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PERTURBATION ANALYSIS ON MATRIX PENCILS FOR TWO SPECIFIED
EIGENPAIRS OF A SEMISIMPLE EIGENVALUE WITH MULTIPLICITY TWO*
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Abstract. In this paper, we derive backward error formulas of two approximate eigenpairs of a semisimple
eigenvalue with multiplicity two for structured and unstructured matrix pencils. We also construct the minimal
structured perturbations with respect to the Frobenius norm such that these approximate eigenpairs become exact
eigenpairs of an appropriately perturbed matrix pencil. The structures we consider include T-symmetric/T-skew-
symmetric, Hermitian/skew-Hermitian, T-even/T-odd, and H-even/H-odd matrix pencils. Further, we establish various
relationships between the backward error of a single approximate eigenpair and the backward error of two approximate
eigenpairs of a semisimple eigenvalue with multiplicity two.
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1. Introduction. In the process of obtaining eigenvalues and eigenvectors of a given
matrix pencil by using numerical methods, we encounter different situations of obtained
eigenpairs/eigenvalues. For example, the obtained eigenvalue can be simple, semisimple, and
repeating but defective. These different situations arise because of the diverse nature of the
obtained eigenvectors. Further, these obtained eigenpairs/eigenvalues are approximate, not
exact; this happens due to the roundoff errors. Different authors have developed the backward
error analysis for a single approximate eigenpair/eigenvalue to understand how accurate the
computed solution is for the matrix pencil and to check if this computed solution is useful or
not. Backward error analysis plays an important role in understanding the accuracy of the
computed solutions; it provides the minimum perturbation in some appropriate norm such
that given approximate eigenpairs/eigenvalues become exact for an appropriately perturbed
problem. Malyshev [15] has discussed the minimal perturbation of a given n-by-n matrix to the
nearest matrices that have A € C as a multiple eigenvalue with respect to the 2-norm. Further,
this work has been extended for two distinct prescribed numbers, and the nearest matrix has
been obtained that contains these prescribed numbers in its spectrum; see [8, 13, 17]. For a
given n-by-n matrix, the above work has been extended for k (k < n) prescribed eigenvalues
by Lippert [14] and Kokabifar et al. [10]. For the matrix polynomial setup, E. Kokabifara
et al. [11] have extended the above idea to k specified distinct eigenvalues and provided the
backward error and the minimum perturbed matrix polynomial for the unstructured case.
Similar to the backward error of eigenvalues, different authors have developed the backward
error analysis of a single approximate eigenpair for unstructured as well as structured matrix
pencils and matrix polynomials; see [1, 4, 5, 2, 12, 19].

For the matrix case, Tisseur [21] has extended the backward error results from one
specified eigenpair to more specified eigenpairs. The author has obtained the backward
error formula for Hermitian, skew-Hermitian, complex symmetric, complex skew-symmetric
and doubly structured matrices using [20, Lemma 1.4] and [21, Lemma 2.4], along with
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the “W-trick”!. Tisseur has investigated the structured backward error analysis by imposing
appropriate conditions on approximate eigenpairs, for example, while computing the backward
error result for Hermitian matrices, the author has assumed that the columns of X}, the
approximate eigenvectors matrix, are orthonormal. This condition seems to be natural as we
always get a set of orthonormal vectors for a given Hermitian matrix. Similar to the Hermitian
case, the author has imposed two natural conditions during the backward error analysis of
Hermitian unitary matrices: the first one is the orthonormality condition on X}, and the
second one is the approximate eigenvalues matrix A, = diag(+1). In the same manner, we
will discuss natural conditions on the given approximate eigenpairs to perform the backward
error analysis. Next, in [7] Chu and Golub have studied the backward error analysis of one or
more approximate eigenpairs for unstructured nonsquare matrix pencils when the approximate
eigenvalues are distinct and the eigenvectors are linearly independent. Though they considered
one or more eigenpairs and obtained the unstructured backward error, results of the backward
error analysis of more than one approximate eigenpairs for structured matrix pencils are still
unanswered.

The above discussion on the backward error analysis of approximate eigenvalues/eigenpairs
for unstructured/structured matrices, matrix pencils, and matrix polynomials leads to a natural
question: what will be the cumulative backward error of two approximate eigenpairs of a given
matrix pencil? Before finding the answer to this question, we want to emphasize the point
that whenever the author in [21] has imposed a condition on X}, or A to obtain the structured
backward error formula, that condition seems to be a natural one for that particular structure.
In a similar manner to answer the above-raised question, we will find out natural condition(s)
on approximate eigenpairs under which we can obtain the backward error results for a large
class of matrix pencils.

To understand the natural condition, we recall one important result: if an eigenvalue of a
matrix pencil is repeating but semisimple, we always get a set of orthonormal eigenvectors
corresponding to that eigenvalue; see Lemma 2.5 for more information. Using this result, we
obtain the backward error formula for two approximate eigenpairs of a semisimple eigenvalue
with multiplicity two. Here we add that a generic situation for a multiple eigenvalue is a
double eigenvalue; see, for example, [16]. For obtaining backward error results, we adopt
and extend the technique of [1, 4, 5]. This technique is based on the orthonormal properties
of approximate eigenvectors. In general, we can not get orthonormal vectors corresponding
to distinct eigenvalues, hence the question of finding the structured backward error of two
approximate eigenpairs is still open when the eigenvalues are distinct or defective. Though
in this paper, we obtain structured backward error results for the matrix pencil setup, one
can also derive the results of [21] for Hermitian, skew-Hermitian, real symmetric, and real
skew-symmetric matrices for the semisimple case by using our technique. In this manuscript,
we answer the above raised question for structured as well as unstructured matrix pencils. We
work with T-symmetric/T-skew-symmetric, Hermitian/skew-Hermitian, T-even/I'-odd, and
H-even/H -odd matrix pencils; see [0, 9, 18, 24] for more on structured matrix pencils and
matrix polynomials.

Let L(C™*™) be the space of matrix pencils, and let L € L(C™*™) be of the form L(«) :=
apAg + a1 Ay, where Ag, A1 € C"™" o = (a, 1) € C2. Suppose that (A, z1) and (A, z2)
are two approximate eigenpairs of L, where A € C2\ {(0,0)} and 0 # z; € C",i = 1,2.In
this work, we find the nearest 0L € L(C"™*™) of the form 0L(«a) := apdAg + 19 A, where
0Ag,0A; € C™*™ are such that two approximate eigenpairs (A, z1) and (A, x2) become the
exact eigenpairs of L + L. We use the Frobenius norm to investigate the structured backward
error analysis. Results are developed in such a way that T-symmetric/T-skew-symmetric cases

ISee [21, Section 3.2] for more information on the W-trick.
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are presented in a single framework. Similarly, Hermitian/skew-Hermitian, T-even/T-odd, and
H-even/H-odd cases are also presented in a single framework. Further, we find relationships
between the backward error of a single approximate eigenpair, the backward error of two
approximate eigenpairs for a semisimple eigenvalue with multiplicity two, and the structured
backward error of two approximate eigenpairs for a semisimple eigenvalue with multiplicity
two.

This paper is organized as follows. In Section 2, we provide notation and preliminary
results. We generalize the definition of a single approximate eigenpair to more than one
approximate eigenpairs for structured and unstructured matrix pencils. Section 3 deals with
the backward error analysis of T'-symmetric/ T-skew-symmetric matrix pencils. A relationship
between existing and developed backward errors is also discussed in that section. In Section 4,
we obtain the backward error result for unstructured matrix pencils. We also establish a
relationship between structured and unstructured backward errors. Similarly, in Section 5,
we discuss the perturbation analysis of Hermitian/skew-Hermitian matrix pencils. Further,
backward error results for the H-even/H-odd and T-even/T-odd cases are discussed in Sections 6
and 7, respectively. At the end of Section 7, we present a table summarizing the various
relations between unstructured and structured backward errors of a single and two approximate
eigenpairs. We illustrate our theory by an example in Section 8, and the conclusions are given
in Section 9.

2. Notation and preliminaries. Let R and C be the sets of real and complex numbers,
respectively. Throughout this paper, C"*™ is the set of all n x m complex matrices. For
A € C™ AT and A" denote the transpose and conjugate transpose of A, respectively.
The Frobenius norm of A € C™*™ is defined as || A|| p := /trace (AH A). For z1, 2o € C™,
define

Pypyiwy i= (I — zy2f — apall), Pr o= - zoxll), Pr o= - zzil).

For z € C™, T denotes the conjugate of x. For z € C, the real and imaginary parts of z are
denoted by R(z) and (z), respectively. Let L(C"™*™) be the space of matrix pencils. Then a
homogeneous matrix pencil L € L(C™*") is defined as :

2.1 L(a) = aglo + a1 Ay, Ap, A € (Cn><n7 o= (0&0,041) S C2.

Finding A = (Mg, A1) € C?\ {(0,0)}, 0 # 2 € C", such that L(\)z = 0, is called the
generalized eigenvalue problem, A is called an eigenvalue of (2.1), and x is the corresponding
right eigenvector. If 0 # y € C" such that yL(\) = 0, then y is called the left eigenvector
corresponding to A. We denote the matrix pencil defined in (2.1) by L, and (\, x) is called an
eigenpair of L. We define

Il = [1(Aollr, I Asll#)ll2 = (1 Aol F + (| Ax]3)"2,

where ||.||F denotes the Frobenius norm on C™"*™ and ||.||2 denotes the 2-norm on C™.
Non-homogeneous matrix pencils can be obtain by fixing oy = 1 in (2.1).

DEFINITION 2.1. A matrix pencil L € L(C™*"™) of the form (2.1) is said to be regular
if det(L(\)) # 0 for some A = (Ao, A1) € C?\ {(0,0)}. Otherwise, it is called a singular
matrix pencil.

We denote the spectrum of L by A(L), and it is given by

A(L) := {2 = (Ao, A1) € €2\ {(0,0)} : det(L(\)) = 0}

If (Mg, A1) € C2\ {(0,0)} is an eigenvalue of L, then (a)g, a);) is another representation of
the eigenvalue (A, A1) for any 0 # a € C. Hence for a given homogeneous L, we normalize
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(Mo, A1) € A(L) by |[Xo|? + |A1|?> = 1 and consider A(L) is a subset of the unit sphere
St := {(Xo, A1) € C? : [Xo|? + |M\1]? = 1}. By working in a homogeneous setup, one can
handle the infinity eigenvalue together with the finite eigenvalue; see [3] for more details on
homogeneous eigenvalue problems. Throughout this paper, we consider regular matrix pencils
for the establishment of our results.

DEFINITION 2.2. The algebraic multiplicity (A.M.) of an eigenvalue X = (Ao, A1) €
A(L) is its multiplicity as a zero of the characteristic polynomial det(L()\)). The geometric
multiplicity (G.M.) of an eigenvalue (Mo, \1) € A(L) is defined as the dimension of the
subspace ker(L(\)). An eigenvalue is said to be semisimple if its algebraic multiplicity is
equal to its geometric multiplicity; see [23] for more details on semisimple eigenvalues.

Let L be a matrix pencil of the form (2.1), and let A = (\g, A1) € C2\ {(0,0)} be its
eigenvalue. Then ) is said to be a double eigenvalue if its algebraic multiplicity is two. We
will consider a double-semisimple eigenvalue for the backward error analysis since a generic
situation for a multiple eigenvalue is a double eigenvalue; see [16, 22] for more information
on double-semisimple eigenvalues. We work with structured matrix pencils of the form (2.1).
These structured matrix pencils are defined in Table 2.1 based on the properties of the matrices
Ap, Ay € CX7,

TABLE 2.1
Different structured matrix pencils

S Matrix structure
T-symmetric Ay = AT, A = AT
T-skew-symmetric | Ag = —AL, A} = —AT
Hermitian Ag = Al A = Al
skew-Hermitian Ag=—-Al, A =-AH
T-even Ay = AL, Ay = —AT
T-odd Ag=—-AF, Ay =A7
H-even Ag=Al, A =-AH
H-odd Ao = —AI, A, = Al

In the following, we extend the backward error defined for a single approximate eigenpair
to the case of two approximate eigenpairs; the backward error analysis for a single approximate
eigenpair has been discussed in [1].

DEFINITION 2.3. Let L be a matrix pencil of the form (2.1). Let (\,x1) and (X, x2)
be two approximate eigenpairs of L, where A € C%\ {(0,0)} and 0 # x1, 75 € C™. Then
the unstructured and structured backward errors of two approximate eigenpairs (\, x1) and

(X, z2) are defined by

nr(\, x1, 22, L) := inf{||0L||7 | (L(A) 4+ 6L(A))z; =0, for i = 1,2},
ne(\, z1, 22, L) == inf{||6L|| ¢ | 6L € S, (L(\) + dL(\)z; = 0, for i = 1,2},

respectively. Here 6L is a matrix pencil of the form (2.1) with 0L(a)) = apdAg + o104y,
where 0 Ay, §A; € C" " ||0L||F := \/||5AOH§7 +16A41]|%, and

S e {T -symmetric, T-skew-symmetric, Hermitian, skew-Hermitian,
T-even, T-odd, H-even, H -odd}.

Now we recall some results useful in this paper.
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REMARK 2.4. The eigenvectors corresponding to a double-semisimple eigenvalue of a
matrix pencil L, are not uniquely determined. Using this information, we will establish the
following lemma.

LEMMA 2.5. Suppose thatp = (po, p1) € C*\{(0,0)} is a double-semisimple eigenvalue
of a matrix pencil L. Then there exist two orthonormal vectors y1,ys € C", such that
L(p)y; = 0, fori = 1,2. In particular, every double-semisimple eigenvalue p of L has two
orthonormal eigenvectors.

Proof. Let (po, p1) be a double-semisimple eigenvalue of L. This implies that its algebraic
and geometric multiplicity will be two; hence there exist two linearly independent eigenvectors
21,29 € C", such that L(p)z; = 0, for ¢ = 1,2. By the Gram-Schmidt process, we can set
Zfzz € C. We can easily see that L(p)y; = 0, and
Y1, Y2 are orthogonal, and in particular orthonormal 0

The above lemma guarantees that for a double-semisimple eigenvalue, we always have
two orthonormal eigenvectors.

REMARK 2.6. Using the Gram-Schmidt process, we can extend the above lemma for a
semisimple eigenvalue with algebraic multiplicity more than two.

After recalling these preliminary results, we establish in the following section backward
error results for two eigenpairs of a double-semisimple eigenvalue.

REMARK 2.7. Since we are interested in this article in finding the backward error of
two approximate eigenpairs of a double-semisimple eigenvalue, in light of Lemma 2.5, from
now on we will take the orthonormal eigenvectors corresponding to a double-semisimple
eigenvalue.

y1 = 21 and yo = 29 — y21, Where v =

3. Backward error for T-symmetric/T-skew-symmetric matrix pencils. In this sec-
tion, we present the structured backward error analysis of two approximate eigenpairs of a
double-semisimple eigenvalue for T-symmetric/T -skew-symmetric matrix pencils. We start
this section with the following existence theorem. Throughout this section, e = 1 represents a
T-symmetric matrix pencil and e = —1 represents a T'-skew-symmetric matrix pencil.

THEOREM 3.1. Let L € L(C™"*™) be a T-symmetric/ T-skew-symmetric homogeneous
matrix pencil of the form (2.1). Let (\,x1) and (\, 22) be two approximate eigenpairs of L,
where X = (Ao, A1) € C?\ {(0,0)} is a double-semisimple eigenvalue and x1, x5 € C™ are
orthonormal vectors. Set k; := —L(\)x;, for i = 1,2, and define

k; x + emlk Py, k; :L' + exlk Priixs
§Ay = Z Xo 205) and  §A, = Z A ey ,
Hj

where Ha(X\) = (| Xo|? 4+ |\1|2)'/2. Then there exists a T-symmetric/T -skew-symmetric matrix
pencil 0L € L(C™*™) of the form dL(a) = cagd Ag+a1d A1, such that (L(A)+0L(\))z; = 0,
fori=12.

Proof. The proof follows from some simple calculations. a

LEMMA 3.2. Let L € L(C™*™) be a T-symmetric/ T-skew-symmetric homogeneous
matrix pencil of the form (2.1). Let (A, 1) and (A, x2) be two approximate eigenpairs of L,
where X = (Ao, A1) € C?\ {(0,0)} is a double-semisimple eigenvalue and x1, w5 € C" are
orthonormal vectors. Set k; := —L(\)x;, for i = 1,2. Then the following equality holds for
t=1,2,

(2T ko) (ezo2l + 7122y, = Z ;T]T
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Proof. The proof follows, with some simple calculations, from the fact that ez? ky =

Next, we establish the main result of this section.

THEOREM 3.3. Let L € L(C™"*™) be a T-symmetric/ T-skew-symmetric homogeneous
matrix pencil of the form (2.1). Let (\,x1) and (\, 22) be two approximate eigenpairs of L,
where X = (Ao, A1) € C?\ {(0,0)} is a double-semisimple eigenvalue and x1, x5 € C™ are
orthonormal vectors. Set k; := —L(\)x;, for i = 1,2. Then there exists a T-symmetric/ T-
skew-symmetric 5L of the form éL(a) = agdAg + a1d Ay, such that (L(A) + JL(N))z; = 0.
The perturbation matrices are given by

2 e H —1.T N (T = H | = . .H
— P kjxit +exikl Py .y Ao(z1 k2)(eTaxy” + T1235")
5An = ()\ T; 7 [ 1 2)+ 1 1 2 ,
’ ; ’ H3()) H3 ()
2 ¢ —_ N
— P, ki + exikl Py, 0 A (2T k) (eTox ! 4 T2kl
6A1 — ()\1 T; i [ 1:T2 ) + 1 1 2
2 730 2

The backward error is given by

2 (+e),.T1.. |2
2||ki3 — | kil

S 2 2 2 [

ne (A, 21,22, L))* = g

=1

|23 k1 |?
H3(\)

)2

Proof. From Theorem 3.1, there exists a T-symmetric/T-skew-symmetric L of the form
dL(a) = a9dAg + 10 A1, such that L(\)z; + dL(X)z; = 0, for i = 1,2. To construct 6 A,
j =0,1, such that JA; = 5 A] , we consider

2 n—2
T TsA 7 2 5//—1\J ‘ €5BjT
3.1 0A; =U"0A;U = o [53]_ D, |’
where
— (49 54, eda;
SA; = | 2z %1 P2 §B;=[bj1 b|,  0D; =eiD;T,
J 5a; 1 (14;) 5022 J [ J ]2] J J

forj =0,1,and U € C™*" is a unitary matrix such that U = [V; V3| with V; = [z1 2]
c (Cn><2.

We need to construct §L, such that (L(X) + dL()A))z; = 0, for ¢ = 1, 2. Since it is given
that k; = —L(\)z;, we get k; = 6L()\)x;. From (3.1), we get dL()\) = UTSL(\)U. Using
the properties of U, we get SL(A\) U z; = UTSL(\)z; = UTk;. This implies

5/A\0 6(5ng € 6/;4\1 65B1T €| V1Tki
Ao [530 5Dy | [0] TN 5B, ey | 0] T |[ViTk:|

and further simplification gives

(3.2) (Aod Ay + \6A7)e;| _ [Viki
' ()‘0630 + )\1(531)61» ‘/QT]Q ’

where e; € C? is a vector having 1 at the i position and 0 elsewhere. From (3.2), we get the
following equations

1 1
(7;_6)%5(10@ + (7;6))\15@1,“‘ =] ky, 1=1,2,
(3.4) Noboi 4+ Aibyy = Vi ki, i=1,2.

(3.3)
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The minimum norm solutions of (3.3) and (3.4) are given by

(1 + 6) Xo T 1+ 6) Xl T
dag,ii = i Kis dayii = K
0 2 H;)" . 2 H3)"
)\0 T Xl T
bo; = Vs ks, bii = ——V5 ky
YN tomy
By (3.2), we get two more equations
(3.5) Aodag 12 + Aidar 12 = ngh
(36) /\05a0712 + )\1(5&1712 = 633?]412.

Since A; = eA;f, for j = 0,1, we obtain ex? ks = 27k ; hence equations (3.5) and (3.6) are

identical. The minimum norm solution of (3.6) is given by dag 12 = 2T ks, day 12 =

H2(A)

%x? ko. Substituting back all the obtained entries into (3.1), we get
(1+¢) X Y
p H2J>\) 1k H?(,\ 1 ks €EI (Vo k)"
T7 2 1+€ Aj Aj
(3.7) §A; =T 7 (A) aTky, 439 7 (A) w5hy ey (Viko)T | U
H"’(A) Vi'k HQ()\) 23 oD,

Further simplifying (3.7) and setting 6 D; = 0, we get the desired structured perturbation
matrices  Ag and § A; whose Frobenius norms are minimal. For i = 1,2, we need to show
that ((L(A) 4+ 0L(X))x; = 0. Consider

= —k; + Pilkl + (.’E{kg)(ﬁfgl‘{] + flxg)xz

Using Lemma 3.2, we get (L(\) + 0L(\))a; = —k; + F;kl + Zizl,j# f]x]TkZ =0.
Since the Frobenius norms of § Ag and § A, are minimal, we find that

3\, 21,22, 1)) = [[§ Aol + 15A4[%,

where
1

16:A0]1%: + 16A111% = D 164,17 + (1 + )16 17

J=0
1 2
(Lt Jaiki® | lafhal® V5 kall?
= Ajl[5 + 2110 B; 17 Lo 42 +2 :
2; ) FEX T moy T my )
Since ||V k;i||? = ||ki||*> — |2Tki|? — |22'k;|? and using Remark 3.6, we get
20k — <“*Mka\2 23 b ?
S 2 2 2 2 M1
A L)) = -2 . O
(77F( y L1, T2, )) ;( ()\) ) HZQ(A)

REMARK 3.4. Results for non-homogeneous matrix pencils can be obtained by fixing
Ao = 1in Theorem 3.3.

REMARK 3.5. By extending {x1, x>} to a basis of C", we get another (n — 2) linearly
independent vectors {3, ..., x,}. Then using the Gram-Schmidt process for {x1,...,x,},
we obtain the desired V, € C"*(n=2),
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* = |aThs|* =

REMARK 3.6. For e = 1,—1, we have ex] ko = 2dk;, and |exT ko
|3 K[>,

COROLLARY 3.7. Let L be a non-homogeneous T-symmetric/T -skew-symmetric non-
homogeneous matrix pencil of the form L(vy) = Ao + vA1. Let (p, x1) and (u, xz2) be two
approximate eigenpairs, such that i € C is a double-semisimple eigenvalue and x1,xo € C™

are orthonormal vectors. Set k; := —L(p)x;, for i = 1, 2. Then the following holds:

(1 (1, 21,72, 1)) < /0,1, L)% + 18 (1, 72, L2,

Proof. For the T-symmetric case, by substituting A¢g = 1,A\; = pu, and ¢ = 1 in
Theorem 3.3, we get the following relation:

2
2||ksl|3 — | kal? |23 a1 |?
(3.8) (P (p, 1,02, 1))% =) ( ) —
r ; (1+ [uf?) (1+[u?)
From [1, Theorem 3.1], we have
2||kill3 — [ kil? ,
3.9) ns(,u,:vi,L 2 = — o i=1,2.
e bt 22 1) = = )
By substituting equation (3.9) in (3.8), we get
2 2 |adk |2
S 2 S 1
NEpH, T 71'271‘ = n M?wivL VPR
|23 k1|?

Since —————~ > 0, we get the desired result. a

1+ [u?)

REMARK 3.8. The result for the T-skew-symmetric case can be obtained in a similar
manner by using € = —1 and [1, Theorem 3.2].

Next, we present the backward error analysis for unstructured matrix pencils, and by that
analysis, we will establish a relationship between structured and unstructured backward errors.

4. Backward error analysis for unstructured matrix pencils. In this section, we de-
rive the backward error formula for two approximate eigenpairs of a double-semisimple
eigenvalue without imposing any structure on the matrix pencils. We start this section with
the following theorem, which guarantees that there always exists a matrix pencil for two
approximate eigenpairs of a double-semisimple eigenvalue.

THEOREM 4.1. Let L € L(C"*™) be a matrix pencil of the form (2.1). Let (\,x1)
and (X, x2) be two approximate eigenpairs of L, where X = (Ao, A1) € C2\ {(0,0)} is a
double-semisimple eigenvalue and 1, x2 € C™ are orthonormal vectors. Set k; := —L(\)x;,
fori = 1,2, and define

kx —&—xlw le o k:x —|—xe le -
§Ag = Z Xo T20) and  §A; = Z A 20 7

where Ho(\) = (|\o|? + |\1]?)/2. Then there exists a matrix pencil L € L(C™*") of the
Sform 0L(a) = agdAg + 10 Ay, such that (L(A) + SL(A\))x; =0, fori=1,2.

Proof. The proof follows from some simple calculations. a

Now we present the main result of this section.

THEOREM 4.2. Let L € L(C™*™) be a homogeneous matrix pencil of the form (2.1). Let
(A, z1) and (\, x2) be two approximate eigenpairs of L, where A = (\o, A1) € C%\ {(0,0)}
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is a double-semisimple eigenvalue and x1,xo € C™ are orthonormal vectors. Set k; :=
—L(\)x;, fori = 1,2. Then there exists a matrix pencil 0L of the form éL(a) = agdAg +
0104y, such that (L(X) + dL(\))x; = 0. The perturbation matrices are given by

2 < 2 <
)\Okix{{ AlkifL‘ZH

=2 o M X mor

i=1 i=1

The unstructured backward error is given by

2 |kill3
(77F(/\750171’27L))2 = 2 .
2 )

Proof. From Theorem 4.1, there always exists a matrix pencil JL of the form 0L(«) =
agdAg+a1dAy, such that L(\)x; +0L(A)x; = 0, fori = 1,2. To construct 6 A for j = 0, 1,
we consider

2 n—2
__ S T
4.1 A —UTsau— 2 |94 | oG
( ) 0 J uso jU n—2 |: (SBJ 6DJ ’
where
SA, = (0% 0diazl o sp ] SO = [en o]
Jj = 5%}21 5%‘,22 ) J — Y51 Jj2] > j = %91 Jj2] >

for j =0,1,and U € C™ " is a unitary matrix such that U = [Vi V3| with V; = [z1 2]
€ C"*2. Since we need to construct L, such that (L()\) + dL(\))x; = 0, we get k; =
SL(A)x;, for i = 1,2. From §L()\) = UTSL(A)U, we have SL(\)U?z; = UTSL(\)z; =
U7 k;. This implies

5Ay 5CT [es 54, 6CT] [ei] _ [ViTk
Ao LSBO 5Dyl (0| TN sB, opy| o] T VK|

and further simplifications give

“2) (ModAo + MoAL)e;| _ [Vilk:
' ()\0(530 + )\1(531)61' ‘/2Tkl ’

where e; € C? is a vector having 1 at i position and 0 elsewhere. From (4.2), we get the
following equations

“4.3) )\0(5(107“‘ + )\1(5&1,”' = x?kl, 1=1,2,
(4.4) Xoboi 4+ Aiby; = Vi ks, i=1,2.

The minimum norm solutions of (4.3) and (4.4) are given by

Xo T Xl T XO T X1 T
0a0,ii = T3~ Ti Kis 0014 = 5@ ki boi = 5 Vo ki b = 5 Ve Ka
H3(\) H3 () H3(\) 2 H3(\) °
Further from (4.2), we get the following two equations:
4.5) Aodag,21 + Mdai o1 = x3 ki,

(46) )\050,0712 + )\15(11’12 = ZCT]CQ
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The minimum norm solutions of (4.5) and (4.6) are given by

o A

) = Tk b = alk
ap,21 H%(A)IQ 15 a1,21 H22()\)332 1,
Y e
dap12 = =5~ ka2, dai 2 = z{ ka.

H3(N) =30

Similar to the T'-symmetric/T'-skew-symmetric cases, substituting back all these obtained
entries into (4.1) along with §D; = §Ds = 0, and §C; = 6Cy = 0, we get the desired
perturbation matrices with minimal Frobenius norms. Similar to Theorem 3.3, we can obtain
the backward error for the unstructured case, which is given by

np(\ x1, 22, L) =

After establishing the unstructured backward error formula for two approximate eigen-
pairs, we now establish a relationship between unstructured and T'-symmetric/T -skew-symmetric
backward errors.

COROLLARY 4.3. Let L € L(C"*") be a T-symmetric/ T-skew-symmetric matrix
pencil of the form (2.1). Let (A, z1) and (\, z2) be two approximate eigenpairs of L, where
w1, 29 € C" are orthonormal vectors and A = (\g, A1) € C*\{(0,0)} is a double-semisimple
eigenvalue. Then the following holds:

(7718?()\;5517552714)) < \/ﬁ(ﬂF()\»xl,T/%L))

2
2

Proof. From Theorem 3.3, we get (77}87()\ x1,12,L))% < Zl 1 H )

Also using Theo-

k’ 2
rem 4.2, we have (ng (X, x1, 22, L) Z ” ”2 . Hence we get

P\ z1,22,L)) < V2(np(\,21,22,L)). O

Now we present a relationship between the backward error of a single eigenpair and the
backward error of two approximate eigenpairs of a double-semisimple eigenvalue.

COROLLARY 4.4. Let (u,x1) and (u,x2) be two approximate eigenpairs, such that
u € Cis a double-semisimple eigenvalue of a non-homogeneous matrix pencil L of the form
L(y) = Ag + vA;1. Set k; := —L(p)x;, where x; € C", for i = 1,2. Then the following
holds:

77F(Ma55173327L) = \/n%(u7$13L) + 77%(/% m27:[‘)-

Proof. By substituting \g = 1 and A\; = p in Theorem 4.2, we get

2
Z [[%:]]3
(1 +[uf?)

i=1

77F(Ma$l7332714) =

[l ]l
(At[ul)rr2>
two results, we get np (i, ¥1, 72, L) = /n% (1, 71, L) + n&(p, 72, L). a

REMARK 4.5. For T-symmetric/ T'-skew-symmetric matrix pencils, a relation between
the unstructured backward error of a single approximate eigenpair and the structured backward

On the other hand, by [1], we have ng(u, x;, L) = for i = 1, 2. Combining these
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error of two approximate eigenpairs of a double-semisimple eigenvalue can be established by
using Corollary 4.4 and Corollary 4.3.

REMARK 4.6. From now onwards, we will not invoke the existence theorem separately
as we did for the T-symmetric/T-skew-symmetric and the unstructured cases in Theorem 3.1
and Theorem 4.1, respectively, because the construction of § Ay and § A; in each case itself
guarantees the existence of the required structured matrix pencil.

5. Backward error analysis for Hermitian/skew-Hermitian matrix pencils. This sec-
tion deals with the backward error analysis of Hermitian and skew-Hermitian matrix pencils.
First, we state and prove the main result of this section. Then we establish a relationship
between the backward error of a single approximate eigenpair and the backward error of two
approximate eigenpairs of a double-semisimple eigenvalue. Before moving to the main result
of this section, we now present an important lemma as follows.

LEMMA 5.1. Let L be a Hermitian/skew-Hermitian matrix pencil of the form (2.1). Let
A= (Mo, A1) € C2\{(0,0)} be a double-semisimple eigenvalue of L satisfying S(AoA1) # 0,
i.e.,, L(Ao, A1)y =0, fori = 1,2, where y1,ys € C™ are the eigenvectors corresponding to
A Then yff Ajy; = 0,y Ajyo = 0, for j =0, 1.

Proof. Let ) be a double-semisimple eigenvalue of L, i.e., (A\gAg + A\ A1)y; = 0, for
i = 1,2. This gives y7 (\gAog + A1 A1)y; = 0. Using the fact that A; = eAf, forj =0,1,
we get y (Mo Ag + A1 A1)y; = 0and y (\gAg + A1 A1)y; = 0. Solving these two equations
along with S(AgA1) # 0, we obtain the desired result. 0

Throughout this section, € = 1 represents the Hermitian case and ¢ = —1 represents the
skew-Hermitian case.

REMARK 5.2. For ¢ = —1, we have /e = v/—1 = +, an imaginary number.

REMARK 5.3. Let L € L(C™*"™) be a Hermitian/ skew-Hermitian homogeneous matrix
pencil of the form (2.1). Suppose that (A, z1) and (A, z3) are two approximate eigenpairs
of L, with A = (A, A1) € C%\ {(0,0)} being a double-semisimple eigenvalue, such that
I(XoA1) = 0 and 2,25 € C™ are orthonormal vectors. Set k; := —L(\)z;, fori = 1,2.
Then \jexd ky = Njatl ko, for j = 0,1, and |exd k1 |? = |2 ko |2

Now we state and prove the main result of this section.

THEOREM 5.4. Let L € L(C"*™) be a Hermitian/skew-Hermitian homogeneous matrix
pencil of the form (2.1). Suppose that (\, x1) and (\, x2) are two approximate eigenpairs of
L, where A = (Ao, \1) € C2\ {(0,0)} is a double-semisimple eigenvalue and x1, x5 € C*
are orthonormal vectors. Set k; := —L(\)x;, for i = 1,2. Then there exists a Hermitian/
skew-Hermitian matrix pencil 5L of the form 0L(a) = agdAg + 10 A1, such that (L(X) +
SL(\))z; = 0. The perturbation matrices, for S(AgA1) = 0, are given by

2 < 2 5
5140 _ Z )\lel‘f] + E/\()l‘ikiHPIIwQ and 5A1 _ Z Alkzl'zH + EAlxikiI{P‘ZIZIQ

HE(N) HF(X) ’

i=1 i=1

and the backward error is given by

2
2||kill3 — |/ ki|? |5 ka |
S 2 2 i 2
A L)) = E -2 .
(np(A, 1,22, L)) ( HZQ(/\) ) 5{22()\)

i=1
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The perturbation matrices, for S(AoA1) # 0, are given by

2
0Ay = Z(—xle{onle{ + Xo
=1

P:E12I2 kzx{_]
HZ(N)

xikiHle:a:z )
HZ(N)

+ e\g

xQ(Xlxé_Ikl — 6)\1%{{]{)2)1{—1 1'1(6)\11'%{]{71 — Xll'{{kg)xg

)\oxl — XO)\I XO)\I - )\Oxl ’
2
5A _ —x; HA ; H x1:xa Vel /\ 17y T1:T2
1 ;( xx; Arrixy + M ZE + €A1 HI0V) )

$2(€/\0${{k2 — Xol‘é{kl)l‘{{ xl(XO.I{{kQ — 6)\0.%5{]4}1)1,‘51

AoA1 — oA AoA1 — AoA

In this case, the backward error is given by

[Feill3 — Jac" il

1
S L)?= T Ajxi|* +2
("7F( , L1, T2, )) Z :O(‘xz 3L ‘ + H22(>\) )

i=1j

~2 <2
_ R(Oo+ M) @tk (@5’ k)) | |2g k[ + [t ksl

) - %70 1 .
SCon)? 2RO PR3y 2 TSGR

Proof. To construct §A;, for j = 0, 1, such that 0 4; = edAfI, we consider

2 n—2
U prHs A pr 2 (S/AT] ‘ edB; "
(5.1 0A; =U"0A;U = o [ 5B, | oD, |

AT \/ECSCL]‘,H 56Lj712
where 6A4; = [ B PR A
6D; = edD; ¥ for j = 0,1, and U € C™*" being a unitary matrix such that U = Vi Ve
with Vi = [z1 23] € C"*2. Since we need to construct 5L such that (L(\)+6L()))z; = 0,
we get k; = 6L(\)ay, for i = 1,2. From 6L(\) = UHSL(A\)U, we have SL(\)UHz; =
UHSL(N)x; = UHk,. This implies

A 5/1&) 6(53({[ e; A 5/A\1 edBH| |e _ Vi k;
°15B, oDy ||0| T 6B, 6Dy | |0] T |[VHE|"

:| with (5aj7tt e R, fort = 1,2, (5Bj = [b] bjg],

and further simplifications give

’ ()\0530 + )\1531)61' ‘/QHkZ ’

where e; € C? is a vector having 1 at i*? position and 0 elsewhere. From (5.2), we get the
following four equations and one system of equation:

(5.3) VeXobagi + Vedary =z ki, i=1,2,
5.4) Aoboi + A1b1; = VQH]C,', 1=1,2

Ao A1 [daoaz| _ [exdlky
(5.5) Eo /\1] [MLJ B [fﬁ’]
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The minimum norril solution of (5.4) is given by by; = HQ()\ VH ki and by; = HQ(/\) Vi k;.
Case 1: If S(AoA1) = 0, then the minimum norm solution of (5.3) is given by
VEXo H Ven H
Sag i = ks, day i = k.
7710V R /7 TPV

Since A; = eAf, for j = 0,1, and (X)) = 0, we get that the system (5.5) is consistent
by using Remark 5.3. The minimum norm solution of (5.5) is given by

€Ny —F— €N ——
5&0,12 = ﬁ(o/\)xfkl and 5&1,12 = ﬁ(i\)xé{kl

Substituting back all these obtained entries in (5.1), we get

) N THL
w2yt b H?i(x)f”g”Cl ¢ ()(‘@Hkl)
A.
(5.6) 04; = U | stgellln HZ(A):EZ Pk gy (ViTho) | U,

Further simplifying (5.6) and setting 5Dj = 0 along with Remark 5.3, we get the desired
perturbation matrices § Ay, d A; whose Frobenius norms are minimum.
Next we need to show (L(\) 4+ 0L(X))z; = 0, for i = 1, 2. Consider

(L()\) + (5L()\))3§i = L()\):L‘i + (SL()\)l‘i = —k; + Ng0Aox; + \M0A1x; = —k; + k; = 0.
Since the Frobenius norms of § Ay and § A; are minimal, it follows that

(5 (A, 21,22, 1)) = [0 40| % + 041,

where
i N Y N (20 71
A 0A = dA; 2||6B; 2 2
60l + 15l = 3 I + 2198, — Z S
7=0
Since ||V k;|13 = || k:||2 — |2 k;|? — |24 k;|? and using Remark 5.3, we get
2||kil3 — |2 kal? |25 ka |
S 2 ill2 2
A L))" = 2 .
(nF( y L1, 22, )) ;( H22()\) ) H2(>\)
Case 2: If S(AoA1) # 0, then using Lemma 5.1, we get dagi; = —ﬁxflexi,

day ;= f\fxl Ajx;. When S(AgA1) # 0, i.e., \oA1 — AoA1 # 0, the unique solution

.. AMzHEk -z ks —exoxH ki + Xz ky
of the system (5.5) is given by da. = ST M B2 ——2 = o1 =
y ( ) g y 0,12 AoA1—AoA AoA1—AoA1 ’

which is the minimum norm solution. Similar to Case 1, we get the desired perturbed matrices
by substituting back the obtained entries in (5.1). In this case

(ﬂ%()\7$1a$27L))2 = H(SAOH%T + H(SAlH%W

and 5&1712 =

where
2| k|2 — 2 i k;|?
5ol + 1511 = 33 o Al + Z e
7=01i=1
|6)\1£L'2Hk1 )\11’1 k2|2 |/\0£1 k2 — 6)\0.%2 k1|2 |£L’{IT‘2|2 + |£L’£IT‘1|2

+ 2

AoA1 — AoA[? H3(\)
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Since
Xt k) — Mal kol + Mozl ky — edox ky |
[AoA1 — AoA1[?
-2 =2
— (H2(\) 2k |* + |oika|* e?ﬁ((Ao + Al)(j{*ka)(wé’kl)))
2 4S(NoA1)|? 2|S(AoA1) | ’
we get
S IFeill3 — | ki)
(77?7‘()‘7:E13x27 ZZ (|I»LHA_7I1|2+2z 2 3 )
P HZ(N\)
|o<m1>\2 2|J<A0A1>|2H§< ) .

COROLLARY 5.5. Let L be a non-homogeneous Hermitian/skew-Hermitian matrix pencil
of the form (2.1). Let (u, x1) and (p, x2) be two approximate eigenpairs, where i € Ris a
double-semisimple eigenvalue and x1,xo € C™ are orthonormal vectors. Set k; :== —L(u)x;.
Then the following inequality holds:

(1 (1, 71,72, 1)) < /0,1, L)% + 18 (1, 72, L2,

Proof. Substituting A\g = 1, A\; = p in Theorem 5.4 and using [1, Theorem 3.6], we get
the desired backward error relation. a

REMARK 5.6. Let (u, 1) and (u, z2) be two approximate eigenpairs of a non-homo-
geneous Hermitian/skew-Hermitian matrix pencil L, where p € C is a double-semisimple
eigenvalue and x1,z2 € C" are orthonormal eigenvectors. Then similar to Corollary 3.7,
substituting Ay = 1, A\; = p in Theorem 5.4, and using [1, Theorem 3.6], we get

7 (w1, w2, L) = /(1321 L) + (1,2, L))?
= V2/(nr (21, 1)) + (ne (1, 22, L))?,
when ;2 = —1. Further, using Corollary 4.4 in the above relation, we get
(ks @1, w2, L) = V2(ne(u, 21, 22, 1)),

when ;2 = —1. Note that for 2 = —1, we have H3(\) — 4|S(MoA1)|? = 0.
Similar to Hermitian/skew-Hermitian matrix pencils, next we present the backward error
analysis for H-even/H -odd matrix pencils.

6. Backward error analysis for H-even/H-odd matrix pencils. In this section, we
discuss the backward error analysis for H-even and H-odd matrix pencils. We start this
section with the following important lemma.

LEMMA 6.1. Let L be an H-even/H-odd matrix pencil of the form (2.1). Let A\ =
(Ao, A1) € C2\ {(0,0)} be a double-semisimple eigenvalue of L satisfying R(Ao1) # 0, ie.,
L(Xo, A)y; = 0, fori = 1,2, where y1,y2 € C™ are the eigenvectors corresponding to \.
Then yfIAjyl = O,yfAjyg =0,forj=0,1.

Proof. The proof follows similar to Lemma 5.1 by using the fact that Ag = e A% and
A1 = —EA{—I. O

Throughout this section, € = 1 represents the H-even case and ¢ = —1 represents the
H-odd case.
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REMARK 6.2. Let L € L(C"*™) be an H-even/ H-odd homogeneous matrix pencil of
the form (2.1). Suppose that (A, z1) and (), z2) are two approximate eigenpairs of L, where
A= (Ao, A1) € C%\ {(0,0)} is a double-semisimple eigenvalue such that R*(\oA;) = 0 and
x1,z2 € C™ are orthonormal vectors. Let k; := —L(\)x;, for i = 1,2. Then Agexllk; =
Nz ko, Mexdl k) = — X2 ko, and |exl Ky |? = |2 ko |2

Now we state and prove the main result of this section.

THEOREM 6.3. Let L € L(C™*"™) be a H-even/H-odd matrix pencil of the form (2.1). Let
(X, 1) and (X, x2) be two approximate eigenpairs of L, where x1, xo € C" are orthonormal
vectors and A = (Mg, \1) € C?\ {(0,0)} is a double-semisimple eigenvalue. Set k; =
—L(\)x;, for i = 1,2. Then there exists an H-even/H-odd matrix pencil SL of the form
O0L(a) = agdAg + a1d Ay, such that (L(N\) + 6L(X))x; = 0. The perturbation matrices, for
R(XoA1) = 0, are given by

2 ~ 2~
5A, = Z )\okixf] + e/\oafikflpmlzm and A, = Z )\1](52‘1' 6)\1:er Py, Y

HE(N) H3(\)

i=1 i=1

In this case, the backward error is given by

SRR TP et
(nS ()‘7‘%17372’1‘))2 = ( : )—2 :
" H3(\) H3 ()

i=1

The perturbation matrices, for R(AgA1) # 0, are given by

2
0A, 22( X H Aoz, x + o

i=1

xikiHnymz )
H3 ()

Py ki a:

H22()\) + 6)\0

.I'Q(Xlxé{k]_ + 6)\131‘{{]?2).’17{{ xl(e)\lxgkil + Xlx{{kg)xéf

XO)\l + /\OX XO/\l + )\oxl
2
— Py kizl z; kAP, .
SA, = _ZHA ZH by wl‘fL’Z'Lz_)\ Vg T X1:T2
1 ;( Lil; 12525 + A1 HQ(/\) €Al HQQ()\) )
()\05U2 kl — EAo.’tl k2) $1(X0${1k2 — e)\oxfkl):cf
AoA1 + Ao AoA1 + Ao
In this case, the backward error is given by
2
, 2hll3 = 21
S H 1112 i
(77F<)\,3317552’ Lzzljgo |$ A H22(>\) )

1
RO A @l k)@ k) | [l R 4 o f ol
ROoA) P 2R (o) PHE()

Proof. To construct §A;, for j = 0,1, such that §4g = eJ A and 64; = —eS A, we
consider

(Hy(N) = 4[R(oA)[?) -

2 n—2
e [ G | By
6.1) 640 = UMsAU = [530 50y
2 n—2
T I
6.2) 0A =U 6A1U—n72 [5B1 ‘ 5D, ,
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where

ﬁ _ \[5110 11 5(10,12 } ﬁ _ [\/—6501,11 5111,12
0 €0ao,12 \/Eéao,zz ' —edaiiz vV —€dar 2

5D0 = 65D0 s 6D1 = —65D1H, 5Bj = [bjl bjg] s

for j = 0,1,and U € C™*™ is a unitary matrix such that U = [Vl Vg] with V] = [ml xg]
€ C"*2, Similar to Theorem 5.4, we get the following equations

(6.3) \ﬁ)\o(sao,z‘i +V—€eXiday i = xinh 1=1,2,
(6.4) Noboi + Aiby; = Vi k;, 1=1,2,
Xo =M1 [dao12 ext ky
6.5 = 2 )
6 EO A1 } [56%1,12 ok,
The minimum norm solution of (6.4) is given by by; = VH ki by =
we have the following two cases.
Case 1: If R(AoA1) = 0, then the minimum norm solution of (6.3) is given by dag ;; =

1}/25?;) ok, day 4 = *I/{?(i)l xfk;. Since Ag = eAll, Ag = —eAll and R(\g)1) = 0, we get

that the system (6.5) is consistent by using Remark 6.2. The minimum norm solution of (6.5) is

Hz()\ HQ(A)VQ k;. Next,

given by dag,12 = x5 HE and 0ay,12 = xﬁl k1. Substituting these obtained values

ZE oy Z0y)
in (6.1) and (6.2), we get the desired perturbed matrices and backward error.

Case 2: If R(A\o);) # O, then using Lemma 6.1, we get dag i = —ﬁxf{oni, and
Say ;i = —/—ex Ayz;. Since R(MoA1) # 0, i.e., AoA1 + AoA1 # 0, the unique solution of
the system (6.5) is given by

—eXowdl by + Nzl ks
X()Al + )\Oxl

et k) + Motk
XO)\l + )\Oxl

dap,12 = , 6ayi2 =
which is the minimum norm solution. Using these obtained values, we can get the desired
6Ap, dAq and the backward error in this case. O

REMARK 6.4. Suppose (p,x1) and (u, x2) are two approximate eigenpairs of a non-
homogeneous H-even/H-odd matrix pencil L such that i € C is a double-semisimple eigen-
value and z1,x2 € C™ are orthonormal vectors. Then similar to Corollary 3.7, substituting
Ao = 1, A1 = p in Theorem 6.3, and using [1, Theorem 3.7], we get

(Uzsr(llaxlez»L))z = (77187(”7371311))2 + (77??(#793%14))2
= 2((np(p, 1, 1))* + (ne(p, 22, 1))?),

for 2 = 1. Further, using Corollary 4.4 in this obtained relation, we get

7715?(,“,231715% L) = \/i(nF(lhxl,an L))7

when 12 = 1. Note that for ;2 = 1, we have Hj()\) — 4|R(Xo\1)|? = 0.
In the following section, we discuss the backward error analysis for T-even/I'-odd matrix
pencils.

7. Backward error analysis for T-even/T-odd matrix pencils. In this section, we
state and prove the structured backward error theorem for T-even/I'-odd matrix pencils. The
derivation of the theorem is similar to the previous section. Hence we discuss only those steps
which are unique for this section. We start this section with two important lemmas.
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LEMMA 7.1. Suppose that A = (Ao, A1) € C? with A\g # 0, \; # 0, and lete =1, 1.
Then the following equality holds:

B N (2] o)
G:(n)  H2(\)  GZNH*(N)

where G,(\) = \/\Ao\2(1+e)42r\xl\2(1_e) and Ha(\) = ([ho]? + [\[2)V/2.

Proof. The proof follows from the definitions of G.(\) and Ha()). a

Throughout this section, ¢ = 1 and € = —1 represent T-even and T-odd cases, respec-
tively.

LEMMA 7.2. Let L € L(C™*™) be a T-even/T-odd homogeneous matrix pencil of the
Sform (2.1). Suppose that (A, x1) and (A, x3) are two approximate eigenpairs of L, where
A= (Mo, A1) € C2\ {(0,0)} is a double-semisimple eigenvalue and x1,z5 € C™ are
orthonormal vectors. Set k; = —L(\)x;, for i = 1,2. Then the following equality holds for
t=1,2,

Proof. The proof follows, with some simple calculations, from the fact that 21 and x5 are
orthonormal vectors. a

REMARK 7.3. For \g = 0, we have #2'k; = —exTky, and for \; = 0 we have
2k = exTk,.

REMARK 7.4. We have (1 +€)?/4 = (1+¢€)/2,fore =1, 1.

Now we present the main theorem of this section.

THEOREM 7.5. Let L € L(C™*™) be a T-even/ T-odd matrix pencil of the form (2.1). Let
(N, 1) and (N, x2) be two approximate eigenpairs of L, where x1, x5 € C™ are orthonormal
vectors and X = (Ao, A1) € C2\ {(0,0)} is a double-semisimple eigenvalue. Set k; =
—L(\)x;, for i = 1,2. Then there exists a T-even/ T-odd matrix pencil 6L of the form
O0L(a) = agdAg + a1d Ay, such that (L(X\) + 6L(A))z; = 0. And we have

Case 1: If A\g # 0 and \1 # 0, then the perturbation matrices are given by

6AO—Z(/\O( ge)xzz €T >\O 212 Vi Ly + €x; i .1..,2>

Pt Gz(A) H3(\)
2 2 T T
Tz kix; + exja; kjx;
+ Z Z 2\ ’
i=1j=1,j#i 0
2 _ - _
- (1 — 6) l‘szszl?H ~ Puia kle - ExikTPa: x
6A — A 7 3 )\ 1 2 7 3 1 2
> ( G H3(\)

2 2 = Ty H = Tp o H
Z Z Tjx; kv, — exja; ki
2\ ’

ol?(1 A1)2(1 —
where G¢(\) = \/ o1+ JQF MNP =€) . In this case, the backward error is given by

2

2kl Ml ~ Dol2)la kil?
S\ z1,19,L))2 = ( 24 !

OO a2 L) =0 (F0) *— czovmzon

i=1
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\$2Tk1|2+|$1Tk2|2(M7M 2 (€ __¢€
2H3(N) Al Aol A2 [of?

Case 2: If either A\g = 0 or Ay = 0, then we have the following two cases:
(1) If \o = 0 and A\ # 0, then the perturbation matrices are given by § Ag = 0 and

WR((T ko) (2T k1))

2
1—c¢ —
0A = Z (—( 5 )@szAlle"f{ — Py, Ayi]! +$i1‘iTA1Pz1:x2>
i=1
(fgl’fl — Efll’g{).

In this case the backward error is given by

2
1—€
(21,2, 0))2 = 32— LD o g2 - 212 Ay
=1

(i) If Ao # 0 and A1 = 0, then the perturbation matrices are given by 6A; = 0 and

2
1 _
6Ag = Z (—(?$1$?onle - P$1;12A0.’L‘i.%‘lH - asix?Aomez)
i=1
{Egkl
Ao

In this case, the backward error is given by

(Toxl + ezy2t)).

2
1+e
(8O 1,22, 1)) = S 2 gl — D A — 2la Agasf?
i=1
Proof. To construct §A;, for j = 0,1, such that §Ag = AL and 64; = —ed AT, we

consider

2 n—2
0 5 A, €dBy T
6Ag =UTsAU = ° 0 0
0 v OU n—2 |:5BO (SDO :|’
2 n—2
. T T
A = T A _ 2 (5141 —6531
0 ! uto IU n—2 |:(5B1 5D1 ’
where
cS/A\O: (1;5)5%711 1i6a0’12 7 571\1: (1;)5@,11 (1—66(11,12 7
dagp,12 ( 26)5%,22 dai 12 ;E)5a1,22

(5D0 = €5D()T7 §D1 = —E(leT, (S.Bj = [bjl bjg] s
for j = 0,1, and U € C™*" being a unitary matrix such that U = [Vl Vg] with V] =

[331 mg] € C™*2, Similar to Theorem 5.4, we get the following equations

1 1-—
%)\Q(Sao’“‘ + ( 5 6) /\1(50,1#@ = :L‘ZTki, i=1,2,

(7.2) Aoboi 4+ Aiby; = Vil ks, i=1,2,

)\0 —)\1 5(10 12 $gk1
7.3 = .
( ) |:)\0 )\1 :| |:(5CL1712:| |:€£E¥1k2

(7.1)
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The minimum norm solution of (7.2) is given by by; = %ngi and by; = %ngi.

Case 1: When A\g # 0 and A\; # 0, the minimum norm solution of (7.1) is given by

(4 X Ti. (= X T7. . o x;kl-l-ew?kg
dag,ii = EIOVED ki and day i = ~— EIOVED k;. In this case dap 12 = > v

T T
ki — k
and (5&1,12 =D .

Case 2: WheflAi\o = 0 but \; # 0, we find that the system (7.3) is consistent by uging
mifl )
In this case dag ;; = 0 and da; ;; = —%xiTAlxi. When A\g # 0 but A; = 0, we have that
the system (7.3) is consistent by using Remark 7.3. The minimum norm solution of (7.3) is
given by dag 12 = xa’fl and day 12 = 0. In this case dag ;; = —@xffloxi and day ;; = 0.
Similar to earlier sections, we can get the backward error expression and perturbation matrices
in each case. a

REMARK 7.6. Suppose that (u, 1) and (u, x2) are two approximate eigenpairs of a non-
homogeneous T-even/T'-odd matrix pencil L, where p € C is a double-semisimple eigenvalue
and z1,x9 € C" are orthonormal vectors. Then similar to Corollary 3.7, by substituting

Ao = 1, A1 = pin Theorem 7.5 and using [1, Theorem 3.4 ], we get

(3 (1, 21,22, 1))? = (0% (1, 21, 1))? + (0% (1, 22, 1))?)
=2((nr(p,21,L))* + (nr(p, 22, L))?),

Remark 7.3. The minimum norm solution of (7.3) is given by dag,12 = 0 and daq,12 =

when || = 1. Further, using Corollary 4.4, we get
77%(1”7 T1,T2, L) = \/i’l?F(,Lh T1,T2, L)v

when |p| = 1.

Finally, we summarize the relations between unstructured and structured backward errors
of a single approximate eigenpair and two approximate eigenpairs for non-homogeneous
matrix pencils. Let (u, z1) and (p, £2) be two approximate eigenpairs such that 4 € Cis a
double-semisimple eigenvalue of a non-homogeneous matrix pencil L. Then in Table 7.1, we
present relationships between the structured backward error of two approximate eigenpairs
of a double-semisimple eigenvalue 73.(y, z1, T2, L), the unstructured backward error of two
approximate eigenpairs of a double-semisimple eigenvalue g (4, €1, 22, L), and the structured
backward error of a single approximate eigenpair 7% (u, ;, L), for i = 1, 2.

8. Numerical example. In this section, we illustrate our developed theory with a numer-
ical example using Matlab 7.11.0. Let L be a T-skew-symmetric non-homogeneous (g = 1)
matrix pencil of the form (2.1). Let Ay, A; be defined by

i 0 —0.2600 4 0.6487¢ —0.1135+ 0.3416¢ —0.3040 — 0.63664
Ao — 0.2600 — 0.6487% 0 —0.0914 — 0.5687: —0.7628 + 0.4553¢
7 10.1135 — 0.3416i  0.0914 + 0.5687: 0 0.3138 — 0.3496¢ |’
10.3040 + 0.6366:  0.7628 — 0.4553:  —0.3138 + 0.3496: 0
[ 0 —0.0996 — 0.8100¢  0.6837 + 0.2671% 0.0716 + 0.05801
A — 0.0996 + 0.8100¢ 0 0.2214 — 0.5972¢  —0.2433 — 0.00327
7 | —0.6837 — 0.2671i  —0.2214 + 0.5972i 0 0.2821 4 0.2661%
|—0.0716 — 0.0580¢  0.2433 +0.0032¢  —0.2821 — 0.26614 0
These are random matrices satisfying Ay = —Al" and A; = —AT. Clearly L is a regular

matrix pencil. The approximate eigenpairs of L are obtained by using the Matlab command
[V, D] = eig(Ao, A1). Let p = —D(2,2) = —D(3, 3) be an approximate multiple eigenvalue
of L with its corresponding eigenvectors given by V(:,2) and V(:,3). The orthonormal
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Relations of backward errors for various cases

Structure(S)| Relation between Relation between Relation between
n%(uawl’mbl‘)& 77187(/%11:‘73271‘)& nzsﬁ‘(uawlﬁzQ)L)&
ne(p,mi, L), i =1,2 nr(p, 1,2, L) nr(p,zi,L),i=1,2

T-sym./ N (1, 21,2, L) < np(p, w1, w2, L) < N (1, 21,22, L) <

Toskesym, | /0% (w1, L)2 + 08 (22,102 | V20e (21,22, L) | V2 03 (0 21, 1) + 0 (1, 22, 1)

S PUS, — »S PO, — S PO, —

Herm./ g (p, z1, 22, L) = ne (1, w1, 22, L) = g (p, z1, 22, L) =

sk.-Herm. \/7115:(/% x1,L)2 + 03 (2, L)2 | V2nr(p, 21,22, L) ﬁ\/n%(u,th) + n%(p, 22, L)
for u? = —1 for p? = —1 for u? = —1

T-even/ np (1, x1, w2, L) = np(p, x1, w2, L) = np (1, x1, w2, L) =

T-odd \/msw(u,:cl,LP + 05 (w22, L)2 | V2np(p, @1, w2, L) ﬂ\/n%(u,wl,L)-s-n%(u,xz,L)
for |u] =1 for |u| =1 for |u| =1

H-even/ ne(p, 1,32, L) = ne(p,x1, 2, L) = | P, 21,22, L) =

H-odd \/772(/« x1,L)2 + 08 (2, L)2 | V2np (s, z1,22,L) ﬂ\/n%(u,th) + 1% (w22, L)
forp? =1 for p? =1 forp? =1

eigenvectors x1, o corresponding to y, are obtained by z1 := V (:,2)/||[V(:,2)]| and 3 :=

(V(:,3) =y V(5,2)/|IV(:,3) =y V(:,2)]|, where v = % Using Theorem 3.3
for e = —1, we get the following perturbation matrices
i 0 —0.0170 — 0.48737  0.3412 — 0.1463: 0.1048 + 0.2769¢
5Ag = 0.0170 + 0.4873¢ 0 —0.0294 — 0.0085¢  0.2473 — 0.08221¢
—0.3412 4+ 0.14637  0.0294 4 0.00857 0 —0.0096 4 0.1557% | ’
| —0.1048 — 0.27697 —0.2473 + 0.08227  0.0096 — 0.1557: 0
0 —0.0891 4+ 0.71437 —0.5315 + 0.1335¢ —0.0880 — 0.4281:
5A, = 0.0891 — 0.7143¢ -0 0.0409 +0.0193¢  —0.3797 + 0.06212
0.5315 — 0.1335¢  —0.0409 — 0.0193: 0 0.0503 — 0.2247¢
10.0880 + 0.42817  0.3797 — 0.06217  —0.0503 + 0.2247: 0

We obtain 7% (1, 21, 72, L) = 1.8809. Clearly L(p)z; + 6L(p)x; = 0, fori = 1,2.

REMARK 8.1. When we encounter with two approximate eigenpairs (A, z1) and (\, z2),
where )\ is a double-semisimple eigenvalue, the existing backward error theory of a sin-
gle eigenpair fails to provide the minimum norm ¢L € L(C™*™), which satisfies (L()) +
O0L(A))z; = 0, for i = 1, 2. On the other hand, by using our theory, one can easily construct
the required perturbed matrix pencil and backward error corresponding to two approximate
eigenpairs of a double-semisimple eigenvalue.

9. Conclusions. We have studied the structured and unstructured backward error analy-
sis of two approximate eigenpairs of a double-semisimple eigenvalue. We have investigated
structured backward perturbations of eight special classes of structured matrix pencils, includ-
ing T-symmetric, T-skew-symmetric, Hermitian, skew-Hermitian, T-even, T-odd, H-even,
and H-odd cases. For each of those structures, we have obtained the minimal structured per-
turbed matrix pencil, with respect to the Frobenius norm such that the given two approximate
eigenpairs become exact eigenpairs of an appropriately perturbed matrix pencil. We have
also established the unstructured and structured backward error relationships between a single
approximate eigenpair and two approximate eigenpairs of a double-semisimple eigenvalue.
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