
ETNA
Kent State University and

Johann Radon Institute (RICAM)

Electronic Transactions on Numerical Analysis.
Volume 52, pp. 480–508, 2020.
Copyright c© 2020, Kent State University.
ISSN 1068–9613.
DOI: 10.1553/etna_vol52s480

ON POLE-SWAPPING ALGORITHMS
FOR THE EIGENVALUE PROBLEM∗

DAAN CAMPS†, THOMAS MACH‡, RAF VANDEBRIL§, AND DAVID S. WATKINS¶

Abstract. Pole-swapping algorithms, which are generalizations of the QZ algorithm for the generalized eigen-
value problem, are studied. A new modular (and therefore more flexible) convergence theory that applies to all
pole-swapping algorithms is developed. A key component of all such algorithms is a procedure that swaps two
adjacent eigenvalues in a triangular pencil. An improved swapping routine is developed, and its superiority over
existing methods is demonstrated by a backward error analysis and numerical tests. The modularity of the new
convergence theory and the generality of the pole-swapping approach shed new light on bi-directional chasing
algorithms, optimally packed shifts, and bulge pencils, and allow the design of novel algorithms.

Key words. eigenvalue, QZ algorithm, pole swapping, convergence

AMS subject classifications. 65F15, 15A18

1. Introduction. The standard algorithm for computing the eigenvalues of a small-
to medium-sized non-Hermitian matrix A ∈ Cn×n is still Francis’s implicitly-shifted QR
algorithm [14, 33]. In many applications, eigenvalue problems arise naturally as generalized
eigenvalue problems for a pencil A− λB, and for these problems the Moler-Stewart variant
of Francis’s algorithm [24], commonly called the QZ algorithm, can be used. In this paper we
may refer sometimes to a pencil A− λB and other times to a pair (A,B). Either way, we are
talking about the same object.

A few years ago we published a generalization of the QZ algorithm [27]. More recently,
an even more general algorithm, the rational QZ (RQZ) algorithm, was presented by Camps,
Meerbergen, and Vandebril [13]. This arose from the study of rational Arnoldi methods and is
related to work of Berljafa and Güttel [6].

In this paper we discuss the RQZ algorithm and introduce several variants. We develop a
new modular (and therefore more flexible) convergence theory that can be applied immediately
to all variants. We reinterpret the QZ algorithm and show that it can be viewed as a pole-
swapping algorithm with poles at infinity. Moreover, we will show that the algorithm [20]
for optimally packed chains of bulges is a disguised implementation of pole swapping. A
key component of the RQZ and related algorithms is a procedure that swaps two adjacent
eigenvalues in a triangular pencil. We present an improved swapping routine and demonstrate
its superiority by numerical experiments and a backward error analysis.

Double-shift pole-swapping algorithms that can be applied to real matrix pencils exist [12,
25]. All of what is discussed in this paper for single shifts can be extended to the double-shift
case, but we have not worked out every detail. The one item that will require further thought
is the extension of the improved swapping routine of Section 8 to blocks larger than 1× 1. A
significant advantage of sticking to the complex single-shift case, as we have done here, is
simplicity and clarity of presentation.

∗Received January 8, 2020. Accepted July 6, 2020. Published online on September 18, 2020. Recommended
by F. Dopico. This research was partially supported by the Research Council KU Leuven, project C14/16/056
(Inverse-free Rational Krylov Methods: Theory and Applications).
†Computational Research Division, Lawrence Berkeley National Laboratory, California (dcamps@lbl.gov).
‡Department of Mathematical Sciences, Kent State University, Ohio (tmach1@kent.edu).
§Department of Computer Science, KU Leuven, Belgium (raf.vandebril@cs.kuleuven.be).
¶Department of Mathematics, Washington State University (watkins@math.wsu.edu)

480

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://doi.org/10.1553/etna_vol52s480

ETNA
Kent State University and

Johann Radon Institute (RICAM)

POLE-SWAPPING ALGORITHMS 481

2. Hessenberg pairs. A pencil A− λB is called a regular pencil or regular pair if there
is at least one complex µ such that A− µB is invertible. Throughout this paper we make the
blanket assumption of regularity.

A matrix A ∈ Cn×n is in (upper) Hessenberg form if every entry below the first subdi-
agonal is zero. It is in proper Hessenberg form if every subdiagonal entry is nonzero, i.e.,
aj+1,j 6= 0, for j = 1, . . . , n−1. A preliminary step for theQZ algorithm is to reduce the pair
(A,B) to Hessenberg-triangular form. That is, (A,B) is transformed by a unitary equivalence
to a new pair (Ǎ, B̌) for which Ǎ is upper Hessenberg and B̌ is upper triangular. Notice that
if Ǎ is not properly Hessenberg, then the eigenvalue problem can be split immediately into
two or more independent subproblems. Thus, we can always assume that we are dealing with
a matrix in proper Hessenberg form.

In the new theory we deal with a more general class of Hessenberg pencils. The pair (A,B)
is called a Hessenberg pair if both A and B are Hessenberg matrices. If aj+1,j = 0 = bj+1,j

for some j, then we can immediately split the eigenvalue problem into two smaller problems.
We therefore eliminate that case from further consideration. For reasons that will become
apparent later, the ratios aj+1,j/bj+1,j , j = 1, . . . , n−1, are called the poles of the Hessenberg
pair (A,B). In the case bj+1,j = 0, we have an infinite pole. The Hessenberg-triangular form
is a special Hessenberg pair for which all of the poles are infinite.

Closely related to (A,B) is the pole pair (Aπ, Bπ) (or pole pencil Aπ − λBπ) obtained
from (A,B) by deleting the first row and last column. The pole pencil is upper triangular, and
its eigenvalues are obviously the poles of (A,B).

Operations on Hessenberg pairs. Introducing terminology that we have used in some
of our recent work [1, 2, 3, 4], we define a core transformation (or core for short) to be a
unitary matrix that acts only on two adjacent rows/columns, for example,

Q3 =

1

1
∗ ∗
∗ ∗

1

 ,
where the four asterisks form a 2× 2 unitary matrix. Givens rotations are examples of core
transformations. Our core transformations always have subscripts that tell where the action is:
Qj acts on rows/columns j and j + 1.

Following [13] we introduce two types of operations, or moves, both of which manipulate
the poles in the pair. Let σ1 = a21/b21, . . . , σn−1 = an,n−1/bn,n−1 denote the poles of the
Hessenberg pair (A,B).

Changing a pole at the top or bottom. (Type I move). We can change the pole σ1 to
any value we want by applying a core transformation Q∗1 to the pencil on the left. Suppose
we want to change σ1 to ρ, say. Noting that only the first two entries of (A− ρB)e1 can be
nonzero, we deduce that there is a Q1 such that the second entry of Q∗1(A− ρB)e1 is zero. In
other words,

(2.1) Q∗1(A− ρB)e1 = γe1

for some γ. If we then define Â = Q∗1A and B̂ = Q∗1B, then (Â − ρB̂)e1 = γe1, which
implies that â21 − ρb̂21 = 0. This means that ρ = â21/b̂21 is the new first pole of (Â, B̂). The
other poles remain fixed, as they are untouched by the transformation.

This operation fails only if â21 = 0 = b̂21, yielding ρ = 0/0. This happens exactly when
the first columns of A and B are proportional. But this is not such a failure after all, as it

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

482 D. CAMPS, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

exposes â11/b̂11 as an eigenvalue of the pencil and allows us to deflate to a smaller problem
by deleting the first row and column.

In summary, if we want to replace the pole σ1 by ρ, we will either succeed in doing so or
get a deflation of an eigenvalue.

REMARK 2.1. When we write something like A− ρB here and elsewhere, this should be
viewed as shorthand for βA− αB where α and β are any scalars for which ρ = α/β. As a
practical matter this allows us to use modest-sized α and β even when ρ is very large, and in
particular it allows us to implement the case ρ =∞ by taking β = 0.

The pole σn−1 at the bottom can also be replaced by any other pole, say τ , by a similar
procedure. We want to transform the pencil A − λB to Â − λB̂ = (A − λB)Zn−1 with
ân,n−1/b̂n,n−1 = τ . Noting that the row vector eTn (A− τB) has nonzero entries only in its
last two positions, we see that there must be a core transformation Zn−1 that maps it to a
multiple of eTn , i.e., eTn (A− τB)Zn−1 = γeTn for some γ. This is the desired transformation
since it implies eTn (Â− τB̂) = γeTn , which is equivalent to ân,n−1/b̂n,n−1 = τ .

This fails only if ân,n−1 = 0 = b̂n,n−1, yielding τ = 0/0, which happens exactly when
the nth rows of A and B are proportional. But again this is not really a failure at all, since it
allows ânn/b̂nn to be extracted as an eigenvalue and the problem to be deflated to a smaller
one.

This discussion helps motivate the following definition. A Hessenberg pair is called a
proper Hessenberg pair if three conditions hold: (i) |aj+1,j |+ |bj+1,j | > 0, for j = 1, . . . ,
n− 1, (ii) the first columns of A and B are not proportional, (iii) the last rows of A and B are
not proportional. The first condition just says that for each j, at least one of aj+1,j and bj+1,j

is nonzero. If this condition is not satisfied, then we can immediately reduce the pencil to two
smaller pencils. If either of conditions (ii) and (iii) is not satisfied, then we can also reduce
the problem as we know from the discussion immediately above. Therefore, we can always
assume, without loss of generality, that we are working with a proper Hessenberg pair.

PROPOSITION 2.2 ([13]). In a proper Hessenberg pair, the core transformation Q1 that
replaces pole σ1 by ρ satisfies

Q1e1 = δ (A− ρB)(A− σ1B)−1e1

for some nonzero δ.
Proof. From our construction we have Q1e1 = γ−1(A − ρB)e1. Since σ1 is the first

pole of the pair (A,B), we have (A− σ1B)e1 = γ̌e1 for some γ̌. The properness assumption
guarantees that both γ and γ̌ are nonzero. Therefore, Q1e1 = δ(A − ρB)(A − σ1B)−1e1,
where δ = (γγ̌)−1.

REMARK 2.3. The insertion of the extra factor (A− σ1B)−1 may seem mysterious. As
we shall see later, this is just what is needed for a consistent convergence theory. In the product
(A− ρB)(A− σ1B)−1, the factor A− ρB signals that the pole ρ is entering the pencil, while
the factor (A− σ1B)−1 signals that the pole σ1 is leaving.

PROPOSITION 2.4 ([13]). In a proper Hessenberg pair, the core transformation Zn−1
that replaces pole σn−1 by τ satisfies

eTnZ
∗
n−1 = δ eTn (A− σn−1B)−1(A− τB)

for some nonzero δ.
Proof. From our construction we have eTnZ

∗
n−1 = γ−1eTn (A− τB). Since σn−1 is the

last pole of the pair (A,B), we have eTn (A− σn−1B) = γ̌eTn for some nonzero γ̌. Therefore,
eTnZ

∗
n−1 = δeTn (A− σn−1B)−1(A− τB), where δ = (γγ̌)−1.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

POLE-SWAPPING ALGORITHMS 483

The arithmetic cost of a move of type I is just the cost of multiplying A and B by a
single core transformation, Q∗1 or Zn−1. If the cores are Givens rotations applied in the
conventional way, then the cost is about 8n multiplications and 4n additions, or 12n (complex)
flops. Different implementations could yield slightly different flop counts, but regardless of
the details, the cost will be O(n). Standard backward error analysis [34] shows that moves of
type I are backward stable.

Interchanging two poles. (Type II move). The second of the two allowed operations
is to interchange two adjacent poles by a unitary equivalence Â− λB̂ = Q∗j (A− λB)Zj−1.
To understand this, consider the pole pencil Aπ − λBπ obtained by discarding the first row
and last column from A − λB. This pencil is upper triangular and has σ1, . . . , σn−1 as its
eigenvalues. There are standard techniques [5, 18, 19, 26], [31, §§ 4.8, 6.6] for interchanging
any two adjacent eigenvalues σj−1 and σj . We will describe an improved method in Section 8.
Each of these requires only an equivalence transformation Q̃∗j−1(Aπ − λBπ)Z̃j−1 by two
core transformations Q̃j−1 and Z̃j−1 of dimension n− 1. We then enlarge these matrices by
adjoining a row and column to the top of Q̃j−1 and the bottom of Z̃j−1:

Qj =

[
1 0

0 Q̃j−1

]
Zj−1 =

[
Z̃j−1 0

0 1

]
.

Then Â− λB̂ = Q∗j (A− λB)Zj−1 is the desired transformation.
If the swap is done as described by Van Dooren [26], then the procedure always succeeds

and is backward stable in a sense. Our new swapping procedure will be shown to have
improved stability. In order not to interrupt the flow of the paper, we defer the description of
the new procedure, as well as a discussion of backward errors, to Section 8.

The flop count for a move of type II is about the same as for a move of type I, namely
12n if the core transformations are implemented as Givens rotations. In any event, the flop
counts for moves of type I and II are about the same, and each move costs O(n) flops.1

REMARK 2.5. We have one type of move that is able to change a pole at one end or
the other and another type that swaps poles in the middle. It is natural to ask whether we
can devise a move that changes a single pole in the middle. The answer is no. Consider a
transformation

(2.2) Â− λB̂ = Q∗(A− λB)Z,

where Q does not touch the first row and Z does not touch the last column. That is,

Q =

[
1

Q̃

]
and Z =

[
Z̃

1

]
.

Under any such transformation, the poles must remain invariant. This is so because the
transformation (2.2) is equivalent to a transformation Q̃∗(Aπ − λBπ)Z̃ on the pole pencil.
Since the poles of A− λB are the eigenvalues of the pole pencil, they must remain fixed.

Thus, any transformation meant to change a pole must touch either the first row or the last
column. That’s what the moves of type I do.

1This is the correct count for the case when only eigenvalues are being computed. If eigenvectors or some
deflating subspaces are wanted as well, then the transforming matrices Q and Z also need to be updated on each
move. This adds about 6n (complex) flops for a type I move and 12n flops for a type II, but the total is still O(n).

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

484 D. CAMPS, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

3. Building an algorithm from the pieces. Suppose we want to find the eigenvalues of
some regular pair (A,B). As usual, there are two steps to the process. The first is a direct
method that transforms (A,B) to a condensed form, in our case a Hessenberg pencil. The
second step is an iterative process that uncovers the eigenvalues of the condensed form.

In some contexts the reduction phase can be skipped. As a notable example, the rational
Arnoldi process [6] applied to a large matrix naturally generates, after k steps, a k × k
Hessenberg pencil. The ith pole of the pencil is equal to the shift that was used in the ith step
of the process. We can obtain estimates of the eigenvalues of the large matrix by computing
the eigenvalues of the pencil. This requires no reduction; we can go directly to the iterative
phase.

Reduction to a Hessenberg pencil. Moler and Stewart [24] showed how to reduce
(A,B) to Hessenberg-triangular form by a direct method in O(n3) flops. The reduction is also
described in [15, 31, 32] and elsewhere. If the resulting pair is not proper, then we can split it
into smaller proper pairs, so let us assume it is proper. This is a Hessenberg pencil with all
poles equal to∞. If the user is happy to start from this configuration, s/he can move directly
to the iterative phase.

If the user wants to set certain prescribed poles σ1, . . . , σn−1 before beginning the
iterations, then this is also possible. One obvious procedure is to begin by introducing σn−1
at the top of the pencil by a move of type I. Then σn−1 can be swapped with each of the
remaining infinite poles by moves of type II until it arrives at its desired position at the bottom.
The total number of moves is n − 1. Then σn−2 can be introduced at the top by a move of
type I. It can then be swapped with each of the remaining infinite poles until it arrives at its
desired position just above σn−1. The total number of moves for this step is n− 2. Then σn−3
can be introduced, and so on. Eventually, we get each of σ1, . . . , σn−1 into its desired position.
The total number of moves for this phase is about n2/2, and the total flop count is O(n3).

One can equally well introduce the poles at the bottom and swap them upward, starting
with σ1, then σ2, and so on. The amount of work is exactly the same, about n2/2 moves.
Better yet, one can take k ≈ (n− 1)/2 and introduce σ1, . . . , σk (in reverse order) at the top
and σk+1, . . . , σn−1 at the bottom. This cuts the number of moves in half. However one does
it, the cost is O(n3).

Camps, Meerbergen, and Vandebril [13] describe a procedure that introduces the poles
during the reduction to Hessenberg form. They also present an example where a good choice
of poles induces a deflation in the middle of the pencil.

The iterative phase (basic algorithm). During the discussion of moves of type I in
Section 2, we defined proper Hessenberg pairs and noted that if a Hessenberg pair is not
proper, then it can be reduced to smaller pairs that are. We therefore assume, without loss
of generality, that we have a proper Hessenberg pair (A,B) with poles σ1, . . . , σn−1. We
now describe an iteration of the RQZ algorithm proposed in [13]. We will call this the basic
algorithm.

First a shift ρ is chosen. Any of the usual shifting strategies can be employed here. The
simplest is the Rayleigh-quotient shift ρ = ann/bnn. Then, ρ is introduced as a pole at the
top of the pencil, replacing σ1, by a move of type I. Next ρ is swapped with σ2 by a move
of type II. Then another move of type II is used to swap ρ with σ3, and so on. After n − 2
moves of type II, ρ arrives at the bottom of the pencil. The poles are now σ2, . . . , σn−1, and
ρ. Finally, a move of type I is used to remove the pole ρ from the bottom, replacing it by a
new pole σn. This completes the iteration. The user has complete flexibility in the choice of
σn. One possibility is σn =∞. Another, which might be called a Rayleigh-quotient pole, is
σn = a11/b11.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

POLE-SWAPPING ALGORITHMS 485

The cost of one iteration of the basic algorithm is n moves or O(n2) flops. With any of
the standard shifting strategies, e.g., Rayleigh-quotient shift, repeated iterations will normally
cause rapid convergence of an eigenvalue at the bottom of the pencil. Typically an,n−1 → 0
and bn,n−1 → 0 quadratically, leaving ann/bnn as an eigenvalue and allowing deflation of the
problem. After n− 1 deflations, all of the eigenvalues will have been found.

There are numerous variations on the basic algorithm. For example, it can be turned
upside down. We can pick a shift, say ρ = a11/b11, insert it at the bottom of the pencil, and
chase it to the top. Since we can do this, then why not chase shifts in both directions at once?
Some possibilities along these lines will be discussed in Section 6.

Relationship to the QZ algorithm. We now show that when the basic algorithm is
applied to a pair that has all poles infinity, it reduces to the single-shift version of the
Moler/Stewart QZ algorithm. Consider a Hessenberg-triangular pair

××××
×××
××
×

×
×
×

××××
×××
××
×

which has poles∞,∞, and∞. An iteration of the basic algorithm begins by choosing a shift
ρ and inserting it into the pair at the top by a move of type I. The transformation is A→ Q∗1A,
B → Q∗1B, where Q1 satisfies (2.1). This is exactly the same as the transformation that starts
single-shift QZ [32, p. 537]. It alters the first two rows of the matrices, so the transformed
matrices have the form

(3.1)
××××
×××
××
×

×
×
×

××××
×××
××
×

+ .

The triangular form of B has been disturbed, but this is still a Hessenberg pair. Its poles are ρ,
∞,∞. (We will continue to refer to the matrices as “A" and “B”, even though they change
in the course of the iteration.) The next step of the basic algorithm is a move of type II that
interchanges the pole ρ with the adjacent pole∞, resulting in

(3.2)
××××
×××
××
×

×
×
×

××××
×××
××
×

+ ,

a Hessenberg pair with poles ∞, ρ, ∞. The transformation has the form A → Q∗2AZ1,
B → Q∗2BZ1, with appropriately chosen core transformations Z1 and Q2. Let us consider
now how things look if we apply the cores one at a time. Starting from the configuration
shown in (3.1), first apply Z1 on the right. This acts on columns one and two of each matrix
and produces

××××
×××
××
×

×
×
×

+

××××
×××
××
×

.

The entry b21 must now be zero. This is so because, as we know, after the application of Q∗2
on the left, b21 must be zero, as shown in (3.2). The left multiplication by Q∗2 cannot do this
job, so it must have been done by Z1. At the same time, Z1 must produce a bulge at a31. This
proves that Z1 is exactly the same transformation as is used at this point in the QZ bulge chase.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

486 D. CAMPS, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

Now, when we apply Q∗2 on the left, it operates on rows two and three. It must set
a31 to zero and create a new bulge at b32 to arrive at (3.2). Thus, Q2 is exactly the same
transformation as is used at this point in the QZ bulge chase.

The next step is a move of type II that transforms (3.2) to

(3.3)
××××
×××
××
×

×
×
×

××××
×××
××
×+

,

a Hessenberg pair with poles ∞, ∞, ρ. The transformation has the form A → Q∗3AZ2,
B → Q∗3BZ2. Again we could look at what happens if we apply the cores one at a time, first
Z2, then Q∗3, and we would find as before that these are exactly the same transformations as in
a QZ bulge chase.

In our little example, we have now reached the bottom. In a larger example, we would
continue moves of type II, pushing the pole ρ downward, and at each step we would have
the same situation. The final step is a move of type I that removes ρ from the bottom of the
pencil, replacing it by a pole∞. This is exactly the transform, acting on columns n− 1 and
n, that sets bn,n−1 (the entry b43 entry in (3.3)) to zero. Again this is exactly the same as the
transformation that completes the QZ bulge chase. The pair is now in Hessenberg-triangular
form.

We have demonstrated that the basic algorithm reduces to the single-shift QZ algorithm
in the case when all of the poles are infinite.

4. Convergence theory. In the convergence theorems in this paper we make the blanket
(and generically valid) assumption that none of the poles or shifts that are mentioned are
eigenvalues of the pencil. We often find it convenient to assume that B is nonsingular.

The mechanism that drives all variants of Francis’s algorithm is nested subspace iteration
with changes of the coordinate system [32, p. 431], [33, p. 399], [1, Thm 2.2.3]. As a
specific example, let us consider a single step of the QZ algorithm with shift ρ applied to a
Hessenberg-triangular pencil A− λB, yielding a new pencil Â− λB̂ with

(4.1) Â− λB̂ = Q∗(A− λB)Z.

First we define some nested sequences of subspaces. For k = 1, . . . , n, define

Ek = span{e1, . . . , ek},

where e1, . . . , en are the standard basis vectors. Then define

Qk = QEk and Zk = ZEk.

Thus, Qk (resp. Zk) is the space spanned by the first k columns of Q (resp. Z).
THEOREM 4.1. A single step of the QZ algorithm with shift ρ effects the nested subspace

iterations

Qk = (AB−1 − ρI)Ek, Zk = (B−1A− ρI)Ek, k = 1, . . . , n− 1.

The change of the coordinate system (4.1) transforms both Qk and Zk back to Ek.
We call this a convergence theorem even though it makes no mention of convergence.

Theorems like this can be used together with the convergence theory of subspace iteration
to draw conclusions about the convergence of the algorithm as explained in [31, 32, 33] and
elsewhere.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

POLE-SWAPPING ALGORITHMS 487

Camps, Meerbergen, and Vandebril [13, Thm. 6.1] proved a result like Theorem 4.1 for
the basic algorithm. The scenario is similar. The iteration begins with a proper Hessenberg pair
(A,B) with poles σ1, . . . , σn−1, employs a shift ρ, and ends with a new proper Hessenberg
pair (Â, B̂) with poles σ2, . . . , σn. The old and new pairs are related by a unitary equivalence
transformation of the form (4.1).

THEOREM 4.2. A single step of the basic algorithm with shift ρ, starting with a proper
Hessenberg pair (A,B) with poles σ1, . . . , σn−1 and ending with (Â, B̂) with poles σ2, . . . ,
σn effects the nested subspace iterations

Qk = (A−ρB)(A−σkB)−1Ek, Zk = (A−σk+1B)−1(A−ρB)Ek, k = 1, . . . , n−1.

The change of the coordinate system (4.1) transforms both Qk and Zk back to Ek.
This theorem was proved in [13], but we will also provide a proof based on our new theory

in Section 5. Comparing this with Theorem 4.1, we see that the inclusion of poles gives extra
freedom that might be used to improve convergence.

Now consider Theorem 4.2 in the case when all of the poles are infinite. When σk =∞,
the operator (A−ρB)(A−σkB)−1 becomes (when appropriately rescaled) (A−ρB)B−1 =
AB−1 − ρI . Similarly, (A− σk+1B)−1(A− ρB) becomes B−1(A− ρB) = B−1A− ρI .
These operators are exactly the ones that appear in Theorem 4.1, just as we would expect.

Although the QZ algorithm is a special case of the basic algorithm, there is an important
difference in their implementation. The QZ algorithm acts on proper Hessenberg-triangular
pencils. It is a bulge-chasing algorithm. The initial equivalence transformation of each
iteration creates a bulge in the Hessenberg-triangular form. The rest of the iteration consists
of equivalence transformations that chase the bulge back and forth between A and B until it
finally disappears off the bottom of the pencil. At that point, the Hessenberg-triangular form
has been restored, and the iteration is complete. The QZ algorithm can also be implemented
as a core-chasing algorithm as is shown in [1] and [3], but the situation is the same: The
Hessenberg-triangular form is disturbed at the beginning of the iteration and not restored until
the very end.

Now let us contrast this with what happens in the basic algorithm (with infinite poles or
otherwise). The basic algorithm operates on proper Hessenberg pairs, in which neither matrix
is required to be triangular. Each iteration starts with a move of type I, performs a sequence of
moves of type II, and ends with a move of type I. These moves do not disturb the Hessenberg
form; it is preserved throughout. This implies that we can think of each move as a “mini
iteration” and ask whether we can obtain a result like Theorem 4.1 or 4.2 for each individual
move of type I or II. It turns out that we can.

Each move of either type is an equivalence transform of the form

Â = Q∗jAZj−1 B̂ = Q∗jBZj−1.

The case j = 1 denotes a move of type I, and we have Z0 = I . The case j = n also denotes
a type I move, and in this case Qn = I . The cases j = 2, . . . , n− 1 are of type II. Suppose
(A,B) has poles σ1, . . . , σn−1. A move of type II interchanges the poles σj−1 and σj . For
the moves of type I, in the case j = 1, suppose the pole σ1 is replaced by a new pole σ0; in
the case j = n, suppose σn−1 is replaced by a new pole σn. With this notation we can cover
both types of move by a single theorem.

As above we define sequences of nested subspaces (Qk) and (Zk), where Qk (resp. Zk)
is the space spanned by the first k columns of Qj (resp. Zj−1). But note that, because Qj and

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

488 D. CAMPS, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

Zj−1 are core transformations, these spaces are mostly trivial in this setting: Qk = Ek except
when k = j, and Zk = Ek except when k = j − 1.

THEOREM 4.3. Using notation and terminology established directly above, the move

(4.2) Â− λB̂ = Q∗j (A− λB)Zj−1

effects nested subspace iterations that are, however, mostly trivial. The nontrivial actions are

Qj = (A− σj−1B)(A− σjB)−1Ej

and

Zj−1 = (A− σjB)−1(A− σj−1B)Ej−1.

The change of the coordinate system (4.2) transforms Qj back to Ej and Zj−1 back to Ej−1.
The proof of Theorem 4.3 makes use of rational Krylov subspaces. Given C ∈ Cn×n and

v ∈ Cn, the standard Krylov subspaces Kj(C, v) are defined by

Kj(C, v) = span
{
v, Cv, C2v, . . . , Cj−1v

}
, j = 1, 2, . . . , n.

Given an ordered set of poles [σ1, σ2, . . . , σn−1], none in the spectrum of C, the rational
Krylov subspaces Kj(C, v, [σ1, . . . , σj−1]) are defined by

K1(C, v, []) = span{v},
K2(C, v, [σ1]) = span

{
v, (C − σ1I)−1v

}
,

K3(C, v, [σ1, σ2]) = span
{
v, (C − σ1I)−1v, (C − σ2I)−1(C − σ1I)−1v

}
,

and in general

Kj(C, v, [σ1, . . . , σj−1]) = span
{
v, (C − σ1I)−1v, . . . ,

(∏j−1
i=1 (C − σiI)−1

)
v
}
.

Making the abbreviation C(σ) = C − σI , we can rewrite this as

Kj(C, v, [σ1, . . . , σj−1]) =

j−1∏
i=1

C(σi)
−1 span

{∏j−1
i=1 C(σi)v,

∏j−1
i=2 C(σi)v, . . . , v

}
.

The span on the right-hand side involves only positive powers of C, so the shifts are irrelevant;
it is just the standard Krylov subspace Kj(C, v). Therefore,

(4.3) Kj(C, v, [σ1, . . . , σj−1]) =

(
j−1∏
i=1

(C − σiI)−1

)
Kj(C, v).

Given a pair (A,B) with B nonsingular, we define rational Krylov subspaces

Kj(A,B, v, [σ1, . . . , σj−1]) and Lj(A,B, v, [σ1, . . . , σj−1])

associated with the pair by

Kj(A,B, v, [σ1, . . . , σj−1]) = Kj(AB−1, v, [σ1, . . . , σj−1])

and

Lj(A,B, v, [σ1, . . . , σj−1]) = Kj(B−1A, v, [σ1, . . . , σj−1]),

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

POLE-SWAPPING ALGORITHMS 489

j = 1, . . . , n. We have assumed for convenience thatB is nonsingular. See [13] for a definition
of these spaces that does not require this assumption. We are using the symbol Kj to denote
several different types of Krylov subspaces. The meaning in each case is uniquely determined
by the number and type of arguments.

We will make use of the following result, which is Theorem 5.6 in [13].
PROPOSITION 4.4. Let (A,B) be a proper upper Hessenberg pair with poles

[σ1, . . . , σn−1]. Let Ej = span{e1, . . . , ej} as before. Then, for j = 1, . . . , n− 1,

Ej = Kj(A,B, e1, [σ1, . . . , σj−1]) = Lj(A,B, e1, [σ2, . . . , σj]).

See [13] for the proof. Notice that in the Lj-spaces, the poles are [σ2, . . . , σj], starting from
σ2. With Proposition 4.4 in hand, we can prove Theorem 4.3.

Proof of Theorem 4.3. Proposition 2.2 shows that Q1e1 = δ (A− σ0B)(A− σ1B)−1e1
for some nonzero δ. This establishes the case j = 1 of Theorem 4.3.

Now consider j > 1. The transformation Â− λB̂ = Q∗j (A− λB)Zj−1 interchanges the
poles σj−1 and σj , so the ordered pole set of (Â, B̂) is

[σ1, . . . , σj−2, σj , σj−1, σj+1, . . . , σn−1].

Applying Proposition 4.4 to (Â, B̂) we have

Ej = Kj(Â, B̂, e1, [σ1, . . . , σj−2, σj]).

Therefore,

Qj = QjEj = QjKj(Â, B̂, e1, [σ1, . . . , σj−2, σj])
= Kj(A,B,Qje1, [σ1, . . . , σj−2, σj]).

Noting that Qje1 = e1, using the abbreviations C = AB−1 and C(σ) = AB−1 − σI , and
using (4.3) twice, we obtain

Qj = Kj(AB−1, e1, [σ1, . . . , σj−2, σj])

= C(σj)
−1

(
j−2∏
i=1

C(σi)
−1

)
Kj(C, e1)

= C(σj)
−1C(σj−1)

(
j−1∏
i=1

C(σi)
−1

)
Kj(C, e1)

= C(σj)
−1C(σj−1)Kj(A,B, e1, [σ1, . . . , σj−1])

= C(σj)
−1C(σj−1)Ej .

In the final step we used Proposition 4.4 again. Since

C(σj)
−1C(σj−1) = C(σj−1)C(σj)

−1 = (AB−1 − σj−1I)(AB−1 − σjI)−1

= (A− σj−1B)(A− σjB)−1,

we get the desired result Qj = (A− σj−1B)(A− σjB)−1Ej .
In this argument we have assumed that B−1 exists. However, the result also holds for

singular B by a continuity argument.
Now consider the spaces Zj−1. In the case j = 2 we have Â− λB̂ = Q∗2(A− λB)Z1.

Substituting λ = σ2 and solving for Z1, we have Z1 = (A − σ2B)−1Q2(Â − σ2B̂). The

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

490 D. CAMPS, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

ordered pole set for (Â, B̂) is [σ2, σ1, σ3, . . . , σn−1], so (Â−σ2B̂)e1 = γe1 for some nonzero
γ. Similarly, (A− σ1B)e1 = δe1 for some nonzero δ. Therefore,

Z1e1 = γ(A− σ2B)−1Q2e1 = γ(A− σ2B)−1e1 = γδ−1(A− σ2B)−1(A− σ1B)e1.

This proves that

Z1 = (A− σ2B)−1(A− σ1B)E1,

as desired.
For j > 2 we have Â − λB̂ = Q∗j (A − λB)Zj−1. Arguing just as we did for Qj , we

have

Zj−1 = Zj−1Ej−1 = Zj−1Lj−1(Â, B̂, e1, [σ2, . . . , σj−2, σj])

= Lj−1(A,B,Zj−1e1, [σ2, . . . , σj−2, σj]).

Using Zj−1e1 = e1 and making the abbreviations D = B−1A and D(σ) = B−1A− σI , we
have

Zj−1 = Lj−1(A,B, e1, [σ2, . . . , σj−2, σj])

= Kj−1(D, e1, [σ2, . . . , σj−2, σj])

= D(σj)
−1

(
j−2∏
i=2

D(σi)
−1

)
Kj−1(D, e1)

= D(σj)
−1D(σj−1)

(
j−1∏
i=2

D(σi)
−1

)
Kj−1(D, e1)

= D(σj)
−1D(σj−1)Kj−1(D, e1, [σ2, . . . , σj−1])

= (A− σjB)−1(A− σj−1B)Lj−1(A,B, e1, [σ2, . . . , σj−1])

= (A− σjB)−1(A− σj−1B)Ej−1.

REMARK 4.5. We used Proposition 2.2 to prove the case j = 1, but we did not use
Proposition 2.4. In connection with this, we remark that Theorem 4.3 immediately implies the
dual results

Q⊥j = (A∗ − σj−1B∗)−1(A∗ − σjB∗)E⊥j
and

Z⊥j−1 = (A∗ − σjB∗)(A∗ − σj−1B∗)−1E⊥j−1,

obtained by noting that U = CS if and only if U⊥ = (C∗)−1S⊥. We could equally well
have derived the dual results first and then deduced Theorem 4.3. In that case we would use
Proposition 2.4 to prove the case j = n and not use Proposition 2.2 at all. From Proposition 2.4
with τ = σn, we have immediately

Zn−1en = δ (A∗ − σnB∗)(A∗ − σn−1B∗)−1en,

which implies

Z⊥n−1 = (A∗ − σnB∗)(A∗ − σn−1B∗)−1E⊥n−1,

the case j = n of the dual result.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

POLE-SWAPPING ALGORITHMS 491

5. Using Theorem 4.3. In all of the convergence theorems of the previous section, we
have actions of the form Qk = r(AB−1)Ek and Zk = r(B−1A)Ek, where r is a rational
function, e.g., r(z) = (z − σj−1)/(z − σj). In the following lemma, the functions r and s
can be any functions defined on the spectrum of the pencil A− λB, but in our applications
they will always be rational. In this case, being defined on the spectrum of A− λB just means
that none of the poles are eigenvalues.

LEMMA 5.1. Consider two successive changes of the coordinate system

Ã− λB̃ = Q̃∗(A− λB)Z̃ and Â− λB̂ = Q̂∗(Ã− λB̃)Ẑ,

so that

Â− λB̂ = Q∗(A− λB)Z, where Q = Q̃Q̂ and Z = Z̃Ẑ.

For k = 1, . . . , n− 1, if

Q̃Ek = r(AB−1)Ek and Q̂Ek = s(ÃB̃−1)Ek,

then

QEk = sr(AB−1)Ek,

where sr is the pointwise product of s and r. If

Z̃Ek = r(B−1A)Ek and ẐEk = s(B̃−1Ã)Ek,

then

ZEk = sr(B−1A)Ek.

Proof. Noting that Q̃ s(ÃB̃−1) = s(AB−1)Q̃, we have

QEk = Q̃Q̂Ek = Q̃ s(ÃB̃−1)Ek = s(AB−1)Q̃Ek = s(AB−1)r(AB−1)Ek,

so QEk = sr(AB−1)Ek. The result for ZEk is proved similarly, using the identity
Z̃ s(B̃−1Ã) = s(B−1A)Z̃.

Clearly this lemma can be extended by induction to three or more successive changes of
the coordinate system, and that’s how we are going to use it.

Proof of Theorem 4.2. As a first application of Theorem 4.3, we show that it can be
used to prove Theorem 4.2.

Proof of Theorem 4.2. According to Theorem 4.2, for each k the basic algorithm effects a
transformation

(5.1) Qk = (A− ρB)(A− σkB)−1Ek.

Let us see why this is so. Recall that the basic algorithm begins with a move of type I that
introduces the shift ρ as a pole at the top of the pencil. It then does a sequence of moves of
type II that swap ρ with the other poles one by one. For a given k, most of these moves have
no effect on Ek. The only exception is the kth move, the case j = k in Theorem 4.3. This is
where we need to focus.

One iteration of the basic algorithm performs the equivalence

Â− λB̂ = Q∗(A− λB)Z,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

492 D. CAMPS, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

where Q and Z are products of core transformations:

Q = Q1Q2 · · ·Qn−1, Z = Z1Z2 · · ·Zn−1.

The core Q1 is the one that replaces pole σ1 with the shift ρ. Q2 (together with Z1) swaps ρ
with σ2, Q3 (together with Z2) swaps ρ with σ3, and so on. Zn−1 removes ρ and installs a
new pole σn. We are interested in the action of Qk (together with Zk−1), which swaps ρ with
σk. Thus we factor Q and Z as

Q = Q̃QkQ̂, Z = Z̃Zk−1Ẑ,

where Q̃ = Q1 · · ·Qk−1, and so on. Now we break the transformation into three parts:

Ã− λB̃ = Q̃∗(A− λB)Z̃,

Ǎ− λB̌ = Q∗k(Ã− λB̃)Zk−1,(5.2)

Â− λB̂ = Q̂∗(Ǎ− λB̌)Ẑ.

Because each of the cores Q1, . . . , Qk−1 leaves Ek invariant, we have

Q̃Ek = Ek = r(AB−1)Ek, where r(z) = 1.

We can apply Theorem 4.3 with j = k to the transformation (5.2), taking into account that the
poles that are swapped in the kth move are ρ and σk, to get

QkEk = (Ã− ρB̃)(Ã− σkB̃)−1Ek = s(ÃB̃−1)Ek, where s(z) = (z − ρ)/(z − σk).

Finally, noting that Qk+1, . . . , Qn−1 all leave Ek invariant, we have

Q̂Ek = Ek = t(ǍB̌−1)Ek, where t(z) = 1.

Now, applying Lemma 5.1 to the product Q = Q̃QkQ̂, we get

QEk = tsr(AB−1)Ek = s(AB−1)Ek,

which is exactly (5.1).
We can prove the Z-part of Theorem 4.2 in exactly the same way. We have

Z̃Ek−1 = Ek−1 = 1(B−1A)Ek−1,

and by Theorem 4.3 with j = k,

Zk−1Ek−1 = (Ã− σkB̃)−1(Ã− ρB̃)Ek−1 = s(B̃−1Ã)Ek−1,

and finally,

ẐEk−1 = Ek−1 = 1(B̌−1Ǎ)Ek−1.

Therefore, by Lemma 5.1,

ZEk−1 = s(B−1A)Ek−1 = (A− σkB)−1(A− ρB)Ek−1.

Adding one to the index k, we arrive at the Z-part of Theorem 4.2, thereby completing the
proof.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

POLE-SWAPPING ALGORITHMS 493

Generalization of the proof. The basic algorithm is just one of many possible algorithms
that make use of moves of types I and II on proper Hessenberg forms. We have already pointed
out that one could run the algorithm in the opposite direction or in both directions at once.
There are lots of other possibilities, and we will look at some in what follows.

From our proof of Theorem 4.2 it should now be clear that we will be able to use
Theorem 4.3, together with Lemma 5.1, to analyze the action of any algorithm that acts on a
proper Hessenberg pencil by moves of types I and II. Consider a transformation

(5.3) Â− λB̂ = Q∗(A− λB)Z,

where Q and Z are products of core transformations generated by any sequence of moves of
type I and II. If we want to find the action of Q on Ek for some k, then we only need to look at
the core transformations of the form Qk, i.e., the ones that act in the (k, k + 1) plane. Thus
we factor Q into a product of the form

(5.4) Q = Q̃Q1,kQ̌Q2,kQ̂Q3,k · · · ,

where Q̃, Q̌, . . . are products of core transformations that do not act in the (k, k + 1) plane
and therefore satisfy Q̃Ek = Ek, Q̌Ek = Ek, and so on, and Q1,k, Q2,k, . . . are cores that do
act in the (k, k + 1) plane. Let us say there are m such cores Q1,k, . . . , Qm,k.

The transforming matrix Z has a fully analogous factorization

(5.5) Z = Z̃Z1,k−1ŽZ2,k−1ẐZ3,k−1 · · · ,

assuming that we use the convention that moves of type I have the form Q∗1(A− λB)Z0 with
Z0 = I or Q∗n(A − λB)Zn−1 with Qn = I . We have Z̃Ek−1 = Ek−1, ŽEk−1 = Ek−1, et
cetera. The transformations that act nontrivially on Ek−1 are Z1,k−1, . . . , Zm,k−1.

Suppose that at the move corresponding to the transformations Qj,k and Zj,k−1, the poles
that get swapped are σj,k−1 and σj,k. Then, according to Theorem 4.3, the function associated
with this swap is rj(z) = (z−σj,k−1)/(z−σj,k). Let r denote the product of these functions:

(5.6) r(z) = r1(z) · · · rm(z) =

m∏
j=1

z − σj,k−1
z − σj,k

.

Then, applying Lemma 5.1 to the long product of transformations defined by (5.4) and (5.5),
we find that the action of Q on Ek and of Z on Ek−1 is given by

(5.7) Qk = QEk = r(AB−1)Ek and Zk−1 = ZEk−1 = r(B−1A)Ek−1.

We summarize these findings as a theorem.
THEOREM 5.2. Consider a transformation (5.3), where Q and Z are products of core

transformations generated by any sequence of moves of types I and II. For some k, suppose
that m of the moves acted at the kth position, swapping poles σj,k−1 and σj,k for j = 1, . . . ,
m. Define a rational function r by (5.6). Then the action of Q on Ek and of Z on Ek−1 is
given by (5.7). The transformation (5.3) transforms Qk back to Ek and Zk−1 back to Ek−1.

6. Variations on the basic algorithm. In this section we consider algorithms built
exclusively from moves of types I and II. Since the moves are backward stable, the resulting
algorithms are also backward stable. We do not claim that all of the ideas presented here will
result in practical algorithms; some of them are quite speculative.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

494 D. CAMPS, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

The basic algorithm (like the single-shift bulge-chasing and core-chasing algorithms)
takes a single shift, inserts it into the top of the pencil, and chases it to the bottom. This
algorithm suffers from inefficient use of cache memory and negligible potential for parallelism.
In the case of bulge-chasing algorithms, the problem was remedied by selecting a large number
of shifts at once, creating many small bulges one after the other, and chasing this chain of
bulges together to the bottom of the matrix or pencil [8, 22, 23]. This allows the use of Level
3 BLAS and therefore efficient cache use. It also provides an opportunity for parallelism [16].

Chasing multiple shifts at once. The same remedy works for pole-swapping algorithms,
as was already mentioned in [12, 13, 25]. We can choose m shifts ρ1, . . . , ρm, where typically
1� m� n.2 Suppose the poles of A− λB are

σ1, . . . , σm, σm+1, . . . , σn.

By a sequence of moves of types I and II, we can replace σ1, . . . , σm by ρ1, . . . , ρm, so that
the poles of the new pencil are

ρ1, . . . , ρm, σm+1, . . . , σn.

Then we can chase these m shifts together to the bottom, creating enough arithmetic to make
efficient use of cache. To be precise, in the first step we would swap σm+1 with ρm, then
σm+1 with ρm−1, and so on. Eventually we swap σm+1 with ρ1, putting σm+1 at the top.
Then we go on to the next step.

We can pass a chain of shifts from top to bottom, and we can equally well pass a chain
from bottom to top. If we wish, we can pass chains in both directions at once. Suppose we
have shifts ρ1, . . . , ρm that we wish to chase from top to bottom and shifts τ1, . . . , τm that we
wish to chase from bottom to top. Using moves of types I and II, we can introduce them:

ρ1, . . . , ρm, σm+1, . . . σn−m−1, τ1, . . . , τm.

We then chase the ρ’s downward and the τ ’s upward. The two chains pass through each other,
and eventually we get to the position

τ1, . . . , τm, σm+1, . . . σn−m−1, ρ1, . . . , ρm.

The reader can verify that the poles in the middle, σm+1, . . . , σn−m−1, get moved around
in the process, but they end up exactly where they started. At this point we can regard the
iteration as complete, or we can “complete” the iteration by removing the τi and ρi from the
pencil and replacing them with new sets of shifts.

Let’s see what Theorem 5.2 tells us about this bi-directional procedure. Let

r(z) =

m∏
i=1

z − ρi
z − τi

.

Then, for k = m+ 1, . . . , n−m, we have the action

Qk = QEk = r(AB−1)Ek and Zk−1 = ZEk−1 = r(B−1A)Ek−1.

The reason for this is that each of the ρi passes downward through the kth position, causing
a factor z − ρi, and each of the τi passes upward, causing a factor (z − τi)−1. This isn’t

2One way to obtain m shifts is to use an auxiliary routine to compute the eigenvalues of the lower-right-hand
m×m subpencil of A− λB and use these as the shifts.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

POLE-SWAPPING ALGORITHMS 495

all that happens at position k, but it’s all that matters. To see this, consider, for example, a
position k at which all of the ρi pass through before any of the τi get there. Passing each ρi
downward requires also passing a σj upward, causing a factor (z − σj)−1. Later on, when the
τi are being passed upward, each σj that was previously passed upward gets passed downward
through the kth position, causing a factor z − σj . The factors (z − σj)−1 and z − σj cancel
each other out. We know that this must happen for each σj because each σj starts and ends in
the same position.

An optimistic scenario. Consider a situation in which we have in hand the information
that we need to split the problem. Suppose we know a k (with m + 1 ≤ k ≤ n −m − 1)
where (we think) we can split the pencil, and suppose that we have in mind an (m,m) rational
function

r(z) =

m∏
i=1

z − ρi
z − τi

that can (nearly) split it. By this we mean that r(AB−1)Ek is (nearly) invariant under AB−1

and r(B−1A)Ek is (nearly) invariant under B−1A. If we then take the ρi as shifts to be passed
downward and the τi as shifts to be passed upward, then we will get both

Qk = QEk = r(AB−1)Ek and Zk = ZEk = r(B−1A)Ek.

The change of variables Â − λB̂ = Q∗(A − λB)Z maps both of these spaces back to Ek.
Thus, Ek is (nearly) invariant under both ÂB̂−1 and B̂−1Â, which implies that (Ek, Ek) is
(nearly) a deflating subspace for (Â, B̂). If the pencil does not quite split apart, then another
step with the same (or improved?) shifts may get the job done. Notice that to achieve the
desired spacesQk = r(AB−1)Ek and Zk = r(B−1A)Ek, it is not necessary to pass the shifts
all the way through the pencil. All that is needed is that ρ1, . . . , ρm are pushed downward past
position k + 1 and τ1, . . . , τm are passed upward past position k.

Of course this is a very optimistic scenario. (Where do we get these special shifts?) We
include it here just to indicate what might be possible and to illustrate the use of Theorem 5.2.

Practical shift strategies. A more realistic plan is to take (for example) ρ1, . . . , ρm to
be the eigenvalues of the lower-right-hand m×m subpencil and τ1, . . . , τm the eigenvalues
of the upper-left-hand m×m subpencil, which will have the effect of causing deflations near
the ends of the pencil.3 An even better idea is to include aggressive early deflation [9], which
is easy to implement in this context. This was already discussed in detail in [12, 13], so we
will not dwell on it.

Steady streams of shifts. We conclude this section with one more interesting but fanciful
idea. Imagine that we introduce steady streams of shifts at the top and the bottom. Eventually
the streams start to pass through each other. How do we move the streams in their respective
directions in an expeditious way? To answer this question, let us first look at the small case
n = 8, for which we have seven poles. Suppose we have at some point the poles

τ1, ρ3, τ2, ρ2, τ3, ρ1, τ4,

where the shifts ρi are moving downward and the τi upward. We can introduce a new shift ρ4
at the top by a move of type I that removes τ1. At the same time we can do three moves of

3Notice, however, that a strategy like this should also include some provision to ensure that the upward-moving
shifts are well separated from the downward-moving shifts. If some ρj is (nearly) equal to one of the τi, then they
will (nearly) cancel each other out.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

496 D. CAMPS, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

type II to interchange ρ3 with τ2, ρ2 with τ3, and ρ1 with τ4. The result is

ρ4, τ2, ρ3, τ3, ρ2, τ4, ρ1.

This is one step. For the next step we use a move of type I to introduce a new shift τ5 at the
bottom, removing ρ1. At the same time we do three moves of type II to interchange τ4 with
ρ2, τ3 with ρ3, and τ2 with ρ4. The result is

τ2, ρ4, τ3, ρ3, τ4, ρ2, τ5.

The third step is like the first, the fourth step is like the second, and so on. We can illustrate
these steps schematically with a diagram.

· · ·

��I

��a

��

��

��

��

��

��I

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

××××××××
×××××××
××××××
×××××
××××
×××
××
×

×
×
×
×
×
×
×

��a

��

��

��

��

��

��I

��

��

��

��

��

��

��I

��

��

��

��

��

��

��

��

��

��

��

��

��

��

· · ·

The matrix in the middle can be either A or B, since the same core transformations are applied
to both. The cores of the first step are in black, with the move of type I marked accordingly.
Each move of type II requires two cores, one on the left and one on the right. For example,
the two cores marked with the symbol “a” belong to a single move. The second step is in red,
with the core of type I marked accordingly on the right. The third and fourth steps are marked
in blue and green, respectively. Four subsequent steps are shown in grey. We are illustrating
the case n = 8, which is typical of even n. The odd case, which is slightly different, is left to
the reader.

Before we get too excited about this elegant scheme, we must acknowledge that there are
some challenges in the way of a competitive implementation. Thinking now of larger n, we
see that each step is rich in arithmetic and highly parallel. Each step consists of about n/2
moves or O(n2) flops. To move a shift from one end of the pencil to the other requires about n
steps, or O(n3) flops. Therefore, any competitive implementation must exploit the parallelism
well. Another, possibly larger, issue is this: How do we get a steady stream of good shifts to
feed in at the two ends?

7. Connections to earlier work.

Bulge pencils. The purpose of shifting is to accelerate convergence. In the standard
Francis bulge-chasing algorithm, the shifts are inserted at the top. That is, the shifts are used
to help determine the initial transformation that creates the bulge. Then the shifts are forgotten,
and the bulge is chased downward until it disappears off the bottom. Well-chosen shifts,
inserted at the top, lead to rapid emergence of eigenvalues at the bottom of the matrix or pencil.
Thus, the information about the shifts is somehow transmitted in the bulge from top to bottom.

A bit more than twenty years ago, one of the authors began to study the mechanism by
which the shift information is conveyed in bulge-chasing algorithms. This study took some
time, it seemed to be nontrivial, and it led to the discovery of the bulge pencil [28, 29, 31].

Now let’s take a fresh look at the bulge pencil in light of what we now know about pole
swapping. Suppose we pick a single shift ρ and begin chasing a bulge downward in a pair

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

POLE-SWAPPING ALGORITHMS 497

(A,B). After a couple of steps we have

(7.1)

××××××
×××××
××××
×××
××
×

×
×
×
×
×

+

××××××
×××××
××××
×××
××
×

,

with the bulge located at position (4, 2). The 2 × 2 subpencil outlined in (7.1) is the bulge
pencil. Its eigenvalues are ρ and∞ [31, Chap. 7].4 If we now do one more transformation on
the left, moving the bulge from A to B, we obtain

××××××
×××××
××××
×××
××
×

×
×
×
×
×

××××××
×××××
××××
×××
××
×

+ .

This is a Hessenberg pair, and the eigenvalues of the bulge pencil are now in plain sight. In the
(3, 2)-position we have the pole∞, and in the (4, 3)-position we have a finite pole, which we
know to be the shift ρ. What was opaque before is now transparent.

Certain structured problems require algorithms that chase bulges in both directions in
order to preserve the structure. The first example of such an algorithm was the Hamiltonian QR
algorithm of Byers [10, 11]. Some more recent examples are algorithms for the palindromic
and even eigenvalue problems discussed in [21]. Our understanding of the bulge pencil made
it possible to explain completely how to pass bulges (and the shifts that they contain) through
each other in general in both structured and unstructured cases [30]. It took time and effort
to figure this out, but now, in light of what we know about pole swapping, we can see that
passing shifts through each other is simple. It’s just a matter of swapping two eigenvalues of
the pole pencil. Once again, what was opaque before is now transparent.

Tightly and optimally packed shifts. The schemes discussed in Section 6 insert not just
one shift but long chains of shifts ρ1, . . . , ρm into the pencil as poles and then chase them
downward (or upward) in a bunch. In such a scheme it is important for efficiency to have
the shifts packed as tightly together as possible. It is clear that in our current scenario we
achieve this; the shifts ρ1, . . . , ρm appear as adjacent poles in the Hessenberg pair, and there is
no way that they could be packed any closer. (The same result is achieved effortlessly when
this methodology is applied to core-chasing algorithms [1].) In contrast, in the bulge-chasing
scenario, the packing of bulges is not naturally optimal, and it is not obvious how to fix the
problem. However, with some effort, a remedy was eventually found [20]. In hindsight we
can show that the remedy is a disguised implementation of a pole-swapping algorithm.

We have explained already that pole swapping reduces to bulge chasing if all poles that
are not shifts are set to infinity. The philosophy is, however, different. Bulge chasing executes
in each step an equivalence where the transforms on the left and right act on columns and
rows having the same indices, say i and i + 1. Pole swapping, on the other hand, has the
transformation on the left acting on rows i and i+ 1, while the transformation on the right acts
on columns i− 1 and i. Pole swapping is half an equivalence off compared to bulge chasing.
This lag is natural in the pole-swapping setting and appears to be the foundational strategy to
get optimally packed bulges.

4In [31] we considered (large-bulge) multishift algorithms with k shifts ρ1, . . . , ρk . Then the bulge pencil is
(k + 1)× (k + 1) and has eigenvalues ρ1, . . . , ρk , and∞. Here we are considering only the case k = 1.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

498 D. CAMPS, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

An optimally packed chain of two single shifts in the bulge chasing setting would, ideally,
look like

(7.2)

××××××
×××××
××××
×××
××
×

×
×
×
×
×

+
+

××××××
×××××
××××
×××
××
×

,

whereas in the pole-swapping setting it would resemble

××××××
×××××
××××
×××
××
×

×
×
×
×
×

××××××
×××××
××××
×××
××
×

+
+ .

For simplicity, and without loss of generality, we restrict ourselves to two single shifts.
We have seen that getting an optimally packed chain of shifts in the pole-swapping setting

is trivial. In the bulge chasing case, however, it is impossible to achieve (7.2). Introducing the
first shift and chasing it down a row results in

××××××
×××××
××××
×××
××
×

×
×
×
×
×

+

××××××
×××××
××××
×××
××
×

.

Introducing the second shift does not work. We end up with

××××××
×××××
××××
×××
××
×

×
×
×
×
×

+
+ +

××××××
×××××
××××
×××
××
×

,

and both single shifts have been combined into a 2×2 multishift bulge. The scheme introduced
by Braman, Byers, and Mathias [8] delays the introduction of the second shift until the first
has been moved two spots down. We get

××××××
×××××
××××
×××
××
×

×
×
×
×
×

+

+

××××××
×××××
××××
×××
××
×

,

which are so-called tightly packed shifts. It is impossible to pack them any closer; otherwise
the two 2× 2 bulge pencils (marked in the figure) would overlap.

A solution to pack the bulges as tight as in (7.2) was proposed by Karlsson, Kressner, and
Lang [20]. The trick is to defer some transformations from the right. Suppose that the first
bulge is introduced and we would like to move it down a row; instead of executing an entire

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

POLE-SWAPPING ALGORITHMS 499

bulge-chasing step, we only execute the transformation from the left, while the transformation
on the right is postponed. We end up with

××××××
×××××
××××
×××
××
×

×
×
×
×
×

××××××
×××××
××××
×××
××
×

+ ,

which is nothing else than having moved the first pole down a position. Next we introduce the
second shift, but we do not execute the transformation from the right. We get

××××××
×××××
××××
×××
××
×

×
×
×
×
×

××××××
×××××
××××
×××
××
×

+
+ .

To start the chasing, one now brings the first shift to the right, creating a bulge, and then
annihilates the bulge. Thus, one does not execute an entire bulge-chase step, but again the
transformation from the right is delayed. We end up with

××××××
×××××
××××
×××
××
×

×
×
×
×
×

××××××
×××××
××××
×××
××
×

+

+ ,

after which we can do the same with the second shift. Obviously, this is just pole swapping,
but the description in terms of bulges and delayed transformations conceals this fact.

Karlsson et al. [20] discussed the optimal packing of the bulges in terms of double-shift
bulges. Since we have not discussed double-shift pole-swapping algorithms here, we do not
explore this. The principles are, however, identical. The algorithm of Karlsson et al. [20] is a
pole-swapping algorithm (with poles at infinity) avant-la-lettre.

8. The new pole-swapping procedure. We now describe the new swapping procedure
that was promised at the beginning. The process of swapping two adjacent poles is equivalent
to swapping two adjacent eigenvalues in the upper-triangular pole pencil. For the description
it suffices to look at a 2× 2 subpencil. Consider therefore a 2× 2 upper-triangular pencil

(8.1) A− λB =

[
α1 a
0 α2

]
− λ

[
β1 b
0 β2

]
with eigenvalues σ1 = α1/β1 and σ2 = α2/β2. We want to swap the eigenvalues. That is, we
want to find core transformations Q and Z such that

Q∗(A− λB)Z = Â− λB̂ =

[
α̂1 â

α̂2

]
− λ

[
β̂1 b̂

β̂2

]
,

with α̂1/β̂1 = σ2 and α̂2/β̂2 = σ1.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

500 D. CAMPS, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

Solution in exact arithmetic.

Exact method 1. This method “grabs σ2” and pulls it upward. Substituting λ = α2/β2
in the pencil, we have

β2A− α2B =

[
β2α1 − α2β1 β2a− α2b

0 0

]
,

from which we deduce that the vector

(8.2) x =

[
α2b− β2a
β2α1 − α2β1

]
is a right eigenvector of the pencil associated with the eigenvalue σ2 = α2/β2. Let

(8.3) y =

[
α1b− β1a
β2α1 − α2β1

]
.

Direct computation shows that

Ax = α2y and Bx = β2y.

Thus, the spaces spanned by x and y form a one-dimensional deflating pair for (A,B) associ-
ated with the eigenvalue α2/β2.

Let Q and Z be cores such that

Z∗x = γe1 and Q∗y = ζe1,

and define

Â− λB̂ = Q∗AZ − λQ∗BZ.

Then we claim that Â− λB̂ is an upper triangular pencil with the eigenvalue α2/β2 on top.
This is verified by the calculations

Âe1 = Q∗AZe1 = γ−1Q∗Ax = α2γ
−1Q∗y = α2γ

−1ζ e1

and

B̂e1 = Q∗BZe1 = γ−1Q∗Bx = β2γ
−1Q∗y = β2γ

−1ζ e1.

This procedure fails if and only if x = 0, which happens whenever A = B, for example. The
condition x = 0 implies that the eigenvalues are equal, so in this case the swap can be skipped.

Exact method 2. This method, which is the dual of the previous method, “grabs σ1” and
pushes it downward. Substituting λ = α1/β1 in the pencil, we have

β1A− α1B =

[
0 β1a− α1b
0 β1α2 − α1β2

]
,

from which we deduce that the vector

(8.4) vT =
[
β1α2 − α1β2 α1b− β1a

]
is a left eigenvector of the pencil associated with the eigenvalue σ1 = α1/β1. Let

(8.5) wT =
[
β1α2 − α1β2 α2b− β2a

]
.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

POLE-SWAPPING ALGORITHMS 501

Direct computation shows that

vTA = α1w
T and vTB = β1w

T .

Let Q and Z be cores such that

vTQ = ζeT2 and wTZ = γeT2 ,

and define

Â− λB̂ = Q∗AZ − λQ∗BZ.

Then we claim that Â− λB̂ is an upper triangular pencil with the eigenvalue α1/β1 on the
bottom. This is verified by the calculations

eT2 Â = eT2Q
∗AZ = ζ−1vTAZ = α1ζ

−1wTZ = α1ζ
−1γ eT2

and

eT2 B̂ = eT2Q
∗BZ = ζ−1vTBZ = β1ζ

−1wTZ = β1ζ
−1γ eT2 .

This procedure fails if and only if vT = 0, in which case σ1 = σ2, and the swap can be
skipped. The reader can easily verify that the two methods produce exactly the same Q and Z.

Solution in floating point arithmetic. In the interest of stability one should not imple-
ment either of the above procedures in practice. There are several alternatives.

Case 1. We will demonstrate below that the following procedure, which is based on exact
method 1, is stable in the case |σ1 | ≥ |σ2 |. Compute x as in (8.2). Then compute Z such that
Z∗x = γe1, where γ = ‖x‖. (Here and in what follows, the norm symbol refers to either
the vector 2-norm or matrix 2-norm, depending on the context.) Then compute BZ. Since
Ze1 = γ−1x, the first column of BZ is γ−1β2 y. Do not compute Q using the vector y as
defined in (8.3). Instead compute Q so that Q∗(BZe1) = β2γ

−1ζ e1. Then let

Â = Q∗AZ and B̂ = Q∗BZ.

Case 2. For the case when |σ1 | < |σ2 | we need a different procedure. There are multiple
possibilities, the simplest of which is to apply the above procedure with the roles of A and B
reversed. We compute Z as before, then use AZ instead of BZ to determine Q. Specifically,
since Ze1 = γ−1x, the first column of AZ is γ−1α2 y. Thus, we can compute Q so that
Q∗(AZe1) = α2γ

−1ζ e1.
This procedure is similar to that of Van Dooren [26]. His method always computes Z

first, then uses either AZ or BZ to compute Q. The only difference is that our criterion for
switching between BZ and AZ is different from that in [26]. This makes a difference in the
backward error.

Another procedure, which is based on exact method 2, computes Q first. Compute the
vector vT as in (8.4), then compute Q such that vTQ = ζeT2 , where ζ = ‖v‖. Then compute
Q∗B. Since eT2Q

∗ = ζ−1vT , the second row of Q∗B is ζ−1β1 wT . Do not compute Z using
wT as defined in (8.5). Instead compute Z so that (eT2Q

∗B)Z = β1ζ
−1γ eT2 . Then let

Â = Q∗AZ and B̂ = Q∗BZ.

This is exactly equivalent to the procedure from Case 1 applied to a “flipped” pencil. Let
F = [0 1

1 0], the flip matrix, and consider the pencil

FATF − λFBTF =

[
α2 a

α1

]
− λ

[
β2 b

β1

]
.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

502 D. CAMPS, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

This has the eigenvalues reversed. The condition |σ2 | > |σ1 | implies that we can stably apply
the method from Case 1, and then “unflip” the result. The equation Â−λB̂ = Q∗(A−λB)Z
implies

FÂTF − λFB̂TF = (FZTF)(FATF − λFBTF)(FQF),

which shows that the roles of Q and Z are reversed in the flipped procedure. (Of course Q
and FQF are not exactly the same, but they contain the same information.) The “compute Q
first”-procedure that we have just outlined is a way of implementing the “flipped”-procedure
without actually doing the flips.

Backward error analysis. It suffices to prove backward stability in Case 1, since the
options in Case 2 are both variants of Case 1.

The swapping operation is a unitary equivalence, and such transformations generally are
stable [17], but there is one thing we have to verify. The core Q is designed so that Q∗(BZ)
has a zero in the (2, 1)-position. This automatically creates a zero in the (2, 1)-position of
Q∗(AZ) because the first columns of AZ and BZ are both proportional to y. This is true in
exact arithmetic. We just need to verify that in floating-point arithmetic the entry that is created
in the (2, 1)-position of Q∗AZ is small enough that backward stability is not compromised by
setting it to zero. For this it suffices that its magnitude be no bigger than a modest multiple of
u‖A‖, where u is the unit roundoff.

The swapping operation begins with the computation of x in (8.2). In floating-point
arithmetic we get

(8.6) fl(x) =

[
α2b(1 + ε1)− β2a(1 + ε2)
β2α1(1 + ε3)− α2β1(1 + ε4)

]
,

where each εi is the result of two roundoff errors, a multiplication and a subtraction mapped
back to the product terms, and therefore satisfies |εi | ≤ 2u + O(u2). We will use the
abbreviation |εi | . u to mean that |εi | is no bigger than a modest constant times u.

The next step is to compute Z. In practice we do this using fl(x) and make additional
roundoff errors in the computation. We get Z̃ = fl(Z) satisfying

(8.7) Z̃e1 = x̃ = γ̃−1
[

fl(x1)(1 + ε5)
fl(x2)(1 + ε6)

]
.

Here γ̃ = ‖fl(x)‖. A tiny relative error is made during this norm computation, and another
tiny error is made when fl(x1) is divided by γ̃. These are the causes of the error ε5, and we
have |ε5 | . u. Similarly |ε6 | . u. For more details about this computation, see [1, § 1.4].

The vector x̃ defined by (8.7) is our computed (and normalized) version of a right
eigenvector associated with the eigenvalue σ2. For later use we wish to show that x̃ is exactly
an eigenvector of a slightly perturbed pencil. Thus we seek α̃1, α̃2, β̃1, and β̃2 such that

(8.8)
(
β̃2

[
α̃1 a

α̃2

]
− α̃2

[
β̃1 b

β̃2

])[
x̃1
x̃2

]
=

[
0
0

]
.

Notice that we are not going to back any of the error onto a or b. This equation is equivalent to

(β̃2α̃1 − α̃2β̃1)x̃1 + (β̃2a− α̃2b)x̃2 = 0.

Filling in the values of x̃1 and x̃2 from (8.7) and (8.6), we can demonstrate that this equation
holds if we make the assignments

α̃1 = α1
(1 + ε3)(1 + ε6)

(1 + ε2)(1 + ε5)
, α̃2 = α2(1 + ε1)(1 + ε5),

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

POLE-SWAPPING ALGORITHMS 503

β̃1 = β1
(1 + ε4)(1 + ε6)

(1 + ε1)(1 + ε5)
, β̃2 = β2(1 + ε2)(1 + ε5).

Clearly | α̃i − αi | . u|αi | and | β̃i − βi | . u|βi | for i = 1, 2. Equation (8.8) can be written
more compactly as

(8.9) β̃2Ãx̃ = α̃2B̃x̃.

Thus, x̃ is an eigenvector of the perturbed pencil Ã − λB̃ associated with the eigenvalue
σ̃2 = α̃2/β̃2. We also write

Ã = A+ δA and B̃ = B + δB1,

with δA and δB1 diagonal matrices satisfying ‖δA‖ . u‖A‖ and ‖δB1 ‖ . u‖B ‖.
Finally, we compute Q. In exact arithmetic, Q is constructed so that Q∗(BZe1) = η e1,

for some η, so the first column of Q must be proportional to BZe1. In practice, instead of
BZe1, we use

y̌ = fl(BZ̃e1) = fl(Bx̃) = γ̃−1
[
β1x̃1(1 + ε′1) + bx̃2(1 + ε′2)

β2x̃2(1 + ε′3)

]
,

where |ε′i | . u for i = 1, 2, 3. The computed version of Q is Q̃ = fl(Q) satisfying

Q̃e1 = ζ̌−1
[
y̌1(1 + ε′4)
y̌2(1 + ε′5)

]
,

where ζ̌ = ‖ y̌‖ and ε′4 and ε′5 are due to the tiny roundoff errors in the calculation.
For our analysis we need to establish that there is a slightly perturbed matrix

B̂ = B + δB2 =

[
β̂1 b

β̂2

]
such that Q̃∗B̂Z̃ has an exact zero in the (2, 1)-position. This just means that ỹ = Q̃e1 is
exactly proportional to B̂Z̃e1 = B̂x̃. It is easy to verify that the choice

β̂1 = β1
(1 + ε′1)

(1 + ε′2)
, β̂2 = β2

(1 + ε′3)(1 + ε′5)

(1 + ε′2)(1 + ε′4)

does the trick. Clearly | β̂1 − β1 | . u |β1 | and | β̂2 − β2 | . u |β2 |, and δB2 is a diagonal
matrix satisfying ‖δB2 ‖ . u ‖B ‖.

Our final computed results are fl(Q̃∗AZ̃) and fl(Q̃∗BZ̃). We have to show that the (2, 1)-
entries of these matrices are small enough that we can set them to zero without compromising
backward stability. The “B” part is routine. Focusing on the (2, 1)-entry, we have

eT2 fl(Q̃∗BZ̃)e1 = eT2 Q̃
∗BZ̃e1 + eT2 E1e1,

where E1 is the matrix of roundoff errors incurred in multiplying the three matrices together
and satisfies ‖E1 ‖ . u ‖Q̃‖ ‖B ‖ ‖ Z̃ ‖, i.e., ‖E1 ‖ . u ‖B ‖. The remaining term is

eT2 Q̃
∗BZ̃e1 = eT2 Q̃

∗B̂Z̃e1 − eT2 Q̃∗δB2Z̃e1.

The first term on the right-hand side is exactly zero by construction. The second is bounded
above by ‖δB2 ‖ . u ‖B ‖. This takes care of the “B” part.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

504 D. CAMPS, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

The “A” part (the important part) is more delicate. We have

eT2 fl(Q̃∗AZ̃)e1 = eT2 Q̃
∗AZ̃e1 + eT2 E2e1,

where E2 is the matrix of roundoff errors incurred in multiplying the three matrices together
and satisfies ‖E2 ‖ . u ‖A‖. The remaining term is

eT2 Q̃
∗AZ̃e1 = eT2 Q̃

∗ÃZ̃e1 − eT2 Q̃∗δAZ̃e1.

The second term on the right-hand side is bounded above by ‖δA‖ . u ‖A‖, so now
we can just focus on the other term. Here we make use of (8.9), which can be written as
ÃZ̃e1 = (α̃2/β̃2)B̃Z̃e1.

eT2 Q̃
∗ÃZ̃e1 =

α̃2

β̃2
eT2 Q̃

∗B̃Z̃e1 =
α̃2

β̃2
eT2 Q̃

∗B̂Z̃e1 +
α̃2

β̃2
eT2 Q̃

∗(δB1 − δB2)Z̃e1.

The term containing B̂ is zero by construction, so now we just need to concentrate on the other
term. Let δB = δB1 − δB2. From the definitions of δB1 and δB2, we see that

δB =

[
ε′′1 β1 0

0 ε′′2 β2

]
,

where |ε′′i | . u for i = 1, 2. Moreover
α̃2

β̃2
=
α2

β2
(1 + ε′′3) for some tiny ε′′3 . We also use our

assumption |σ1 | ≥ |σ2 | to deduce that |β1α2/β2 | ≤ |α1 |. Thus,

|(α̃2/β̃2)δB | = (1 + ε′′3)

[
|ε′′1 β1α2/β2 |

|ε′′2 α2 |

]
≤ (1 + ε′′3)

[
|ε′′1 α1 |

|ε′′2 α2 |

]
,

so

‖(α̃2/β̃2)δB ‖ . u ‖A‖.

We conclude that our one remaining term, which is (α̃2/β̃2)eT2 Q̃
∗(δB)Z̃e1, satisfies

|(α̃2/β̃2)eT2 Q̃
∗(δB)Z̃e1 | . u ‖A‖.

We have demonstrated that

|eT2 fl(Q̃∗AZ̃)e1 | . u ‖A‖ and |eT2 fl(Q̃∗BZ̃)e1 | . u ‖B ‖,

so we can set these numbers to zero without compromising backward stability. The. symbols
hide constants, but these constants are not too large due to the small total number of operations
required by the swap.

Our procedure improves on that of Van Dooren [26] in that the latter only guarantees
that the two entries are bounded above by umax{‖A‖, ‖B ‖} instead of u ‖A‖ and u ‖B ‖
separately. It follows that our procedure produces better results in cases where A and B have
vastly different norms. We remind the reader that the A and B referred to here are the small
matrices defined in (8.1) and not the larger matrices in which they are embedded. Therefore,
we cannot solve the problem of different norms by a simple rescaling of the large matrices at
the outset as this does not guarantee equal norms in all of the little submatrices in which the
swaps take place.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

POLE-SWAPPING ALGORITHMS 505

TABLE 8.1
Distribution of errors | â21 |/‖A‖ and | b̂21 |/‖B‖ for our method, Van Dooren’s method, and the Sylvester

method.

| x̂21 |/‖X‖
[
0, 10−16

] (
10−16, 10−15

] (
10−15, 10−10

] (
10−10, 10−5

] (
10−5, 100

]
Our method A 99.71% 0.29% 0% 0% 0%

B 99.85% 0.15% 0% 0% 0%

Van Dooren A 98.19% 0.55% 0.93% 0.27% 0.06%
B 98.19% 0.55% 0.93% 0.27% 0.06%

Sylvester A 93.34% 5.88% 0.57% 0.17% 0.04%
B 93.34% 5.88% 0.57% 0.17% 0.04%

TABLE 8.2
Distribution of errors | â21 |/∆ and | b̂21 |/∆ for our method, Van Dooren’s method, and the Sylvester method.

| x̂21 |/∆
[
0, 10−16

] (
10−16, 10−15

] (
10−15, 10−10

] (
10−10, 10−5

] (
10−5, 100

]
Our method A 99.87% 0.13% 0% 0% 0%

B 99.93% 0.07% 0% 0% 0%

Van Dooren A 99.94% 0.06% 0% 0% 0%
B 99.94% 0.06% 0% 0% 0%

Sylvester A 97.26% 2.74% 0% 0% 0%
B 97.26% 2.74% 0% 0% 0%

Numerical experiments. In most cases it does not matter which swapping procedure is
used; they all perform well. In order to see a difference, they must be stress-tested on pencils
that have elements that vary widely in magnitude. Therefore, in the two experiments reported
here, we used pencils whose nonzero entries are randomly generated complex numbers with
magnitudes distributed logarithmically in the range from 10−12 to 1012.

In our first test we generated sixty-four million random 2 × 2 upper-triangular pencils
and computed the swapping transformations using three different algorithms: our method,
the method of Van Dooren [26], and a method that solves the generalized Sylvester equation
explicitly to determine Q and Z [7]. The computations were done in IEEE standard double-
precision arithmetic, for which u ≈ 10−16. Table 8.1 shows that our method always produces
residuals |a21 |/‖A‖ and |b21 |/‖B ‖ that are under 10−15, and more than 99.7% of them are
under 10−16. In contrast, the Van Dooren and Sylvester methods sometimes produce much
larger residuals, approaching 100 in a few cases. If we change the criterion and consider the
residuals |a21 |/∆ and |b21 |/∆, where ∆ = max{‖A‖, ‖B ‖}, then all methods perform
well, as Table 8.2 shows. By this criterion all residuals are under 10−15. Our method and Van
Dooren’s method perform about equally well, and the Sylvester method is almost as good. We
conclude that if ‖A‖ and ‖B ‖ are roughly the same, then it doesn’t matter which method is
used. However, in problems for which there can be large differences in magnitude between
‖A‖ and ‖B ‖, our method is better.

It is natural to ask whether improved backward stability of the swapping transformations
actually results in more accurately computed eigenvalues of the larger pencils. To test this,
we considered ten thousand randomly generated 3 × 3 upper Hessenberg pencils with log-
arithmically distributed entries with magnitudes varying from 10−12 to 1012. Since we do
not know the exact eigenvalues of these pencils, we used MATLAB with the ADVANPIX

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

506 D. CAMPS, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

Multiprecision Computing Toolbox5 to compute “exact” eigenvalues in quadruple precision
arithmetic. We compared these with the approximate eigenvalues computed using our method
and Van Dooren’s.

Before we look at that comparison, we note that we didn’t just compute the eigenvalues;
in fact we computed the Schur form AT − λBT = Q∗(A − λB)Z, where AT and BT are
upper triangular. This allowed us to compute residuals

(8.10) rA = ‖A−QATZ∗ ‖/‖A‖ and rB = ‖B −QBTZ∗ ‖/‖B ‖,

which are measures of the backward error. When the computation was done using our method,
the residuals were always tiny, never exceeding 10−14, verifying normwise backward stability.
When Van Dooren’s criterion was used, the residuals (8.10) were usually just as small but
occasionally larger. If the denominators ‖A‖ and ‖B ‖ in the residuals rA and rB are replaced
by ∆ = max{‖A‖, ‖B ‖}, then the Van Dooren residuals also become uniformly small, never
exceeding 10−14.

Of course tiny backward errors do not guarantee accurately computed eigenvalues, as
some of them may be ill conditioned. Moreover, decreasing the backward error does not
necessarily guarantee improved eigenvalue accuracy, so we must make the comparison. Let λi,
i = 1, 2, 3, denote the “exact” eigenvalues produced in quadruple precision, let λ(o)i denote
the approximate eigenvalues computed by our method, and let

(8.11) e(o) = max
i
|λ(o)i − λi |/|λi |,

be the maximum relative error. Let λ(v)i denote the eigenvalues computed by Van Dooren’s
method, and let e(v) denote the maximum relative error, defined analogously to e(o) as in (8.11).

We examined the ratios e(v)/e(0) and found that just over 98% of our trials resulted in
0.1 < e(v)/e(o) < 10, indicating that neither method was significantly more accurate than
the other. (In fact there were many cases where e(v)/e(o) = 1 since it often happens that
our criterion and Van Dooren’s criterion make exactly the same decisions.) Of the remaining
trials, which numbered 181, there were 145 in which our method did significantly better than
Van Dooren’s, i.e., e(v)/e(o) > 10, and 36 in which e(v)/e(o) < 0.1. Thus, our new method
obtained more accurate eigenvalues in about 80% of the significant cases. More details are
given in histogram form in Figure 8.1. The gap in the center of the figure is due to having left
out the many cases for which e(v)/e(o) is close to 1. In the interest of compactness and clarity,
the figure also leaves out one “off the charts” case for which e(v)/e(o) ≈ 1015.

9. Conclusions. We have discussed the RQZ algorithm and a number of variants, which
we refer to generally as pole-swapping algorithms. We have made two main contributions:
1) We have developed a flexible, modular convergence theory that can be applied to any
pole-swapping algorithm. 2) We have presented a new, more accurate, swapping procedure. A
backward error analysis and numerical experiments demonstrate the superiority of the new
procedure.

Acknowledgment. We thank the anonymous referees for carefully reading the paper and
suggesting several improvements.

5https://www.advanpix.com

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

POLE-SWAPPING ALGORITHMS 507

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

10

20

30

40

50

60

70

log10(e(v)/e(o))

C
ou

nt

FIG. 8.1. Histogram of the logarithm of e(v)/e(0) in significant cases.

REFERENCES

[1] J. L. AURENTZ, T. MACH, L. ROBOL, R. VANDEBRIL, AND D. S. WATKINS, Core-Chasing Algorithms for
the Eigenvalue Problem, SIAM, Philadelphia, 2018.

[2] , Fast and backward stable computation of roots of polynomials, Part II: Backward error analysis;
companion matrix and companion pencil, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 1245–1269.

[3] , Fast and backward stable computation of the eigenvalues and eigenvectors of matrix polynomials,
Math. Comp., 88 (2019), pp. 313–347.

[4] J. L. AURENTZ, T. MACH, R. VANDEBRIL, AND D. S. WATKINS, Fast and backward stable computation of
roots of polynomials, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 942–973.

[5] Z. BAI AND J. W. DEMMEL, On swapping diagonal blocks in real Schur form, Linear Algebra Appl., 186
(1993), pp. 73–95.

[6] M. BERLJAFA AND S. GÜTTEL, Generalized rational Krylov decompositions with an application to rational
approximation, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 894–916.

[7] A. BOJANCZYK AND P. VAN DOOREN, Reordering diagonal blocks in the real Schur form, in Linear Algebra
for Large Scale and Real-Time Applications, M. Moonen, G. Golub, and B. D. Moor, eds., NATO ASI
Series E: Applied Sciences, Springer, Dordrecht, 1993, pp. 351–352.

[8] K. BRAMAN, R. BYERS, AND R. MATTHIAS, The multishift QR algorithm, part I: Maintaining well focused
shifts and level 3 performance, SIAM J. Matrix Anal. Appl., 23 (2002), pp. 929–947.

[9] , The multishift QR algorithm, part II: Aggressive early deflation, SIAM J. Matrix Anal. Appl., 23
(2002), pp. 948–973.

[10] R. BYERS, Hamiltonian and Symplectic Algorithms for the Algebraic Riccati Equation, PhD. Thesis, Dept.
Comp. Sci., Cornell University, Ithaca, 1983.

[11] , A Hamiltonian QR algorithm, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 212–229.
[12] D. CAMPS, Pole Swapping Methods for the Eigenvalue Problem: Rational QR Algorithms, PhD. Thesis,

Faculty of Engineering Science, KU Leuven, Leuven, 2019.
[13] D. CAMPS, K. MEERBERGEN, AND R. VANDEBRIL, A rational QZ method, SIAM J. Matrix Anal. Appl., 40

(2019), pp. 943–972.
[14] J. G. F. FRANCIS, The QR transformation. II, Comput. J., 4 (1961), pp. 332–345.
[15] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, 4th ed., Johns Hopkins University Press,

Baltimore, 2013.
[16] R. GRANAT, B. KÅGSTRÖM, AND D. KRESSNER, A novel parallel QR algorithm for hybrid distributed

memory HPC systems, SIAM J. Sci. Comput., 32 (2010), pp. 2345–2378.
[17] N. J. HIGHAM, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia, 2002.
[18] B. KÅGSTRÖM AND P. POROMAA, Computing eigenspaces with specified eigenvalues of a regular matrix

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

508 D. CAMPS, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

pair (A,B) and condition estimation: theory, algorithms and software, Numer. Algorithms, 12 (1996),
pp. 369–407.

[19] , LAPACK-style algorithms and software for solving the generalized Sylvester equation and estimating
the separation between regular matrix pairs, ACM Trans. Math. Software, 22 (1996), pp. 78–103.

[20] L. KARLSSON, D. KRESSNER, AND B. LANG, Optimally packed chains of bulges in multishift QR algorithms,
ACM Trans. Math. Software, 40 (2014), Art. 12, 15 pages.

[21] D. KRESSNER, C. SCHRÖDER, AND D. S. WATKINS, Implicit QR algorithms for palindromic and even
eigenvalue problems, Numer. Algorithms, 51 (2009), pp. 209–238.

[22] B. LANG, Effiziente Orthogonaltransformationen bei der Eigen- und Singulärwertzerlegung, Habilitationss-
chrift, Fachbereich Mathematik, Universität Wuppertal, Wuppertal, 1997.

[23] B. LANG, Using level 3 BLAS in rotation-based algorithms, SIAM J. Sci. Comput., 19 (1998), pp. 626–634.
[24] C. B. MOLER AND G. W. STEWART, An algorithm for generalized matrix eigenvalue problems, SIAM J.

Numer. Anal., 10 (1973), pp. 241–256.
[25] T. STEEL, D. CAMPS, K. MEERBERGEN, AND R. VANDEBRIL, A multishift, multipole rational QZ method

with aggressive early deflation, Preprint on arXiv, 2020. https://arxiv.org/abs/1902.10954
[26] P. VAN DOOREN, A generalized eigenvalue approach for solving Riccati equations, SIAM J. Sci. Statist.

Comput., 2 (1981), pp. 121–135.
[27] R. VANDEBRIL AND D. S. WATKINS, An extension of the QZ algorithm beyond the Hessenberg-upper

triangular pencil, Electron. Trans. Numer. Anal., 40 (2013), pp. 17–35.
http://etna.ricam.oeaw.ac.at/vol.40.2013/pp17-35.dir/pp17-35.pdf

[28] D. S. WATKINS, Forward stability and transmission of shifts in the QR algorithm, SIAM J. Matrix Anal.
Appl., 16 (1995), pp. 469–487.

[29] , The transmission of shifts and shift blurring in the QR algorithm, Linear Algebra Appl., 241/243
(1996), pp. 877–896.

[30] , Bulge exchanges in algorithms of QR type, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 1074–1096.
[31] , The Matrix Eigenvalue Problem. GR and Krylov Subspace Methods, SIAM, Philadelphia, 2007.
[32] , Fundamentals of Matrix Computations, 3rd ed., Wiley, Hoboken, 2010.
[33] , Francis’s algorithm, Amer. Math. Monthly, 118 (2011), pp. 387–403.
[34] J. H. WILKINSON, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://arxiv.org/abs/1902.10954
http://etna.ricam.oeaw.ac.at/vol.40.2013/pp17-35.dir/pp17-35.pdf

