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COARSE SPACES FOR FETI-DP AND BDDC METHODS FOR
HETEROGENEOUS PROBLEMS: CONNECTIONS OF DEFLATION AND

A GENERALIZED TRANSFORMATION-OF-BASIS APPROACH∗

AXEL KLAWONN†‡, MARTIN KÜHN§, AND OLIVER RHEINBACH‖¶

Abstract. In FETI-DP (Finite Element Tearing and Interconnecting) and BDDC (Balancing Domain Decom-
position by Constraints) domain decomposition methods, the convergence behavior of the iterative scheme can be
improved by implementing a coarse space using a transformation of basis and local assembly. This is an alternative
to coarse spaces implemented by deflation or balancing. The transformation-of-basis approaches are more robust
with respect to inexact solvers than deflation and therefore more suitable for multilevel extensions. In this paper, we
show a correspondence of FETI-DP or BDDC methods using a generalized transformation-of-basis approach and
of FETI-DP methods using deflation or balancing, where the deflation vectors are obtained from the transformation
of basis. These methods then have essentially the same eigenvalues. As opposed to existing theory, this result also
applies to general scalings and highly heterogeneous problems.

We note that the new methods differ slightly from the classic FETI-DP and BDDC methods using a transformation
of basis and that the classic theory has to be replaced. An important application for the theory presented in this
paper are FETI-DP and BDDC methods with adaptive coarse spaces, i.e., where deflation vectors are obtained from
approximating local eigenvectors. These methods have recently gained considerable interest.
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1. Introduction. In this section, we first present the state-of-the-art of domain decom-
position methods including adaptively computed coarse spaces with a focus on FETI-DP
(Finite Element Tearing and Interconnecting-Dual Primal) and BDDC (Balancing Domain
Decomposition by Constraints) methods. We then give a brief overview of the main result
which is about the relation of the spectra of FETI-DP and BDDC methods using a generalized
transformation-of-basis approach and a related deflation or balancing methods to implement
the new, e.g., adaptively computed coarse space components. The theoretical and numerical
results of this paper have already been made public in April 2017 in a technical report [34]; the
present manuscript is a completely revised and reorganized version. Also note that the results
presented in our recently published article [33] are applications of the theory presented here.

1.1. State-of-the-art. The numerical solution of partial differential equations by finite
elements often requires a fine discretization of the given domain in order to obtain a good
approximate solution of the original problem. This leads to large sparse linear systems of
equations, which often cannot be solved by sparse direct solvers. Instead, iterative methods
are used. Domain decomposition methods [62] are widely-used iterative algorithms for the
parallel solution of implicit finite element problems. In these methods, the finite element

∗Received April 27, 2018. Accepted October 16, 2019. Published online on January 29, 2020. Recommended
by O. Widlund. This manuscript is part of a PhD. Thesis project of the second author in Applied Mathematics at
Universität zu Köln (Mathematische-Naturwissenschaftliche Fakultät, Köln, Germany); see [46]. The thesis was
successfully defended on April 20, 2018.
†University of Cologne, Department of Mathematics and Computer Science, Weyertal 86-90, 50931 Köln,

Germany, https://www.numerik.uni-koeln.de (axel.klawonn@uni-koeln.de).
‡University of Cologne, Center for Data and Simulation Science, https://www.cds.uni-koeln.de.
§CERFACS (Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique), 42 Avenue Gaspard

Coriolis, 31057 Toulouse Cedex 01, France (martin.kuehn@cerfacs.fr).
‖Technische Universität Bergakademie Freiberg, Fakultät für Mathematik und Informatik, Institut für Numerische

Mathematik und Optimierung, 09596 Freiberg, Germany; (oliver.rheinbach@math.tu-freiberg.de).
¶Technische Universität Bergakademie Freiberg, Universitätsrechenzentrum (URZ), 09596 Freiberg, Germany.

43

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://doi.org/10.1553/etna_vol52s43
https://www.numerik.uni-koeln.de
https://www.cds.uni-koeln.de


ETNA
Kent State University and

Johann Radon Institute (RICAM)

44 A. KLAWONN, M. KÜHN, AND O. RHEINBACH

problem is decomposed into independent, parallel local problems. Additionally, to obtain
scalability in the number of subdomains, a coarse space has to ensure global transport of
information.

Originally, the coarse spaces of FETI-DP and BDDC domain decomposition methods
were formed by coupling the subdomains in a few primal variables, i.e., by a partial finite
element assembly used to enforce continuity across subdomain boundaries at the vertices of
subdomains [62]. In three dimensions, this is not sufficient to obtain a good condition number
bound. A remedy is to make edge averages continuous across the interface in each iteration. A
transformation of basis, to explicitly introduce the averages as new variables followed by partial
finite element assembly in these new variables, is a well-known technique of implementing
such average constraints in FETI-DP and BDDC methods; see, e.g., [39, 43, 44, 47, 58]. An
alternative is the use of the edge characteristic functions as deflation vectors in a deflation or
balancing approach; see, e.g., [27, 41] and the references therein. However, the transformation-
of-basis approach is more reliable than deflation or balancing, being more robust with respect
to inexact solvers; see, e.g., [41]. It therefore allows us to replace the direct coarse solver by
a preconditioner as, e.g., in [36, 57] for better scalability. Other techniques to enforce the
primal constraints are given in [19], where additional global Lagrange multipliers are used, or
in [10, 48, 49], where local saddle point problems are used. We will also briefly comment on
some of these approaches in the following paragraphs; a detailed analysis of all approaches
is, however, outside the scope of this paper, which primarily considers the relation between
the deflation and transformation-of-basis approaches for FETI-DP. We will also show how to
transfer the new theory of the generalized transformation-of-basis approach for FETI-DP to
BDDC.

For highly heterogeneous problems, e.g., in almost incompressible elasticity with coef-
ficient jumps, domain decomposition methods can be equipped with automatic or adaptive
coarse spaces if the method otherwise does not converge or if the convergence is very slow.
To the best of our knowledge such adaptive coarse spaces were first introduced to domain
decomposition in [3, 4]. More recently, these approaches have attracted substantial inter-
est, and many new methods with provable bounds have been proposed. In all of these
methods, instead of using coarse spaces defined (and analyzed) a priori, the adaptive (i.e.,
problem-specific) coarse spaces are constructed automatically during the computation; see,
e.g., [49, 21, 22, 52, 50, 14, 12, 61, 60, 37, 38, 30, 32, 23, 26, 1, 54, 7, 63, 31, 55, 17, 5, 64, 33],
given in historical order.

For almost a decade, the first approach mentioned in the list above, [49], lacked a condition
number bound for the adaptive FETI-DP operator. In [38], a condition number bound for the
coarse space of [49] was provided for two dimensions. In [32], we were then able to provide
such a bound for FETI-DP in three dimensions after an additional enrichment using a small
number of edge eigenvalue problems. However, in [32], we used FETI-DP with deflation or
balancing which limits the potential for parallel scalability because the coarse problem then
has to be solved exactly.

In [49], local saddle point problems are used in an alternative coarse space implementation.
Such saddle point problems were also used in the classic BDDC method using a priori
constraints [10]; later they were used for adaptive BDDC [49]. We note that the first condition
number bound for the adaptive algorithm in [49], which was given in [38], makes use of
deflation. The same applies for the theory in [32]. The results of this paper are therefore also
of interest for the adaptive approach given in [49].

In this paper, for a given FETI-DP method using balancing or deflation (under a few as-
sumptions, see Section 5), we construct a FETI-DP method with a (generalized) transformation-
of-basis approach. We then show that in both approaches, the eigenvalues of the preconditioned
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operator are the same, except possibly for eigenvalues at 0 and 1; see Theorem 6.7. The rela-
tion to a BDDC method using a transformation of basis is given in Theorem 7.3. As a result,
the approach [32] can now also be formulated using a (generalized) transformation-of-basis
approach for FETI-DP and BDDC; the resulting method has been described and tested in [33],
which include preliminary parallel results.

Several papers in the literature implicitly rely on the existence of a (generalized) transfor-
mation-of-basis approach as described in this paper, corresponding to the FETI-DP method
using deflation. This includes our own paper [33] as well as [1, 7, 31, 54, 55], where adaptive
FETI-DP or BDDC methods are combined with a change of variables and partial finite element
assembly.

It has already been shown in [27, 41], but only for homogeneous problems (and multi-
plicity scaling), that for any FETI-DP and BDDC method with a transformation of basis there
exists a corresponding FETI-DP method using deflation (also known as projector precondi-
tioning) or balancing with essentially the same spectrum; see [41, Theorem 6.7]. Note that the
reverse is not always true without additional assumptions, notably the FETI-DP method using
deflation in [24] for almost incompressible elasticity (which uses sums of face averages as
constraints) cannot be implemented using the generalized transformation-of-basis approach.

In the present paper, the correspondence relation from [27, 41] is generalized to het-
erogeneous problems with jumps along and across subdomain boundaries. An important
difference to [27, 41] comes from the scaling since for heterogeneous problems, in addition to
the automatic coarse spaces, a suitable scaling might be indispensable. Otherwise the adaptive
coarse space can become large; see, e.g., [33, 38].

We revisit the standard theory and, under certain assumptions on the constraints, we
show a correspondence between a FETI-DP method using deflation and a FETI-DP or BDDC
method using a generalized transformation-of-basis approach. The arguments of the standard
theory are replaced by our Lemmas 6.3 and 6.4.

For readers who are familiar with the standard theory of FETI-DP and BDDC methods,
let us note that we discuss how the transformed PD operator, which is central to the theory
of FETI-DP and BDDC, is defined; see [62, p. 175], [44, p. 172], or [42, p. 1551] for the
standard definition of PD. Note that it is denoted P∆ in [44, 62]. We then show in Theorem 6.7
that the corresponding methods using a transformation of basis, deflation, or balancing have
essentially the same spectrum. We define a new, transformed scaling (see Definition 7.1)
which in some cases will be identical to the initial scaling (cf. [41]), e.g., for multiplicity
scaling or for scalings which are constant on edges or faces, while not true in general. Even if
the original scaling is diagonal (as is the case with ρ-scaling), the transformed scaling is in
general not diagonal. For FETI-DP, we can also provide a transformation of basis in the space
of Lagrange multipliers; see Section 5.3. This transformation is performed implicitly in the
algorithm.

The generalized transformation-of-basis approach introduced in this paper slightly differs
from the classical approach; the theory and also the implementation are different. The reason
is that in deflation, using nondiagonal scaling (e.g., deluxe) can yield an interaction between
deflated and non-deflated variables; see Figure 1.1. Such an interaction is not present in
the standard transformation-of-basis approach as in [44, 47, 43, 39]; see Figure 1.2. This is
relevant even for diagonal scalings (other than multiplicity), since a transformation of basis
for heterogeneous problems will in general result in a nondiagonal scaling; see Definition 7.1.
Using the standard transformation-of-basis approach, these interactions are lost. We briefly
comment on the alternative implementation of coarse constraints in BDDC using saddle point
problems as in [10]. In the saddle point approach, the interactions are lost if the primal
variables are held nonredundantly and apart from the remaining dual variables. If the primal
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u1

u3

u2

FIG. 1.1. Let ū = u1 + u2 + u3 be the edge average corresponding to a constraint enforced by deflation.
Then, even for a diagonal scaling D, in BTDB there can be an interaction between the average ū and the other
degrees of freedom. To preserve this interaction, in the generalized transformation-of-basis approach we keep the
Lagrange multipliers for a posteriori primal variables despite of the partial assembly; see Section 5.2. The dotted
lines symbolize the three Lagrange multipliers.

u3

ū

u1

FIG. 1.2. Using the standard transformation-of-basis approach results in fewer Lagrange multipliers compared
to Figure 1.1. An interaction of the primal edge average ū with the other degrees of freedom through the scaling D is
not present; cf. (5.5) and (5.6). The dotted lines symbolize the two Lagrange multipliers.

variables are held redundantly, as are all other interface variables, and are scaled correctly, then
the interactions could possibly be implemented correctly in a way similar to the generalized
transformation-of-basis approach. Note, however, that several papers on adaptive FETI-DP
and BDDC methods in their theory routinely make use of the equivalence to a transformation-
of-basis approach [30, 32, 63, 1, 54, 7, 31, 55]. The generalized transformation-of-basis
approach, however, preserves the necessary information. A simple example to illustrate the
loss of information in the standard approach is given in Section 4.2.

The focus of the present paper is thus on the construction, for heterogeneous problems, of
a generalized transformation-of-basis approach for FETI-DP and BDDC with full theoretical
justification and to show the equivalence to a corresponding FETI-DP method with a deflation
or balancing approach. It is natural to combine our approaches presented here with adaptive
coarse spaces, e.g., as in our approach in [32] or for the many other adaptive coarse space
approaches developed recently. This, however, is outside the scope of this paper and is
considered in [33].

The use of the generalized transformation-of-basis approach enables the implementation
of a competitive parallel FETI-DP improving the standard FETI-DP approach for chosen
heterogeneous problems, both with respect to time and precision; see [33, 46, 35].

The remainder of the paper is structured as follows. In the following section, we try
to spell out the main result of this paper by mentioning the important identities derived in
this article but without going into details of the notation. In Section 2, we will introduce
our elliptic model problem and introduce the underlying finite element geometry used in the
domain decomposition approach. In Section 3, we present the standard FETI-DP and BDDC
algorithm with a transformation of basis and deflation or balancing. In Section 4, we will
give a short motivation for the need of our generalized transformation-of-basis approach. In
Section 5, we introduce a generalized variant of the transformation-of-basis approach for
arbitrary scalings, coefficient distributions, and constraint vectors. In Section 6, we will finally
prove that FETI-DP with the generalized transformation-of-basis approach has the same
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nontrivial spectrum as FETI-DP with a deflation or balancing approach. The corresponding
theory and a short discussion on how to apply the generalized transformation-of-basis approach
for BDDC follows in Section 7. In Section 8, we will present some results to visualize our
theoretical findings. Finally, we draw some conclusions in Section 9.

1.2. Main result. In this section, we briefly describe our main result without dwelling
on the details of notation for which we refer to the later sections of this article. For quite
general problems, including heterogeneous elliptic finite element problems and general scal-
ings, we show the equality of the spectra of the deflated preconditioned FETI-DP operator
(I − P )M−1

D (I − P )TF and that of a new preconditioned FETI-DP operator M̂−1
D F̂ using a

new basis constructed by a transformation of basis from the deflation vectors, i.e.,

(1.1) σ((I − P )M−1
D (I − P )TF ) = σ(M̂−1

D F̂ ),

where σ denotes the spectrum. Note that the index D in M−1
D as well as M̂−1

D refers to the
standard FETI-DP Dirichlet preconditioner [62] and not to deflation.

The new algorithm, denoted the generalized transformation-of-basis approach, is different
from known methods since in the scaling on the subdomain interface, an interaction of
primal and dual variables can occur. This is possible since we keep Lagrange multipliers
corresponding to non-nodal primal variables in the FETI-DP system.

As a result, the standard theory does not apply anymore and has to be replaced; cf. equa-
tion (1.1).

We also show that a corresponding, transformed BDDC preconditioned system also
essentially has the same eigenvalues, i.e., that

σ(M̂−1
BDDC S) \ {0, 1} ⊂ σ(M̂−1

D F̂ ) = σ(M−1
PPF ).

Our results thus generalize the findings from [41] to general heterogeneous problems.
The new theory is also of interest for recent adaptive FETI-DP and BDDC methods [1, 7,

12, 30, 31, 32, 37, 38, 49, 50, 54, 55, 63]. Some adaptive FETI-DP approaches are formulated
using deflation. For these approaches, our results allow us to define FETI-DP and BDDC
methods without deflation but with the same convergence properties. Other adaptive FETI-
DP or BDDC approaches use a transformation of basis combined with partial assembly but
implicitly make use of the results presented in this paper.

In contrast to deflation or balancing approaches, the transformation-of-basis approaches
allow for a more flexible treatment of the coarse problem in domain decomposition including
the use of inexact solvers, e.g., [11, 36, 57], which is crucial to obtain scalability to the order
of million cores [36] and beyond.

2. Model problem and geometry. Given a bounded polyhedral domain Ω ⊂ R3 where
the Dirichlet boundary ∂ΩD ⊂ ∂Ω is a closed subset of positive surface measure and
∂ΩN := ∂Ω \ ∂ΩD, we consider the weak formulation of an elliptic problem

a(u, v) = F (v) ∀v ∈ H1
0 (Ω, ∂ΩD).

The theory presented here is purely algebraic and therefore, in particular, applies to the
diffusion problem and linear elasticity. In this paper, we present numerical results for the
diffusion equation. There, we have

a(u, v) :=

∫
Ω

ρ∇u · ∇vdx and F (v) :=

∫
Ω

fvdx+

∫
∂ΩN

gvds.
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For numerical results on linear elasticity and adaptive FETI-DP or BDDC, see [33, 46].
The domain Ω is decomposed into N nonoverlapping open subdomains Ωi, i = 1, . . . , N .

The interface Γ is defined as the union of the interior subdomain boundaries, i.e.,
Γ := {x ∈ Ωi ∩ Ωj ; i 6= j}. The subdomains are then triangulated and then discretized by the
finite element method with matching nodes on the interface. For simplicity, we use piecewise
linear conforming finite elements.

In three dimensions, the interface can be decomposed into vertices, edges, and faces; for
a detailed definition of these sets, cf. [43]. Edges and faces are defined as open sets. A face
shared by two subdomains Ωi and Ωj will be denoted by F ij while we denote edges shared
by Ωi, Ωj , Ωk and possibly more subdomains by E ik. Vertices of Ωi that belong to multiple
subdomains are denoted by Vil.

By Wh(Ωi), i = 1, . . . , N , we denote the local finite element space on Ωi. The local
trace space Wi := Wh(Γi) is defined on Γi := Ωi ∩ Γ. We also introduce the global product
spaceW := ΠN

i=1Wi and denote the space of functions that are continuous across the interface
by Ŵ ⊂W .

3. FETI-DP and BDDC with a transformation of basis and FETI-DP with deflation
and balancing. To make this paper self-contained, in this section we recall standard FETI-DP
and BDDC methods with a transformation of basis and FETI-DP with a deflation or balancing
approach. Note that the deflation or balancing approach for BDDC is different from that for
the BDDC method with a transformation of basis and is therefore not described; see [41].

Transformation of basis, deflation, or balancing provide ways of adding additional con-
straints to the coarse space of the underlying FETI-DP or BDDC domain decomposition
method. Another possibility is the use of optional Lagrange multipliers; see [19, 25, 43, 48, 49].
For more details on FETI-DP and BDDC methods; see, e.g., [9, 10, 18, 19, 20, 62] and, e.g.,
[39, 43, 44, 47] for the use of a transformation of basis in FETI-DP and BDDC as well as, e.g.,
[15, 16, 27, 41, 51, 53] for FETI-DP with deflation or balancing.

3.1. Standard FETI-DP and BDDC methods.

3.1.1. The standard FETI-DP algorithm. We partition the set of degrees of freedom
into interior, dual, and primal degrees of freedom, denoted by an index I,∆′, and Π′, respec-
tively. Interior degrees of freedom are associated with nodes in the interior of subdomains
and on the Neumann boundary ∂ΩN . Dual and primal degrees of freedom belong to nodes
on the interface Γ, and every node on Γ can be classified as one of them. In contrast to many
other works on standard FETI-DP and BDDC, we use the indices ∆′ and Π′ instead of ∆
and Π since the latter will be reserved for the generalized transformation-of-basis approach;
cf. Sections 4–7.

For every subdomain Ωi, i = 1, . . . , N, we assemble the local stiffness matrix K(i) and
the local load vector f (i). The vectors u are partitioned into those of the interior degrees of
freedom uI , the dual degrees of freedom u∆′ , and the primal degrees of freedom uΠ′ . Assum-
ing an appropriate ordering of the degrees of freedom, we obtain the following partitioning of
the local stiffness matrices and the solution and load vectors

K(i) =

K
(i)
II K

(i)T
∆′I K

(i)T
Π′I

K
(i)
∆′I K

(i)
∆′∆′ K

(i)T
Π′∆′

K
(i)
Π′I K

(i)
Π′∆′ K

(i)
Π′Π′

 , u(i) =

u
(i)
I

u
(i)
∆′

u
(i)
Π′

 , and f (i) =

f
(i)
I

f
(i)
∆′

f
(i)
Π′

 .
Further, we introduce the following matrices and vectors

K
(i)
BB :=

[
K

(i)
II K

(i)T
∆′I

K
(i)
∆′I K

(i)
∆′∆′

]
, K

(i)
Π′B :=

[
K

(i)
Π′I K

(i)
Π′∆′

]
, and f (i)

B :=
[
f

(i)T
I f

(i)T
∆′

]T
,
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as well as

K
(i)
ΓΓ :=

[
K

(i)
∆′∆′ K

(i)T
Π′∆′

K
(i)
Π′∆′ K

(i)
Π′Π′

]
and K

(i)T
ΓI :=

[
K

(i)T
∆′I K

(i)T
Π′I

]
.

Next, we define the global block matrices

KII := diagNi=1K
(i)
II , K∆′∆′ := diagNi=1K

(i)
∆′∆′ , and KΠ′Π′ := diagNi=1K

(i)
Π′Π′ ,

as well as

KBB := diagNi=1K
(i)
BB , KΓΓ := diagNi=1K

(i)
ΓΓ,

and where KΓI is the corresponding global off-diagonal block.
We also need assembly operators. The first one, RTΠ′ :=

[
R

(1)T
Π′ , . . . , R

(N)T
Π′

]
, performs

the assembly in the primal variables u(i)
Π′ and is needed for both FETI-DP and BDDC. The

second one, RT∆′ :=
[
R

(1)T
∆′ , . . . , R

(N)T
∆′

]
, performs assembly in the dual variables u(i)

∆′ and is
only needed for BDDC. The transposed operators RΠ′ and R∆′ are then extension operators
that distribute global information to the local subdomains.

For FETI-DP, in place of R∆′ , we need a jump operator BΓ =
[
B

(1)
Γ , . . . , B

(N)
Γ

]
which

is built from values 0 and ±1 such that BΓu = 0 holds for u ∈ Ŵ .
By an assembly in the primal variables, we obtain

K̃Π′Π′ =

N∑
i=1

R
(i)T
Π′ K

(i)
Π′Π′R

(i)
Π′ , K̃Π′B =

[
R

(1)T
Π′ K

(1)
Π′B , . . . , R

(N)T
Π′ K

(N)
Π′B

]
,

f̃ =

[
fTB , (

N∑
i=1

R
(i)T
Π′ f

(i)
Π′ )

T

]T
, and S̃Π′Π′ = K̃Π′Π′ − K̃Π′BK

−1
BBK̃

T
Π′B .

Then, the FETI-DP master system is given byKBB K̃T
Π′B BTB

K̃Π′B K̃Π′Π′ 0
BB 0 0

uBũΠ′

λ

 =

[
f̃
0

]
.

Here, BB is the nontrivial part of B and has the form BB =
[
B

(1)
B , . . . , B

(N)
B

]
. The (unpre-

conditioned) FETI-DP system

Fλ = d

is obtained after elimination of ũT = [uTB , ũ
T
Π′ ]

T , where

F =
[
BB 0

] [KBB K̃T
Π′B

K̃Π′B K̃Π′Π′

]−1 [
BTB
0T

]
= BBK

−1
BBB

T
B +BBK

−1
BBK̃

T
Π′BS̃

−1
Π′Π′K̃Π′BK

−1
BBB

T
B = BΓS̃

−1BTΓ ,

d = BBK
−1
BBfB +BBK

−1
BBK̃

T
Π′BS̃

−1
Π′Π′

(( N∑
i=1

R
(i)T
Π′ f

(i)
Π′

)
− K̃Π′BK

−1
BBfB

)
.
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Here, the Schur complement S̃Π′Π′ is defined as S̃Π′Π′ := K̃Π′Π′ − K̃Π′B′K
−1
B′B′K̃

T
Π′B′ .

For heterogeneous problems, the scaling is an important ingredient of FETI-DP and
BDDC methods. We will introduce two kind of commonly used scalings. We first intro-
duce the standard ρ-scaling; see, e.g., [40, 42, 56, 59, 62]. For x ∈ Γi we introduce Nx as
the set of indices of subdomains that have x on their boundaries. We define the coefficient
evaluation by ρ̂i(x) := supx∈supp(ϕx)∩Ωi

ρ(x). Here, ϕx is the nodal finite element func-
tion at x and supp(ϕx) its support. Let Ωj and Ωi share either a face or an edge, and let
x ∈ ∂Ωi ∩ ∂Ωj . The corresponding nontrivial row of B(j) is then multiplied by the scaling
δ†i (x) := ρ̂i(x)/

∑
k∈Nx

ρ̂k(x), and we obtain the local scaling D(j). In BDDC the degrees

of freedom on ∂Ωi are scaled by δ†i (x) defining the scaling D(i)
u ; see (3.3).

Secondly, we introduce deluxe scaling; see, e.g, [2, 6, 8, 12, 13]. Then, the Schur
complement of the stiffness matrix on the interface Γ, i.e.,

SΓΓ := diagNi=1 S
(i) := diagNi=1

(
K

(i)
ΓΓ −K

(i)
ΓI

(
K

(i)
II

)−1
K

(i)T
ΓI

)
has to be defined. Let us consider either a face F ij shared by the two subdomains Ωi and Ωj
or an edge E ik shared by the subdomains Ωi, Ωj , Ωk. Multiplicities greater than three can be
handled analogously.

For l ∈ {i, j}, the matrix S(l) is partitioned as

S(l) =

[
S

(l)
FijFij S

(l)

FijFijC

S
(l)

FijCFij S
(l)

FijCFijC

]
and S(l) =

[
S

(l)

EikEik S
(l)

EikEikC

S
(l)

EikCEik S
(l)

EikCEikC

]
;

see, e.g., [38]. Then, for l ∈ {i, j}we define S(l)
Fij ,0 := S

(l)
FijFij and S(l)

Eik,0 := S
(l)

EikEik .
In deluxe scaling the nontrivial rows of B(j) corresponding to the Lagrange multipliers

of a face F ij are multiplied by D(i)
u,Fij = (S

(i)
Fij ,0 + S

(j)
Fij ,0)−1S

(i)
Fij ,0 if the orientation of

the constraints in B are chosen consistently. Otherwise, some entries of D(i)
u,Fij have to be

multiplied by −1.
For an edge E ik, in deluxe scaling the nontrivial rows of the matrix B(j)

Γ corresponding to
the Lagrange multipliers coupling Ωi and Ωj on this edge are multiplied by
D

(i)

u,Eik = (S
(i)

Eik,0 + S
(j)

Eik,0 + S
(k)

Eik,0)−1S
(i)

Eik,0. Again, a consistent orientation of the La-

grange multipliers is assumed. The rows of B(j)
Γ corresponding to Lagrange multipliers

coupling Ωj and Ωk on E ik and the rows of B(i)
Γ and B(k)

Γ are scaled analogously. The final
scaling matrix D(j) is obtained from the local scaling matrices on the faces and edges of Ωj .
In BDDC, the degrees of freedom on F ij and E ik of ∂Ωi are scaled by D(i)

u,Fij and D(i)

u,Eik ,

respectively, defining the scaling D(i)
u for the BDDC preconditioner; see (3.3). Let us note that

for the case of ρ-scaling, we have D(i)T = D(i), for i = 1, . . . , N , while the deluxe scaling
matrix is not symmetric.

The standard preconditioner for the FETI-DP system is known as the Dirichlet precondi-
tioner; see [62]. We introduce the restriction operator RΓ, which restricts a vector ũ to the
interface by removing values at the interior nodes and its transpose RTΓ , which extends a vector
uΓ by zero.

For both kinds of scalings, we obtain the scaled jump operator

BD,Γ =
[
B

(1)
D,Γ, . . . , B

(N)
D,Γ

]
=
[
D(1)TB

(1)
Γ , . . . , D(N)TB

(N)
Γ

]
.

The standard Dirichlet preconditioner can then be written (see [62])

(3.1) M−1
D := BD,ΓR

T
ΓSΓΓRΓB

T
D,Γ = BD,ΓS̃B

T
D,Γ.
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3.1.2. Standard FETI-DP theory. In standard FETI-DP theory, condition number
bounds are constructed by estimating the Rayleigh quotient

〈M−1
D Fλ, λ〉F
〈λ, λ〉F

;

see, e.g., [43, Theorem 8.2]. By W̃ , we denote the finite element functions from W that are
assembled in the a priori primal variables. We have Ŵ ⊂ W̃ ⊂W ; see the end of Section 2.

For arbitrary λ and u := S̃−1BTλ ∈ W̃ , we have

〈M−1
D Fλ, λ〉F = 〈BDS̃BTD BS̃−1BTλ,BS̃−1BTλ〉 = 〈PDu, PDu〉S̃ = |PDu|2S̃ .

If we can prove that

|PDu|S̃ ≤ C|u|S̃(3.2)

with a constant C > 0, then we obtain the upper bound 〈M−1
D Fλ, λ〉F ≤ C 〈λ, λ〉F ; see [43,

the proof of the upper bound in Theorem 8.2]. From a Raleigh quotient argument, we then
have an upper bound for the maximum eigenvalue λmax(M−1

D F ) ≤ C. For the minimum
eigenvalue of M−1

D F it can be shown that 1 is a lower bound; see [43, Theorem 8.2]. The
lower bound can be obtained by simple linear algebra and by using that BPDu = Bu for
u ∈ W̃ ; for the latter equality, see [43, formula (8.1)]. Then, for the lower bound, we obtain

〈λ, λ〉F = 〈BS̃−1BTBDS̃
1/2S̃−1/2BTλ, λ〉 = 〈S̃−1/2BTλ, S̃1/2BTDBS̃

−1BTλ〉

≤ 〈S̃−1/2BTλ, S̃−1/2BTλ〉1/2〈S̃1/2BTDBS̃
−1BTλ, S̃1/2BTDBS̃

−1BTλ〉1/2

= 〈λ, λ〉F 1/2〈M−1
D Fλ, λ〉1/2;

see [57, Theorem 2.4.2] for the proof provided here.
Hence, from (3.2), we obtain the condition number estimate

κ(M−1
D F ) ≤ C,

where C is the positive constant from (3.2) and κ denotes the spectral condition number.

3.1.3. The standard BDDC algorithm. For BDDC, we will use a different ordering[
u

(1)
∆′ , . . . , u

(N)
∆′ , u

(1)
Π′ , . . . , u

(N)
Π′

]
instead of

[
u

(1)
∆′ , u

(1)
Π′ , . . . , u

(N)
∆′ , u

(N)
Π′

]
. We first need KΓΓ

and KΓI to define the Schur complement on the interface Γ,

SΓΓ := KΓΓ −KΓIK
−1
II K

T
ΓI .

The right-hand side is then given by [gT∆′ , g
T
Π′ ]

T , which is obtained by eliminating the interior
degrees of freedom from f . The BDDC system matrix is the fully assembled global Schur
complement, which can also be written as

S :=

[
RT∆′ 0

0 IΠ′

] [
I∆′ 0
0 RTΠ′

]
SΓΓ

[
I∆′ 0
0 RΠ′

] [
R∆′ 0

0 IΠ′

]
.

The BDDC system for uTΓ = [uT∆′ , u
T
Π′ ]

T with the corresponding right-hand side
gT = [gT∆′R∆′ , g

T
Π′RΠ′ ]

T is given by

SuΓ = g.
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Using the scaling Du introduced in Section 3.1.1, we can define the scaled assembly
operatorRT∆′,Du

acting on the dual degrees of freedom ∆′. The standard BDDC preconditioner
then reads in our notation as

M−1
BDDC :=

[
RT∆′,Du

RΓ 0

0 IΠ′

][
KBB K̃T

ΠB

K̃ΠB K̃ΠΠ

]−1 [
RTΓR∆′,Du

0
0 IΠ′

]
.(3.3)

3.2. Transformation of basis in FETI-DP and BDDC methods. Let us now briefly
recall the standard transformation-of-basis approach for FETI-DP and BDDC with a constant
scaling for any face and edge, e.g., multiplicity scaling or ρ-scaling for certain coefficient
distributions; see, e.g., [39, 41, 43, 44, 47]. Using partial finite element assembly, continuity
across the subdomain boundary of certain degrees of freedom can be enforced for the finite
element function. Using a transformation of basis from a nodal to a different basis, general
constraints can be enforced using the same technique.

Consider an edge E shared by Ωi, Ωj and other subdomains. Suppose that during the
Krylov iteration the iterates u should fulfill a constraint given by the normalized vector c
defined on ∂Ωi ∩ E (and equal to that on ∂Ωj ∩ E), i.e., such that

cT
(
u

(i)
E − u

(j)
E

)
= 0 ⇔ cTu

(i)
E = cTu

(j)
E(3.4)

for u(l)
E = u|∂Ωl∩E

, l ∈ {i, j}. For instance, c = 1
nE

(1, . . . , 1)T represents a common edge
average shared by Ωi and Ωj , where nE is the length of c, an example of the use of a non-nodal
basis function.

We refer to equations such as (3.4) as constraint and c as a constraint vector. We then
define a (square) transformation matrix

T
(l)
E =

[
c, C(l)⊥

]
, l ∈ {i, j},

where C(l)⊥ is chosen such that T (l)
E is orthogonal. We then define the transformation matrix

T (l), which acts on the complete subdomain boundary and which is identical to T (l)
E on the

edge E and the identity elsewhere. We obtain the transformed variables u(l), the stiffness
matrices K

(l)
, and the load vectors f

(l)
on Ωl as

K
(l)

= T (l)TK(l)T (l), u(l) = T (l)Tu(l), f
(l)

= T (l)T f (l), l ∈ {i, j}.

After this transformation of basis has been performed, an assembly in the new (a posteriori)
primal variables is used to enforce the given constraint.

This procedure indeed enforces our original constraint corresponding to c as follows. We
have

cTu
(l)
E = cT

[
c, C(l)⊥

]
u

(l)
E = u

(l)
E,1, l ∈ {i, j},

where u(l)
E,1 is the value at the first degree of freedom of the edge E . Let us now identify the

variables u(i)
E,1 and u(j)

E,1 by using partial finite element assembly of this degree of freedom. We

denote the new values on this edge by û(l)
E with ûE,1 := û

(i)
E,1 := û

(j)
E,1 := 1

2u
(i)
E,1 + 1

2u
(j)
E,1 for

the first degree of freedom and û(l)
E,k = u

(l)
E,k for k > 1. For the values transformed back to the

initial basis, we now find that

cTT
(i)
E û

(i)
E =

1

2
u

(i)
E,1 +

1

2
u

(j)
E,1 = cTT

(j)
E û

(j)
E ,

i.e., the constraint is enforced.
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3.3. Deflation and balancing in FETI-DP methods. In this section, we briefly explain
the deflation and the balancing approach for FETI-DP. Our presentation is based on [41,
Section 2 and Section 5] and [32, Section 4]. Note that the deflation or balancing approach for
BDDC is different from the BDDC method with a transformation of basis, and therefore it
will not be described; see [41].

Deflation (see [53]) is also known as projector preconditioning; see [15]. Deflation
(Projector Preconditioning) and Balancing approaches are used in order to add additional
constraints to the FETI-DP coarse space. Short introductions to deflation and balancing in the
context of FETI-DP and domain decomposition methods can be found in [15, 16, 27, 41, 51,
53] and the references therein.

In the following, for a matrix A we will denote by A+ an arbitrary pseudoinverse of A
satisfying AA+A = A and A+AA+ = A+. The following description is an extension of the
presentation in [41] to the case of a semidefinite matrix F ; it can be found in detail in [32].
Let U = (u1, . . . , us) be given as the matrix where the constraint vectors ui, i = 1, . . . , s, for
the Lagrange multipliers are stored as columns. We then define

P := U(UTFU)+UTF(3.5)

and multiply the FETI-DP system by (I − P )T . This yields the deflated system

(I − P )TFλ = (I − P )T d(3.6)

which is still consistent. Since range (U) ⊂ ker((I − P )TF ), we have that
range (F (I − P )) ⊂ ker(UT ) also for a semidefinite matrix F . Since (I − P )T is also
a projection, we have

(I − P )TF = F (I − P ) = (I − P )TF (I − P ),(3.7)

and therefore only the components of the dual variable in range (I − P ) are relevant to the
construction of the Krylov spaces. Let λ∗ denote the solution of the original system Fλ = d,
which is unique only up to an element in kerBT . Let λ̂ ∈ range (I −P ) be a solution of (3.6).
Then, λ̂ is identical to (I − P )λ∗ up to an element in kerBT . We have the decomposition

λ∗ = Pλ∗ + (I − P )λ∗ =: λ̄+ (I − P )λ∗,

where λ̄ can be expressed as λ̄ = Pλ∗ = U(UTFU)+UTFF+Fλ∗ = PF+d. As already
argued in [32], the solution in terms of u does not change if (I − P )λ∗ is replaced by λ̂, i.e.,

u∆ = S̃−1
(
f̃∆ −BTλ∗

)
= S̃−1

(
f̃∆ −BT (λ̄+ λ̂)

)
.

Preconditioning the deflated system of equations by the Dirichlet preconditioner M−1
D defined

in (3.1) gives

M−1
D (I − P )TFλ = M−1

D (I − P )T d.

Another multiplication with (I − P ) from the left gives the (symmetric) deflation or
projector preconditioner

(3.8) M−1
PP := (I − P )M−1

D (I − P )T .

As shown in [41, Theorem 6.1], the nonzero eigenvalues are not changed. The deflated and
preconditioned problem can then be written: Find λ ∈ range (I − P ) such that

M−1
PPFλ = M−1

PP d.
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Instead of computing λ̄ a posteriori, the computation can be executed iteratively
in the solver. This gives the balancing preconditioner M−1

BP := M−1
PP + PF+. As al-

ready stated in [32], the balancing preconditioner for a semidefinite matrix F is of the form
M−1
BP = M−1

PP + U(UTFU)+UTFF+, but we can equivalently use

M−1
BP = M−1

PP + U(UTFU)+UT

since it will be applied to Fλ = d. Using [41] and [32], we find that the eigenvalues ofM−1
BPF

and M−1
PPF are essentially the same.

4. Motivation for a generalized transformation-of-basis approach for general scal-
ings and arbitrary constraints.

4.1. Context and nomenclature. When FETI-DP and BDDC methods are combined
with deflation or balancing, typically an initial coarse space is defined, which introduces a
sufficient coupling to obtain invertibility of the subdomain problems. A simple vertex coarse
space can suffice as an initial coarse space. At the same time, an initial scaling is chosen; see,
e.g., Section 5.2. For heterogeneous problems, the scaling used in the preconditioner (i.e.,
ρ-scaling, deluxe scaling, etc.) is important to obtain a robust iterative method. Then, a second
coarse space is implemented by deflation or balancing to obtain faster convergence; see, e.g.,
[27, 41]. In this paper, we will denote the first coarse space also as the “a priori coarse space”
and the second coarse space, defined after the scaling, as “a posteriori coarse space”.

In adaptive FETI-DP and BDDC methods [1, 7, 12, 30, 31, 32, 33, 37, 38, 49, 50, 54,
55, 64], the a posteriori coarse space is highly dependent on the a priori scaling since the
computation of the approximate eigenvectors for the a posteriori coarse space makes use of the
a priori scaling. Indeed, the choice of an inappropriate a priori scaling (e.g., use of multiplicity
scaling for heterogeneous problems) will lead to an (unnecessarily) large a posteriori coarse
space. This can be observed, e.g., in [38]. We will denote the index set Π′ introduced in
Section 3.1 as the “a priori set of primal variables”. After a transformation of the standard
basis, we use an additional partial finite element assembly in the index set Π (our a posteriori
coarse space). Thus, the final set of primal variables is Π′ ∪ Π. The index set of the final
(or remaining) dual variables is therefore ∆ = ∆′ \ Π. We denote the index set Π as the “a
posteriori set of primal variables”.

Let us briefly illustrate the difference between the a priori and a posteriori coarse spaces
by considering a corresponding deflation method. Let us assume that after an initial coarse
space and a scaling D have been defined, based on the use of this scaling, a deflation vector
cD := c(D) has been chosen to further accelerate convergence. As an example, cD could
be defined by the solution of local eigenvalue problems as they appear in adaptive domain
decomposition methods (see [1, 7, 12, 30, 31, 32, 33, 37, 38, 49, 50, 54, 55, 64]) and where
the a priori defined scaling appears in the eigenvalue problems explicitly or implicitly. The
deflated method using the constraint cTDBw = 0 may allow the construction of a bound

|PDw|2S̃ ≤ C|w|
2
S̃

∀w ∈ {w ∈ W̃ : cTDBw = 0};(4.1)

cf. Section 3. However, the estimate (4.1) depends on the use of the scaling D in combination
with the constraint cTDBw = 0 and may not be valid anymore if a different scaling D̃ is used.

It is important to note that after the transformation, a diagonal scaling may not be diagonal
anymore. This occurs for non-nodal degrees of freedom such as edge averages. For nodal
degrees of freedom, an interaction between dual and primal variables also results when a
nondiagonal scaling such as deluxe scaling is used. The interaction between dual and primal
variables is not present in the classical theory, and a standard argument used in the classical
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Ωi Ωj

Ωk

Ωi Ωj

Ωk

Ωi Ωj

Ωk

FIG. 4.1. Cross sectional view of three subdomains Ωi, Ωj , and Ωk sharing the edge Eik . Arrows symbolize
redundant Lagrange multipliers in FETI-DP (left). Assume that, using deflation, one primal constraint is introduced
involving the Lagrange multiplier depicted in bold red color (center). In our implementation of the (generalized)
transformation-of-basis, continuity is now enforced between all three nodes using partial assembly (right).

E
Ω1 Ω2

FIG. 4.2. Decomposition of Ω = [0, 1] × [0, 1
2

] into two subdomains Ω1, Ω2 with homogeneous Dirichlet
boundary conditions on ∂Ω and given coefficient distribution. A non-homogeneous coefficient distribution with
ρ1 = 1 (white) and ρ2 = 1e6 (black) is considered. Initial primal variables (Π′) are indicated by gray squares.
Initial dual variables are indicated by circles. The red circle represents an a posteriori primal variable (Π′), i.e., here,
we enforce a scaling-dependent constraint by a transformation of basis. The yellow circle represents the remaining
dual variable.

theory, i.e., that iterates are zero in the primal variables, cannot be used anymore. In our
theory, the use of Lemma 6.3 and Lemma 6.4 replaces this standard argument. Constructing
the scaling for the transformed variables only in the remaining dual variables will in general
not give the desired result.

Then, for adaptive methods for instance, we can reduce a corresponding estimate for the
transformed P̂D operator to an already existing estimate as in [32].

This discussion is relevant for FETI-DP and BDDC methods with adaptive coarse spaces
where first a scaling is chosen (e.g., ρ- or deluxe-scaling) and then a coarse space is constructed
based on this scaling. We therefore believe that this is also of interest for the analysis of other
adaptive approaches [1, 7, 31, 54, 55]. The details of adaptive FETI-DP and BDDC methods
in combination with the generalized transformation-of-basis are discussed in [33].

Let us now revisit the classical theory considering an example where the assumption of
diagonal and constant scaling on any face and any edge, as assumed in [41], is not fulfilled.

4.2. Example. We now show that the generalized transformation-of-basis approach can
lead to nonzero values in non-nodal primal variables even for a diagonal scaling.

Consider the edge E with nodes Π (red circle) and ∆ (yellow circle) between the two
subdomains Ω1 and Ω2 as depicted in Figure 4.2.

The ρ-scaling for the degrees of freedom for the nodal basis is given by

D(1)
u = diag

(
1

1 + 1e6
,

1

2

)
and D(2)

u = I −D(1)
u .

Then, assume a (nondiagonal) transformation T of the form

T =

[
trr try
tyr tyy

]
(4.2)

with tyr, try 6= 0, TTT = I , and where the first column is given by a scaling dependent
constraint vector cTD = [trr, tyr]

T providing an estimate such as (4.1). The constraint is
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scaling-dependent since the estimate can only be obtained when the constraint is used in
combination with the given scaling. This is, e.g., typically the case in methods with adaptive
coarse spaces. If the scaling in the adaptive methods is changed, e.g., by restriction (see
below), then the condition number bound of the adaptive method may not be valid anymore.

The indices y and r in (4.2) refer to the nodes colored yellow (y) and red (r) in Figure 4.2.
In the new basis, the transformed ρ-scaling (see Definition 7.1) is

D̂(1)
u =

[ 1
1+1e6 t

2
rr + 1

2 t
2
yr

1
1+1e6 trrtry + 1

2 tyrtyy
1

1+1e6 trrtry + 1
2 tyrtyy

1
1+1e6 t

2
ry + 1

2 t
2
yy

]
=:

[
α β
γ δ

]
and

D̂(2)
u = I − D̂(1)

u =

[
1− α −β
−γ 1− δ

]
.

After enforcing continuity in the a posteriori primal variable, we have with wΠ = w1,Π =
w2,Π,

(P̂Dw)
(1)
Π = ((I − ÊDu

)w)
(1)
Π = wΠ − (αwΠ + βw1,∆ + (1− α)wΠ − βw2,∆)

= −β(w1,∆ − w2,∆).

Since in general β 6= 0 and w1,∆ 6= w2,∆, we obtain in general a nonzero value in the a
posteriori primal variables after P̂D = I − ÊDu

is applied; this is contrary to the assumptions
of the standard theory. The interaction of a posteriori primal and dual variables was also
observed in [31].

Neither the use of the standard scaling (D
(1)
u )∆ = 1

2 nor the transformed and restricted
scaling (D̂

(1)
u )∆ = 1

1+1e6 t
2
ry + 1

2 t
2
yy are adequate here.

5. Correspondence of FETI-DP using a generalized transformation-of-basis
approach to FETI-DP using deflation or balancing.

5.1. Preliminaries and solution spaces. In this section, we consider the FETI-DP
method in the transformed variables. For convenience, we order the primal variables first.

We show that for every FETI-DP or BDDC method with a generalized transformation-of-
basis approach, there exists a corresponding FETI-DP method using deflation or balancing
with essentially the same eigenvalues. The reverse is true under certain conditions; see
Assumption 1.

As in the standard transformation-of-basis approach, the constraints are stored in the
columns of the transformation matrix T . The transformation T transforms from a basis, e.g.,
with explicit averages or adaptive constraints, to the standard nodal basis. The transformation
T is block diagonal with respect to the subdomains. We assume that the columns of T are
orthonormal, and we can use TT , the transpose of T , to compute its inverse T−1. Note that
TT has to be replaced by T−1 if T is not orthogonal. The transformed variables are denoted
by w or locally by w(i), i = 1, . . . , N .

In the following, we make the following assumption for each edge and each face. For
simplicity, consider a single edge Z1 = Zl1 , l ∈ {i, j, k}, common to the three subdo-
mains Ωi, Ωj , and Ωk. Without loss of generality, we can assume that the transformations
T

(i)
Zi1

, T
(j)
Zj1

, T
(k)
Zk1

on the subdomain edges Z1 ∩ Ωi, Z1 ∩ Ωj , and Z1 ∩ Ωk are identical. This
implies that the numbering of the edge nodes is consistent for all three subdomains.

Here, we also implicitly use the assumption that a constraint vector does not span several
faces and/or edges, which is not valid, e.g., for the small FETI-DP coarse space in [24]
introduced for almost incompressible elasticity; see Assumption 1.
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We then need an assembly operator RT in the a posteriori primal variables. In contrast
to the standard method, we also need the multiplicity-weighted assembly operator for the a
posteriori primal variables defined by

RTµ := (RTR)−1RT ,(5.1)

and we therefore have RTµR = I . Here, the index µ stands for multiplicity.
Variables, which are transformed and then assembled are denoted by ŵ. We then have

ŵ := RTµT
Tw = RTµw.(5.2)

By construction, ŵ is continuous for the a posteriori set of primal variables given by Π and
the a priori primal variables given by Π′. The reasoning can be found in detail in the proof of
Lemma 6.3; see Section 10.

We will describe all steps in detail and for general scalings. The subtle details appear in
the proof of Theorem 6.7. Our results are therefore also of interest for the adaptive BDDC
methods in [1, 7, 31, 54, 55, 63], which combine deluxe scaling with a transformation of basis.

For simplicity, we always assume we have the a priori coarse space with all a priori
constraints enforced by partial assembly as in [39, 43, 44, 47]. Then, our a posteriori coarse
space consisting of a posteriori constraints is implemented using a transformation of basis and
partial assembly.

For the deflation approach, we introduce the finite element space

W̃Q̂ := {w ∈ W̃ : Q̂Tw = 0},

where the constraint vectors are stored in the columns of Q̂. We typically have Q̂ = BT Û ,
where Û contains the deflation vectors.

For our generalized transformation-of-basis approach, we introduce the space

W̃T,a := {ŵ = RTµT
Tw : w ∈ W̃}.

Here, certain columns in the transformation matrix T represent the deflation vectors. The two
spaces enforce the same constraints but correspond to different methods.

In the following, we will work with the space W̃T,a where all variables are transformed
to the new basis and are continuous in all primal variables. Let us recall that our orthogonal
transformation TT will perform the change of basis from the standard nodal finite element
basis to a non-nodal basis, e.g., with explicit averages or adaptive constraints. The inverse T
then transforms back to the nodal basis.

In subsequent sections, we just work with BΓ and BD,Γ, and in order to simplify the
notation, we write B = BΓ and BD = BD,Γ. In our theoretical considerations, we will
use the space W̃Q̂. In our implementation, we iterate in the space W̃T,a. The space W̃T,a is
obtained via partial subassembly and scattering of the corresponding values.

Note that when using the generalized transformation-of-basis approach, for nodes with
multiplicities larger than three, it can be simpler to implement constraints which can be
stronger than the ones using deflation; cf. Figure 4.1. In this case, the condition number using
the generalized transformation-of-basis approach is smaller than when using deflation. The
coarse space size remains unchanged if the stronger constraints are chosen.

As motivated in the introduction and shown in the following sections, the construction of
a transformation-of-basis approach with a posteriori constraints that yields the same condition
number as the deflation approach requires some modifications of the theory compared to
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standard FETI-DP approaches, i.e., where only a priori constraints are used. This results
from the fact that the primal components of PDw do in general not vanish—in contrast to
standard theory; cf. the motivation in Section 4. In the following sections, we define the new
P̂D operator and show the correspondence to a deflation method by replacing the standard
arguments in question by those given in our Lemmas 6.3 and 6.4.

5.2. The generalized transformation-of-basis approach for FETI-DP. For trans-

formed and assembled variables, we now define the transformed operators P̂D and ̂̃S by

P̂D := RTµT
T PD TR and ̂̃

S := RTTT S̃ TR,(5.3)

where PD = BTDB. Note that the operator PD is built from the jump operator B and the a
priori scaling D used with the a priori coarse space corresponding to the index set Π′.

Let us recall that RTTT and RTµT
T map functions from W̃ to W̃T,a, the space where

the variables are transformed and assembled in all primal variables. The operator TR then
maps functions from W̃T,a to the subspace W̃Q̂ ⊂ W̃ , the space where only the a priori primal
variables are assembled; cf. the lemmas in the following section.

For the theory, we will also use

B̂ := BTR and B̂D := BDTRµ.(5.4)

In practice, we will not implement a transformed version of B or BD but only carry out the
given matrix-vector multiplications before or after the (transposed) jump operator.

Let S̃ be the Schur complement using the standard nodal basis and assembled only in
the a priori set of primal variables. The operator TT S̃T is then transformed to the non-nodal

basis, e.g., based on edge averages or adaptive constraints, and ̂̃S = RTTT S̃TR is assembled
also in the a posteriori primal variables such that the new constraints are enforced; see (5.3).

In our generalized transformation-of-basis approach, the transformed, preconditioned
FETI-DP system matrix using the transformed Dirichlet preconditioner M̂−1

D is thus given by

M̂−1
D F̂ := (B̂D

̂̃
SB̂TD) (B̂

̂̃
S
−1

B̂T ) =
(
BDTRµ

̂̃
SRTµT

T︸ ︷︷ ︸
replaces S̃

BTD

)(
BTR

̂̃
S
−1

RTTT︸ ︷︷ ︸
replaces S̃−1

BT
)
.

(5.5)

Here, TRµ
̂̃
SRTµT

T and TR ̂̃
S
−1

RTTT replace the operators S̃ and S̃−1 used in FETI-DP
with deflation.

Note that the number of Lagrange multipliers and, thus, the number of rows in B is the
same as in the deflation approach since we keep Lagrange multipliers related to a posteriori
primal variables in the system. This is the essential difference to the standard transformation-of-

basis approach, where B∆ is used; see (5.6). This is possible since in the operator R ̂̃
S
−1

RT ,
the multiplication with R from the left does not change the a posteriori primal variables; the

multiplication by T in TR ̂̃
S
−1

RTTT then transforms back to a standard nodal basis; as a
result, the standard jump operator B can be applied from the left.

For the case of nonredundant Lagrange multipliers, by [41, Theorem 6.5], we know that
there exists a matrix Tλ so that BT = TλB. In the next section, we will provide a lemma that
extends [41, Theorem 6.5] to the case of redundant Lagrange multipliers.
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The preconditioned system (5.5) is different from the standard FETI-DP method using
a transformation of basis as, e.g., in [39, 40, 41, 43, 47], which can be written using the
transformed basis as

M−1
D F = (BD,∆

̂̃
SBTD,∆) (B∆

̂̃
S
−1

BT∆),(5.6)

where the operator B∆ only enforces continuity on the a posteriori dual variables and BD,∆ is
its scaled variant; cf., e.g., [44, 47].

5.3. Transformation in the space of Lagrange multipliers. A transformed scaling for
FETI-DP can be defined by constructing a transformation of basis in the space of Lagrange
multipliers as in [41]. This will, however, typically not be used in implementations. Instead
the formulation given by (5.5) is implemented. This section is only provided for completeness;
it can be skipped in a first reading.

Let us assume the case of redundant Lagrange multipliers and of transformation matrices
T (i), i = 1, . . . , N , such that T (i)

|Z = T
(s)
|Z for any face or any edge Z and any adjacent pair

{Ωi,Ωs}, 1 ≤ i, s ≤ N . Then, there exists a transformation of basis Tλ in the space of
Lagrange multipliers such that

BT = TλB.

We also have

BDT = (D(1),TTλB
(1), . . . , D(N),TTλB

(N)).

For a proof, see [46]. A corresponding relationship was formulated for nonredundant Lagrange
multipliers in [41, Theorem 6.5].

Now the transformed scaling can be defined. For a scaling matrix D(i), the explicit
transformed scaling matrix D̂(i) is defined by

D̂(i) := TTλ D
(i)Tλ for i = 1, . . . , N.

For problems with constant coefficients on edges or faces, the transformed scaling remains
diagonal if the original scaling was diagonal. For heterogeneous problems this is generally not
the case.

6. Eigenvalues of FETI-DP with a generalized transformation-of-basis approach
and with deflation or balancing. In this section, we show that FETI-DP using our general-
ized transformation-of-basis approach results in essentially the same eigenvalues as FETI-DP
using the corresponding deflation or balancing approach. The generalized transformation-of-
basis approach is different from the standard FETI-DP and BDDC methods using a transfor-
mation of basis [44, 47, 43, 39] in that it allows for an interaction of dual and primal variables
in the scaling.

In order to show the equivalence of eigenvalues, we need several assumptions collected
here.

ASSUMPTION 1. First, we assume that a constraint vector in the deflation approach does
not span several faces and/or edges. Second, if for an edge a constraint is enforced between
two neighboring subdomain, then this constraint should be enforced between all neighboring
subdomains, i.e., the situation given in Figure 4.1 (center) is not allowed. Third, but without
loss of generality, we assume the numbering of nodes on the interface to be matching between
adjacent subdomains.
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The first assumption is not valid for some FETI-DP methods given in the literature, e.g.,
for the FETI-DP method in [24] for almost incompressible elasticity, where all faces of each
subdomain contribute only a single constraint. In this case, the generalized transformation-of-
basis approach cannot be used.

If the second assumption is not valid, then the generalized transformation-of-basis ap-
proach will result in a smaller condition number than when using the deflation approach. The
coarse space size will remain unchanged, however.

REMARK 6.1. The generalized transformation-of-basis approach also results in the same
number of zero eigenvalues as for FETI-DP using deflation (cf. Figure 8.3) and analogously in
(I − P )TF U = 0 on range (UTFU)+; we also have F̂ U = 0.

To establish the equality of eigenvalues of FETI-DP (and BDDC) using the generalized
transformation-of-basis approach and of FETI-DP using deflation, we will show that

〈M̂−1
D F̂ λ̂, F̂ λ̂〉 = 〈P̂Dû, P̂Dû〉̂̃

S
= 〈PDu0, PDu0〉S̃ = 〈M−1

PPF (I − P )λ̂, F (I − P )λ̂〉,

where û ∈ W̃T,a and u0 ∈ W̃Q̂; see Theorem 6.7.

For this, we will show that for any assembled and transformed vector ŵ ∈ W̃T,a, we have
a w0 = TRŵ ∈ W̃Q̂ such that

|P̂Dŵ|2̂̃
S

= |PDw0|2S̃ .(6.1)

Vice versa, we will show that for any w0 ∈ W̃Q̂ a ŵ = RTµT
Tw0 ∈ W̃T,a exists such that

(6.1) holds, too.
We therefore have, for arbitrary scalings and coefficients, the same eigenvalues for the

deflation approach and the corresponding generalized transformation-of-basis approach.
REMARK 6.2. In standard FETI-DP and BDDC theory, bounds of the form

|PDw|2S̃ ≤ C|w|2
S̃

are established. For the adaptive coarse space approach in [32], we
have C = 4 max{NF , NEME}2TOL, where NF denotes the maximum number of faces of
any subdomain, NE the maximum number of edges of any subdomain, ME the maximum
multiplicity of any edge, and TOL a given tolerance. For more details, we refer the reader
to [33].

Using the definitions (5.2), (5.3), and (5.4), we have

|P̂Dŵ|2̂̃
S

= ŵT (B̂T B̂D)
̂̃
S (B̂TDB̂) ŵ

= wTTRµ (RTTTBTBDTRµ) RTTT S̃TR (RTµT
TBTDBTR)RTµT

Tw.

Given w0 ∈ W̃Q̂, we would like to show that TRRTµT
TBTDBw0 = BTDBw0. This, however,

is not directly clear and is the subject of Lemma 6.3.
Classically, it is argued (see, e.g., [45, 47, 43, 62]) that the operator TRRTµT

T reduces to
the identity on the dual variables and that BTDBw0 is zero in the primal variables. This latter
argument, however, is not valid here since BTDBw0 is not zero on the a posteriori set of primal
variables if the generalized transformation-of-basis approach corresponding to the deflation
approach is constructed. However, the newly introduced P̂D operator will be continuous in
the a posteriori set of primal variables.

Lemma 6.3 essentially states that TRRTµT
T can be seen as a projection onto the space

span {BTDBw0} with w0 given as before. In the following lemma, we also show the identity
TRRTµT

Tw0 = w0, which will be of use in Lemma 6.4.
LEMMA 6.3. Given w0 ∈ W̃Q̂, we have

TRRTµT
T w0 = w0 and TRRTµT

T BTDBw0 = BTDBw0.
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For the proof, see Section 10. Let us now have a closer look at B̂ŵ = BTRRTµT
Tw.

LEMMA 6.4. For ŵ ∈ W̃T,a there exists a w0 := TRŵ ∈ W̃Q̂ with

B̂ŵ = Bw0.(6.2)

Vice versa, for w0 ∈ W̃Q̂ there exists a ŵ := RTµT
Tw0 ∈ W̃T,a satisfying (6.2).

For the proof, see Section 10. We now prove the main relation for the deflation or the
balancing and the generalized transformation-of-basis approach; see equation (6.1).

LEMMA 6.5. For ŵ ∈ W̃T,a there exists a w0 := TRŵ ∈ W̃Q̂ such that

|P̂Dŵ|2̂̃
S

= |PDw0|2S̃(6.3)

holds. Vice versa, for w0 ∈ W̃Q̂ there exists a ŵ := RTµT
Tw0 ∈ W̃T,a such that (6.3) holds.

For the proof, see Section 10. We will now present a lemma essentially based on
Lemma 6.4, Lemma 6.3, and [43, equation (8.1)].

LEMMA 6.6. For ŵ ∈ W̃T,a, we have B̂P̂Dŵ = B̂ŵ.
For the proof, see Section 10. Note that Lemma 6.5 and Lemma 6.6 provide all the

tools to prove identical condition numbers for FETI-DP using a generalized transformation-
of-basis approach and FETI-DP with deflation or balancing: From Lemma 6.5, we have
|P̂Dŵ|2̂̃

S
= |PDw0|2S̃ . The relation |ŵ|̂̃

S
= |w0|S̃ for ŵ ∈ W̃T,a and w0 ∈ W̃Q̂ can also be

shown. The standard Rayleigh quotient estimate, e.g., [57, Theorem 2.4.2], [38, Lemma 3.2],
and [43, Theorem 8.2] then gives the eigenvalue bound. However, with Theorem 6.7, we give
a more general statement on the equality of all eigenvalues of the preconditioned operators,
where the relation between |w0|S̃ and |ŵ|̂̃

S
is not needed explicitly.

We can now formulate and prove the main theorem of our work.
THEOREM 6.7. Let an a priori coarse space ensure the invertibility of the local problems,

e.g., defined by a sufficient number of primal vertices. Then,

σ(M̂−1
D F̂ ) = σ(M−1

PPF ),

i.e., the eigenvalues of the preconditioned FETI-DP system matrix (M̂−1
D F̂ ) using a generalized

transformation-of-basis approach are the same as for the preconditioned FETI-DP system
matrix (M−1

PPF ) using deflation.
Furthermore,

σ(M̂−1
D F̂ ) \ {0} ⊂ σ(M−1

BPF ),

i.e., any nontrivial eigenvalue of the preconditioned FETI-DP system matrix (M̂−1
D F̂ ) using

a generalized transformation-of-basis approach equals an eigenvalue of the preconditioned
FETI-DP system matrix (M−1

BPF ) using balancing.

Proof. For an arbitrary λ̂, we define û :=
̂̃
S
−1

B̂T λ̂ ∈ W̃T,a. Then, we have

〈M̂−1
D F̂ λ̂, F̂ λ̂〉 = 〈B̂D

̂̃
SB̂TD B̂

̂̃
S
−1

B̂T λ̂ , B̂
̂̃
S
−1

B̂T λ̂〉 = 〈P̂Dû, P̂Dû〉̂̃
S

(6.4)

as, e.g., in [43, Theorem 8.2]; cf. the Definitions in (5.5), (5.4), and (5.3).
With u0 := TRû ∈ W̃Q̂ (cf. Lemma 6.4) consider

RTTT S̃TR︸ ︷︷ ︸
=

̂̃
S

RTµT
Tu0 =

̂̃
Sû = B̂T λ̂ = RTTTBT λ̂.(6.5)
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Now, we argue as in the proof of [41, Theorem 6.8] only that the operators are adapted
slightly. So, equivalently to (6.5), we may solve the saddle point problem[

S̃ Q̂

Q̂T 0

] [
u0

µ

]
=

[
BT λ̂

0

]
,(6.6)

where the assembly was replaced by the constraint Q̂Tu0 = 0, i.e., we have Q̂TTR = 0,
which explicitly uses the matrix Q̂ of W̃Q̂ := {w ∈ W̃ : Q̂Tw = 0}. Note that this is

connected to the deflation constraint matrix Û by Q̂ = BT Û ; see Section 5. From solving the
saddle point system (6.6), we obtain with µ ∈ range (Q̂T S̃−1Q̂)+ that

u0 = (I − S̃−1Q̂(Q̂T S̃−1Q̂)+Q̂T )S̃−1BT λ̂

= (I − S̃−1BT Û(ÛTBS̃−1BT Û)+ÛTB)S̃−1BT λ̂.

Thus, we obtain

Bu0 = (I − FÛ(ÛTFÛ)+ÛT )Fλ̂ = (I − P̂ )TFλ̂ = (I − P̂ )TF (I − P̂ )λ̂(6.7)

with P̂ := Û(ÛTFÛ)+ÛTF ; see (3.5) and (3.7). Note that P̂ satisfies the same properties
with respect to Û as P with respect to U .

Using Lemma 6.5, (6.4), and (6.7), we obtain

〈M̂−1
D F̂ λ̂, F̂ λ̂〉 (6.4)

= 〈P̂Dû, P̂Dû〉̂̃
S

Lemma 6.5
= 〈PDu0, PDu0〉S̃

(3.8),(6.7)
= 〈M−1

PPF (I − P̂ )λ̂, F (I − P̂ )λ̂〉.
(6.8)

Then, using (6.8) and the Courant-Fischer-Weyl min-max principle, we obtain for the eigen-
values of M̂−1

D F̂ and M−1
PPF , the equality

µk(M̂−1
D F̂ ) = min

dim(V )=k
max

λ̂∈V : ‖λ̂‖=1
〈M̂−1

D F̂ λ̂, F̂ λ̂〉

= min
dim(V )=k

max
λ̂∈V : ‖λ̂‖=1

〈M−1
PPF (I − P )λ̂, F (I − P )λ̂〉 = µk(M−1

PPF ),

where µk(M̂−1
D F̂ ) and µk(M−1

PPF ) denote the respective k-th eigenvalue sorted in increasing
order. The relation between the eigenvalues of M−1

PPF and M−1
BPF can be found in [51] or,

using our notation, in [41].
Note that we have 0 ∈ σ(M̂−1

D F̂ ) also for the case of nonredundant Lagrange multipliers
if Û is not empty; cf. Remark 6.1. This is different compared to the classic FETI-DP methods
using a transformation of basis and results from the fact that constraints in B are applied to
vectors which are already continuous in the a posteriori primal variables. These Lagrange
multipliers are not discarded since they allow us to implement an interaction of a posteriori
primal and a posteriori dual variables through the scaling inBD; see the preconditioned system
in (5.5).

7. Modified operators and condition number estimate for BDDC with a generalized
transformation-of-basis approach. In the previous sections, we have shown that we can
use the generalized transformation-of-basis in order to derive a FETI-DP approach using a
change of variables and a partial assembly with the same condition number as a corresponding
FETI-DP method with the deflation or the balancing approach. Given the close relations
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between FETI-DP and BDDC methods, a corresponding BDDC method using a generalized
transformation-of-basis approach can also be constructed.

We will use the assembly operator RT∆′ that assembles all degrees of freedom of
∆′ = Π ∪∆, i.e., all a posteriori primal (Π) and remaining dual (∆) degrees of freedom; cf.
the presentation of standard BDDC at the end of Section 3.1. Then, we introduce the notation

(7.1) R′ :=

[
IΠ′ 0
0 R∆′

]
,

where R′ leaves the initial coarse space variables unchanged and performs the assembly in
all other interface variables. The BDDC system matrix is thus the Schur complement on the
interface

S = R′T S̃R′.(7.2)

Note that since the transformations are chosen consistently for any face and any edge and
since R′R′T assembles and redistributes information in both the a posteriori primal and the
remaining dual degrees of freedom, we have

TR′R′T = R′R′TT and TTR′R′T = R′R′TTT .(7.3)

We now introduce the scaling matrix Du for the untransformed degrees of freedom u in
BDDC corresponding to the untransformed scaling D of the Lagrange multipliers in FETI-DP.

DEFINITION 7.1 (Transformed Degree of Freedom Scaling). For a scaling matrix D(i)
u ,

the transformed scaling matrix D̂(i)
u is defined by

D̂
(i)
u,∆′ := T

(i)T
∆′ D

(i)
u,∆′T

(i)
∆′ for i = 1, . . . , N.

The transformed BDDC scaling is then given by D̂u := TTDuT . Note that, an identity
is introduced in the scaling for the a priori primal variables Π′ to fit the dimension in the
equations; see the definition of T in (10.6). Then, the BDDC preconditioner for the system
matrix (7.2) is defined by

M̂−1
BDDC := R′TDuTR (RTTT S̃TR)−1RTTTDuR

′ = R′TTD̂uR
̂̃
S
−1

RT D̂uT
TR′,

where R′ was introduced in (7.1) and R defined in (10.8) replicates the a posteriori primal
variables.

Thus, the preconditioned system matrix in our generalized transformation-of-basis ap-
proach is

(7.4) M̂−1
BDDC S =

(
R′TTD̂uR

̂̃
S
−1

RT D̂uT
TR′

)(
R′T S̃R′

)
.

Since the scaling D̂u affects dual and a posteriori primal variables, the method is clearly
different from BDDC with a standard transformation of basis and transformed scaling, which
can be written as

M−1
BDDC S =

[
IΠ′∪Π 0

0 RT
∆,D̂u,∆

] ̂̃
S
−1
[
IΠ′∪Π 0

0 R∆,D̂u,∆

]
S
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and where D̂u,∆ is a transformed scaling acting only on the remaining dual variables ∆ and
IΠ′∪Π is the identity on all primal variables Π′ ∪ Π. In our preconditioner, however, an
interaction between a posteriori dual and primal variables can be implemented by using a
nondiagonal Du. This interaction can be necessary; cf. Section 4.2.

The EDu
operator, which is central to the condition number proof of BDDC, is given by

EDu
:= R′R′TDu. We now define

ÊDu
:= RTµT

TR′R′TDuTR.

LEMMA 7.2. We have

i) ÊDu = RTµED̂u
R,

ii) P̂D = I − ÊDu .

Proof.
i) By (7.3), we obtain

ÊDu
= RTµT

TR′R′TDuTR = RTµR
′R′TTTDuTR = RTµR

′R′T D̂uR = RTµED̂u
R.

ii) Since RTµ = (RTR)−1RT , we have RTµR = I . Combining the previous statement, the
standard relation PD = I − EDu

, and (5.3), we also have

P̂D = RTµT
TPDTR = RTµ (I − ED̂u

)R = I − ÊDu
.

THEOREM 7.3. Let an a priori coarse space ensure the invertibility of the local problems,
e.g., defined by using a sufficient number of primal vertices. Then

σ(M̂−1
BDDC S) \ {0, 1} ⊂ σ(M̂−1F̂ ) = σ(M−1

PPF ),

i.e., except for zeros and ones, the preconditioned BDDC system matrix M̂−1
BDDC S has the

same eigenvalues as the preconditioned FETI-DP system matrix using either a generalized
transformation-of-basis approach or deflation.

Proof. The proof is based on the known relation between BDDC and FETI-DP; see [47].
The preconditioned BDDC system operator is given by

M̂−1
BDDC S = (R′TTD̂uR

̂̃
S
−1

RT D̂uT
TR′) (R′T S̃R′),

which, except for zeros, has the same eigenvalues as

̂̃
S
−1

RT D̂uT
TR′R′T S̃R′R′TTD̂uR.

From (7.3) and RRTµR
′ = R′, we obtain

̂̃
S
−1

RT D̂uT
TR′R′T S̃R′R′TTD̂uR =

̂̃
S
−1

RT D̂uR
′R′TRµR

TTT S̃TRRTµR
′R′T D̂uR

=
̂̃
S
−1

ÊTDu

̂̃
SÊDu

,

which then has the same eigenvalues as

ÊDu

̂̃
S
−1

ÊTDu

̂̃
S.

By using P̂D = I − ÊDu
from Lemma 7.2 and the estimate from Theorem 6.7, we find

that the eigenvalues (except for zero and one) of the BDDC method using the generalized
transformation-of-basis approach are identical to those of FETI-DP using the generalized
transformation-of-basis or the deflation approach.
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FIG. 8.1. Irregular decomposition of the unit cube with a composite material using METIS [28, 29]. High
coefficients ρ2 = 1e+06 are shown in dark purple in the picture, and subdomains are shown in different colors in
the background and by half-transparent slices. Visualization for N = 8 subdomains and 1/h = 12 (left), N = 27
subdomains and 1/h = 18 (center), and N = 64 subdomains and 1/h = 24 (right).

FIG. 8.2. Irregular decomposition of the unit cube with a regular checkerboard material using METIS [28, 29].
High coefficients ρ2 = 1e+06 are shown in dark purple in the picture, and are subdomains shown in different colors
in the background and by half-transparent slices. Visualization for N = 8 subdomains and 1/h = 12 (left), N = 27
subdomains and 1/h = 18 (center), and N = 64 subdomains and 1/h = 24 (right).

Remarks on the implementation of BDDC. Let us note that as in the case of adaptive
FETI-DP, the a posteriori set of primal degrees of freedom (given by the index set Π) also
have to be scaled by the transformed scaling D̂u. Thus, compared to the standard BDDC

preconditioner, we replace S̃−1 by ̂̃S−1

, Du by D̂u and assemble, using RT , the a posteriori
primal degrees of freedom between the application of the scaling D̂u and the solution of the

system of equations associated with ̂̃S, i.e., in the preconditioner we solve systems of the form̂̃
Sx = RT D̂uw for the unknown x ∈ W̃T,a; see (7.4).

8. Application to an example for the diffusion equation. We now present results
for the diffusion equation with highly varying coefficients ρ ∈ [1, 1e+06] on the unit cube
Ω = [0, 1]3 and an irregular METIS (see [28, 29]) decomposition for N subdomains. For the
face with x = 0, we enforce homogeneous Dirichlet boundary conditions and for all other faces
homogeneous Neumann boundary conditions. We consider two materials. First, we consider a
soft matrix material with ρ1 = 1 and an embedded stiff material in the form of N2/3 beams
with ρ2 = 1e+06 running from the face with x = 0 to the face with x = 1; see Figure 8.1.
In the second example, the Young modulus is distributed in a regular checkerboard pattern;
see Figure 8.2. We apply the adaptive coarse space approach from [32] to obtain a method
which is independent of the coefficient jump. Our convergence criterion for the preconditioned
conjugate gradients is a relative reduction of the preconditioned residual of 1e+06. Our results
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TABLE 8.1
Diffusion equation with ρ1 = 1, ρ2 = 1e+06. Coarse spaces for TOL = 10 for all generalized eigenvalue

problems. |Π′|: size of a priori coarse space, |Π|: number of additional a posteriori constraints in the generalized
transformation-of-basis approach (gToB), |Û |: number of additional constraints in the deflation approach.

3D Composite material (N2/3 beams), METIS partitioning, and 1/h = 6N1/3.
FETI-DP (Deflation/PP) FETI-DP (gToB) BDDC (gToB)

N |Π′| λmin λmax its |Û | λmin λmax its |Π| λmin λmax its |Π|
23 30 1.00 7.59 14 32 1.00 7.59 14 20 1.00 7.59 13 20
33 165 1.00 8.19 18 203 1.00 8.19 18 135 1.00 8.19 14 135
43 468 1.00 10.27 23 545 1.00 10.27 23 336 1.00 10.27 18 336
53 1066 1.00 10.88 23 1071 1.00 10.88 22 645 1.00 10.88 18 645
63 1878 1.00 9.20 23 1837 1.00 9.20 23 1099 1.00 9.20 18 1099

TABLE 8.2
Diffusion equation with ρ1 = 1, ρ2 = 1e+06. Coarse spaces for TOL = 10 for all generalized eigenvalue

problems. |Π′|: size of a priori coarse space, |Π|: number of additional a posteriori constraints in the generalized
transformation-of-basis approach (gToB), |Û |: number of additional constraints in the deflation approach.

3D checkerboard coefficients (dN/2e cubes with high coefficients),
METIS partitioning, and 1/h = 6N1/3.

FETI-DP (Deflation/PP) FETI-DP (gToB) BDDC (gToB)

N |Π′| λmin λmax its |Û | λmin λmax its |Π| λmin λmax its |Π|
23 30 1.00 7.31 17 14 1.00 7.31 17 9 1.00 7.31 14 9
33 165 1.00 8.35 20 45 1.00 8.35 20 29 1.00 8.35 16 29
43 468 1.00 8.93 22 188 1.00 8.93 22 120 1.00 8.93 18 120
53 1066 1.00 12.36 22 245 1.00 12.36 22 150 1.00 12.36 18 150
63 1878 1.00 9.72 23 545 1.00 9.72 23 326 1.00 9.72 19 326

in Tables 8.1 and 8.2 show identical estimates for λmin and λmax for all three methods in
accordance with the theory. In Figure 8.3, all eigenvalues of the three preconditioned operators
were computed numerically for 1/h = 12. We see that indeed all eigenvalues other than 0 and
1 are identical, as predicted by the theory. Note that the sizes of |Π| and |Û | are not equal. An
explanation is given in Section 4 and Figure 4.1.

9. Conclusion. The focus of this paper is to provide a generalized transformation-of-
basis approach for FETI-DP and BDDC with essentially the same eigenvalues as known
FETI-DP methods using deflation or balancing.

A known disadvantage of deflation and balancing methods is that the coarse space has to
be solved quite exactly; cf. [41]. The generalized transformation-of-basis approach or the use
of local saddle point problems provide a robust remedy, and adaptive multi-level extensions
are easier to construct.

We have presented FETI-DP and BDDC methods using the deflation vectors in the
construction of the generalized transformation-of-basis approach; see (5.5) for FETI-DP and
see (7.4) for BDDC. As in [41], we have to assume that the deflation vectors do not span
several edges or faces.

For general scalings (as necessary for heterogeneous problems), the classical approaches
to FETI-DP and BDDC with a standard transformation of basis have to be revisited and
modified. The modifications result from the fact that in deflation or balancing, in general
an interaction between primal and dual variables can occur. This interaction is not present
in traditional FETI-DP and BDDC with a transformation of basis but is possible in our
generalized approach. As a result of this interaction, a standard assumption, i.e., that PDw and
(I − EDu)w are zero in the second set of primal variables (a posteriori coarse space), is not
valid anymore. In our theory, this traditional argument is replaced by Lemma 6.3. Building on
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FIG. 8.3. Plot of the eigenvalues of the preconditioned operators for FETI-DP with projector preconditioning
(M−1

PPF ) and a transformation of basis (M̂−1
T F̂ ) (top left), BDDC with a transformation of basis (M̂−1

BDDCS) (top
right) and the largest 50 eigenvalues of the preconditioned operators (bottom center) for the composite material, an
irregular decomposition of the unit cube into eight subdomains, and 1/h = 12. The eigenvalues greater than one are
identical for all three algorithms.

this lemma, the equivalence between the generalized transformation-of-basis approach and the
corresponding deflation or balancing approach can be shown.

Thus, finally, our FETI-DP and BDDC methods using a generalized transformation-
of-basis approach satisfy the same condition number bound and essentially have the same
eigenvalues as the FETI-DP method using deflation or balancing. The numerical results
presented for scalar elliptic problems support our findings.

In combination with adaptive coarse spaces, competitive parallel FETI-DP methods can
be implemented using the generalized transformation-of-basis approach. For heterogeneous
problems, these can improve the standard FETI-DP both with respect to time to solution and
precision; see [33, 35, 46].

10. Proofs of Lemma 6.3–Lemma 6.6. We here provide the proofs not given above.
Proof of Lemma 6.3. For the proof of this lemma, we exploit the structure of the given

operators, which are block diagonal with respect to the local faces and edges. In order to
facilitate the analysis, let us assume that a posteriori constraints are only associated with the
edge Zl1 . Now consider the orthonormalized set of constraint vectors (q1

Zl1
, . . . , qrZl1

) on
Zl,1. Then, introduce

TZl1
,ΠZl1

:=
[
q1
Zl1

, . . . , qrZl1

]
.(10.1)

Using a modified Gram-Schmidt algorithm, we compute a matrix TZl1
,∆Zl1

so that

TZl1
:=
(
TZl1

,ΠZl1
, TZl1

,∆Zl1

)
is a square matrix and TTZl1

TZl1
= I , i.e., TZ,∆Z will
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be orthogonal to the constraint space span
(
q1
Zl1

, . . . , qrZl1

)
. For convenience, we order the

primal variables first.
For each subdomain Ωl, we denote the faces and/or edges by Zl1 , . . . ,Zls . For n > 1,

the matrix TZln ,ΠZln
is void and TZln

= [TZln ,∆Zln
] = I . We assume that the degrees of

freedom of all the faces and edges of Ωl are ordered such that the degrees of freedom on Zl1
are ordered first, those of Zl2 are ordered second, etc. Then

T
(l)
∆′l

:=
(
T

(l)
Πl
, T

(l)
∆l

)
:=



TZl1
,ΠZl1

TZl1
,∆Zl1

0 . . . . . . 0

0 0 I 0 . . . 0
...

... 0
. . . . . .

...
...

...
...

. . . . . . 0
0 0 0 . . . 0 I

(10.2)

represents the transformation from the new (non-nodal) basis to the old (nodal) basis, still
missing an assembly operation, i.e.,

w
(l)
∆′l

= T
(l)
∆′l
w

(l)
∆′l
.(10.3)

As mentioned before, the transformations are chosen consistently, i.e., for the three
subdomains, we have for the local transformations of Z1 shared by Ωi, Ωj , and Ωk that

TZi1
,ΠZi1

= TZj1
,ΠZj1

= TZk1
,ΠZk1

and TZi1
,∆Zi1

= TZj1
,∆Zj1

= TZk1
,∆Zk1

.(10.4)

T
(l)T
∆′l

T
(l)
∆′l

= I , l ∈ {i, j, k}, also holds, and the columns of T (l)
Πl

span the range of all constraint
vectors associated with Ωl, l ∈ {i, j, k}. Therefore, using (10.2) and (10.3), we have

T
(l)T
Πl

wl,∆′l =
[
I 0 . . . 0

]

wl,ΠZl1

wl,∆Zl1

...
wl,∆Zls

 = wl,ΠZl1
, for l ∈ {i, j, k}.(10.5)

Next, we can give the relation of the local transformation matrices and the global transformation
matrix

T =

[
IΠ′ 0

0 blockdiagl=1,...,N (T
(l)
∆′l

)

]
.(10.6)

The transformed variables then still lack an assembly operation. In the following, we also
use the simplified index Z1 instead of Zl1 , for l ∈ {i, j, k}, since this edge is shared by these
three subdomains and since (10.4) holds. In order to enforce

w
(i)
ΠZ1

=w
(j)
ΠZ1

=w
(k)
ΠZ1

,(10.7)

we have introduced the global assembly operator RT and its transpose, the restriction operator
R, which replicates the a posteriori primal degrees of freedom (given by the index set Π).

The restriction operator R is of the form

R =


IΠ′ 0 0 . . . . . . 0
0 (∗)Π1 (∗)∆1 0 . . . 0
...

... 0
. . .

...
...

...
...

. . . 0
0 (∗)ΠN

0 . . . 0 (∗)∆N

 ,(10.8)
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where the matrix ((∗)Πi
, (∗)∆i

), i = 1, . . . , N , is a permutation of the columns of the
identity matrix. The operator R replicates the a posteriori degrees of freedom to the different
subdomains but does not change the a priori set of primal variables.

The local version of RT , restricted to the considered edge Z1, is given by

RTZ1
: =

[
RTΠZ1

RT∆Z1

]
:=


Ii,ΠZ1

0 Ij,ΠZ1
0 Ik,ΠZ1

0
0 Ii,∆Z1

0 0 0 0
0 0 0 Ij,∆Z1

0 0
0 0 0 0 0 Ik,∆Z1

 ,
and the local version of the multiplicity-weighted operator is

RTZ1,µ : =

[
1
3R

T
ΠZ1

RT∆Z1

]
.

We are now ready to localize the expression TRRTµT
T to prove the statements of the lemma.

In the following, we use u ∈ {w0, B
T
DBw0} in order to realize certain computations

for w0 and BTDBw0 simultaneously; u will be replaced by the corresponding function when
necessary.

First, consider TRRTµT
Tu. From uT = (u(1)T , . . . , u(N)T )T , we obtain the local

functions u(l) ∈ Wl, l = 1, . . . , N , and for l ∈ {i, j, k}, we define u(l)
Z1

as the values at the
degrees of freedom on the edge Z1. For l = {i, j, k}, the values of the local function u(l) on
all remaining degrees of freedom on (∂Ωl,h ∩ Γh) \ Z1 are denoted by u(l)

ZC
1

. For l /∈ {i, j, k},

we have u(l) = u
(l)

ZC
1

.
Thus,

TTu =


uΠ′

A(1)

...
A(N)

 with A(l) :=



T
(l)
∆l

T
u

(l)

ZC
1
, l /∈ {i, j, k},

T
(l)
Πl

T

[
u

(l)
Z1

u
(l)

ZC
1

]

T
(l)
∆l

T

[
u

(l)
Z1

u
(l)

ZC
1

]
, l ∈ {i, j, k},

since ∆′l = ∆l for l /∈ {i, j, k}, and thus we also have

RRTµT
Tu =


uΠ′

Â(1)

...
Â(N)

 ,
where

Â(l) :=



A(l), l /∈ {i, j, k},
1
3

(
T

(i)
Πi

T

[
u

(i)
Z1

u
(i)

ZC
1

]
+ T

(j)
Πj

T

[
u

(j)
Z1

u
(j)

ZC
1

]
+ T

(k)
Πk

T

[
u

(k)
Z1

u
(k)

ZC
1

])

T
(l)
∆l

T

[
u

(l)
Z1

u
(l)

ZC
1

]
, l ∈ {i, j, k}.
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Here, we have used (10.2), (10.8), and (5.1).

From (10.2) in compact form, we have

T
(l)
∆′l

=
[
T

(l)
Πl

T
(l)
∆l

]
=

[
TZ1,ΠZ1

TZ1,∆Z1
0

0 0 T
(l)

ZC
1

]
=

[
TZ1,ΠZ1

TZ1,∆Z1
0

0 0 I

]
(10.9)

for l ∈ {i, j, k} and T (l)
∆′l

= T
(l)
∆l

= I otherwise.

We now apply T to RRTµT
Tu or locally, T (l)

∆′l
to Â(l). We restrict ourselves to the case

of l ∈ {i, j, k} since there is nothing to show for l /∈ {i, j, k}, i.e., T (l)
∆′l
Â(l) = u

(l)

ZC
1

= u(l).
Then, for l ∈ {i, j, k}, we obtain

T
(l)
∆′l
Â(l) =

1

3
T

(l)
∆′l


T

(i)
Πi

T

[
u

(i)
Z1

u
(i)

ZC
1

]

T
(l)
∆l

T

[
u

(l)
Z1

u
(l)

ZC
1

]
+

1

3
T

(l)
∆′l


T

(j)
Πj

T

[
u

(l)
Z1

u
(l)

ZC
1

]

T
(l)
∆l

T

[
u

(l)
Z1

u
(l)

ZC
1

]
+

1

3
T

(l)
∆′l


T

(k)
Πk

T

[
u

(k)
Z1

u
(k)

ZC
1

]

T
(l)
∆l

T

[
u

(l)
Z1

u
(l)

ZC
1

]


(10.9)
=

1

3
T

(l)
∆′l


[
TTZ1,ΠZ1

0
] [u(i)

Z1

u
(i)

ZC
1

]
[
TTZ1,∆Z1

0

0 I

][
u

(l)
Z1

u
(l)

ZC
1

]
+

1

3
T

(l)
∆′l


[
TTZ1,ΠZ1

0
] [u(j)

Z1

u
(j)

ZC
1

]
[
TTZ1,∆Z1

0

0 I

][
u

(l)
Z1

u
(l)

ZC
1

]


+
1

3
T

(l)
∆′l


[
TTZ1,ΠZ1

0
] [u(k)

Z1

u
(k)

ZC
1

]
[
TTZ1,∆Z1

0

0 I

] [
u

(l)
Z1

u
(l)

ZC
1

]
 .

Without loss of generality, we consider l = i. Then, the last equation becomes

T
(i)
∆′i
Â(i) =

1

3

[
TZ1,ΠZ1

TZ1,∆Z1
0

0 0 I

]TTZ1,ΠZ1
0

TTZ1,∆Z1
0

0 I

[u(i)
Z1

u
(i)

ZC
1

]

+
1

3

[
TZ1,ΠZ1

TZ1,∆Z1
0

0 0 I

]TTZ1,ΠZ1
0 0 0

0 0 TTZ1,∆Z1
0

0 0 0 I



u

(j)
Z1

u
(j)

ZC
1

u
(i)
Z1

u
(i)

ZC
1



+
1

3

[
TZ1,ΠZ1

TZ1,∆Z1
0

0 0 I

]TTZ1,ΠZ1
0 0 0

0 0 TTZ1,∆Z1
0

0 0 0 I



u

(k)
Z1

u
(k)

ZC
1

u
(i)
Z1

u
(i)

ZC
1


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=
1

3

[
u

(i)
Z1

u
(i)

ZC
1

]
+

1
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(10.10)

This shows that we can focus on the degrees of freedom on the edge Z1 since TRRTµT
T

reduces to the identity on the degrees of freedom on Γ \ Z1, i.e., uT S̃u = uTTRµ
̂̃
SRTµT

Tu
for u with u|Z1

= 0.
By a short computation, we obtain(
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Thus, (10.10) reduces to

T
(l)
∆′l
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 .(10.11)

In the two following parts of the proof, we have to distinguish between u = w0 and
u = BTDBw0.

First, for u = w0 with w(l)
0,Z1

:= w0|∂Ωl∩Z1
, for l ∈ {i, j, k}, we have
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Since w0 ∈ W̃Q̂, we know from (10.5) and (10.7) that the jump across Z1 of (w
(r1)
0 , w

(r2)
0 )

(r1, r2 ∈ {i, j, k}, r1 6= r2) is orthogonal to the constraint vectors introduced before. Hence,
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(10.12)

Second, consider u = BTDBw0. Using u(i)
Z1

=
(
BTDBw0

)
|∂Ωi∩Z1

, we have
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Using the corresponding formulas for u(j)
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and u(k)
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, we obtain
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(10.13)

As before, the orthogonality to the constraint vectors of the jump across Z1 of (w
(r1)
0 , w

(r2)
0 )

(r1, r2 ∈ {i, j, k}, r1 6= r2) implies with (10.13)

TZ1,ΠZ1
TTZ1,ΠZ1

(
u

(j)
Z1

+ u
(k)
Z1
− 2u

(i)
Z1

)
= 0;(10.14)

see (10.12).

Therefore, for u = w0 and u = BTDBw0, from (10.11) with (10.12) and (10.14), we
likewise have

T
(l)
∆′l
Â(l) =

[
u

(l)
Z1

u
(l)

ZC
1

]
,

which finally yields

TRRTµT
Tu = u

for any w0 ∈ W̃Q̂ and u = w0 or u = BTDBw0.

Proof of Lemma 6.4. As in the proof of Lemma 6.3, we assume that a posteriori constraints
are only associated with the edge Z1.
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Let ŵ ∈ W̃T,a be given. Let

w0 := TRŵ = TRRTµT
Tw = T
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∗



.

By construction, we have B̂ŵ = BTRŵ = Bw0. Then, with ŵ0,Π := 1
3 (w

(i)
Πi

+w
(j)
Πj

+w
(k)
Πk

)
and

w
(l)
0,∆′l

:=
[
T

(l)
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T
(l)
∆l

] [ŵ0,Π

w
(l)
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]
, l ∈ {i, j, k},

we also have

ŵ0,Π = T
(r1)T
Πr1

w
(r1)
0,∆′r1

= T
(r2)T
Πr2

w
(r2)
0,∆′r2

,

for r1, r2 ∈ {i, j, k}, r1 6= r2. From the construction of T (l)
Πl

, l ∈ {i, j, k}, it follows that the

jump across Z1 of (w
(r1)
0 , w

(r2)
0 ) is orthogonal to the constraint vectors; cf. (10.1), (10.5), and

(10.7). Since the constraints are local and we have assumed that a posteriori constraints are
only associated with the edge common to Ωi, Ωj , and Ωk, we find also that all other local
combinations (w

(r1)
0 , w

(r2)
0 ), r1 6= r2, r1, r2 ∈ {1, . . . , N}, satisfy the constraints. Thus, w0

fulfills all constraints introduced before, i.e., w0 ∈ W̃Q̂. More general cases can be treated
analogously.

Let w0 ∈ W̃Q̂ be given. By the first identity of Lemma 6.3, we have w0 = TRRTµT
Tw0.

Define ŵ := RTµT
Tw0. It yields

Bw0 = BTRRTµT
Tw0 = B̂ŵ.

Again, more general cases can be treated analogously.
Proof of Lemma 6.5. Let ŵ ∈ W̃T,a be given. Then, by using the first part of Lemma 6.4

and the second part of Lemma 6.3, we have

|P̂Dŵ|2̂̃
S

= ŵT B̂T B̂D
̂̃
SB̂TDB̂ŵ = w0B

T B̂D
̂̃
SB̂TDBw0

= w0B
TBDS̃B

T
DBw0 = |PDw0|2S̃

with w0 := TRŵ ∈ W̃Q̂.

Let w0 ∈ W̃Q̂ be given. Then, by using the second part of Lemma 6.3 and the second
part of Lemma 6.4, we have

|PDw0|2S̃ = wT0 P
T
D S̃PDw0 = ŵT B̂T B̂D

̂̃
SB̂TDB̂ŵ = |P̂Dŵ|2̂̃

S

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

74 A. KLAWONN, M. KÜHN, AND O. RHEINBACH

with ŵ := RTµT
Tw0 ∈ W̃T,a.

Proof of Lemma 6.6. By the arguments from Lemma 6.4, Lemma 6.3, and the identity
BPDw = Bw for w ∈ W̃ from [43, equation (8.1)] and W̃Q̂ ⊂ W̃ , with w0 := TRŵ, we
have,

B̂P̂Dŵ = B̂B̂TDB̂ŵ = B̂B̂TDBw0 = BTRRTµT
TBTDBw0 = BBTDBw0 = Bw0 = B̂ŵ.
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