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PRIMAL-DUAL BLOCK-PROXIMAL SPLITTING
FOR A CLASS OF NON-CONVEX PROBLEMS*

STANISLAV MAZURENKO, JTYRKI JAUHIAINEN?, AND TUOMO VALKONEN$

Abstract. We develop block structure-adapted primal-dual algorithms for non-convex non-smooth optimisation
problems, whose objectives can be written as compositions G (z) 4+ F'(K (x)) of non-smooth block-separable convex
functions G and F’ with a nonlinear Lipschitz-differentiable operator K. Our methods are refinements of the nonlinear
primal-dual proximal splitting method for such problems without the block structure, which itself is based on the
primal-dual proximal splitting method of Chambolle and Pock for convex problems. We propose individual step
length parameters and acceleration rules for each of the primal and dual blocks of the problem. This allows them to
convergence faster by adapting to the structure of the problem. For the squared distance of the iterates to a critical
point, we show local O(1/N), O(1/N?), and linear rates under varying conditions and choices of the step length
parameters. Finally, we demonstrate the performance of the methods for the practical inverse problems of diffusion
tensor imaging and electrical impedance tomography.
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1. Introduction. We want to solve in Hilbert spaces X and Y the problem

(Po) mig G(z) + F(K(z)),

where G : X — Rand F : Y — R are convex, proper, and lower semicontinuous functions
but K € C'(X;Y) is a possibly nonlinear operator. The linear case has been considered
frequently in the literature, while in our earlier work [9, 11, 33] we have developed first-order
primal-dual methods for the generally non-convex problem with a nonlinear K. We refer
to [36] for a simplified overview of such methods. In the present work, still with a nonlinear
K, we consider problems of the more specific form

m

(P) min Y Gi(Pr) + Y Fi(QiK(x)),

rzeX
=1 =1

where, forall j = 1,...,mand ¢ = 1,...,n, the functions G; : X — Rand F,: Y - R
are convex, proper, and lower semicontinuous, and Py,..., P, € L(X;X) as well as
Q1,...,Qn € L(Y;Y) are mutually orthogonal families of linear projection operators. In
other words, G and F' are block-separable. More specifically, we develop spatially adaptive
and block-stochastic optimisation methods for the solution of (P).

As observed in [35] for linear K, the adaptation of step lengths to individual blocks j
and ¢ can speed up the convergence of optimisation methods due to blockwise Lipschitz or
strong convexity factors being better suited than a global factor. Moreover, as now extensively
studied, randomly sampling the blocks to be updated in each step can also improve convergence
for very large-scale problems, in part due to the spatial adaptation and in part due to being
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able to avoid communication in a cluster implementation of the algorithm. For more on
stochastic block coordinate descent-type methods, we refer to the review [42] and, among
others, the original articles [2, 13, 16, 23, 25, 28, 29, 31, 46] on forward-backward type
methods, [4, 6, 8, 12, 15, 32, 35, 45] on primal-dual methods, and [26, 27] on second-order
methods, all in the convex case. For the non-convex case we point to [43, 44]. Compared
to the latter, we work in the primal-dual setting and aim for spatial adaptation also in the
deterministic setting. We also aim to prove convergence rates.

Several works consider, instead of a random selection of blocks, a random selection
of terms of a sum of functions. In the non-convex case, recent mathematical works in this
area include [14, 22], aside from more applied works in the area of neural networks. In our
block-stochastic approach, for non-convex C''-functions J; (¢ = 1, ...,n), we can write with
K(z):= (Ji(z),...,Jn(x)) and F(z) :== >, 2,

(1.1) min G(x) +) Ji(z) = min G(z) + F(K (x)).
(=1

To start describing our approach, using the conjugates F of the convex, proper, lower
semicontinuous functions Fy, we reformulate (P) as the minmax problem

m n

) min max G;(Pjzx) + (K(z),y) — Z EFf (Qey).
zeX yey #<
j=1 =1
If K is linear and the number of blocks is n = m = 1, then a popular algorithm for solving
this formulation is the primal-dual proximal splitting (PDPS) of Chambolle and Pock [7]. It
consists of alternating proximal steps with respect to the dual and primal variables with the
other variable fixed and an over-relaxation step that ensures convergence. Its extension to
nonlinear K (but still without blockwise structure) is the iteration [9, 33]
it

o't i=prox, (2" — VK (2')*y"),

fz—i-l = xz-ﬁ-l -l—wi(.’bZ-H _ {EZ),

i+

y = prox,, g (Y + oip K(Z)

for some step length and over-relaxation parameters 7;, 041, w; and the proximal operator
prox, g(z) := (I + 7,0G)~!(x). Our purpose in this work is to randomise and adapt the
method to the multi-block structure of (S): firstly, in each step, we will only update random
subsets of either or both primal and dual blocks, and, secondly, even when we deterministically
update every block in each step, we adapt the step lengths to the local structure of the problem
in each block.

We organise our work as follows: first, in Section 2, we introduce the general notation,
concepts, and the rough structure of the algorithm. In Section 3 we start the convergence proof
by deriving several technical estimates. In Section 4 we then use these estimates to derive
convergence rates of more specific algorithms when only the primal updates are randomised.
Likewise, in Section 5 we study the case when only the dual updates are randomised. We
finish our work in Section 6 with numerical experience in diffusion tensor imaging (DTI) and
electrical impedance tomography (EIT).

2. Notation, rough algorithm, and its testing. Throughout this paper, we denote by
L(X;Y) the space of bounded linear operators between Hilbert spaces X and Y, I is the
identity operator, and (z, z’) is the inner product in the corresponding space. We write P A
for the power set of a set A and y 4 (a) for the indicator function that equals 1 if a € A and 0
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otherwise. We set (z, 2"y := (T'x, 2} and ||z||7 := /(x, )T, where in the latter we require
T >0.ForT,S € L(X;Y), the inequality T > S means that 7' — S is positive semidefinite.
If H is a set-valued operator X = X, then inequalities such as (H(x),z’) > 0 mean that
(w,z"y > 0 for every w € H(x).

We write (€2, O, P) for the probability space consisting of a sample set {2, a o-algebra O
on {2, and a probability measure P. We write R(QO; V) for the space of V'-valued O-measurable
random variables. R(QO; U = U) is therefore the space of O-measurable random variables,
whose values are set-valued operators U =2 U. Due to the iterative nature of optimisation
algorithms, we introduce a sequence of o-algebras {O; };en such that O; C O;11 and O; C O
for any ¢ € N. We use O; to collect all the information available before the (¢ + 1)st iteration.
We write E;[-] := E[- | O;] for the corresponding conditional expectation.

Many conditions that we impose in the following sections only apply to the subspace on
which the operator K from the introduction acts nonlinearly. Correspondingly, we introduce

YL :={y €Y | themap z — (y, K(x)) is linear} and YaL = Y,

as well as the orthogonal projection Pyp to YnL. See Section 6 for how such subspaces
practically come about in applications. We also use the short-hand notation

zj = Pz and Yo = Quy.

2.1. Abstract structure of the algorithm. We generally use the symbol z for primal
variables (elements of X') and the symbol y for dual variables (elements of V). We group
these variables together into u = (z,y) € X x Y. This applies to indexed variables,
u' := (2%, y*), critical points % = (Z, ), etc., without an explicit introduction of the primal
and dual components in each case. We define the set-valued operator H : X XY = X x Y

foru = (x,y) as

_[0G(z) + VK (z)*y
H{w) "[ OF*(y) - K() ]
2.1 m n
with G(z) =Y G;(Pjz) and F*(y):=> F;(Quw).
j=1 (=1

Then 0 € H(u) encodes the critical point conditions for (S). These will also become the
first-order necessary optimality conditions under a constraint qualification, e.g., when G is C*
and either the null space of VK (z)* is trivial or dom F' = X [30, Example 10.8].

Following the “testing” approach to the convergence analysis from [34], we introduce the
primal-dual step length, testing, and preconditioning operators

T, 0 (@ 0
Wip1 = [O Ei+1] ; Ziy1 = {O \IJHJ ; and
2.2) 7 _e-lAr
My = [ ~1 ‘ i] :
*\IJi+1A7? I

Here, T;, ®; and X; 1, ¥;; are the respective primal and dual step length and testing oper-
ators, and A; is a term that we will develop to suitably decouple the updates of the primal
and dual variables. In the deterministic case, T;, ®; € L(X; X), and 3,41, ¥, 11 € L(Y;Y),
aswell as A; € L(X;Y). We assume ®; and ¥, to be self-adjoint. This implies that also
Ziy1 M,y is self-adjoint. For the stochastic setting we will impose our formal assumptions
later in (3.14). We will in particular require the tests ®; and ¥, to be already known before
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the start of the ith iteration (calculating '), whereas the step lengths themselves will have to
be known before the (i + 1)st iteration (calculating u?*1).
Finally, we write our proposed algorithm in the implicit form

(PP) 0e Wi+1ﬁi+1(ui+l) + Mi+1(ui+1 — UZ)

for

Hipy (u'™) :=H (u'")
2.3) N [VE(2') — VK (2" )]y
K(21) — K(z! + Qi (2! — 2t)) + VK (2°)Q (2T — 29)

and some over-relaxation operator §2;, which in the deterministic setting is in L(X; X). Here
H; 1 (u) is a partial linearization of H (u) similar to [33]. It simplifies to H (u) for a linear K.
In the following, by specifying the testing, step length, preconditioning, and over-relaxation
operator, we develop more explicit methods from this implicit formulation, which itself is
more amenable to a convergence analysis.

2.2. Testing for convergence. The proximal point method iteratively solves u**! from
(2.4) 0c Hu ™) + (™ —ub)
given a step length parameter 7 > 0. If H is a y-strongly monotone operator and 7 € H~1(0),
then (H (u'*"),u"*t" — @) > ~|ju'"" — @[>, This suggest “testing” (2.4) by the application of
(-, ut! — ). Subsequently to this testing, the strong monotonicity and Pythagoras’s identity,

. o % 1, . , 1., - 1. . ~
R e [T T e e 1 L e [ 1
2 2 2

applied to 0 € (H (u'™!) + 771w — u?), vt — 1) yield

14 2y7

2

By telescoping this inequality, it is clear that u™ — % at the linear rate O(1/(1 +2v7)™). The
next theorem from [34] generalises these simple arguments to the more general algorithm (PP)
in the stochastic setting.

THEOREM 2.1 ([34, Corollary 3.1]). On a Hilbert space U and a probability space
(Q,0), let Hi11 : R(O;U = U) and M1, Zi41 € R(O;L(U;U)) fori € N. Suppose
that (PP) is solvable for {u*t1};en C R(O;U). Iffor all i € N and almost all random events
w € Q, (Zix1M;11)(w) is self-adjoint and the expected fundamental condition

PR I . 1, .,
= @2 4 G — ) < Sl =l

25) E[(Wip Hipa (u ™), u ™ =)z

L‘+1]

1, N 1, . ‘
>E LHUIH — QZH,QMiJrrZ,;HMi+1 - 5”“”rl —u'| 2ZiJ,lMiJr1
holds, then so does the expected descent inequality
1 5N 1 ~
Q6 B[l -l SE |30 - 0| (V21

Condition (2.5) is simply a relaxation of the strong monotonicity we assumed above. It
also includes the term 3 |lu’*' — u!| z,,,a,,, intended to be used with forward steps. In
application to (2.4), we have M; 1 = I, and we can take as the testing operator Z; 1 = ¢;1
with ¢; 11 = (1 + 2y7)¢; and ¢g = 1. Thus, Zn 1 My 41 in (2.6) forms a local metric that
measures rates of convergence. If we can ensure Z; 1 M;; > p;I for some deterministic
i /oo, then (2.6) reveals that E[||u” — ]|?] converges to zero at the rate O(1/ux). We
will develop lower bounds of this kind in Section 3.
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2.3. Blockwise algorithm structure. We now develop a more blockwise-refined struc-
ture of our proposed algorithm. Inserting (2.2), we can expand (PP) as the pair of implicit
updates (compare [35, §2.3])

it = (I+TiaG)1(wi+<I>Zl[A* O TiVE () (™ )
—EVK(xZ)*yZ>,

2.7)
Yyt = (I +%;,,0F*)! (y + UL A = U 80 VK (29)Q7 (27 — 2f)

-+ Ei+1K(.’Ei+1 + Qi($i+1 — CCZ))) .
Due to the block-separable structure of G and F'* in (2.1), we take for all i € N,

(2.82) T) = Z TP, Siai= . oMQn Q= ) Wl

JES(3 LeV (i+1) JES(7)
(28b) @z = Z(ﬁ;P], lIli—&-l = Zwé+1Q@’ Z A gVK )
=1 =1 j=1/¢=1

for some (random) subsets of indices S(i) C {1,...,m}and V(i +1) C {1,...,n} and
(random) parameters 7, coth it >0, and wé,)\;j € R. We wait until (3.14) to
specify the exact probablhstlc setup, which we do not need before that. Due to the block-
separable structures of G and F*, the operators (I + T;0G) ! and (I + X, 10F*)~! are also
block-separable.

We also pick further subsets of indices S(i) € S(i) and V(i + 1) C V(i + 1); the rough
idea is that x”l forj e S (4) is updated within each step of the algorithm independently of
y' 1. Inthe lmear K case of [35], also y“rl forl € V(z + 1) would be updated independently
of z't1, but presently we are not able to ensure that. However, we show at the end of
this section that the primal blocks x;iH for j € S(i) \ S(4) still depend on yit! only for

! e V(z + 1), as is the case for a linear K in [35]. Moreover, we require the “nesting
conditions”

@92) x50 (D)L = xvi+n () =0, (1= x50 (1)X37(551) () = 0,
(2.9b) X DXy (@) =0, and  xgi)\ 506 DXy g7 @41) (6 =0,
when

(2.9¢) eV ={te{l,....,n}| QVEK(")P; # 0}.

These conditions force those dual blocks that are “connected” by K to the “independently
updated” primal blocks S(i) to also be (“dependently”) updated and vice versa. They
also disallow connections between independently updated blocks and dependently updated
blocks. Note that the last three equations in (2.9) are tantamount to the single equality
XV(i+1)(£)Xs(i)/§(i)(j) = X\"/(¢+1)(€): they follow by multiplying the latter by 1 — x g;),
X&) (j), and Xs(i)/4(i) (), respectively, and vice versa,

X{’/(H_l)(é) = X\“/(¢+1)(£)XS(1') () = X\“/(¢+1)(£)Xs(i)/s“(i)(j) = XV(i+1)(€)Xs(i)/s°(i)(j)-
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EXAMPLE 2.2. We can trivially satisfy (2.9) by taking either V(i + 1) = {1,...,n},
V(i+1)=0,and S(i) = S(i) or S(i) = {1,...,m}, S(i) =0, and V(i + 1) = V(z+1).
We will consider these two cases in the respectlve Section 4 (full dual update methods) and
Section 5 (full primal update methods). We may also alternate iterations between these two
choices.

Following the notations for the subsets and their complements, we also write

ﬁ)i = Z Pj, Pz = Z Pj,

JES() FES(H\S(i)
Q1= Y. Qo Qipr= > Qe
eV (i+1) LeV (i+1)\V (i+1)

In (2.7), for the subsets S(i) and V(i + 1) to have the intended meaning that only the
corresponding blocks are updated, we need to ensure that Pjz**! = P;z* for j & S(i) and
Qey'™ = Quy' for ¢ & V(i+1). This holds if P;A7Q¢ = 0 whenever j ¢ S(i),¢ € V(i+1)
orj € S(i), L ¢ V(i+1)orj¢S(i), ¢ V(i+1). Similarly, for S(i) to have the intended
meaning that x”l for j € S(i) does not depend on y*+!, studying (2.7), we are also led to
require

PAf — & T, VK (21)*]Q, =0 forany £ € V(i+1).
Finally, since P2 in (2.7) may depend on y+!, we require y**! to not depend on P,z *1:
A — U, 10 VE(@)Q)P, =0 and [I+ Q1P =
Combining the above conditions for A; and €;, we arrive at

whenever either j & S(7) or
£ & V(i+1) orboth,
PA; — ®,T,VK (¢1)*]Qr =0  forl e V(i+ 1)

[Ai + U1 8 VK ()] P =0, and (' +1)P; = 0.

PiA;Qe =0
(2.10)

Substituting (2.10) into the identity
= D, QAP+ ) QNP TAP+ Y] ZQ@A
eV (i+1) LgV (i+1) j€S(3) £=1

we are led to take

(2.11) A= Y QVK(@)T;®; P — Wi X VK (2') P,
eV (i+1)

which in terms of the components A/ ; reads

‘ g CeV(i+1),5e5(i),
(2.12) Mej =19 —o ittt LeVi(i+1),5 € S3i)\ S3),
0 otherwise.

Using the coupling conditions (2.9) between S(i) and V (i + 1) in (2.11), we deduce
Ai = VK(IIZ’L)’_T:(prpZ - Qi+1\Pi+1Zi+1VK(ZL'i).
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Plugging A; into (2.7), we get two cases for the primal variable. If j € S(i), then we have

Pt = (I+ ﬁ@G)_l(}D’iwi — ﬁVK(xi)*yi), where T, := P.T;.

C

If j € S(i)\ S(z), given that Q'P, = —P; due to the last equality of (2.10) and taking
i = PiTi’ we have

9

pil‘i—H = (I + Ti(‘)G)_l (pll‘z — TiVK(xi)*Qi+1yi+l
- POVRG) S Qe 0 ) ).
Also zit! = Pty Pt (I— P;— P;)a'+!, therefore, for ! = 271+ Qf (271 — ),
we can expand
gt = Pttt _Qip gttt 4 I - P — ]52):10Z = Pt 4 - Pl)x’ — Qié—(x”l — ).

Consequently, the implicitly defined algorithm in (2.7) expands to the following explicit
successive updates for each of the involved projections:

Pt = (I + T;0G) " (Pa’ — T,VK (z')*y"),
= (1 - Pz)xl + Pttt 4 Plflle(JcH'1 -z,
yi+1 = (I =+ EiHaF*)_l (yl + EpﬂK(fH_l)
(2.13) + Qi1 Vi [VK ()T} ) — Wi 1 i1 VK (7)) Py (2" *xi)),
Bttt = (I + T,0GQ) ! (F’ixi VK (@) Oyt
— Po; VK (z')* ;‘k+1‘1’f+1@i+1(yi+l - Z/i))»
Pzt = Pja’ forj ¢ S(i).

In the following sections we will further develop and simplify this algorithm by imposing
additional conditions for the step length and testing parameters through a convergence analysis.

3. General estimates. With the estimate (2.6) in mind, our main task in this section is to
prove (2.5). After introducing the assumptions that we need for this work in Section 3.1, and
bounding Z,1 M, from below in Section 3.2, we carry out the first stage of this estimation
in Section 3.3 still deterministically. Then in Section 3.4 we refine these estimates by taking the
expectation. Finally, in Section 3.5 we combine the various estimates and state a self-contained
result for the validity of (2.6).

3.1. Assumptions. We will need K to be sufficiently smooth and to satisfy a somewhat
technical “three-point” version of standard second-order growth conditions:
ASSUMPTION 3.1 (Lipschitz VK (x)). For some L > 0 and a neighbourhood Xk > Z,

|[VK(z) — VK ()| < L|jz — 2/ (z,2' € Xk).

Using the equality

1
K(z') = K(z) + VK (x)(2' — ) + /0 (VK (z + s(2’ —x)) — VK (x))(z' — z)ds,
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we obtain for any x, 2’ € Xk and y € dom F* as a direct consequence of Assumption 3.1
that

G (K(a') - K(z) - VE @)@ ~2),) < 5 e =yl

The norm of y only needs to be evaluated within Yy, because x — (I — Pyp.) K () is linear,
so the corresponding inner product with the integral term is zero.

ASSUMPTION 3.2 (three-point condition on K).  For a neighbourhood Xk of Z,
some T = 377" vk Py € L(X; X) with v ; € R, Ly > 0, and p € [1,2], for any
A= Z;n:l a; P; > 0 and some 054 > 0, the following holds

(VE(z) - VK(@)]"J, 2" — Z)a

(3.2) > [l = 2, + 04K (Z) - K(z) - VK (2)(@ - 2)||”
L
- 2!~ al, (r,2' € Xx).
This assumption is trivially satisfied for yx ; = Lz = 0 and any 64 > 0 whenever

x +— (K(x),7) is linear. In Appendix A we also provide the constants ensuring this as-
sumption, e.g., whenever the latter is block-separable and strongly-convex. For a less straight-
forward example in the single-block case, we refer to [9]. There we verified the assumption for
the reconstruction of the phase and amplitude of a complex number from noisy measurements.
That example evidently applies to the present setting in the single-block case or as a separable
block of z — (K (z), 7).

We also need pointwise monotonicity of G and OF* atarootu € H~1(0):

DEFINITION 3.3. Let U be a Hilbert space, and " € L(U;U), I' > 0. We say that
the set-valued map H : U = U is I'-strongly monotone at & for W € H () if there exists a
neighbourhood U > u such that for any v € U and w € H(u),

(w— W,u — 1) > |lu—ulp.

IfT' = 0, then we say that H is monotone at 1 for w.

ASSUMPTION 3.4. Forany w = (V,£) € H(u), the set-valued map OG is Z;nzl va,i Pi-
strongly monotone at T for v — V K (Z)*y in the neighbourhood X¢, and the set-valued map
OF* is 3 ,_ vr+ ¢Qq-strongly monotone at y for § + K (T) in the neighbourhood Y-, where

the constants satisfy ya,j,Vr=¢ > 0, forallj=1,... mand{ =1,...,n.

3.2. A lower bound on the local metric. To estimate Z;, M, from below, we for-
mulate a block-adapted version of the basic step length condition 7o ||K||? < 1 from [7]. The
assumptions of the following lemma replace the more abstract constructions of [35, Defini-
tion 2.2 and Examples 2.3 and 2.4]. We recall from (2.9¢) the “set of connections” V; and also
introduce the set of “simultaneous connections”, filtered by /\i;, ;> as

(33) Vi) :={ke{l,....n} | QVK(z")P;VEK(z")* Q) #0, A}, ; # 0}.

LEMMA 3.5. Leti € Nand 0 < § < k < 1. For some weights w;-)g’k = 1/11);'.),M >0
(k=1,....,n,7=1,...,m), define

3.4 whe=xpi(0) Y W
keVi(e)
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and suppose that
2

(3.5) (1—w)pytt > Z|>\M| wi /¢ QVE (z') Pl (¢=1,...,n)
Then

0P, 0 }
3.6 ZiyiMiy1 > K— .
(3.6) +1Mitq [0 =

Proof. Setting Cy j := (¢5) 7" (A};)?/(1 — k), we use (3.5) and the orthogonality of the
projections {P;}7; to obtaln for any y € Y that

2
m

S IQel” 2 3 |3 /6w VK P | Quyl?
(=1 =1

j=1
z \ /ngjw;erVK(o:i)*ng
J:

1

2

M:

~
I
—

D Gl I VE () Qeyl®

I
M:

=1 j=1
235 (5 v )aimereour:
J=1eevi \kevi(e)

Since w; re =1/ w;'-,l’ > We continue to estimate by Young’s inequality
i 1/2,1/2 iy
> viIQl? 2 30 30 GG PVE ) Qu, VK ) Quy)
=1 j=1k,t=1

Here we also used (3.3) to convert the second sumtorunoverall k,/ =1,...,n. Asy €Y
was arbitrary, inserting (j ; and the structure (2.8) of ¥; 4, ®;, and A;, we deduce that
(1 - K})\IIH_1 2 Alq%_lA;k

On the other hand, applying Young’s inequality with the factor (1 — §), we deduce that

ZH_IMH_l - |:Az \I/i+l:| 2 |: 0 \I/H-l - ﬁAl¢Z_1AZ<

Thus, (3.6) holds. a

The next example demonstrates a simple choice of the weights w; 1, ¢ that is likely to work
if all the dual blocks £ have similar roles in the problem. In Section 6 we will also consider
other options when some dual blocks have different roles.

EXAMPLE 3.6 (Equal weighting). Suppose Vi C V; and ]_/]’ (€) C V;(¢), where V; and
V;(£) do not depend on the iteration. If we take w? , , = 1, then w; ; = xv, (£)#V;(£) counts
the dual blocks “simultaneously connected” with £ via the primal block j as defined by (3.3).

To provide further intuition of the result, let w; ¢ be as in Theorem 3.6. With only one pri-
mal block (j,m = 1) and assuming full connectedness (w; ¢ = n forall £ = 1,...,n),
Theorem 3.5 requires ¥y > (1,n||Q VK (z%)||?. Leta = 1Y) Q. VK (z")|? =
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FIVE ("), After plugging in Aj ; from (2.12) into (3.5), the lemma then says that the step
length parameters can be proportionally larger compared to the single dual block case (n = 1)
when ||Q,V K (x")||? < a and have to be proportionally smaller when ||Q,V K (z%)||> > a. In
Section 4 and Section 5, we further transform (3.5) to obtain explicit step-length conditions.
But now, for the remainder of Section 3, we assume that (3.6) holds, and we derive sufficient
conditions for being able to apply Theorem 2.1.

3.3. Initial non-stochastic estimates. The next lemma starts the verification of (2.5).
LEMMA 3.7. Suppose that Assumptions 3.1 and 3.4 hold together with (3.6) for some
L>0v7re>00G=1,....m{€=1,...,n),and 0 <6 < k < 1. Then, with H; 1,
given by (2.3) and M, given by (2.2), we have
1

§||U

i+l

’

1 .
2 Lot ~y2
Zig1 M1 + 2 ||u U’| Zig1Miy1—Zig oMo

u

+ <f_ji+1(ui+1>7ui+1 - a>W7‘,+1Z71+1
3.7) 1 1h—0, i1

S Dt 2 L
> 5l =k, + 57—

2

7
| Wit

Y

1, ~
£ 5wt~} + DI + DY,

where for an arbitrary Ui 1= Z;nzl vk, Pj € L(X; X) for vk ; € R we set

(3.8a) Ry :=06®; — L[| + I|*|¥; S5 (v = D)l p s
(3.8b) R :=

=i 14+23 (i) 57 (Va5 YK, P 0
0 Wip1—Vipo+2 Zzgv(i“)wzﬂﬂfl’y}r*,e@e ’

(3.8¢) D :=([Ai1 — AjJ (@™ = 2), 4" =)
+(VK(z")*(y" —g), 2" — 3?><1>1-Ti72;+1xp;+1,

(3.8d) DX .= (VK (2') - VK (@)]*7, 2" = D)o, 1, — ||2"! 2 Ik
+(K(2) - K(2') = VK(@')(@ — "),y = G)w,p 1m0

_§|

Proof. We bound from below all the terms on the left-hand side of (3.7). For the first term,
we have from (3.6) that

0P,

0
3.9 Ziia My > o .
(3.9 +1 M [ 0 1_:;5‘1/i+1:|

For the second term we use the expansion

7

D, — O, A* . — A*
3.10 ZiiMisq — ZinoMiso = | i+1 i1 i |
(3.10) +1 Mt +2Mit2 |:Ai+1 SN W ‘I’i+2]

We need to work more to estimate the third term on the left-hand side of (3.7). Since
0 € H(u), we have 0G(Z) 3 zg = —VK(Z)*y, and OF*(y) > zp~ := K(Z). We can
therefore recall the definition of H (u) from (2.1) and rewrite

<H(u)’ u— a>VVi+1Zz'+1
= <8G(CL') —Z2G,T — /‘r\>q>iTi + <8F*(y) —RF, Y — :'/J\>\Ili+12i+1
+ <VK(I)*y - VK(E)*ZL xr— :'/E\><I)iTi + <K(§) - K(I)a Y- 37>‘1/7‘,+12i+1'
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Recalling the definition of H, 1 (u*1) in (2.3), we therefore expand the third term of (3.7) as

<ﬁi+1(ui+1)a u ™t — UYWii1 Ziga
= (0G (") — 26,2 = D)o, + OF (y"™) = 2+, 4™ = Dwiyizmis
VK @)yt - VK@) e~ Dar,
UK (E) = K@),y — s
+ <[VK(CUi) - VK(xH_l)]*yHla et - T)o,T,
+ <K(1}i+1) o K(x“'l + Qi(xi"‘l _ a:’))
+ VK(l‘Z)QZ(xH_l - xi), yi—H - @\>\I’i+lzi+1'

Due to Assumption 3.4 and (3.1), we have

(3.11) D = (0G(x"™) = zq, 2™ = B)o,r, + |2 = B3,
+ <8F*(yi+1) - ZF*»yiJrl - 37>\I/7:+1Ei+1
> Z @il — fH%erPj + [l = 23,1 r,
JES()

+ Z T/JZ—H l+1Hyl+1—§H?Qng*QZ’
eV (i+1)

and

(3.12) D= <K(:ci) ~ K (e 4 Qi — )

K2

+VE @)@ + D@t —at),y T -F)

i+12041

IIQ’ + P15 2 (6 = D) A [l — 2P
Hence, recalling DiK from (3.8d), we deduce

(3.13) <ﬁi+1(ui+1)7ui+1 - a>Wi+1Zi+l
= <[VK($1) - VK(ZE\)]*/y\v xH_l - ‘7I’.\>q>iTi - HxH—l -
+ <K(/x\) - K(xl) - VK(J’J)(ZU\ - xi)v yi+1 - :/y\>\1’i+12i+1
+ (G (@) = zg, 2" = D)a,r, + ||z
+ <6F* (yH_l) - zF*vyH_l - g>\1/i+lzi+1
4 <K(xl) _ K( 141 =+ Qi(xiJrl _ .731))
+ VK@) (Q + D™ —2"), "™ = Pu,mi,
+ (VK@) (y™* =), = Do
< ( )( R ,f)vyi+1 - §> Wip12i41

= Df 4+ D + D + (VK (z")* (y"*" — 9), 2" — D)o, 1,—5

7+1‘I’7’,+1'
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Inserting the lower bounds from (3.9), (3.11), and (3.12) into (3.13) and using (3.8d) and
(3.10), we obtain

1, . o
§Hul+1 — Uz My T 5”“”1 — U2 My Ziya Misa
+ <EI'+1( i+1)7 ui+1 - il’\>Wi+IZi+1
1 i+l i 1k — i+1 2 Loitt 2 A K
2 §||$ 2'(I3s, + 5 2 1= ||y —Y'lv,, t EHU —ullz +D;j + D;

HQZ F PV S (0 = D) e [l — 2
for Df\ as in (3.8c). Finally, using the definitions of R, in (3.8), we observe

I — 2[5, — LI+ T T5 0 B0 (0" = D)l [l — 21

= "1 — 2|

This yields the claim. a

3.4. Expectation estimates. To further estimate DX and D2, we have to take the ex-
pectation with respect to O,_1. We will use a split definition of the step lengths, writing

o 7 j €803, ) and ot — ot LeV(i+), )
TooF deSEN\S), ¢ G e V(i+1)\V(i+1),

where we make for all 7 € N the conditionality assumptions

(3.14) w”'l R(O;—-1;(0,00)), 7"'},7*;,0?'1 5Tl € R(Oi_1;(0,00)),
' S(i), S(i) € R(O;P{1,...,m}), V(i+1),V(i+1) e R(O;P{1,...,n}).

Thus, T; always refers to what 7'; would be if j € S (1), and similarly for the other variables.
Moreover, these step lengths are already known at iteration ¢ — 1, prior to their use. The only
part that is not known about 7; and ¥, ; before commencing iteration ¢ are the subsets of
blocks to be updated. Observe that (3.14) and (2.13) imply

(3.15) M eR(O;X)  and Yy eR(O;Y) (i €N).
Also, for brevity, we write
ml=P[j € S(i) | Oi1], #:=P[j € 8(i) | Oi1],
vith =Pl e V(i+1)| 0;_1], o =Pl e V(i+1)| O]

LEMMA 3.8. Suppose that Assumption 3.2 and (3.14) hold for some L3 > 0, p € [1,2],
and 04 > 0. For some py > 0, assume that

(3.16) =Plly;™ = Gellp < pe| Oica] (E=1,...,m).

Then DX defined in (3.8¢) satisfies for any (; > 0 with

n

; 1-p 2=
§ v bt TP o, P < pPEisy (e,
=1
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the lower bound

2

I . .
Ei_1[Df] > —gEifl[szﬂ —z'(|3,7,]

(3.17) n o 4
=Y Eia [Wi ol o - DGy - Tell By -
Proof. Setting A = ®,;T; in Assumption 3.2, we obtain
(VK(a") = VK@)]'g,2™" — T)a,r,
> ||£Ui+1

(@) - K(2') = VE (") (@ — ")|”

_ﬁuxiﬂ_ 02

Therefore, recalling the definition of D,f in (3.8d) and using (3.15),
(3.18) Eia[Df] > Ei1[0a,7,]|K(Z) - K(z') = VK (2")(Z — 2)||P
L

— S Eia [l = 23,1

+(K(@) - K(2') = VK (2") (@ — '), i1 [E]1 Vi (v = 7))
By Young’s inequality and (3.16) as in [9, (3.16) and (3.17)], for any (;, > O,
(K(7) = K(z') = VK (2')(T — *), 2, Vi (v = 9)

>— Y oyt = Gl p - 1K (2) - K(2') - VK (2')(3 — o) |
LEV(i+1)

>— Y oM o= DGlyt = Gell by
eV (it1)
_ zn: xv iy (O oy

i=1 pPey '
Taking the expectation [E;_1, applying the assumed bound

Z A H_l H_ng}ipp?ipSpp]Ei—l[aq’iTi],

- W”PNL

1B (@) - K(2') - VE (@)@ — 2|

and inserting the result in (3.18), we obtain the claim (3.17). 0

LEMMA 3.9. Suppose that Assumption 3.1 and (3.14) are satisfied for some L > 0,
and the nesting conditions (2.9) hold for any j and ¢ in both iterations i and i + 1. For some
n**tt > 0 assume that

(3.192) AT =0 = X sy (D5
(3.19b) PR = it wi)\wm)(f) A

Then D{\ defined in (3.8¢) satisfies for any given o, oy > 0 the lower bound

di+1 . )
(3.20) E;[D} + TWH —z|?

> aszs(l Ns@ DT ey — 251
j=1

i+1 vz+1||yz+1

— Qy Z Xv i+ D)\ ¥ (i+1) (O Jellf,

{=1
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where

i+1 L2 L 2 i+1 2

7 I 7 M (2 >

dti= o S vt —alh,
JES()\S(7)
n I? Z Pitlzitl ||$i+1 _56\”2
2ay . 4 4
eV (i+1)\V (i+1)

Moreover, if

B2 Pl = 2] < po, 1Qe(y ™ = Dllpw < pe, (U=1,...,n) | O] =1,

then

(322 Eia[d 2™ — 2 |P] < B [el]|z™ — 2|
for

(3.23) = 2%% ( Zpé# S(0) max 6;7)

+ a2 #(V(i+ 1)\ V(i + 1)) Jmax Pyt “”1)

yeeey T

Proof. We recall from (3.8c) that

<VK( ) ( i+1 @\)’Ii+1 ><I>T ST

i+1 7 i41

+<{ Z QVK(x ZJrl)TH‘I’erleﬂ

eV (i+2)
- ‘1’i+22i+2VK($i+1)15i+1} (@™ = 7), 5" §>
- < [ Z QeVK (2*)T7 ®} P — \I/i+12i+1vK(xi)Pi:| (@™ —7),y"* - §> :
eV (i41)

Defining for brevity

kej = (VK@) (4" = Je) 2" —2;) and

ki = (VK@) (g™ = 00), 27— 75)

and using (3.14), which implies ¢%7¢, ;" o} ! € R(O;;(0,00)), we expand

M§

Z[ Xs(i) (J — xv(i+1) (DY o ke

15=
+Ei[XV(i+2)(€)(Xs(Z+1)( )¢’H—l JH_ Xs(i+1)\,§‘(7;+1)(j)¢é+20z+2)k2:ﬂ

— v (O (s ST = Xsanse (DeE i ke

o~
Il
—_
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Writing in the first term x ;) ()57} = ( )oiTi + XsNS () ( )’ 71, this rearranges as

=22 ( {Xsm\s“(i) (DS57] + (1= xv ) (D)xg ) (1) 57

=1 j=1

+ xvi+1) (O (Xsin gy (F) — 1) 22“0'25“} ke,j

+E; [XV(iJrz) (OXggi+1) (3)¢Z+1 JZ-H

- Xv(i+2)(€)Xs(l+1)\s(z+1)( )y AR z+2] k+ )

Using (2.9), we continue
= Z Z( YD) = Xv i (©) oy ke
(=1 j=1

+E; [XS(Z-I—l)( )¢1+17'JZ+1 X\7(¢+2)( )@[}HQ 1+2]k+ >
after which a use of (3.19) rearranges this as
n m
=D D (e = e R (K — ke )
r=1 jfl

i+1git1 +
Z XS(Z)\S(z) XV(1+1)\V(1+1)(€) ¢ 0p (ke _ké,j)'

Expanding k¢ ; kg j» using Assumption 3.1, and continuing with Young’s inequality yields
for any o, ayy > 0,

E; [Df\] = Z Z[(Xs(i)\s“’(i)(j)@%; - XV(i+1)\\°/(i+1)(£) éJrl&éJrl)
(=1 j=1

Ayt = G [VE(2') = VE (@) @5 - 3))]

J

m
fosW(i)(jw; Ny = Glla Ll - 2 2 -

>
ZXVW sy Oyt = el L2 — 2|2 - 3
m o L2 ) ) )

> =2 Xsanso 0957 (%uw TP+ gl = Gl W)
j=1 x

- ZXV(1+1)\V(1+1)(€) Hl&@“ <%||yerl - Z7e||2pNL

L? . ) )

bl = 2P - 3.

4oy

This rearranges as (3.20). By (3.21), P[d**! < ¢t | O;_1] = 1. Hence, (3.22) follows. O
REMARK 3.10. For slightly stronger results, it would, in (3.21) and throughout the rest

of the manuscript, be possible to take p, = pi! and p, = pé“ dependent on the iteration.
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3.5. Putting it all together. We are now ready to state our main generic result providing
the tool to estimate convergence rates based on growth rates of ¢1 and WH.

THEOREM 3.11. Suppose that Assumptions 3.1, 3.2, and 3.4 hold for some 0 < § < k < 1,
Y, YFee > 0,9k ER(GG=1,...om ¢ =1,...,n), L,Ls > 0,p € [1,2], 04 > 0
together with the nesting conditions (2.9), the lower bound (3.6) for the local metric, and the

conditionality assumptions (3.14), for all i < N — 1. For some sequence of n't! > 0 assume
the coupling conditions
(3.24a) O+ Xgansw DT =0t (G=1,...,m) and

(G246 0 b xy ayan (OVE ST =0 (=1 ).

Also assume for some py, pr > 0 and (o > 0,

(3.250) 1=Plla™" =3 < po, [Qe(y™ = Dllpw < pe, (€ =1,...,0) | Os1] and
(3.25b) Ei1[0a,1] > p P it it et TPpr P (U=1,...,n).

Finally, for i defined in (3.23) for some o, oy > 0, let

(3.26) Lj = Ly + (L + 1> 08, ot oy oo + é) [,
(3.27) VGK.,; =65 T VKG — Xsans) ()

. ) Py =0
(3.28) ikl .= JTEE Qefla =0,

’ YE*4 — (P - 1)CZ - Xv(i+1)\f/(i+1)(€)ay» QePaL # 0.
Then
(3:29) 8§ E[¢}| Py — )] [ Qey™ — )17
j=1
Hm ~ Gy nan ) S Elle® = 13, 0r,]

holds provided that for every 1 < N — 1 both (i) and (ii) are true:
(i) Either of the primal test update conditions holds for every j = 1,... ,m:

(a) both ¢;+1 (14 2xs0:)(4)7} 7GK3)¢ and 6 > x5 (j )L;Tj, or

(b) for some 3 ; € R(Oi—1,R), 7} := (747} + (nh — 74)7}) /7,
(3.302) ¢t =(1 +2?1%])¢;, 776, < Eic1lxsu) ()T 6k 4], and

2( i VG ;B lxse )(J)T Vérx, J])(T ”/GKJ TG J)
Ei—1lxs) (DT 6k ;- T VG,

+ Xsu)(j)

(ii) Either of the dual test update conditions holds for every ¢/ =1,....n

(@) ¥ < (1+ 2xv ey (Oog TR0 g s or |
(b) for some 7', €R(O;_1, R), oyt hi=(wy 1o+ (vt — i ey fy
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(3.31a) bt = (L4 2655 ey,

(3.31b) GiFEY, < Eioi[xvasn (0op e,

K—0 i ) 4
(3.31¢) 152 2(0y "y — B lxvisy QoA
Xv(i+1)(f)( H%wtl NlH%th )

Ei—1[xvt+1)()o +1’Y}t1] ”“%ﬂ;l'

Proof. We first apply Theorem 3.7. Recalling R’ from (3.8b), let us set

(3.32)
R// = R/
_ 9| X i85 Xsans ) (e Py 0
0 Sie o vy (O (=1 CetXy i 1\ v (641) (D) Qe P
| PP t2 2jesa) ¢§-T;’7GK,J‘P]' 0
- 0 W1 —Vi12+2 Zzgv(i+1) 1/’4 UF— Y+ 0 Qe
_ Z;n:1 q;Pj 0‘
0 DIy h?—le
for
qj = (14 2x50:)(4) 7] ’VGK])QSZ ¢§+1 and
htt o= (L4 2xv ) (O Y e — w2
Thus,
B [lu'™! — @) %]
(3.33) e R - ; : R
=Y Eialg) 1P (" = B)1PT+ Y Eialhy Qe = )17

j=1 (=1

Estimation of q; Suppose that j € {1,...,m} satisfies (i)(a). Then qz > 0 and

6> XS(z)( )Lz ;, so we immediately estimate

(334 Eiq [g5|P@" = 2)1°] = ~Eimx [xs( () (095 — Ligsm) | Py (e —a")|?] .

Otherwise, if j € {1,...,m} satisfies (i)(b), using (3.15) and that qé =E; [q;] due to (3.14)
and (3.27), we decompose

Ei-1 [P (@™ = 2)?] = Eis [Q§||Pj(fﬂi+1 — 2" + Eialg] | P (=" — T)|I?
+2¢5(Pj(z"T! — 2"), 2" — 7).

Using (1 — x5¢;)(j))Pj(«""" — 2*) = 0 and Young’s inequality with the factor v > 0, we
obtain

(3.35) Eia[gj [P (@ = 2)|7]
> Ei1 X500 ()(g] — alg) DI Py = )|

+ (Bia[g;] — xs@y (o G DIP; (' — D)
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Since ¢/ = (14 2717, ;)¢% with 7, ; € R(O;_1; R), we have from (3.30a)

Ei_1lg}] = (1+ 2Ei_1[xs() (1)) 765 ;)05 — Eialdt!]
= 2¢ (Elxs() ()T 76k ;] — T76;) > 0,

and rearranging (3.30b) for j € S(7) yields

a5 = 265 (xs) )76k = T 76.4) = Bimalgy]) " aj* — 005 + Lje5
Therefore, taking o := (E;_; [q;])*1|q;| for j € S(4) in (3.35), we verify (3.34) for the case
(1)(b) as well.

Estimation of i, Similarly, if £ € {1,...,n} satisfies (ii)(a), then we have h;™* > 0,
hence

(3.36) B (b Qe ~ 9)IP) > ~Bia v (O S0i @ty — )P

Otherwise, when / € {1,...,n} satisfies (ii)(b), using (3.15) and that h,"' = E;[h,""] due
to (3.14) and (3.28), we estimate for arbitrary o > 0 that

337 Eia [ Qe(y ™ = DI
> Eit [xvien (O = alhf Qe = )1

+ (B [p] = xvrn Do R ) 1Qe(y' = 9)I1?
Since ¢, t* = (1425771551 vyt with 73!, € R(O;_1; R), from (3.31b) we have
e = (U4 2B vy (Do AR D — B [9y?] >
and rearranging (3.31c) for £ € V(i 4 1) yields

i i —1y2d K—0
R R T

Consequently, taking o := (E;_1[h5*]) " |h&T| for € € V(i + 1) in (3.37), we obtain (3.36)
for the case (ii)(b) as well.

Combining the estimates. Since (3.34) and (3.36) hold for all j = 1,...,m and

{=1,...,n, respectively, continuing from (3.33), we get
Bl — 5] > ~Eia 3 (xs) ()66 — Lo IBs (@ 2|
j=1
3 (O =00 Qe — 1))

(=1
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Plugging in L’ from (3.26) gives

B [Jlu’*! — @3]
> £ |3 (e O S0 Q™ — o))
{=1
+3 " xs () (w LI+ 17 Y vt o >||Pj<zi“xi>||2
j=1 (=1

Ms

(xs(s) (1) (L) + L) [Py (e — xi)IIQ]-

J

By the definitions of R, in (3.8) and p, in (3.25a), we continue with

i ~ i i K=0,
(3:38) Eiafu™t — %] > —Eiy {|«T R, + T35 T —yl3,,

—ZxS )(Lai! + )| Pyt — o).

On the other hand, by the definition of R” in (3.32),

Eioa[lu™" —@l%]

m
=Eiy |[[u™ =A% — 200 ) midixs0n ) DIP = D)7
j=1
n

-2 Z(XV(iJrl)(é)(p — 1)+ Xv(i+1)\\7(i+1)(€)ay)aé+l H_lHQ (y BRES @%’NL] .
(=1

Combining with (3.38) and rearranging the terms, we therefore have

i -~ i i k i i
(3:39) Eia[llu™ =R + [l = 2'|F, + g9, = B by + b

for
b '—ZXS(Z) )L || Py ("t — 2|2
+23 o ey (O (0 — DCQey™ = D)1
=1
and

by = ZCVmZT ¢ FXS()\S () ( )”P( an *sz
+ 20 fo“ v s s O1Qey™ = 91,

+ZXs< NP (' — )2,
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Our conditions (3.25) and § > x g4 ( ])LZ- T; ensure the conditions of Theorems 3.8 and 3.9.
By Theorem 3.8, E;_1[b; + 2DK] > 0, while using both (3.20) and (3.22) of Theorem 3.9
establishes E;_[bs + 2D2] = E;_1[by + 2E;[D2}]] > 0. Consequently, (3.39) yields

i ~ i i K=0 i
EiafJu =l + o = afllf, + T=5 Iy ', +2D} +2D] > 0.
We now use Theorem 3.7 to verify (2.5). Minding that each Z; M, is self-adjoint by
Theorem 3.5, a referral to Theorem 2.1 establishes (2.6). Using (3.6) as well as the properties

N, N+ e R(On_1;(0,00)) and uN € R(On_1; X x Y) that follow from (3.14), we
estimate

Elllu™ —al%,, arnis | On—1] = 10 = 8lF (20, My On )
m n
~ Kk—29 N o~
>5y oY PN —2))7 + 15 S Qe = 9)I%.
j=1 =1

Taking the full expectation and using (2.6) establishes the claim. a

REMARK 3.12. The conditions (i)(a) and (ii)(a) differ from (i)(b) and (ii)(b) by the
larger factors 75 ; and 7. , and by updating ¢/*! and ¢;** € R(O;;R) potentially
non-deterministically.

In Section 4 we have 7TJ = 7TJ, Tj = Tj V;H =0, and cr”'l = c“ré“. In Section 5 we
take 7t} = 0, 7/ = u}“ = vy and o™ = 6.1, Also (i)(b) and (ii)(b) then simplify,

for 3¢, ; < w;ﬁg}w, to

O = (1+ 2775 )6},
(3.40a) %KJ 7Gj )

6 = Xs(i)(4)7) (LZ + 200 = ™) V6K, =7 T =7
iVar,; =G,

and, respectively, for 75!, < v 755, to
(3.40b) b = (14205 )T and
~i+1 ~i+1
=0 Vre o~ VP
i+1y itl=it+1
—5 = > 2xv (ip) (O)(1 — v, )o AR V] L+1 H—l ~itl
Y=o = Tr*y4

REMARK 3.13. Another quite restrictive requirement that we will need in the next
sections is the almost sure boundedness of the iterates in (3.25a). We already had this
requirement in the deterministic single-block algorithm in [9, Section 4.3] and [10, Section 5].
We have verified in [9, Proposition 4.8.] that this requirement can be restated in terms of a
sufficiently close initialisation of the iterations to the critical point, which is often required in
non-convex optimisation.

In this work, the rates for convergence are in expectation, hence, the required boundedness
is stated in almost sure terms. Moreover, in order to be able to update only some primal blocks
in each iteration, (3.25a) now also requires the primal variable to be bounded. Through the
simplified algorithms of Sections 4 and 5, treating respective non-randomised dual updates
and non-randomised primal updates, we will somewhat relax these restrictions:

— Algorithm 4.2 of Section 4 will not require the dual variable to be bounded if
Assumption 3.2 holds with p = 2; see Theorems 4.6 and 4.8.
— In Section 5, we will not require any bound for the primal variable.
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In some cases, boundedness can, moreover, be verified analytically based on the explicit
formula for F'. For example, for F'(z) = |(a,z)| or F(x) = ||ax||, the support of F*(y) is
bounded by ||a||. Hence the range of the corresponding proximal operator is also bounded.
In particular, if F' is of such a form, then the boundedness assumptions of Section 5 are
automatically satisfied.

4. Methods with full dual updates. We now develop more specific methods based
on (2.13) and study their convergence based on Theorem 3.11. In this section we take
V(i+1)=0,V(@i+1) ={1,...,n}, and S(i) = S(i) for all iterations 7. The nesting
conditions (2.9) of Theorem 3.11 then hold, and the coupling conditions (3.24) become

oitl pitleitl _ i+l _ o pitblyitl
“4.1) T =T = e

TPy

The dual update of (2.13) involves ¥; ! [VK (2T} ®F — W; 415,11 VK (2)€;] in scalar
form,

i z 2t +1 i+1 i — 4 i
—wio . , , , )
14 4 o Ui o w _ n
i z+1 = 0'2+1 i wi | = 0'?_1 -7 — W for @' := T
7Tj’l71 : T 772

14

Therefore, with wi =% the updates (2.13) simplify to those of Algorithm 4.1. Moreover,

(2.12) reduces to \% Se= QS )( J). We thus verify (3.6) via the following lemma:
LEMMA 4.1. Suppose thatV(z'+1) =0, V(i+1)={1,...,n}, S(i) = S(i) fori € N,
the coupling condition (4.1) holds, and ' < 1. Moroever, suppose that forall ¢ =1,....,n

andj=1,...,m,
2
4.2) wl&fl i< & and 1—r>

7 2020
/w',éaer i
J€S3) J

forsome 0 < k < 1and w; e = 1/w; k¢ > 0 such that

(4.3a) whe=xyi(0) D wiek
C keVI(D)
with
(4.3b) Vi) ={k € {l,...,n} | QVK (& )P, VK(z")* Qi # 0, j € S(i)}.

Then the lower bound (3.6) holds.
Proof. By the first part of (4.2), (4.1), and )\j 0= qb xs(z (7), we have

iwit+1log °d 44 (,21)2 °z 7
L0 n'e, T T05(T;) ()\] 0)? L&
UZTJ’ z it = A z+1¢l (j € S(i)).
¢

By the orthogonality of the projections P;, we may insert this estimation into the second part
of (4.2), obtaining (3.5); compare the proof of Theorem 3.5. The definition of V;( ) in (3.3)
also reduces to that in (4.3b), while the definition of w; ¢ 1n (4.3a) is exactly that in (3.4). We
finish by applying Theorem 3.5 to verify (3.6). a

REMARK 4.2. The first part of (4.2) relaxes the property 7o’ = 7050 of the basic
PDPS [7].

REMARK 4.3. With deterministic updates (7% = 1), (4.1) couples 7j¢% = 71} With
Vi = Y, (4.2) therefore becomes a block-coupled variant of the condition 7;0; || K> < 1
from [7].
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Algorithm 4.1 Full dual updates #1.

Assume the problem structure (P), equivalently (S). For each iteration ¢ € N,
choose a sampling pattern for generating the random set of updated primal
blocks S(i) € R(Oy;P{l,...,m}) with corresponding blockwise probabilities
i :=P[j € S(i) | Oi—1] > 0. Also choose a rule for the iteration and block-dependent

step length parameters 7, 5, 0" > 0 from one of the Theorems 4.5, 4.4, or 4.7. Pick an initial

iterate (2°,4), and in each iteration i € N, update all blocks xj.“'l =Pixtt(j=1,...,m)
andy, ™ = Quy'tt (¢ =1,...,n) of 2! and y' ! as:

R {(Z + 7 P0G Py) (= B VE ()Y, j € S(),

’ 5, ¢ S(),
Fit . x§+1 + @ (2l — 2l /A j € S(z:),
’ x5, j ¢ S(),

v = (L0, QuIF; Qo) yp + 0, QuK (7).

Finally, we also remind that for this section, (3.27) and (3.28) simplify to

(4.4a) Yok =Tak,j ="a; +k,;, and
: * B = 0,
(4.4b) ’V%tlz = WF*,@ = ,‘YF "Z Qé NL
’ Yreo— (P —1)C —ay, Q¢PnL # 0.

4.1. Accelerated rates. We start with simple step length rules for O(1/N)-rates for the
blocks admitting second-order growth (vq,; + vk,; > 0 for primal blocks j or yp«, > 0
for dual blocks ¢). Throughout, for simplicity, we assume iteration-independent probabilities,
w; :7r§ =7 foralli € N.

THEOREM 4.4.  Suppose that Assumptions 3.1, 3.2, and 3.4 hold with L, L3 > 0,
pe€ L2, vg,i+vk,; >0(j=1,....m)andFp~ > 0({ =1,...,n), for some cvy, (g > 0
as defined in (4.4). Let the iterates {u’ = (z°,y) }ien be generated by Algorithm 4.1 with
iteration-independent probabilities 7r3 = 7; and step length parameters

o

i 54 . . T
AP . T
1+2617F 0 ! 1+ 2776,

with either 0 < yq,; < 7;(va,; + VYk,j) 0 Va3 =YG,; +Vk,; =0, foreach j =1,...,m.
Moreover, let the initial 72]0,&2 > 0 satisfy, forsome 0 < 6 < kK <1, pg,pe >0 =1,...,n)
and with wiz as in (4.3), the bounds

(4.6a) 1—k> Z

J€S ()

and

7 (va,itK,) =G,

(46b) §>FL+7)- .
fva;+k5 =0,

{2(1 — 75) (V6,5 + VK ) GG if G 5 + i, > 0,
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with
1 2
@.60) L _L3+L( max (—+1) S et gh2) GENj=1,...,m)
=1,....m 7T] Y
Assume for A := Zjes(i)(frj)’le that

(472) By 104] > p P ¢ P and
(4.7b) L=Pllz"*" = 2| < pu, Q™ = Dllpw < pes (=1,...,0) | Oi1].

Then E[|P;(zN — 2)||?] — 0 at the rate O(1/N) for all j such that 5g; > 0 and
E[|Qc(yYN — 9)|I?] — 0 at the rate O(1/N) for all £ such that ¥p« 4 > O.

Proof. We use Theorem 3.11 whose conditions we need to verify. We have already verified
the nesting condition (2.9) for V(i + 1) =0, V(i + 1) = {1,...,n}, and S(i) = S(4) in
Algorithm 4.1. The coupling condition (3.24), we have reduced to (4.1), which we now verify.
For some 7)° > 0 we set n* = 7%, ¢ := 1°(7;7]) ", and ¢y := 7° /5. Then we update

(4.8) o = (1+27576,5)¢5, w2 = (1425, e )y

By (4.5), consequently, 57 't = nitt = &, ¢§+17°';+1 for all £ and j. Consequently, (4.1)
holds. Clearly, so does (3.14) due to the deterministic step length and testing parameter updates.
The conditions (3.25) follow from (4.7) given that 0,7, = n'04 = 7't10,4 = 50T i1 0 4.
The step length parameters T; and 5z+1 are non-increasing in ¢ by the defining identi-
ties (4.5). Also using (4.6a), we thus verify (4.2). Now Theorem 4.1 verifies (3.6).
We still need to verify Theorem 3.11 (i) and (ii). Regarding the latter, the inequality
< (1 + 2”“7?;1 )¢y holds trivially as long as 'yF*le > 0, which follows from
the assumptions on ~yp~ ¢. Therefore, Theorem 3.11 (ii) optlon (a) holds. Regarding Theo-
rem 3.11 (i), we first of all observe that (3.23) reduces to ¢ = nL?*n"™!p2 /(2a,). Moreover,

in Algorithm 4.1 we took w? := &' /7r; = 1/7; by (4.5). Consequently, (3.26) becomes

. . 2 41 2
L= Ls+ (L max (wh +1)2 S0, i le i p, + nL;?#) -
4.9) 7eS o

1+1 —

= Ly + Lit; ma (177, + 1S3y pr + 52 )i < L.
j 4

We now consider two cases for satisfying Theorem 3.11 (i) option (a) or (b):
(A) If yg,; + vk.; = 0, then 3o ; = 0 and ¢! = ¢! by (4.8), so option (a) holds.
(B) Ifya,; +vK,; > 0, then (4.6b), (4.9), and 7" < T»O show (3.40a), hence (b) holds.
We can now apply Theorem 3.11 to obtain (3.29). From (4.8) we have

Pt = ¢% + 29a,n' /frj = qs;i + R n'/7) = ... = ¢} + 27, n" /7; and
;_‘—2 l+1 + 2’)/F* [77 ’l]/}z-‘rl + 27YF*,€7]1 =...= QZ}} + 2(’L + 1)’7)/1:**7[[71.

Therefore, for any j such that J ; > 0 and ¢ such that Jp- ¢ > 0, ¢ and ¢’ " grow as
Q(N). This together with (3.29) yields the claim. d

We can improve the convergence to O(1/N?) in the primal variable if all the primal
blocks exhibit second-order growth. This is achieved by making the dual step lengths grow as
in the basic single-block convex case of [7].
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THEOREM 4.5.  Suppose that Assumption 3.1, 3.2, and 3.4 hold with L,Ls > 0,
pel,2,ve,;+vk,; >0(j=1,....m)andFp~ > 0({ =1,...,n), for some cv,, (g > 0
as defined in (4.4). Let the iterates {u’ = (z°,y") }ien be generated by Algorithm 4.1 with
iteration-independent probabilities 7r; = 7; and step length parameters

o4 o4
o > 1 T; . 1
Lol gnd @ = max

we L+ 2776, &' i=tem 142756

with 0 < 7a,; < 7j(va,; + VK,;). Moreover, let the initial %f,&? > 0 satisfy, for some
0<0<K<]1, pg,pe>0(=1,...,n)andwith w;:’[ as in (4.3), the bounds

4.10) &t =

2

[wi 5070
@lla)  1-r>| > L QVKEE) P (ieN) and
0] ™
0 [+ . VG,j T VK,j —VG,j .
(4.11b) 5> 7 <L +2(1— 7)) (e, +VK.5) P %’j) with
(4.11¢) E::L3+£( max (i+1)22” p+”—L2).
. 0 \j=lm 70Tj (=1PLT 25, Pa

Assume for A := Zjes(i)(frj)_le that

(4.122) B q[04]>p P> ¢ o P/ and
(4.12b) 1= P[Hxﬂ_l - EE” < Pa; ||Qf(yi+1 - @\)HPNL < pe, (f =1,... >n) | Oi*ﬂ'

Then E[|| Pj(xN — 7)||?] — 0 at the rate O(1/N?) for all j.

Proof. We use Theorem 3.11 whose conditions we need to verify. We have already
verified the nesting conditions (2.9) for the choices V (i +1) = 0, V(i+1) = {1,...,n}, and
S(i) = S(i) in Algorithm 4.1. The coupling condition (3.24) we have reduced to (4.1). To

verify (4.1), we initialise ¢9 := 7°(797) " and ) := 1"/} for some n° > 0 and update

(4.13) Pt = (1+2876,)¢5, v =4, and n'thi=n'/0".

Then from (4.10), ¢ "' 6™ = oo} /0" and ¢ 717 = ¢%71 /@', Therefore, (4.1) holds by
induction. Clearly, also (3.14) holds due to the step length and testing parameters being updated
deterministically. Conditions (3.25) follow from (4.12) and (4.1) given that T]’ decreases, so
@' > wo and 0,7, = niHA = ’I7i+1@i9,4.

We now verify (3.6). By (4.10) and (4.13), we get ¢/ (7/7)% < ¢} (#})2. This and (4.1)
yield

1.9 i (212 0202 020

(Di&?—lo? _ n Tj _ (bj(Tj) < ¢j(Tj) _ n Tj
i+1 i+l  — i+1 2 0

S A A Y A YR

Combining this estimate with (4.11a), we verify (4.2). Thus, Theorem 4.1 establishes (3.6).
We still need to verify Theorem 3.11 (i) and (ii). Regarding the dual test, the bound
2 = it < (14 2507, )0l holds trivially as long as 7', > 0, which follows
from the assumptions on ’}/F*j., Therefore, Theorem 3.11 (ii) optioﬁ (a) holds. As far as
Theorem 3.11 (i) is concerned, we observe that (3.23) reduces to ¢t = nL?n'™'p2/(2a,).
Consequently, (3.26) becomes

(4.14) L= Ly + L, (jglggg)(wé + 12300 pe+ g o) it < L

_ =020
= 0‘[7—] .
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Algorithm 4.2 Full dual updates #2.

Assume the problem structure (P), equivalently (S). For each iteration ¢ € N,
choose a sampling pattern for generating the random set of updated dual blocks
V(i + 1) € R(O;P{1,...,n}) with the corresponding blockwise probabilities

7t = P[j € S(i) | Oi—1] > 0. Choose a rule for the iteration and block-dependent
step length parameters ?j’f, c“r?'l, @" > 0 based on one of the Theorems 4.5, 4.4, or 4.7. Pick

an initial iterate (2°,7°), and in each iteration i € N, update all blocks x;.“ = Pzt
G=1,....m)andy," = Q' (¢ =1,...,n) of 2! and y'*! as:

i1 JUH P0G P) T @) — HPVE @)y, j € S(),
! @, i ¢ S0,
y = (40,7 QuIFE Qo)™ (yzi + ;" QuK (')

+ it (‘: + 1> QUVK (2) (it — x;’.))

jes(@ ~

thanks to wj := &'/#; < 1/7; and &' > @°. Also, with 3, ; < (796, + Vk.5). (4.11b),
(4.14), and 7'; < 7°'JQ show (3.40a), hence, (3.30). Therefore, Theorem 3.11(i) option (b) holds
forevery j =1,...,m.

We can thus app]y Theorem 3.11 to obtain (3.29). Multiplying the 7-update of (4.10) by
2y¢,j, plugging in &*, and taking the inverse, we have
1+ 270—}3(}7]'
23, \/1 +ming_, o (2776,5)
_ 1+ (27796,) "
T+ (maxs_r (2776, 7)1

24t 56,) 7" =

We now apply Theorem B.1 with 2} = (27/3¢,;) " to get

max (27 Fg,;) "' < %o+ N/2

j=1,....m

with z5 > 0. Then from (4.13), we have

N_220+N+2 y
7 2Z0 + N 7Y

(220+N+2)(220+N+1)
270(270 + 1)

. X v !
¢y > (1 +j:IR.lP,m(27ﬂG,j))¢§v = (1 * m>¢

220+N+2250+N+1¢N_1: _
220+ N 2z +N—-1"7

¢;-

Therefore, ¢§V grows as Q(NV 2), so we obtain the claimed convergence rates from (3.29). O
In Algorithm 4.1, we chose w’ to eliminate the V K (*)-term from the dual step. Selecting

w;- = —1 keeps this term but eliminates the necessity to have a finite py as long as p = 2, as

(3.26) and (3.25b) will no longer depend on it. This yields Algorithm 4.2 and the following
corollary:
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COROLLARY 4.6. Theorems 4.4 and 4.5 apply to Algorithm 4.2 if Assumption 3.2 holds
with p = 2, and instead of (4.6¢), (4.11c), (4.7b), and (4.12b), we assume

L:= Ly +nL?p%/(2a,) and Plllz"™ — 2| < pe | Oi_1] = 1.

Proof. The proof remains exactly the same as those of Theorems 4.4 and 4.5. Inserting
wé = —1, then (4.9) and (4.14) as well as (4.7a) and (4.12a) loose their dependency on py.
Hence, py can be taken infinitely large. a

4.2. Linear convergence. If all the primal and dual blocks exhibit second-order growth,
i.e., ¥p=¢ > 0and vg,; + VK, ; > 0, then we obtain linear convergence:

THEOREM 4.7.  Suppose that Assumptions 3.1, 3.2, and 3.4 hold with L, L3 > 0,
pe€ L2, vg,i+vk,; >0(j=1,....m)andFp~ > 0({ =1,...,n), for some cvy, (g > 0
as defined in (4.4). Let the iterates {u’ = (z*,y) }ien be generated by Algorithm 4.1 with
iteration-independent probabilities ﬂ; = 7; and step length parameters

i
Oy

4.15a ST p— R, ("]
@15 ! (1+273c,)0"  ° (1+26)7F- )0
. 1 1
4.15b Ot =w= —_— ——
( ) @ w max{j—r{{.a.jfm 1+ 2’?'](-)’}/(;7j éznll,ax,n 1+ 25’?7F*,E }

with 0 < 3 ; < 7j(Va,; + VK.j). Moreover, let the initial 7)), 57 > 0 satisfy, for some
0<d<k<l pgype>0,(£=1,... ,n)and with wé,g as in (4.3), the bounds

(4.16a)
2
wt 5979 .
l—r>| Y %QNK(Q;Z)Pj and
i

JES()

0 7 , NG T UK ~ G ;
(4.16b) 6>+ (L—|—2 1—75)(va,; +7K.5) < = ) with
J ( )06, Kj)ﬂj(’YG,jWL VK,j) — V6.

_ L o 2 . . .
(4.16c) L:=Lz+ 5 < max <w +1) Doy Pe+ %pﬁ) (ieN,jeS@).

j=1,....m Uy
Further assume for A := ZjeS(i)(%j)ilpj that

(4172)  Ei (04 >p P> ¢ P P )5 and
@17b) 1 =Pl = 2| < po, [Qe(y™ = Dllpe <pe (E=1,...,0) [ Opd].

Then E[|| P;(z™ —2)|%] and E[||Q¢(y™ —7)||?] converge to zero at the linear rate O((1/@)N)
forallje{l,.... myand €€ {1,... ,n}

Proof. We use Theorem 3.11 whose conditions we need to verify. We have already
verified the nesting condition (2.9) for the choices V(i +1) = 0, V(i+1) = {1,...,n}, and
S(i) = S(i) in Algorithm 4.1. The coupling condition (3.24) we have reduced to (4.1). To
verify (4.1), we initialise ¢9 := 7°(797)~" and 1) := 1"/} for some n° > 0 and update
(4.18) @it i=(1+277a,,)05, ¢ = (1 +207p- )Y and T i=n'/w.

Then from (4.15), ;67" = ¢jo} /@ and ¢/ 717! = ¢i#1 /. Therefore, (4.1) holds by
induction. Clearly, also (3.14) holds as the step length and testing parameters are updated deter-
ministically. The conditions (3.25) follow from (4.17) given that fg.7, = 704 = wn'*T104.
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We now prove (3.6). We start by proving by induction that

1 1
(419) w = max{ - Inax T osic max "i}’
j=1,....m 1 —+ 27’]’)/@7] l=1,....n 1 —+ QUZWF*»E

in other words, w—! = 1+ min{minjzlw,m 271G j, Mig=1,..n 25’}’_}/17'*’@}. The inductive
base for 7 = 0 is clear from (4.15b). Using (4.15a), we obtain

min{A min 27"';“7(;,]»,6 r{lin 25’;4"»1’717‘*’@}
j =1,..,

=1,....,m n

1 1
min{_ min  ———————, min — 1}
j=1,..m 1+ (QT}’}/GTj)f =1,..n 1+ (20’;’}/5‘*’@)7
1

Ell— &I~

P . oj~ ) vi—
1 4+ min {mlnjzlw’m2T;7G,j7m1ng:1w,n20}71:*}[}

= min{j_r}}ipﬂm 27“'}7@7% ezr?’i?’n 269F 4 }
This establishes the inductive step, hence (4.19). By (4.19) and (4.15a), 7"';“ and éé*l are
non-increasing in ¢. Also using (4.16a), this verifies (4.2). Thus, Theorem 4.1 verifies (3.6).
We need to verify Theorem 3.11 (i) and (ii). Option (a) of the latter is trivially satisfied
for every £ = 1,...,n based on (4.18). Regarding Theorem 3.11 (i), we first of all observe
that (3.23) reduces to ¢t = nL?*n'*1p2 /(2a,,). Consequently, (3.26) becomes

(4.20) Li = L3+ L#; (jgl%(w;ﬁ +1)? Y0 oo+ ga ot < L

for Wi == &'/7; as in Algorithm 4.1. And with 3¢ ; < 7; (va.j + Vk,;), the inequalities
(4.16b), (4.20), and 7"']”1 < 7°']Q show (3.40a). Therefore, Theorem 3.11(i) option (b) holds for
every j=1,...,m.
We can now apply Theorem 3.11 to obtain (3.29). By (4.18) and (4.19) we have
oYV = (1428 Fa,)0) > ¢} Jw> ... > ¢/ and
V= (U4 267 e U > 0 Jo > > g faN

Applying these estimates in (3.29) establishes the claimed linear convergence rates. 0
Similarly to Algorithm 4.2, we could, in the derivation of Algorithm 4.1, set w} =-1to
remove any dependencies on p, from (4.16¢) and (4.17a). This yields Algorithm 4.2 and the
following result:
COROLLARY 4.8. Theorem 4.7 applies to Algorithm 4.2 if Assumption 3.2 holds with
p = 2 and (4.16c) and (4.17b) are replaced with

L> Ly+nL*p2/(2a,®) and  Pl|z"™ =2 < pp | 0i4] = 1.

Proof. The proof remains exactly the same as in Theorem 4.7 given all w§ = —11in (4.20)
and (4.17a) no longer depend on py, hence p, can be taken infinitely large. |

REMARK 4.9 (Stochastic block-coordinate forward-backward splitting). Let F'(z) := z
for 2 € Rand K € C'(X). Then F*(y) = 613 (y). Taking n = 1 and Q1 = I results in
(I +&7Q10F*Q,)~"' = 1. Consequently y° = 1 in all iterations, so that the updates of
Algorithms 4.1 and 4.2 reduce to

(I +#P0G;P) ™ (o} — #{P;VK(x)). j € S(i),
‘ j ¢ 50),

T

4.21) aitt = {
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In the step length conditions of Theorems 4.4, 4.5, and 4.7, we can moreover take p; = 0
and let yp- 1 " 0o, consequently a, ,” co. In particular, in all the theorems, L= L3, so
that when 77; = 1, the upper bounds for the primal step lengths reduce to § > 70';')143 for some
0 € (0,1) similarly to the standard condition in forward-backward splitting-type methods.
Moreover, by (A.1), vx,1 is simply a (reduced) factor of strong monotonicity of K at
as defined in Assumption 3.4. Finally, since we can take 9 > 0 arbitrarily small without
affecting the updates (4.21), the conditions in the theorems corresponding to (3.5) become
irrelevant.

5. Methods with full primal updates. We continue with developing more specific
methods and their convergence results based on the updates of (2.13) and the conditions of
Theorem 3.11. We now take S(¢) = 0, S(i) = {1,...,m},and V(i + 1) = V(i + 1) for
all iterations ¢. Then the nesting condition (2.9) of Theorem 3.11 holds, and the coupling
condition (3.24) becomes
(5.1) oil =it =i PPy et
Taking 2; = —1, the updates of (2.13) simplify to those of Algorithm 5.1 since for the last
two terms in the primal update we have

i

(g™~ yé)) for &':= -

i J o i+
¢j Yy

i+10_i+1 (I}i
vy, 141 4 4 1+1 T\ M i+1
fy s+ ) =T v+ o o

Moreover, (2.12) reduces to )\3 ;= fJéHde‘l. We thus verify (3.6) via the following lemma:

LEMMA 5.1. Suppose that S(i) = 0, S(i) = {1,...,m}, and V(i + 1) = V(i + 1)
for i € N, the coupling condition (5.1) holds, and @' < 1. Moreover, suppose that for all
{=1,....,n,5=1,....m,

2

m i 21%0
o wt ,op7 ,
o i+1 i 2120 g7l i
(5.2) G, T <oyTy, and 1—Kk> g pre Q/VK(z")P;
j=1 14

forsome 0 < k < landw;gy = 1/w; e > 0 such that

(5.32) wg = xpi(l) D wiek
keVi(e)

with
(5.3b) Vi) ={ke{l,...,n} | Q VK" )P, VK(x'")Qr #0, L€ V(i+1)}.
Then the lower bound (3.6) holds.

Proof. By the first part of (5.2), (5.1), and )\3 = 7024'1 ;'H = f&zﬂ é'H, we have
oit1 1 i+1\2 24 i \2p0+1
&t}vo > gitlei — (Ué (4 ) TP ()‘j,e) Vy (=1 m)
3 =% i T Toagty, il - i+1 14 = e )
0118+ ( ;Jr )2 é+ (ZS;

By the orthogonality of the projections P}, we may insert this estimate into the second part
of (5.2), obtaining (3.5); compare the proof of Theorem 3.5. The definition of 17} (£) in (3.3)
also reduces to that in (5.3b), while the definition of w; ¢ 1n (5.3a) is exactly that in (3.4). We
finish by applying Theorem 3.5 to verify (3.6). a

REMARK 5.2. The first part of (5.2) is a relaxation of the property 7'c‘*! = 7951 that
would be satisfied by a dual-first variant of the basic PDPS; compare Theorem 4.2.


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

NON-CONVEX PRIMAL-DUAL BLOCK-PROXIMAL SPLITTING 537

Algorithm 5.1 Full primal updates.

Assume the problem structure (P), equivalently (S). For each iteration ¢ € N,
choose a sampling pattern for generating the random set of updated dual blocks
V(i + 1) € R(O;P{L,...,n}) with the corresponding blockwise probabilities
vttt =Pl € V(i +1) | (’)z 1] > 0. Also choose a rule for the iteration and block-
dependent step length parameters 02“, 7“'] ,w* > 0 from one of the Theorems 5.3, 5.4, or 5.5.
Pick an initial iterate (z°, y°), and in each iteration i € N, update all blocks m”l Pjzit!

G=1,....m)andy,™ = Q'™ (¢ =1,...,n) of "' and y'*! as:

Ys, ¢ V(i+1),

:C?Ll L (I-l— P@G P) P <x — 7! VK( ) Z <y;+1 + (Z)_H (yéJrl _y};)))
eV (i+1) Ve

S {(I+&2+1Q58F£*Qz)‘l(y}§+&,§+1Q4K(xi))7 CeV(i+1),
¢ T

Finally, we also remind that for this section, (3.27) and (3.28) simplify to

(5.4a) Vax,j =65 + VK — Qs
and
, .0 Pa =0,
(5.4b) Fl, = e g = Qe
' Yreo— (P — 1), QePai # 0.

5.1. Accelerated rates. As in Section 4, we start with simple step length rules that yield
O(1/N)-convergence rates for those blocks that exhibit second-order growth.

THEOREM 5.3.  Suppose that Assumption 3.1, 3.2, and 3.4 hold with L, Ls > 0,
pel,2,vq,;+7K; >0 =1,...,m), and vp~ ¢ > (p — 1)¢q, for some ¢y > 0 when
QePaL # 0 (0 =1,...,n). Let the iterates {u? = (2%, y") }sen be generated by Algorithm 5.1
with iteration- zndependent probabilities U} = Uy and step lengths

21

o , ‘ Fi

(5.5) ot L =1, and FT = L
142657 ¢ 1+ 27']-’76;7]'

with 0 < g, < va; + 7k (3 = 1,...,m) and either 0 < Fp« ¢ < UYp» g4 Or

VY4 = Y=y = ()for each ! = 1,...,n, and Yp« ¢ defined in (5.4). Moreover, sup-

pose that the ll’lltlalT ,6¢ > 0 satisfy, for somepg>0(0=1,...,n),0<d <k <1and

with wM as in (5.3), the bounds

2

. ,
(5.6a) 1—r> Z QNK @) P
Jj=1
(5.6b) Ls+ mL? Z and
: 3 2minj—1,...m(Ya,; + VK, — V6.5) .

Y+ é_’YF Vi

(ieN;j=1,...,m).
V[’YF*ff’YF*

K—20 .
(56C) ﬁ > 2XV(i+1) (f)(l — Vg)"yp* gO’l}


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

538 S. MAZURENKO, J. JAUHIAINEN, AND T. VALKONEN

Assume that

(5.72) 0r > p P (0)2¢, Pps P and
(5.7b) 1=PQe(v"™ =P llpy < pe, (€ =1,...,n)| O;_1].

Then E[||P; (2N — Z)||?] — 0 at the rate O(1/N) for all j such that ¥ ; > 0 and
E[|Qe(y™ — 9)||?] — 0 at the rate O(1/N) for all ¢ such that Y+ ¢ > 0.

) Proof. We will use Theorem 3.1 }, whose conditions we need to verify. With the choice of
S@)=0,5¢6)={1,...,m},and V(i + 1) = V(i + 1) in Algorithm 5.1, we have already
verified the nesting conditions (2.9) and reduced the coupling conditions (3.24) to (5.1). To
verify (5.1), we set ¢9 = n' /7], ¥ =n' /(67 i) for some n' > 0 and update

(5.8) wl (1+2776,)05, v, =1 +26 " Fp- )™, and 7' =n".

Then 6729, = n't! = ¢i#! due to (5.5) for all £ and j, and (5.1) follows. Clearly,
also (3.14) holds because the step length and testing parameters are updated deterministi-
cally. The conditions (3.25) follow from (5.7) given that in Assumption 3.2 we can take
Ov,7, =010 = n'0; =yt 57101 /i and p, can be taken infinitely large.

The step length parameters 6! and 7”'} are non-increasing in ¢ by the defining identi-
ties (5.5). Also using (5.6a), we thus verify (5.2). Hence Theorem 5.1 establishes (3.6).

We still need to verify Theorem 3.11 (i) and (ii). As far as the former is concerned,
QS;H (14 27- ol J)QS;- follows from (5.8). Moreover, after applying (5.1), the identities
(3.23) and (3. 26) reduce to

. mLPptt ; mL?
c, = o Zp? and L:=Ls+ 5 Zp%
Toe=1 T =1

Thus, by setting o, = minj—; . m(ygd +vK,; — Ya,;) > 0, Theorem 3.11 (i) option (a)
follows for every j from (5.6b) and T’+ being non-increasing. Regarding the dual test, we
have ¢; "% < (1 + 20”1”*;1[) i+l Wthh together with (5.6¢) leads to (3.40b). Therefore,
Theorem 3.11 (ii) option (b) holds for every /.

We can now apply Theorem 3.11 to obtain (3.29). From (5.8) we have

¢§+1 = ¢z‘, + g it = ¢i. + Rt =... = ¢§? +2iY¢,n'  and
P2 = it 4 W o g = T+ 2 ot Je = =g 4+ 200+ DARe om0

Therefore, for any primal block j with 7 ; > 0 and dual block ¢ with ¥« , > 0, ¢§-V and

N1 grow as Q(IV), respectively. This together with (3.29) gives the claim. a

We get improved O(1/N?)-rates if all primal blocks exhibit second-order growth:
THEOREM 5.4.  Suppose that Assumption 3.1, 3.2, and 3.4 hold with L,Ls > 0,
p € L2, ve; +vk,; >0 =1,...,m)and yp- ¢ > (p — 1), for some {; when
Q¢Pxp #0(0=1,...,n). Let the iterates {u’ = (z°,y") };en be generated by Algorithm 5.1
with iteration-independent probabilities ﬁé = vy and step length parameters
(5.9)

oit1 2i
s o o 1 T; . 1
it = L gl — I apd = max ———
¢ w7 14 277g,; Wt j=l....m | vix
jGg - IT e 1+ 27196,
with 0 < Jg.; < va,j + VK, ( = 1,...,m). Moreover, suppose that the initial ° = 1, 79

and &} satisfy, for some pg >0 (0 =1,...,n),0< 8 < r < 1 and with w;:’g as in (5.3), the
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bounds
1 120 2

o wt oY )
(5.102)  1-k> Y4 /2LQVK ()P and

- vy

j=1
(5.10b) 6> # L5+ mL? Zp

. = T, 3 N
! 2minj—1 . m(Va,; + VK — Va.q) S

(ZEN,j =1,...,m).
Also assume

(5.11a) 0r > p P> (20)%¢, PP, and
(5.11b) L=PlQy = Pllpe <pe. ((=1,...,n) | O;_1].

Then E[|| P; (2N — 2)||?] — 0 at the rate O(1/N?) for all j.

_ Proof: We will use Theorem 3.11 whose conditions we need to verify. With the choice of
S@)=0,506)={1,...,m},and V(i + 1) = V(i + 1) in Algorithm 5.1, we have already
verified the nesting conditions (2.9) and reduced the coupling conditions (3.24) to (5.1). To
verify (5.1), we set ¢9 = n' /7) an ¢7 := n' /(#,67) for some n' > 0 and update

(5.12) P i= (14 2776,5)¢5, ot =y, and "t =p'/@".
Then from (5.9), we inductively get ©p; 26,7 = D't /o' = n'*! for all L.
From (5.9), we also have inductively for all j that ¢1+1 ”H Z 7 5/ ol = ni*+2. There-

fore, (5.1) holds. Then, conditions (3.25) follow from (5.1 1) glven that @ < 1 and in
Assumption 3.2 we can take 0p,7, = n'T'0; = n'0r/w' = it o0/ (@) and p,
can be taken infinitely large. Clearly, also (3.14) holds because the step length and testing
parameters are updated deterministically.

We now verify (3.6). From (5.9) we obtain

01'_;,_1%-
oi+2ui+1_ J
o, T =

This and (5.10) verify (5.2). Thus, Theorem 5.1 establishes (3.6).
We still need to verify Theorem 3.11 (i) and (ii). Regarding the former, the inequality

q/);.“ (1+ 2787, paleX )gb; follows from (5.12). Moreover, after applying (5.1), equalities (3.23)

and (3.26) reduce to

;  mL*py™! . 2 i mL
C*:sze and L]:L3+2

2 n
> i

=1 T =1

Thus, by setting o, = minj—1,__n(vc,; + VKx.j — Va.;) > 0, Theorem 3.11 (i) option (a)
follows for every j from the second inequality in (5.10) and %;H being decreasing. As for
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Theorem 3.1 (ii), ¥ = ;™ < (14 2xv 41y (Do 7 )i holds trivially as we
have assumed 7”1‘ > 0. Thus, Theorem 3.11 (ii) option (a) holds for every /.

We can now use Theorem 3.11 to verify (3.29). Multiplying the 7-update of (5.9) by
29¢.j» plugging in w'*!, and taking the inverse, we get
1+ 277,
Q%ﬁGJ \/1 + minj:l,,,,,m(%ﬁc,j)
B 1+ (27/76,5) "
\/1 + (maxj—y,m(2770,;) 1)

(27 H1'76,1) t=

We then apply Theorem B.1 with 2 = (27} ;)" to obtain

max (27 Ya;) 7" < Z + N/2

j=1,....m
with zy > 0. Then, from (5.12), we have
220+ N +2 y
2% +N I
220+ N +2)(2% + N +1)
o 270(2z0 + 1)

¢ 1 = (L4 min (2756,))6) > (14 +N/2>¢N

_220+N+2220+N+1¢N1
2%+ N 2%+ N-1"

&,

Therefore, ¢§V grows as )(N?). We obtain the claimed convergence rates from (3.29). 0

5.2. Linear convergence. If all the primal and dual blocks exhibit second-order growth,
i.e., ¥r+¢ > 0and vg,; + VK, ; > 0, then we obtain linear convergence:

THEOREM 5.5.  Suppose that Assumptions 3.1, 3.2, and 3.4 hold with L,Ls > 0,
p€ L2 v6,; + 7K,y >0(j=1,....,m). Let the iterates {ut = (2%, 9") }sen be generated
by Algorithm 5.1 with iteration- mdependent Ve vy and step lengths

7v_1 o141
(5.132) Pt — 1 57 = iﬁ1~ —, and
(14 2796,;)@ (1426, F- 0)@
’ 1 1
5.13b B0 . L
( ) v w max{jzr?f.i.).(,m 1+ 2’7'](4)’}/6;7]- Z=Hllax,n 1+ 20(}7F*,2 }
with0 < g, <ve,;+7k,; (3 =1,....m)and 0 < Yp+ ¢ < Uyp~ 4 (L =1,...,n), and

Yr= ¢ defined in (5.4). Moreover, let the initial 7‘;‘), &} > 0 satisfy, for some 0 < 5 < k<1,
pe >0 =1,...,n)and with w}e as in (5.3), the bounds

2
1 0

(5.142) 1— x> Z ]QVK( LI
Jj=1 vt
mL?
(5.14b) 6>+ Ly+ — and
7 3 2minj—1__m(Ve; +7K5 —VG.5) Zpé

YE WV —ﬁF*

-6
(5.14c) 2—2% > 2(1 — 0)yp+ 46 =
-9 VeVF= 4 — VF* 0

(eV(i+1);j=1,...,m;i eN).
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Further assume that

(5.15a) 0r > pPw > (9)%¢, Pp; " and

(5.15b) 1=P|Qc(v"™ —)llpy < pe, € =1,...,n) | O;_1].

Then E[|| P; (2N — 2)||?] = 0 and E[||Qe(y™ — 9)||?] — 0 at the linear rate O((1/@)N) for
allje{l,....m}tandl € {l,...,n

) Proof. We will use Theorem 3.1 }, whose conditions we need to verify. With the choice of
S@)=0,5¢)={1,...,m},and V(i + 1) = V(i + 1) in Algorithm 5.1, we have already
verified the nesting conditions (2.9) and reduced the coupling conditions (3.24) to (5.1). To
verify (5.1), we set ¢) = n' /7 and o7 := ' /(©,67) for some n' > 0 and update

(5.16) ¢t i= (1427 7a,)85, ¥ i=(1+26/7p- )¢ and ™ =n'/w.

Then from (5.13), we inductively get 7y, 26,72 = Dy 60t Jw = n**+! for all £ and
gb;"'l “]H'l = qﬁl 71 /w = n'*2 for all j. Therefore (5.1) holds. Then, conditions (3.25) follow
from (5.15) given that in Assumption 3.2 we can take

9@ T = ,'71+101 = QI/W _ H—l ‘+191/(10/€@)

and p, can be taken infinitely large. Clearly, also (3.14) holds because the step length and
testing parameters are updated deterministically.
We now verify (3.6). We start by proving by induction that

1 1
(5.17) w= max{ max -—————, max O.+1~}7
j=1,...m 1+ 2717, paleX] =1 14 26 Fp

in other words,

@' =1+ min {
j=1,. =1,..,
The inductive base for ¢ = 0 holds by (5.13b). Using (5.13a) yields
min{ ~min 2T 7G’j, , r{lin 2&2*2%:*’4}
J

=1,....m =1,....,n

1 1

— mln{ ) min V'—"’fl’ min iti~ }
@ i=lem L+ (2796 5) 71 4=ten 14 (26, pe ) 7

1 1
w

.1 . Ui~ . 0 i1~
14 min {mlnjzlw,m 2T;vg,j,m1ng:1,wn 2az+ ’YF*,E}

:min{ min 27'7(;], min 20e ﬁp*g}.
j= =1,. ’

1,....m N
This establishes the inductive step, hence (5.17), which in turn shows that 7 and a’“ as
updated according to (5.13a) are non-increasing in ¢. Also using (5.14) proves (5.2). Thus,
Theorem 5.1 verifies (3.6).
We need to verify Theorem 3.11 (i) and (ii). As for the former, (3.23) and (3.26) reduce to

2 n 2 n
i mL 2 it+1 mL

“ T oq, Ll an 5% 24,
=1 =1

2
p27
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so (5.14) together with the non-increasing 7“'} and the update rule for ¢;+1 in (5.16) verify
Theorem 3.11 (i) option (a) for every j and o, = minj—1,_m(va,;+7k,; —Va,;)- Regarding
the latter, since we take Y- ¢ < Ug¥r~ ¢, We obtain (3.40b) using the last inequality of (5.14)
and that &2“ is non-increasing by definition in (5.13). Hence, Theorem 3.11 (ii) option (b)
holds for every /.

Therefore, we can apply Theorem 3.11 to obtain (3.29). By (5.16) and (5.17),

oM = (1427 Fa )0 = ol jo > ... > ¢9/oN Tt and

N = (14 2687 Ol >N jo > > gt jaN.

Applying these estimates in (3.29) establishes the claimed linear convergence rates. 0

REMARK 5.6 (Stochastic sum-sampling forward-backward splitting). Consider the prob-
lem (1.1) with F*(y) = 0,7, for IT:i=(1,...,1) e R"and VK (2)*y = 3;_, VJo(2)y()
with y = (Y1), ..., Ym)). Taking Qey := (0,...,0,9(»),0,...,0), it follows that

(I +6"'QudF;Qe) ™ = (0,...,0,1,0,...,0).

Consequently 3* = 1 in all iterations, so that with just a single primal block with corresponding
step length 7% = #{, Algorithm 5.1 reduces to

o= (I +70G)™! <x — ¥ Z VJg(xi)).

LeV(i+1)

With random V(i + 1), this is a forward-backward splitting method that stochastically samples
> ¢ Jein (1.1). We can take any yp- ¢ € (0, 00), which in Theorems 5.3-5.5 also allows us to
take (, arbitrarily large and ¢, > 0 arbitrarily small. Consequently, the systems of step length
bounds (5.6) and (5.14) reduce to their second part (with first and third part unnecessary), and
(5.10) reduces to its second part. In other words, we only need to choose 7° sufficiently small.

6. Numerical experience. We will now study the performance of our proposed methods
for two application problems: diffusion tensor imaging (DTT), which is a form of magnetic
resonance imaging (MRI), and electrical impedance tomography (EIT).

6.1. Diffusion tensor imaging. Diffusion tensor imaging is covered by the Stejskal—
Tanner equation: given a tensor field z : © — Sym?(R®) associating each point on the
domain 2 C R? with a symmetric 2-tensor (presentable as a symmetric 3 x 3 matrix) and a
non-diffusion-weighted image sg : 2 — R, then the diffusion-weighted image s; : 2 — R
corresponding to a diffusion-sensitising gradient b, € R? is given by

(6.1) sk(€) = so(§)e” "Rt (£ e Q).

At each spatial point &, the tensor x(§) models the covariance of a Gaussian probability
distribution for the spatial directions of the diffusion of water at that point. Models more
advanced than DTI, such as HARDI, consider composite probability distributions at each &.
For our purposes, a simplified DTI model will be sufficient. One can measure sy and sg by
suitable MRI pulse sequences, the inversion of a Fourier transform, and taking the absolute
value of a complex number; for details we refer to [1, 19] among others. We recommend [24]
as an introduction to MRIL.

We want to determine x from noisy measurements of sg and s; (kK = 1,...,N).
Clearly, (6.1) can be converted into an invertible system of linear equations with respect
to x if N > 6 and the tensors by, ® by, are linearly independent. With noise involved, to get a
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(a) Original helix. (b) Least squares reconstruction. (c) Regularised reconstruction.

FIG. 6.1. Visualisation of original helix data (a) and the reconstruction from noisy diffusion-weighted measure-
ments. The reference least-squares reconstruction in (b) is based on linearising (6.1) with respect to x by taking the
logarithm. The regularised reconstruction (c) is the numerical solution of (6.2) for o = 0.005 with the variant (d2)
of our method after 10000 iterations. The visualisation, generated with Teem [40], displays the tensor at each voxel
of the 3D volume as a cuboid oriented along the eigenvectors of the tensor with the size of each side proportional to
the corresponding eigenvalue. The cuboids are also colour-coded based on the principal eigenvector. Tensors with
too small eigenvalues are suppressed; in essence this suppresses the background outside the helix, letting the latter to
be inspected unobstructedly.

good-quality image, we want to obtain a regularised solution. We therefore consider a problem
of the form (Py), where G is a data term modelling (6.1) along with any noise and F' o K is
the regulariser. Ideally, our data term would model the Rician noise distribution, which is the
distribution of the absolute value of a complex number when the latter has Gaussian noise
distribution. However, the numerical treatment of the Rician distribution is quite involved—we
refer to [17, 20] for some variational approaches—and instead of modelling it directly, a more
fruitful approach may be to work with complex data directly, even incorporating the Fourier
transform into our model. For the purposes of the present work, since we only use synthetic
data, we will therefore assume that the noise in s, is Gaussian. We note that (6.2) in infinite
dimensions requires the use of the Banach space of functions of bounded deformation, so, since
our algorithms require Hilbert spaces, only discretised versions of the model can be considered.
Consequently, taking the discretised domain Q4 := {1,...,n1} x {1,...,n2} x {1,...,n3}
and incorporating total deformation regularisation with parameter o > 0, we seek to solve

1
(6.2) min R §||T(:r)||2+0l||5d$HF,17 where

2:Qq—Sym?(

[T(@)k = sk (€) — so(€)e™ =) (k= 1,... | N).

Here [£42](€) € Sym®(R®) is a forward—differences discretisation of the symmetrised gra-
dient, a symmetric third-order tensor. The F), 1-norm is based on taking pointwisely the
Frobenius norm of [£4x](€) and an integration over the space variable (1-norm). This model
is sightly simplified from our previous work in [37, 38, 39], where second-order total gener-
alised variation regularisation was considered, and we included a positivity semi-definiteness
constraint on z(§).

To write (6.2) in the form (S), we take with y = (1, A) the functions

G(x):=0, K(x):=(Lax,T(x)), F*(y):= F,; (1) + FX(A),

Fi() o= Gas(p), FO) = A1
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(a) Multiple step length parametrisations of the non-
block-adapted reference algorithm (d1) to justify the
choice 7 = 1/R.

(b) Comparison of the algorithm variants (d1)—(d4).
The dotted lines show the effect of accelerating the
dual blocks in (d3) and (d4) following Theorem 4.4.

FIG. 6.2. Reference algorithm step length justification (a) and algorithm performance (b) for the DTI problem.
Function values are on the vertical axis, and iteration counts are on the horizontal axis. Based on (a), we take
7= 1/Rin (b); T = 5/ R appears to have convergence issues, and T = 0.5/ R yields slower convergence.

Here B is the product of the voxelwise unit balls of Sym? (R3) over §2,4. To better satisfy the
conditions of our convergence theorems, we replace Fy; by Fyr_ (1) := dam (1) + vo | ul|?
with v = 1072, This is the same as applying Moreau—Yosida regularisation to || « || 1 in (6.2).

We generated our test data, a simple helix depicted in Figure 6.1, with the Teem toolkit [40].
The dimensions are 1 X no X ng = 38 X 39 x 40. In the background, outside the helix, the
tensors are fully isotropic with the eigenvalues having a magnitude of 10% of the maximal
eigenvalue of the tensors within the helix. The exact generation details can be deciphered from
our codes [21] written in Julia [3]. After generating the helix data, we took so(&) = ||z(&)]| .
Then we generated s (k = 1,...,6) from the Stejskal-Tanner equation (6.1) with the
diffusion-sensitising gradients b; = (1,0,0), by = (0,1,0), b3 = (0,0, 1), by = (v/2,1/2,0),
bs = (ﬂ, 0, ﬂ), and bg = (0, V2, \/i) To these diffusion-weighted images we added
synthetic Gaussian noise of standard deviation 30% of the mean magnitude of sy. As the
regularisation parameter in the model (6.2), we took ac = 0.005.

We only consider deterministic updates. We develop step length rules for Algorithm 4.1
based on Theorem 4.4, however, although FY} is strongly convex and the Moreau—Yosida
regularisation makes also F}; . strongly convex, we generally do nor employ acceleration and
instead keep the step length parameters fixed throughout the iterations. Therefore the theorem
does not generally provide any convergence claims.

For convenience, we will identify the linear primal indices j and dual indices ¢ (used for
arbitrary blocks) with symbolic indices corresponding to the different variables x, u, A and
their sub-blocks (used for specific blocks). The primal variable will be just a single block “x”
or be divided into voxelwise blocks “z,” for £ € €14. The dual variable will consist of just a
single block “y”, the two blocks corresponding to the variables “x” and “A”, or “u”, and the
sub-blocks “A, ¢”overk =1,..., N and § € Q4.

Of the conditions of Theorem 4.4, we will not seek to satisfy the boundedness (4.7);
following Theorem 3.13 this seems likely to hold if we initialise close enough to a solution
and take the primal step length parameters ;jo small enough. However, we do not know,
how small and how close they are required theoretically. Likewise, (4.6b), which with
deterministic updates simplifies to § > 7°'jof/, is satisfied by taking 7°'JQ small enough. To do
this exactly, we would need to calculate the constant L that satisfies the Lipschitz requirement
of Assumption 3.1. Theorem 3.4 readily holds (with the Moreau—Yosida regularisation, as
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discussed above) with v, = 0 and any 0 < yp» , < ~vya~land 0 < vr=.a < 1. We take the
latter as well as a, and (p such that (4.4) yields yp« o = 0 for all £. Theorem 3.2 we do not
hope to verify in the confines of the present manuscript. With (4.6b) out of the way, for the
calculation of the step lengths, it would only be needed for the constants vg ;. We simply
make the reasonable assumption that we start close enough to a local minimiser satisfying the
“second-order necessary condition” vg,; + Vi,; = 0, i.e., 7x,; = 0. Then we may simply
assume g ; = 0 and are justified in taking 7, ; = 0.

It remains to satisfy the relationship (4.6a) between the primal and dual step lengths.
Taking the weights wj ¢, = wj , ;, and the set of connections V]’( ) = V;({) given in (4.3b)
independent of the iteration and inserting wj 1, from (4.3a) into (4.6a), the latter holds if

2
m

(6.3) 1—kr> Z\/UZT XV EZ'GV’ ) wJ”ngVK( )

In particular, with just a single primal block x, we then satisfy (6.3) by taking

1-k )
6.4) 59 =~ ,  where we need the estimate R, > ||Q/VK (z")]|.
9 Zyef;j(e) W0 R

Similarly to [5] we estimate ||€;]| < Rg := v/12. Assuming that each z*(€) for £ € Qg is
positive semi-definite, we also estimate with 74 ¢ := |s(€)|||bx||3 that

N
S Y2 and VK@) < Ri=\/R2+ R

k=1¢€Qyq

IVT(2")|| < Ry =

We obtain 7, for (6.4) from the same constituents 7 ¢ and R¢ depending on the exact block
structure.

It then remains to choose the primal step lengths and the weights w; . .. We consider the
following four block structures and choices of weights:

(d1) As our reference case, corresponding to earlier non-block-adapted works [9, 33], a
single primal block z (m = 1) and a single dual block y (n = 1). Based on the rough
optimisation of the step length parameters illustrated in Figure 6.2a for a range of
7 =79 with 5) = 0 := (1 — k) /(7 R?) with k = 0.05, we take 7 := 1/R.

(d2) A single primal block x (m = 1) and the two dual blocks p and A (n = 2).
We take 7 = 7{ as in (d1) and with w, 5, = Re/(R — Rg) calculate from
(6 4) the dual step length parameters as &0, = (1 — x)/(7(1 4+ w, ) ,)R%) and
78 = (1= k)/(7(1 + weu)RT). Thus 59 Re equals o R of (d1).

(d3) A single primal block x (m = 1) and in addition to the dual block p, we split A into
voxelwise and bp-wise blocks A, (n = 1 4+ Nnjyngnz) indexed by
k=1,...,N and £ € Q4. We still take 7 = 7 as in (d1) and with the setting
Wz A6y 0 "= Zk/,ﬁ/ T‘k/,gle/((R — Rg)’r‘kvg) and War, Ak, 69 Ak ) = 1 calculate
from (6.4) the dual step length parameters &7, := (1=r)/(T(1+D 2k ¢ w;i\(k,g)y#)}@)
and &?\k,g =01-r)/(r(N+ wz’A(k@,#)rif). This also keeps &7 R¢ equal to o R
of (d1).

(d4) Voxelwise primal blocks x¢ for £ € Q (n = ningns) in addition to dual blocks
as in (d3). We take the blockwise primal step length parameters according to
7°'§O =7¢ = R7/(1 + Nmaxy—1,_ n7k¢) for § € Qq, where 7 is as in (d1). Then
we take Wae Aoy 7= Thig and Wae Ak ey Ar ey = 1. Observe that by the definition
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of the connection set V;(¢) in (4.3b), the dual block (k, &) is not connected by K
to (k/,&’) for &' # £. By taking &2 = (1 — k)/(maxeeq, Te(1 + Zszl Te) R2)
and 53, | = (1 —r)/(e(N + I )77 ¢), we therefore satisty (6.3). The maximum
comes from estimating the norm in (6.3).

We report in Figure 6.2b for the first 10000 iterations the function value achieved by each
algorithm variant. For (d3) and (d4) we also display the effect of the O(1/N)-acceleration of
Theorem 4.4; in (d1) and (d2) this has no notable effect.

On a mid-2014 MacBook Pro with a 2.8GHz Intel Core i5 processor and 16GB RAM
running Julia 1.1.0, each iteration of (d1)—(d3) takes roughly 0.048 seconds. For (d4) this
is roughly 0.062 seconds due to a more complicated primal update.! However, in terms
of computational times, (d4) is clearly much faster than the other variants: 0.77s against
14.7-19.2s for (d1) and 13.6-18.1s for (d2) and (d3) to reach a function value 50. The time
ranges account for us sampling the function values only every 100 iterations after the first
100. The visual character of the approximate solution provided by (d4) is on closer inspection
slightly smoothed out compared to the other variants. This may be due to a non-optimal « in
the model (6.2) or due to a different local solution.

6.2. Electrical impedance tomography. In this problem, we want to solve

N
. 1 2

65) mip > S I4c(@) + o Valas
on a finite-dimensional subspace V' C L?(Q) with Q C R? and each A, : V — RV a
nonlinear operator corresponding to the fit of the solution of a partial differential equation
controlled by z to the measured data. We specifically use the complete electrode model of
EIT [41]. Our implementation of the model will be described in detail in [18]. The rough
idea is that N electrodes are placed on the boundary of the domain 2 inside which we want
to reconstruct an unknown conductivity x; see Figure 6.3, which presents a synthetic 2D
slice model of an object in a cylindrical water tank. As our data, we only have N boundary
measurements corresponding to exciting in turn each of the electrodes £ = 1,..., N with a
positive electric potential. In each of these excitations, the remaining electrodes are grounded,
and the electric current generated by these excitations is measured at each electrode, yielding
N measurements. The operators Ay, correspond to each such excitation setup. In the example
of Figure 6.3, the number of electrodes N = 16.

We can again write this problem in the form (S) with

N
G(z):=0, K(z):=(Va,A(x),...,An(z)), and F*(y) =dap(p) + > _ [IAell3.
k=1

where y = (i, A1, ..., \n) and B is the product of the pointwise Euclidean unit balls of R?
over {2.

As a first case of the dual blocks, we take y( corresponding to the total variation term,
and the full measurement vectors yj, corresponding to each excitation £k = 1,..., N. We
estimate ||V|| < Ry for Ry being the largest singular value of V on V. We do not have exact

In the Julia code [21], we update z'*1(¢) = z%(¢) — e A (€) and A HL(k, &) = (Ai(k,€) +
ok,e AN (K, €)) /(1 + o,¢) for some temporary Az’ and AX? and all £ € Qg and k = 1,...,N. The lat-
ter does not appear to cause a notable performance penalty compared to a spatially constant o while the former does.
However, each *+1 (&) is a tensor consisting of multiple floating point numbers while A**1 (k, ¢) is a single floating
point number. Our guess is that, due to uneven memory indexing when 7 is spatially varying, the tensor update cannot
make as good use of the processor SIMD instructions.
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(a) Synthetic conductivity. (b) Reconstructed conductivity. (c) Finite element mesh.

FIG. 6.3. Synthetic true conductivity and reconstructed conductivity for the EIT example. The reconstruction is
the one obtained with the block structure and dual step length setup of (¢3) with T = 500/ R after 15000 iterations.
The blue patches on the boundary of the domain indicate the electrodes. We display in (c) the finite element mesh used
to represent the conductivity.

estimates for the norm of V A (z"). Therefore, we take a dynamic norm estimate rj, = (i)

over the last 100 iterations,

VA ()| <7p:=1.05  max  ||[VAR@)| (k=1,...,N).

max{i—99,0}<.<3

We may then estimate | VK (z°)|| < R := \/R% + 7} + -+ r%. As a second case, we
further split each gy, into sub-blocks ¥, ; € R corresponding to each individual electrode
j=1,..., N being measured. We then take norm estimates 7 _; = 7 ;(¢) over the last 100
iterations,

[[VAg(z")];| < 75,5 :=1.05 max{iggﬁ}ngi [[VAg(z*)];| (k,j=1,...,N).

We work in the setting of Section 5. Note that unlike Algorithm 4.1 in the DTI experiments
of Section 6.1, Algorithm 5.1 allows partial calculation of K in both the primal and dual
updates, which should in principle be beneficial in stochastic methods. We develop step length
rules for Algorithm 5.1 based on Theorem 5.3. Similarly to (6.4), with w; ¢ = w; Ok and
17} (¢) = V;(¢) independent of the iteration, for non-stochastic methods with a single primal
block z, (5.6a) in particular holds by taking

11—k

vo _ 2
Tg szevj(e) We 000 Ry

(6.6) G = where we estimate Ry > [|Q/V K (x%)]].

Again, for convenience, we identify the linear primal indices j and dual indices ¢ and ¢’ with
symbolic indices x, p, and \j. It then remains to choose 70 and the weights Wy 0. For this
we consider four different block and weight setups:
(el) Again, as our reference case, corresponding to earlier non-block-adapted works
[9, 33], a single primal block x (m = 1) and a single dual block y (n = 1). Based
on rough optimisation of the step length parameters, illustrated in Figure 6.4a for a
range of 7 = 79 with &, = (1 — x)/(7R?) with & = 0.05, we take 7 := 5/R for R
computed using just the initial iterate 2° as explained above.
(€2) A single primal block = (m = 1) and the dual blocks 1, A1, ..., Ax. We take 7 = 72
as in (el) and with wy x, . = >, "Ry /((R — Ry)rp) and wg z, », = 1 for
p,k=1,...,N,solve from (6.6) that &, := (1 — k)/(T(1 + >, w;}\ku)R%) and
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(a) Reference algorithm (el), multiple step lengths. (b) Comparison of algorithm variants (el)—(e4).
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(c) Blocked algorithm (e4), multiple step lengths.

FIG. 6.4. EIT reconstruction performance: iteration counts are on the x axis and primal objective function
values (6.5) are on the y axis. We start with step length justification for the non-blocked reference algorithm (el) in
(a). Based on this we use a step length T = 10/ R for the reference algorithm as higher step lengths become unstable.
Comparison of the different blocked algorithm variants is given in (b) for = 500/ R: with lower parameters the
differences are less noticeable, and with higher parameters insignificant improvement is obtained. Based on this, in
(c) we represent the performance of (e4) for multiple step lengths.

o), = (1=rK)/(T(N+wg,,u)ry) forp =1,..., N. This case and the step length
rules are analogous to (d3) for DTL.

(e3) As (e2) but split each A, into further measurement-wise dual blocks y, ;
(p,j =1,..., N), replacing in the expressions of (¢2) the indices p and k by (p, )
and (k,j) with j, 5/ € {1, ..., N}. Thus r} becomes ry, ;/, etc

(e4) Measurement-wise dual blocks as in (€3) but w,; » oyt = Tp. ;

The performance of the algorithm variants (el)—(e4) is depicted in Figure 6.4 with a
sample reconstruction in Figure 6.3b. Observe how the block-adapted algorithms allow in
practise larger 7 than the reference algorithm without block-adaptation. This has significant
performance benefits: To reach and stay below the objective function value of the order 1077,
(e4) with 7 = 500/ R requires 208 iterations while (e1) with 7 = 10/ R requires 906 iterations.
(With 7 = 500/ R the latter requires 3544 iterations, no longer converging well with high 7.)
We also tested stochastic variants of the algorithms for the EIT problem, updating in each
iteration only a random subset of the dual blocks. This did not, however, offer any performance
benefits over the block-adapted variants, neither in terms of epoch count (iteration count scaled
by the fraction of updated blocks) nor actual computational time.
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7. Conclusion. In this paper, we studied block-proximal primal-dual splitting methods
for non-convex non-smooth optimisation. From an abstract starting point—also able to model
doubly-stochastic methods—we derived explicit algorithms and step-length bounds for two
particular cases: methods with full dual updates and methods with full primal updates. For
both cases, we derived rules ensuring local O(1/N), O(1/N?), and linear rates under varying
conditions and choices of the step lengths parameters.

We demonstrated the performance of the methods on practical inverse problems. Based on
our experience with both the DTT and EIT examples, the block-adaptation provides significant
performance benefits. Random updates, by contrast, did not offer benefits in our sample
problems. We suspect that they might be more beneficial for very large scale problems that
do not share work between the blocks, yet where the blocks have overlapping information, or
where communication delays within a computing cluster become significant. This may be one
of the possible directions for further research on the presented methods and their application.
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Appendix A. Satisfaction of the three-point condition.
The following lemma provides simplified conditions under which Assumption 3.2 holds,
e.g., whenever x — (K (z),y) is block-separable and strongly-convex.

LEMMA A.1. Suppose that Assumption 3.1 holds and the following is true for the given
neighbourhood Xx of T, T = 2321 vk,;P; € L(X; X), vk, € R, some vy, > 0:

(A.la) (VE(2') = VK@)]'g,2" = 2) > |2’ = 2|7, + ez’ -2,
(A.1b)  ([PVK(z') = PVK(@)]'Y. 2} - Tj) 2 vkl 77 (G=1,....m).

i

Let 51,52 >0, A = Z;n:l a; Pj, and a := min; a;. Then Assumption 3.2 holds for p = 1
when

LOa < a(ye — p1) — Pamax(a; —a) and
J
Ly > L?||Pagll(B7 " + (B2a) ™ X072 (a5 — @) /2 + 2L0 4.
Proof. We need to study (3.2). We have

R™ .= ([VK(z) = VK(@)]'7,2" = )4 — |2’ - Z[%r,
a(([VK(z) = VE@)]'g,2’ = 2) — 2" - Z[},)
+ 3010 — o) (VK (x) = VE @)Y, o — Z5) — vi 5|25 — 51%).-
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We now apply (A.la), Young’s inequality with the factor §; > 0, and Assumption 3.1 to
bound

([VE(z) - VE@)]"F.a" = 7) — 2" - 77
= (VK (a') - VK@)]"y,2' - 7) — |l«' - 7},
+{([VK(z) — VK (z")]*'y, 2" — T)
> (v2 = Bu)ll2" = Z)* = L2|| Pacyl® (481) ' l2" — ||,
Similarly, for any 52 > 0, we have
(VK (x) - VK@), 2 - &)
= ([P VK(2') = PB,VE(®)]"7, 25 - T;)
+ (VK (@) - VK@), 2 — )
> vicgllah = Tl = L2 Pl (482) " Hla" — @lf* = Bl — 2%
Combining the two estimates, we arrive at
RY > a(ye = Bl = 3> — aL?|| Payll* (481) |2 — x|
= Yit(ay — a)(Ballwf — Z5ll + L2 Pagll?ll2” — )
=Y it1(a(ve = A1) = (a; — a)B2) |2 — ;|
= aLl?|Pwgl (BT + (B20) "t 27 (a5 — a)) |2 — x* /4.

At the same time, using Assumption 3.1, we get for the right-hand side of (3.2) the bound
A~ ~ L ~112 / =112 / 2
1£(z) - K(z) - VK(2)(@ ~ 2)|| < S llz = Z[]° < Llj2" — z]|" + Lfj2" — "

Hence, Assumption 3.2 holds if we take p = 1, L84 < min; a(yz — 1) — (a; — a)B2, and
Ly > L|| Pyl (87" + (B20) ' 2072 (a5 —a))/2+ 2004, O

Appendix B. A technical lemma.
LEMMA B.1. We have Zy < zg + N/2 wheneverz;- >0(i=1,...,N;57=1,...,m)
satisfy
14 2t )
(B.1) z;-'H =—— with 7z := max z;
1 +2‘_1 Jj=1,....m
3

Proof. Taking max;—1,... » on both sides of the first part of (B.1), we obtain

_ N | Z [ | _
i

We thus obtain the claim by telescoping

Zit1l — 2 =2 +Z; — % = <

B % 1
VE+Z+TZE J1vzter 2

This finishes the proof. 0
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