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ADDENDUM TO “ON RECURRENCES CONVERGING TO THE WRONG LIMIT
IN FINITE PRECISION AND SOME NEW EXAMPLES”∗

SIEGFRIED M. RUMP†

Abstract. In a recent paper [Electron. Trans. Numer. Anal, 52 (2020), pp. 358–369], we analyzed Muller’s
famous recurrence, where, for particular initial values, the iteration over real numbers converges to a repellent fixed
point, whereas finite precision arithmetic produces a different result, the attracting fixed point. We gave necessary and
sufficient conditions for such recurrences to produce only nonzero iterates. In the above-mentioned paper, an example
was given where only finitely many terms of the recurrence over R are well defined, but floating-point evaluation
indicates convergence to the attracting fixed point. The input data of that example, however, are not representable in
binary floating-point, and the question was posed whether such examples exist with binary representable data. This
note answers that question in the affirmative.
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1. Main result. In 1989, Muller [3] presented the recurrence

x0 := 11/2, x1 := 61/11, and xn+1 := 111− (1130− 3000/xn−1)/xn.

The limit of the recurrence over the field of real numbers is 6, whereas in double precision
it converges to 100. Subsequently, similar examples were given by Kahan [2], together with
some analysis, and again also by Muller [4].

In [5] these recurrences were analyzed stating a necessary and sufficient criterion for such
a sequence being well defined, i.e., no zero iterate is encountered. More precisely, let

(1.1) xn+1 := a+ (b+ c/xn−1)/xn, with a, b, c ∈ R,

for given initial values (x0, x1) ∈ R2. Setting yn+1 := xnyn, for 0 ≤ n ∈ N and y0 := 1,
defines the characteristic polynomial

(1.2) χ(y) = y3 − ay2 − by − c =: (y − α)(y − β)(y − γ)

as in [5, Equation (2.3)]. We restrict our attention to recurrences satisfying

(1.3) |α| > |β| > |γ| > 0 and α, β, γ ∈ R.

LEMMA 1.1 ([5, Lemma 2.1]). Let x0, x1 ∈ R be given, and let the recurrence (1.1) with
the characteristic polynomial (1.2) satisfy (1.3). Then (1.1) is well defined and xi → β if and
only if

x0 6= γ and

x1 = β + γ − βγ/x0 and

x0 6= γ − γn(β − γ)
βn − γn

for all n ≥ 1.
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By this lemma, the recurrence (xi) is well defined and converges to β for (x0, x1) on the
hyperbola H defined by x1 = β + γ − βγ/x0 except for infinitely many discrete points.
Moreover, it was shown in [5] that in every ε-neighborhood of the initial values (x0, x1)
with a well-defined recurrence converging to β, there exists a pair of initial values with not
well-defined recurrence.

In [5] we presented the recurrence

x0 :=
109225

43691
, x1 :=

10923

4369
k, and xn+1 := 56.5 + (160− 737.5

xn−1
)/xn.

Over R, this produces x16 = 0, but when evaluated in half, single, or double precision, the
floating-point iteration is well defined and becomes stationary at the attracting fixed point
α = 59; see [5, Table 2.1].

The input data x0 and x1 are not representable in binary format in any precision, and it
was asked in [5, p. 364] whether there are similar examples with all data representable in some
binary format. To answer that in the affirmative, we use the following lemma.

LEMMA 1.2. For given a, b, c ∈ C, c 6= 0, let β and γ be any roots of x3−ax2−bx−c = 0.
Let n ∈ N with n ≥ 3 be given, and assume that βj 6= γj , for j ∈ {1, . . . , n}. Then,

x0 = γ − γn(β − γ)
βn − γn

, x1 := β + γ − βγ/x0,

and xk+1 := a+ (b+ c/xk−1)/xk, for k ≥ 1, imply

(1.4) xk =
βγ(βn−k−1 − γn−k−1)

βn−k − γn−k
, for 0 ≤ k ≤ n− 1.

REMARK 1.3. Note that βγ 6= 0 because c 6= 0, and that (1.4) implies x0x1 6= 0 and
xn−1 = 0.

Proof of Lemma 1.2. A computation shows that (1.4) is true for k = 0, and similarly, the
assumption x1 = β + γ − βγ/x0 implies (1.4) for k = 1. Abbreviate δj := βj − γj , and
note that δj 6= 0 for j ∈ {1, . . . , n}. We have to prove that xk = βγδn−k−1

δn−k
. The definition of

the recurrence implies

xk+1 = a+

(
b+

cδn−k+1

βγδn−k

)
δn−k

βγδn−k−1

=
aβ2γ2δn−k−1 + bβγδn−k + cδn−k+1

β2γ2δn−k−1

=
βn−k+1(aγ2 + bγ + c)− γn−k+1(aβ2 + bβ + c)

β2γ2δn−k−1

=
βn−k+1γ3 − γn−k+1β3

β2γ2δn−k−1
=
βγδn−k−2
δn−k−1

,

and this proves the result.
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Let xn+1 = a + (b + c/xn−1)/xn for given a, b, c, x0, x1 ∈ R. Then, for ϕ ∈ R, the
recurrence

Xn+1 := A+ (B + C/Xn−1)/Xn

with

(1.5) A := ϕa, B := ϕ2b, C := ϕ3c, X0 := ϕx0, X1 := ϕx1

satisfies Xk = ϕxk for k ≥ 0. Hence, a recurrence with rational a, b, c, x0, x1 can be
transformed into a similar one with integer quantities. Using Lemma 1.2, a desired example
with integer data may be constructed as follows:

• Choose some integer n ≥ 2.
• Choose p, q ∈ Q, q 6= 0, and denote the roots of x2 + px+ q by β, γ.
• Make sure that βj 6= γj for j ∈ {1, . . . , n}.
• Choose α ∈ Q with |α| > max(|β|, |γ|).
• Let x3 − ax2 − bx− c = (x− α)(x2 + px+ q).
• Define xn−1 := 0 and xn−2 := βγ

β+γ = −q/p.
• Compute x0, x1 recursively by xk−1 = c(xkxk+1 − axk − b)−1.

Obviously all data are rational, and by using (1.5) we may produce integer data. By construc-
tion, the recurrence (1.1) with the initial values x0, x1 produces xn−1 = 0 over R. If in some
finite precision format, one of the xk for 2 ≤ k ≤ n− 2 is not representable, then likely the
floating-point approximation of xn−1 will be nonzero, and the recurrence will converge to the
attracting fixed point α.

LEMMA 1.4. For given a, b, c ∈ R assume that the roots α, β, γ of x3−ax2− bx− c = 0
satisfy |α| > |β| > |γ| > 0. For given x0 ∈ R, x0 6= γ, let x1 := β+γ−βγ/x0, and assume
that x0x1 6= 0. Finally, assume that

x0 = γ − γn(β − γ)
βn − γn

for some integer n ≥ 2. Then in every ε-neighborhood of (x0, x1) there exist (x′0, x
′
1) and

(x′′0 , x
′′
1) for which the recurrence xk+1 := a+ (b+ c/xk−1)/xk is well defined for all k such

that for the initial values (x′0, x
′
1) it converges to the repelling fixed point β, whereas for the

initial values (x′′0 , x
′′
1) it converges to the attracting fixed point α.

Proof. By [5, Lemma 2.1], for each pair of initial values (x0, x1) on the hyperbola
x1 := β + γ − βγ/x0, the recurrence converges to the repelling fixed point β, provided it

is well defined, i.e., x0 6= γ − γn(β − γ)
βn − γn

for all n ∈ N. Thus, the set of exceptional pairs

(x0, x1) for which the recurrence is not well defined is countable, implying the existence of
initial values (x′0, x

′
1) with the desired property. The existence of a pair (x′′0 , x

′′
1) follows by [5,

Corollary 2.4].
Based on the previous considerations it is not difficult to construct examples with the

desired property, for instance,

xn+1 := 6496− (4205 · 210 + 609725 · 215/xn−1)/xn for x0 := −1305, x1 := −1440.

The roots of the characteristic polynomial are

α = 4640 and β, γ = 928± 928
√
6 ≈ [−1345.13, 3201.13].
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TABLE 1.1
Results for xn+1 := 6496− (4205 · 210 + 609725 · 215/xn−1)/xn with the initial values x0 := −1305,

x1 := −1440.

n single double over R
0 -1305.0000000000000000 -1305.0000000000000000 -1305
1 -1440.0000000000000000 -1440.0000000000000000 -1440
2 -1145.6791992187500000 -1145.6790123456794390 -92800/81
3 -1855.9990234375000000 -1855.9999999999981810 -1856
4 -580.0024414062500000 -580.0000000000027285 -580
5 -4639.9638671875000000 -4639.9999999999672582 -4640
6 -0.0195312500000000 -0.0000000000109139 0
7 4780.7998046875000000 3680.0000000000000000
8 213975808.0000000000000000 497456029492482816.00000000
9 6495.9604492187500000 6495.9999999999799911

10 5833.1245117187500000 5833.1428571428486975
... ... ...
46 4640.0009765625000000 4640.0009773540996321
47 4640.0004882812500000 4640.0006742744462827
48 4640.0004882812500000 4640.0004651804893001
49 4640.0000000000000000 4640.0003209270334992
50 4640.0000000000000000 4640.0002214068863395
... ... ...

102 4640.0000000000000000 4640.0000000000009095
103 4640.0000000000000000 4640.0000000000000000
104 4640.0000000000000000 4640.0000000000000000

The data x0, x1, a, b, c are exactly representable in 20-bit binary format. The left two columns
of Table 1.1 display the result in IEEE-754 [1] single (binary32) and double (binary64)
precision.

As can be seen, both in single and double precision, the recurrence is defined and
converges to the attracting fixed point α = 4640. However, at the 8-th iterate, it becomes
visible that something happened during the iteration. The second example was constructed by
Paul Zimmermann [7] from INRIA using Sage [6]:

xn+1 := −256 + (131072/xn−1)/xn for x0 := 3, x1 := 170.

The roots of the characteristic polynomial are approximately −253.97, −23.76, and 21.72,
and the data x0, x1, a, b, c are representable in 7 bits. The results of the floating-point iteration
in bfloat (8 bits), half (11 bits), single and double precision are displayed in the left four
columns of Table 1.2.

In all used floating-point formats, the recurrence converges to the floating-point number
nearest to the attracting fixed point α. In bfloat, half, and single precision, the floating-
point iteration camouflages the true behavior of the recurrence—yet another example of the
smoothing effect of rounding operations.

Acknowledgment. Many thanks to Paul Zimmermann for fruitful discussions, really
many nice examples, and very careful reading, resulting in several suggestions to improve the
note. Also many thanks to Florian Bünger, who read the manuscript very carefully and gave
several valuable comments.
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TABLE 1.2
Results for xn+1 := −256 + (131072/xn−1)/xn with x0 := 3, x1 := 170.

n bfloat half single double over R
0 3.00 3.000 3.00000000000 3.0000000000000000 3
1 170.00 170.000 170.00000000000 170.0000000000000000 170
2 2.00 1.000 1.00393676758 1.0039215686274474 -256/255
3 130.00 515.000 511.98840332031 512.0000000000027285 512
4 248.00 -1.500 -0.99807739258 -1.0000000000004547 -1
5 -252.00 -425.500 -512.49890136719 -511.9999999998822204 -512
6 -258.00 -50.750 0.24343872070 -0.0000000000575255 0
7 -254.00 -249.875 -1306.57568359375 4.45019 · 1012
8 -254.00 -245.625 -668.08398437500 -768.0000000293351832
9 -254.00 -253.875 -255.84983825684 -256.0000000000383693

10 -254.00 -253.875 -255.23318481455 -255.3333333333588939
11 -254.00 -254.000 -253.99281311035 -253.9947780678856191
12 -254.00 -254.000 -253.97813415527 -253.9789473684212453
13 -254.00 -254.000 -253.96815490723 -253.9681697612732023
14 -254.00 -254.000 -253.96795654297 -253.9679568859273502
15 -254.00 -254.000 -253.96786499023 -253.9678689491082935
16 -254.00 -254.000 -253.96786499023 -253.9678665421512846
... ... ... ... ...
23 -254.00 -254.000 -253.96786499023 -253.9678657879329933
24 -254.00 -254.000 -253.96786499023 -253.9678657879329648
25 -254.00 -254.000 -253.96786499023 -253.9678657879329648
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