Proof. Consider equation (1.3) on the closed time interval [0, T ] and its solution, the
function y. Since the functions a and b are Ck regular on [0, T ]×RN , the solution y(t) is Ck+1

regular on [0, T ]. Its derivatives up to order k + 1 are bounded by constants only depending
on the data of problem (1.3) and on T . The Taylor expansion of y at time instant tn is

y(tn + h) = y(tn) +

k∑
j=1

sj
j!
hj +O(hk+1),

with sj = y(j)(tn). Using that y′ = ay + b, we get that

s1 =anyn + bn,

s2 =(a′n + a2n)yn + anbn + b′n,

s3 =(a′′n + 3ana
′
n + a3n)yn + b′′n + anb

′
n + 2a′nbn + a2nbn,

s4 =(a′′′n + 4a′′nan + 3a
′2
n + 6a′na

2
n + a4n)yn

+ b′′′n + b′′nan + 3a′′nbn + 5a′nanbn + 3a′nb
′
n + a3nbn + a2nb

′
n.

Series expansions in h for αn and for βn are introduced as

αn = αn,0 + αn,1h+ · · ·+ αn,k−1h
k−1 +O(hk),

βn = βn,0 + βn,1h+ · · ·+ βn,k−1h
k−1 +O(hk).

If the matrix a(t, y) is diagonal or constant (see Remark 2.2), then the Taylor expansion of the
numerical solution yn+1 in (1.6) can be performed:

yn+1 = y(tn) +

k∑
j=1

rj
j!
hj +O(hk+1).

A direct computation of the rj gives

r1 =αn,0yn + βn,0,

r2 =(2αn,1 + α2
n,0)yn + 2βn,1 + αn,0βn,0,

r3 =(6αn,2 + α3
n,0 + 6αn,0αn,1)yn + 3αn,1βn,0 + 6βn,2 + α2

n,0βn,0 + 3αn,0βn,1,

r4 =(24αn,0αn,2 + 24αn,3 + 12αn,1α
2
n,0 + 12α2

n,1 + α4
n,0)yn

+ 12αn,2βn,0 + 24βn,3 + 12αn,0βn,2 + 12αn,1βn,1 + 4α2
n,0βn,1

+ 8αn,0αn,1βn,0 + α3
n,0βn,0,
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where yn denotes y(tn). The condition to be consistent of order k is: ri = si, for 1 ≤ i ≤ k.
The consistency conditions in Lemma 2.1 are obtained by recursively solving these relations.

We then can state our main result, which includes the definition of the RLk schemes.
THEOREM 2.3. Assume (as in Lemma 2.1) that the functions a(t, y) and b(t, y) are Ck

regular on [0, T ] × RN and that a(t, y) is diagonal or constant. Then, the three schemes
defined for k = 2, 3, 4 by equation (1.6) and the following coefficients,

• for k = 2,

αn =
3

2
an −

1

2
an−1, βn =

3

2
bn −

1

2
bn−1,

• for k = 3,

αn =
1

12
(23an − 16an−1 + 5an−2),

βn =
1

12
(23bn − 16bn−1 + 5bn−2) +

h

12
(anbn−1 − an−1bn),

• for k = 4,

αn =
1

24
(55an − 59an−1 + 37an−2 − 9an−3),

βn =
1

24
(55bn − 59bn−1 + 37bn−2 − 9bn−3)

+
h

12
(an(3bn−1 − bn−2)− (3an−1 − an−2)bn) ,

with aj = a(tj , yj) and bj = b(tj , yj), are consistent of order k.
The three methods stated above are called Rush-Larsen methods of order k and are

denoted by RLk. They are explicit and k-step methods.
REMARK 2.4. If the matrix a is a constant, a(t, y) = A, then we have αn = A for all

three methods. In this case, the expressions of the coefficients βn in Theorem 2.3 for k = 3, 4
simplify as follows:

RL3 case: βn =
1

12
(23bn − 16bn−1 + 5bn−2)− h

12
A(bn − bn−1);

RL4 case: βn =
1

24
(55bn − 59bn−1 + 37bn−2 − 9bn−3)

− h

12
A(2bn − 3bn−1 + bn−2).

Proof. The result is a direct consequence of backwards differentiation formulas, which
we recall first. The derivatives of a real function f at the time instant tn can be approximated
as follows (with common notations):

• first derivative,

f ′n =
fn − fn−1

h
+O(h)

=
1

2h
(3fn − 4fn−1 + fn−2) +O(h2)

=
1

6h
(11fn − 18fn−1 + 9fn−2 − 2fn−3) +O(h3);
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• second derivative,

f ′′n =
1

h2
(fn − 2fn−1 + fn−2) +O(h)

=
1

h2
(2fn − 5fn−1 + 4fn−2 − fn−3) +O(h2);

• third derivative,

f ′′′n =
1

h3
(fn − 3fn−1 + 3fn−2 − fn−3) +O(h).

With these formulas, the consistency condition at order 3 for the coefficient αn becomes

αn = an +
1

2
a′nh+

1

6
a′′nh

2 +O(h3)

= an +
1

4
(3an − 4an−1 + an−2) +

1

6
(an − 2an−1 + an−2) +O(h3)

=
1

12
(23an − 16an−1 + 5an−2) +O(h3).

We retrieve the definition of αn for the RL3 scheme. The same proof holds for βn and extends
to order 4.

3. Stability under perturbation and convergence. We refer to [10, Ch. III-8] for the
definitions of convergence and of stability under perturbation. For the analysis of time-stepping
methods, it is commonly assumed that f in equation (1.2) is uniformly Lipschitz with respect
to its second variable y. This hypothesis will be replaced by assumptions based on the
formulation (1.3). Precisely, it will be assumed that

(3.1) a(t, y) is bounded, a(t, y), b(t, y) are uniformly Lipschitz in y.

The Lipschitz constants of a and b are denoted by La and Lb, respectively. The upper bound
for |a(t, y)| is denoted by Ma.

PROPOSITION 3.1. If assumption (3.1) holds, then the RLk schemes are stable under
perturbation for k = 2, 3, 4. In addition, also for k = 2, 3, 4, if the consistency assumptions
of Theorem 2.3 are satisfied (a(t, y) and b(t, y) are Ck regular and a(t, y) is diagonal or
constant), then the RLk scheme is convergent of order k.

Stability under perturbation together with consistency implies (nonstiff) convergence;
see, e.g., [10] or [6], where the current setting has been detailed. Therefore the proof of the
convergence statement in Proposition 3.1 is immediate and will not be recalled here.

The following definitions are necessary to prove Proposition 3.1: Equation (1.2) is
considered on E = RN with the max-norm | · |. A final time T > 0 is considered. The space
of N ×N matrices is equipped with the operator norm ‖ · ‖ associated with | · |. The space
Ek is equipped with the max-norm |Y |∞ = max1≤i≤k |yi| with Y = (y1, . . . , yk). The RLk
scheme is defined by the mapping

st,h : Y = (y1, . . . , yk) ∈ Ek −→ st,h(Y ) ∈ E

with

st,h(Y ) = yk + hϕ1(αt,h(Y )h) (αt,h(Y )yk + βt,h(Y ))
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in such a way that the scheme in (1.6) reads yn+1 = stn,h(yn−k+1, . . . , yn). The functions
αt,h and βt,h map the vector Y of the k previous values to the values αn and βn given in
Theorem 2.3. For instance, the function αt,h(Y ) for k = 3 (the RL3 scheme) reads

αt,h(Y ) =
1

12
(23a(t, y3)− 16a(t− h, y2) + 5a(t− 2h, y1)).

A first technique to prove stability under perturbation consists in showing that the function
st,h is globally Lipschitz in Y . To this aim, the derivative ∂Y st,h has to be analyzed. As
developed in Remark 2.2, this implies restrictions on the function a(t, y): it has to be either
diagonal or constant. A second technique consists in proving the following two stability
conditions:

|st,h(Y )− st,h(Z)| ≤ |Y − Z|∞ (1 + Ch(|Y |∞ + 1)) ,(3.2)
|st,h(Y )| ≤ |Y |∞(1 + Ch) + Ch,(3.3)

for all Y and Z in Ek, and where the constant C depends only on the data a, b, y0 in
equation (1.3) and on the final time T . These are sufficient conditions for stability under
perturbation as proved in [6, Section 2]. We will use the conditions (3.2) and (3.3) here
because they are more general and give rise to less computations.

The core of the proof is the following property of the RLk scheme. For Y = (y1, . . . , yk) ∈
Ek, we have

(3.4) st,h(Y ) = z(t+ h) for z′ = αt,h(Y )z + βt,h(Y ), z(t) = yk.

It will be used together with the following Gronwall inequality (see [8, Lemma 196, p.150]):
Suppose that z(t) is a C1 function and that there exists M1 > 0 and M2 > 0 such that
|z′(t)| ≤M1|z(t)|+M2 for all t ∈ [t0, t0 + h]. Then

(3.5) ∀t ∈ [t0, t0 + h], |z(t)| ≤ eM1(t−t0) (|z(t0)|+M2(t− t0)) .

Proof of Proposition 3.1. In this proof, we always assume that 0 ≤ h, t ≤ T , and denote by Ci
a constant that depends only on the data a, b, and T of problem (1.3). With the assumptions
in (3.1) and the definitions of αn (k = 2, 3, 4) in Theorem 2.3, the function αt,h is uniformly
Lipschitz with a Lipschitz constant equal to Lα. Moreover, we have the uniform bound
‖αt,h‖ ≤ Mα. Since the function b(t, y) is uniformly Lipschitz with respect to y and since
0 ≤ t ≤ T , we have

(3.6) |b(t, y)| ≤ |b(t, 0)|+ |b(t, y)− b(t, 0)| ≤ Kb(1 + |y|)

with Kb = max(Lb, sup0≤t≤T |b(t, 0)|). For the RL3 scheme, we have

|βt,h(Y )|∞ ≤
11

3
Kb(1 + |Y |∞) +

h

12
Ma2Kb(1 + |Y |∞) ≤ C1(1 + |Y |∞).

The same inequality holds for the RL2 and RL4 schemes. Afterwards, we can apply these
bounds to the differential equation in (3.4),

|z′| = |αt,h(Y )z + βt,h(Y )| ≤Mα|z|+ C1(1 + |Y |∞).

The initial state is |z(t)| = |yk| ≤ |Y |∞. Finally, the Gronwall inequality (3.5) yields, for
t ≤ τ ≤ t+ h,

|z(τ)| ≤ eMαh (|Y |∞ + hC1(1 + |Y |∞))

≤ eMαh (|Y |∞(1 + C1h) + C1h)

≤ |Y |∞(1 + C2h) + C2h(3.7)
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by bounding the exponential with an affine function for 0 ≤ h ≤ T . This gives the stability
condition (3.3) for τ = t+ h.

For the RL2 scheme, the function βt,h is uniformly Lipschitz. For the RL3 scheme, for
Y = (y1, y2, y3) and Z = (z1, z2, z3) in E3, we have

|βt,h(Y )− βt,h(Z)|∞ ≤
11

3
Lb|Y − Z|∞

+
h

12

(
|a(t, y3)b(t− h, y2)− a(t, z3)b(t− h, z2)|

+ |a(t− h, y2)b(t, y3)− a(t− h, z2)b(t, z3)|
)
.

Let us bound the Lipschitz constant of a function of the type F (Y ) = a(ξ, y2)b(τ, y3) for
0 ≤ τ, ξ ≤ T :

|F (Y )− F (Z)| = |a(ξ, y3) (b(τ, y2)− b(τ, z2)) + (a(ξ, y3)− a(ξ, z3)) b(τ, z2)|
≤MaLb|Y − Z|∞ + La|Y − Z|∞|b(τ, z2)|.

With inequality (3.6), this yields, for 0 ≤ τ, ξ ≤ T and Y , Z in Ek,

|F (Y )− F (Z)| ≤ C3|Y − Z|∞(1 + |Z|∞).

As a result, we have

|βt,h(Y )− βt,h(Z)|∞ ≤ C4|Y − Z|∞ (1 + |Z|∞) .

The same inequality holds for the RL4 scheme.
Finally, we consider Y1 and Y2 inEk and use the notation αi=αt,h(Yi) and βi=βt,h(Yi).

Property (3.4) shows that st,h(Y1)− st,h(Y2) = (z1 − z2)(t+ h), where zi is the solution to
z′i = αizi + βi with zi(t) = Yi,k. On the one hand, with inequality (3.7), we have

|z2(τ)| ≤ C5(1 + |Y2|∞)

for t ≤ τ ≤ t+ h. On the other hand, on [t, t+ h], we have

|(z1 − z2)′| ≤ |α1||z1 − z2|+ |α1 − α2||z2|+ |β1 − β2|
≤Mα|z1 − z2|+ Lα|Y1 − Y2|∞C5(1 + |Y2|∞) + C4|Y1 − Y2|∞(1 + |Y2|∞)

≤Mα|z1 − z2|+ C6|Y1 − Y2|∞(1 + |Y2|∞).

The initial condition yields

|(z1 − z2)(t)| = |Y1,k − Y2,k| ≤ |Y1 − Y2|∞.

As a consequence, the Gronwall inequality (3.5) applied to these bounds shows that

|(z1 − z2)(t+ h)| ≤ eMαh (|Y1 − Y2|∞ + hC6|Y1 − Y2|∞(1 + |Y2|∞))

≤ eMαh |Y1 − Y2|∞ (1 + C6h(1 + |Y2|∞)) .

This last inequality implies the stability condition (3.2), again by bounding the exponential
with an affine function for 0 ≤ h ≤ T .

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

RUSH-LARSEN TIME-STEPPING METHODS OF HIGH ORDER 351

0

1

2

3

4

5

6

7

8

-6 -5 -4 -3 -2 -1 0 1
0

1

2

3

4

5

6

7

8

-6 -5 -4 -3 -2 -1 0 1
0

1

2

3

4

5

6

7

8

-6 -5 -4 -3 -2 -1 0 1

θ = 0

θ = 0.5

θ = 2/3

θ = 0.7

θ = 5/6

θ = 2

FIG. 4.1. Stability domain Dθ for the RL2 scheme for various values of θ. The stability domain for the
particular case θ = 0 (no stabilization) is shown in gray, corresponding to the Adams-Bashforth scheme of order 2.

4. Dahlquist stability. For the general ideas and definitions concerning the Dahlquist
stability we refer to [11]. The background for the Dahlquist stability of exponential integrators
with a general varying stabilizer a(t, y) has been developed in [6], following the ideas of
Perego and Veneziani [25]. Equation (1.2) is considered with the Dahlquist test function
f(t, y) = λy, which is split into f(t, y) = a(t, y)y + b(t, y) in order to match the framework
of equation (1.3) with

a(t, y) = θλ, b(t, y) = λ(1− θ)y.

For θ = 1, the methods are exact and thus A-stable. For θ ' 1, the exact linear part of f(t, y)
in equation (1.2) is well approximated by a(t, y). The stability domain depends on θ, and it
is denoted by Dθ. Given a value of θ, the region Dθ is defined by the modulus of a stability
function with the same definition as for multistep methods; see, e.g., [11]. This stability
function has been computed numerically, pointwise on a grid inside the complex plane C for
each of the three RLk schemes, k = 2, 3, 4.

Order-2 Rush-Larsen. The stability domain for the RL2 scheme has been analyzed
in [25]. The situation for this scheme is interesting, and we reproduced the results in Figure 4.1.
We note the observations below.

• If 0 ≤ θ < 2/3, then the stability domain Dθ is bounded. Its size increases with θ,
starting from the stability domain without stabilization for θ = 0, which corresponds
to the Adams-Bashforth scheme of order 2.

• If θ = 2/3, then the method is A(0) stable: R− ⊂ Dθ. The domain boundary is
asymptotically parallel to the real axis so that the method is not A(α) stable.

• If θ > 2/3, then the stability domain is located around the y-axis: the method is
A(α) stable. The angle α increases with θ, and it goes to π/2 as θ → 1−.

Rush-Larsen methods of orders 3 and 4. The situation is different for the Rush-Larsen
methods of orders 3 and 4. The stability domains Dθ are depicted in Figures 4.2 and 4.3 for
various values of θ and for the orders 3 and 4, respectively. Except for the case θ = 1, the
stability domain is always bounded: the scheme is not A(0)-stable. However, the stability
domain for θ ' 1 is much larger than without stabilization (corresponding to the Adams-
Bashforth schemes of orders 3 or 4). For the RL3 scheme, the stability domain when θ = 0.85
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FIG. 4.2. Stability domainDθ for the RL3 scheme. In the particular case θ = 0 (no stabilization, corresponding
to the Adams-Bashforth scheme of order 3), the stability domain crosses the x-axis at x ' −0.54 (dark blue arrow).
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FIG. 4.3. Stability domainDθ for the RL4 scheme. In the particular case θ = 0 (no stabilization, corresponding
to the Adams-Bashforth scheme of order 3), the stability domain crosses the x-axis at x ' −0.3 (dark blue arrow).

is 25 times wider on the left than Dθ|θ=0, and when θ = 1.05 it is 400 times wider. For the
RL4 case, Dθ|θ=1.05 is almost 300 times wider on the left than Dθ|θ=0.

5. Numerical results. In this section we present numerical experiments that illustrate
the performances of the RLk methods. They will be compared to the exponential integrators
of Adams type of order k defined by equation (1.5), shortly denoted by EABk. The EABk
schemes have been numerically studied in [6] for the resolution of the membrane equation in
electrophysiology and have been compared to several classical methods. In that context, they
have been shown to be as stable as implicit methods with a much smaller cost. We present the
same numerical tests here so as to extend the comparison to the schemes benchmarked in [6].

5.1. The membrane equation. The cellular action potential for cardiac cells is described
in Figure 5.1. This phenomenon displays a stiff behavior characterized by the presence of
heterogeneous time scales. The electrical activity of cardiac cells is modeled with an ODE
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FIG. 5.1. TNNP model illustration. Top: cellular action potential: starting from a (negative) rest value, the
transmembrane potential v(t) has a stiff depolarization followed by a plateau and a repolarization to the rest value.
Bottom: depolarization is induced by an ionic sodium current INa with obvious large stiffness.

system called membrane equation. It has the form

dv

dt
= −Iion(v, w, c) + Ist(t),

dwi
dt

=
w∞,i(v)− wi

τi(v)
,

dc

dt
= g(v, w, c),(5.1)

where w = (w1, . . . , wp) ∈ Rp is a vector of gating variables, c ∈ Rq is a vector of ionic
concentrations, and v ∈ R is the transmembrane potential; we refer to [1, 19, 22, 29] for details.
The gating variables describe the opening state (between 0 and 1) of various protein structures
on the cell membrane, which control ionic transfers between the intra and extra-cellular media.
Each gating variable wi evolves towards the state w∞,i(v) at a rate τi(v). Specific ionic
currents (sodium, potassium, . . . ) across the cellular membrane are computed with the help of
the variables v, w, and c. The sum of these currents defines the total ionic current Iion(v, w, c)
across the membrane. The function Ist(t) is a source term; it represents a stimulation current.
The membrane equation corresponds to the ODE system in the monodomain model (1.1) with
ζ = (w, c).

We will consider two such models: the BR model [1] and the TNNP model [29]. The BR
model [1] describes the membrane action potential of mammalian ventricular myocardial cells.
It involves 6 gating variables (p = 6, denoted by m,h,j,d,f ,xi) and one ionic concentration
(q = 1): the intra-cellular calcium [Cai]. The Nernst potential ECa for the calcium ions then
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is time-dependent and a (slow inward) calcium current Is is modeled as Is = gsdf(v −ECa)
depending on the gating variables d, f , the transmembrane potential v, and a constant gs.
A fast inward sodium current INa (depicted in Figure 5.1) that depends on the three gating
variables m, h, j and on v is similarly described. Two outward currents are modeled: Ix1 ,
which depends on x1 and v and IK1

, which only depends on v. The total ionic current in (5.1)
is the sum of these four currents INa + Is + IK1

+ Ix1
= −Iion(w, c, v).

The TNNP model is specifically designed for human ventricular myocytes. It is more
sophisticated than the BR model but conserves the same general structure. It involves 12
gating variables and 4 ionic concentrations (p = 12 and q = 4). The total ionic current Iion is
the sum of 15 specific ionic currents.

The membrane equation (5.1) can be reformulated in the form of (1.3) with

a(t, y) =

−1/τ(v) 0 0
0 0 0
0 0 0

 , b(t, y) =

 w∞(v)/τ(v)
g(y)

−Iion(y) + Ist(t)

 ,
for y = (w, c, v) ∈ RN (N = p + q + 1), and where −1/τ(v) is the p× p diagonal matrix
with diagonal entries (−1/τi(v))i=1,...,p. The resulting matrix a(t, y) is diagonal.

5.2. Convergence. No analytical solution is available for the chosen application. A
reference solution yref for a reference time step href is computed with the Runge-Kutta scheme
of order 4 to analyze the convergence properties of the RLk schemes. Numerical solutions y
are compared to yref for the coarsest time steps h = 2mhref.

A numerical solution y consists in successive values yn at the time instants tn = nh.
On every interval (t3n, t3n+3), the polynomial y of degree at most 3 is constructed so that
y(t3n+i) = y3n+i, i = 0, . . . , 3. On (0, T ), y is continuous and a piecewise polynomial
of degree 3, and its values at the reference time instants nhref are computed. This provides
a projection P (y) of the numerical solution y onto the reference grid. Then, P (y) can be
compared with the reference solution yref. The numerical error is defined by

(5.2) e(h) =
max |vref − P (v)|

max |vref|
,

where the potential v is the last and stiffest component of y in equation (5.1). The convergence
graphs for the BR model are displayed in Figure 5.2. Each scheme shows the expected
asymptotic behavior of Proposition 3.1: e(h) = O(hk) as h→ 0.

5.3. Stability. Spiteri et al. in [28] have evaluated the stiffness of the BR and TNNP
models along one cellular action potential (as depicted in Figure 5.1). The largest negative
real part of the eigenvalues of the Jacobian matrix during the action potential is −1170 and
−82 for the TNNP and BR models, respectively. The TNNP model thus is 15 times stiffer
than the BR model (15 ' 1170/82).

Robustness to stiffness for the RLk schemes is evaluated by comparing the critical time
steps for these two models. The critical time step ∆t0 is defined as the largest time step such
that the numerical simulations run without overflow for h < ∆t0. The results are presented in
Table 5.1.

An excellent robustness to stiffness can be observed. The RLk schemes are not A(α)
stable, and the critical time step is expected to be divided by 15 in case of an increase of
stiffness of magnitude 15. It is here divided by 2.7, 2.0, and 1.3 for k = 2, 3, and 4, respectively.
A comparison with the EABk schemes shows that the two schemes have similar robustness to
stiffness. Loss of stability is induced by the non-stabilized part, whose eigenvalues are less
modified by the change of the model.
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FIG. 5.2. Relative error e(h) (definition (5.2)) as a function of the time step h for the RLk schemes, for k = 2
to 4 and in Log/Log scale.

TABLE 5.1
Critical time steps ∆t0 for the RLk and EABk schemes.

method RL2 RL3 RL4 EAB2 EAB3 EAB4

BR 0.323 0.200 0.149 0.424 0.203 0.123
TNNP 0.120 0.148 0.111 0.233 0.108 7.56 10−2

5.4. Accuracy. The RLk schemes are compared to the EABk schemes in terms of
accuracy. This is done using the relative error e(h) in equation (5.2) for the BR and TNNP
models (we recall than the TNNP model is stiffer by a factor of 15). The results are collected
in Tables 5.2 and 5.3.

TABLE 5.2
Relative error e(h) (equation (5.2)) for the BR model.

h RL2 RL3 RL4 EAB2 EAB3 EAB4

0.2 0.251 0.147 - 0.284 0.516 -
0.1 0.107 4.07 10−2 5.86 10−2 9.26 10−2 9.17 10−2 0.119
0.05 3.35 10−2 6.34 10−3 4.58 10−3 2.31 10−2 1.09 10−2 8.96 10−3

0.025 8.88 10−3 7.57 10−4 2.61 10−4 5.39 10−3 1.17 10−3 4.33 10−4

TABLE 5.3
Relative error e(h) (equation (5.2)) for the TNNP model.

h RL2 RL3 RL4 EAB2 EAB3 EAB4

0.1 0.177 0.305 0.421 0.351 0.530 -
0.05 7.39 10−2 4.54 10−2 4.61 10−2 9.01 10−2 5.59 10−2 8.93 10−2

0.025 2.21 10−2 6.53 10−3 5.96 10−3 2.14 10−2 7.34 10−3 8.34 10−3

0.0125 5.75 10−3 8.05 10−4 3.21 10−4 5.11 10−3 7.62 10−4 3.70 10−4

For the RL2 and the EAB2 schemes, the accuracies are very close, with the EAB2 scheme
being slightly more accurate for the BR model. For the orders 3 and 4, the RLk schemes are
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more accurate at large time steps. For smaller time steps, the accuracies are almost the same.
The RLk and EABk have the same accuracy in the asymptotic convergence region.

6. Conclusion. In this paper, we have introduced two new ODE solvers called Rush-
Larsen schemes of orders 3 and 4. They are explicit multistep exponential integrators. Their
definition is simple inducing an easy implementation. We have presented the analysis of
convergence and of stability under perturbation for these two schemes. We have also analyzed
their Dahlquist stability: they are not A(0) stable but exhibit very large stability domains
for sufficiently accurate stabilization. The numerical behavior of the schemes is analyzed
for a complex and realistic stiff application. The RLk schemes are as stable as exponential
integrators of Adams type, allowing simulations at large time steps. For the presented example,
the RLk schemes are more accurate for k = 3 and 4 than the exponential integrators of Adams
type when considering larger time steps. They are also shown to be robust to stiffness in terms
of both stability and accuracy.
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