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THE SWALLOWTAIL INTEGRAL IN THE HIGHLY OSCILLATORY REGION II∗

CHELO FERREIRA†, JOSÉ L. LÓPEZ‡, AND ESTER PÉREZ SINUSíA†

Abstract. We analyze the asymptotic behavior of the swallowtail integral
∫∞
−∞ ei(t

5+xt3+yt2+zt)dt for large
values of |y| and bounded values of |x| and |z|. We use the simplified saddle point method introduced in [López et al.,
J. Math. Anal. Appl., 354 (2009), pp. 347–359]. With this method, the analysis is more straightforward than with the
standard saddle point method, and it is possible to derive complete asymptotic expansions of the integral for large |y|
and fixed x and z. There are four Stokes lines in the sector (−π, π] that divide the complex y-plane into four sectors
in which the swallowtail integral behaves differently when |y| is large. The asymptotic approximation is the sum of
two asymptotic series whose terms are elementary functions of x, y, and z. One of them is of Poincaré type and is
given in terms of inverse powers of y1/2. The other one is given in terms of an asymptotic sequence whose terms
are of the order of inverse powers of y1/9 when |y| → ∞, and it is multiplied by an exponential factor that behaves
differently in the four mentioned sectors. Some numerical experiments illustrate the accuracy of the approximation.
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1. Introduction. The swallowtail integral is one of the most important canonical diffrac-
tion integrals [1, Chap. 36], which are integrals that are an essential ingredient in the
modelling of many physical phenomena, especially those related to wave propagation; see
[3, 2, 6, 12, 14, 16, 17] or the references therein for detailed information. Apart from their
physical applications, the canonical diffraction integrals have an important mathematical
application in the uniform asymptotic approximation of oscillatory integrals [13]. For a com-
prehensive description of these integrals (symmetries, illustrative pictures, scaling relations,
convergent series expansions, zeros, differential equations, bifurcation sets,...), see [1, Chap.
36].

The canonical diffraction integrals are classified according to the number of free inde-
pendent parameters that describe the type of singularities arising in catastrophe theory. The
simplest integral in this hierarchy is the well-known integral representation of the Airy func-
tion, and the second one is the Pearcey integral. In this paper we are concerned with the third
one: the swallowtail catastrophe. The canonical form of the oscillatory integral describing the
swallowtail diffraction catastrophe is given by the swallowtail catastrophe integral [1, Chap.
36, Sec. 2, eq. 36.2.4]:

(1.1) Ψ(x, y, z) :=

∫ ∞
−∞

ei(t
5+xt3+yt2+zt)dt.

The computation of this integral is not straightforward because of the oscillatory character
of the integrand. Some numerical methods based on the numerical integration of certain
differential equations satisfied by the swallowtail integral or on complex contour quadrature
techniques may be found in [4] and [5]. A convergent expansion in terms of powers of x, y,
and z is given in [1, Sec. 36, Chap. 8, eq. 36.8.1], but the convergence speed of this expansion
is rather slow for moderate or large values of the variables. On the other hand, asymptotic
expansions of this integral are not fully investigated. In [8] we can find some information
about the asymptotics of Ψ(x, y, z), but a complete asymptotic expansion is not given.
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The three first canonical integrals, the Airy function, the Pearcey integral, and the swal-
lowtail integral, are the most important ones in applications. The asymptotic behavior of the
Airy function is well-known; the asymptotics of the Pearcey integral has been considered in
recent works [9, 10] and in other more classical works [7, 14, 15]. In this paper we focus our
attention on the swallowtail integral, for which a complete asymptotic analysis is not known.

In [6] we have investigated the asymptotic behavior of Ψ(x, y, z) for large |x| and fixed
y and z. In this work we derive new asymptotic expansions that provide satisfactory ap-
proximations of Ψ(x, y, z) for large |y| and moderate values of x and z. The analysis of the
case |z| large and fixed x and y deserves a separate analysis in a forthcoming paper (see the
last paragraph of Section 4 for further details). Once these three cases are fully investigated,
the asymptotic analysis of the swallowtail integral will be complete and reference [1, Sec.
36.11], dedicated to the asymptotic analysis of the catastrophe integrals, may be updated.
Moreover, the asymptotic analysis of these three cases would lead to a complete description of
the dynamics of the optical swallowtail catastrophe when either of the two transverse spatial
variables is large or the control parameter is large [19].

The analysis here is different from the analysis in [6] as the location of the saddle points
and of the steepest descent paths is different. As a consequence, the complex y-plane is divided
into asymptotic regions different from those found in [6] for the x-plane, and the Stokes lines
are also different.

In the following section, we analyze the saddle point features of the swallowtail integral
for large |y| and fixed x and z. In Section 3 we use a simplification of the saddle point
method proposed in [11] to derive complete asymptotic expansions of Ψ(x, y, z) for large |y|.
Section 4 contains a summary of the discussion and some numerical experiments. Throughout
the paper we use the principal argument argw ∈ (−π, π] for any complex number w.

2. Preliminaries. The integral (1.1) converges for 0 < arg y < π and real x, or for real
x, y, and z, but the integrand is highly oscillatory, and thus it is not an appropriate starting
point for numerical or analytical approximations. We can find a different representation of
the swallowtail integral with a monotonic integrand that is more appropriate for designing
approximations. We derive it in the following form: we split the integration interval (−∞,∞)
at t = 0 and rotate the path (−∞, 0) by an angle − π

10 and the path (0,∞) by an angle π
10 .

After these manipulations, the swallowtail integral may be written in the form

Ψ(x, y, z) = e−i
π
10S(xe−4iπ5 , ye3i π10 , ze−3iπ5 )

+ ei
π
10S(xe4iπ5 , ye7i π10 , ze3iπ5 ),

(2.1)

with

(2.2) S(x, y, z) :=

∫ ∞
0

e−u
5+xu3+yu2+zudu.

The integral S(x, y, z) is absolutely convergent for all complex values of x, y, and z and
defines an entire function of the three variables. Therefore, the right-hand side of (2.1)
and (2.2) constitute an explicit representation of the analytic continuation of the swallowtail
integral Ψ(x, y, z) to all complex values of x, y, and z. Thus, it is more convenient to work
with the representation (2.1)–(2.2) of the swallowtail integral. The derivation of the above
representation of the swallowtail integral is based on a similar one given in [14] for the Pearcey
integral.
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3. The saddle point analysis of the integral S(x, y, z).

3.1. Saddle points and steepest descent paths of S(x, y, z). Define θ := arg y. After

the change of variable u = t
(

2|y|
5

)1/3

in the integral (2.2), we find that it may be written in
the form

(3.1) S(x, y, z) =

(
2|y|
5

)1/3 ∫ ∞
0

e|y|(
2|y|
5 )

2/3
f(t)+

2|y|
5 xt3+z( 2|y|

5 )
1/3

tdt,

where the phase function is f(t) := eiθt2 − 2
5 t

5. This phase function has four saddle points:
t0 := 0 and t̄k := ei

θ+2kπ
3 , k = 0, 1,−1. From the steepest descent method [18, Chap. 2],

or its simplified modification [11], we know that the asymptotically relevant saddle points
are those for which the integration path C := [0,∞) in (3.1) can be deformed into a new
path Γ containing portions of steepest descent paths that include all the relevant saddle points.
Therefore, the points t̄1 and t̄−1 do not have any influence in the analysis. Thus, we only
consider the saddle points t0 = 0 and t̄0 = ei

θ
3 (see Figure 3.1).

Re(t)

ee

0

ιθ/3
ι(θ+2π)/3

π−θ
2

Γ

Γ

Γ0

1

1

Im(t)

e
ι(θ−2π)/3

−θ/2

Γ0

FIG. 3.1. Saddle points t0 := 0 and t̄k := ei
θ+2kπ

3 , k = 0, 1,−1, of the phase function in (3.1) and the
steepest descent paths at t0 = 0 and at t̄0 = ei

θ
3 . The integration path [0,∞) in (3.1) can be deformed either: (i) to

a portion of one of the steepest descent paths Γ0 or Γ1 at the point t0 = 0 or (ii) to the union of a portion of one
of the steepest descent paths Γ0 or Γ1 at t0 = 0 and of another portion of the steepest descent path Γ̄0 ∪ Γ̄1 at

t̄0 = ei
θ
3 . Therefore, the saddle points t̄±1 = ei

θ±2π
3 do not have any influence in the asymptotic analysis of (3.1).

This picture corresponds to a certain θ > 0. For negative θ, the picture is symmetric with respect to the axis Re(t),
interchanging also Γ0 and Γ1.

The application of the standard steepest descent method to the integral S(x, y, z) is not
straightforward as the steepest descent paths of f(t) at the saddle points are difficult to handle.
But we know from [11] that, instead of the steepest descent paths of the phase function
f(t), we may consider the steepest descent paths of the “main part” fm(t) of f(t) at the
relevant saddle points. The “main part” fm(t) is just the Taylor polynomial of degree m of
f(t) at the saddle point T : fm(t) := f(T ) + f (m)(T )(t − T )m/m!, where m is the order
of the first nonvanishing derivative of f(t) at t = T (f (m)(T ) 6= 0 and f (k)(T ) = 0 for
k = 1, 2, 3, ...,m− 1). The steepest descent paths of fm(t) are just straight lines [11].
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Then, the first point of the asymptotic analysis of (3.1) is the computation, at each relevant
saddle point t0 and t̄0, of the steepest descent paths of fm(t). Following [11] (see [6] for a
similar derivation), we find that they are the following ones:

• At the saddle point T = t0 = 0 we have that m = 2, φ = θ, f2(t) = eiθt2, and its
steepest descent paths are the following two half-lines (see Figure 3.1):

Γk :=

{
reiθk ; θk :=

(1− 2k)π − θ
2

; r ≥ 0

}
, k = 0, 1.

• At the saddle point T = t̄0 := ei
θ
3 we have that m = 2, φ = θ + π,

f2(t) = 3
5e

5i θ3 − 3eiθ(t− ei θ3 )2, and its steepest descent paths are the following two
half-lines (see Figure 3.1):

Γ̄k :=

{
ei
θ
3 + reiθ̄k ; θ̄k :=

2kπ − θ
2

; r ≥ 0

}
, k = 0, 1.

3.2. Deformation of the integration path. The second part of our analysis consists in
showing that the original path of integration [0,∞) in (3.1) may be deformed to another path Γ
that is more appropriate for the asymptotic analysis, and hence we write:

(3.2) S(x, y, z) =

(
2|y|
5

)1/3 ∫
Γ

e|y|(
2|y|
5 )

2/3
f(t)+

2|y|
5 xt3+z( 2|y|

5 )
1/3

tdt.

In this formula, Γ := Γs∪Γε, where Γs is the union of one portion of one of the two half-lines
Γ0 or Γ1 and a portion of Γ̄0 ∪ Γ̄1 in such a way that it contains the relevant saddle point(s) t0
and/or t̄0. The “irrelevant” path Γε is necessary to complete the deformation of [0,∞), but
the integral over this path is exponentially small compared with the integral over the path Γs.
The analysis of the deformation depends on the angle θ (see Figures 3.2, 3.3, and 3.4) and all
the deformations used in the following four paragraphs are justified by the use of Cauchy’s
residue theorem:

• When 4π
5 < θ ≤ π we have that |θ0| = |π−θ2 | <

π
10 . We can deform the path [0,∞)

to the path Γ0, whose end point is the saddle point t0 = 0. We have that Γs = Γ0, Γε
is empty, and Γs = Γ0 (see Figure 3.2).

Re(t)

0

π−θ
2

Γ=Γ
0

Im(t)

FIG. 3.2. When 4π
5
< θ ≤ π, the path [0,∞) is deformed to the path Γ = Γ0.
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• When 3π
5 ≤ θ ≤ 4π

5 we can deform the path [0,∞) to the path Γ = Γs ∪ Γε,
where Γs is the segment 0A of Γ0 plus the segment AB of Γ̄0 (see Figure 3.3a for
3π
5 < θ < 4π

5 and Figure 3.3b for θ = 3π
5 ). Γε is the interval [B,∞).

Re(t)

e

0

ιθ/3

−θ/2

π−θ
2

Γ

Γ

Γ0

0

A

BC

Im(t)

(a)

Re(t)

e

0

−3π/10

Γ

ιπ/5

π/5

Γ

Γ0

0

BC

Im(t)

(b)

FIG. 3.3. When 3π
5
≤ θ ≤ 4π

5
we can deform the path [0,∞) to the path Γ = OA ∪ AB ∪ [B,∞)

represented in (a) for 3π
5
< θ ≤ 4π

5
or in (b) for θ = 3π

5
(when θ = 3π

5
, then A = t0 = ei

θ
3 = ei

π
5 ). In these

figures A := Γ0 ∩ Γ̄0 and B := Γ̄0∩ Re(t)-axis.

• When 0 ≤ θ < 3π
5 we can deform the path [0,∞) to the path Γ = Γs ∪ Γε, where

Γs is the segment 0A of Γ0 plus the segment AB of Γ̄0 ∪ Γ̄1 (see Figure 3.4). Γε is
the interval [B,∞).

Re(t)

e

0

ιθ/3

−θ/2π−θ
2

Γ

Γ

Γ0

0

Γ1

A

BC

Im(t)

FIG. 3.4. When 0 ≤ θ < 3π
5

, the path [0,∞) can be deformed to the path Γ = OA ∪AB ∪ [B,∞). In this
figure A := Γ0 ∩ Γ̄1 and B := Γ̄0∩ Re(t)-axis.

• For negative θ the analysis is similar: (i) for −π < θ < − 4π
5 the analysis is identical

to the case 4π
5 < θ ≤ π; (ii) for − 4π

5 ≤ θ ≤ − 3π
5 it is identical to the case

3π
5 ≤ θ ≤

4π
5 ; (iii) for − 3π

5 < θ ≤ 0 it is identical to the case 0 ≤ θ < 3π
5 . The only

difference is that the figures are symmetric with respect to the Re(t)-axis and Γ̄0 is
replaced by Γ̄1.

3.3. Computation of the integrals over the steepest descent paths. The third point of
our analysis is the computation of the right-hand side of (3.2) when Γ is one of the paths
described in the previous section. We only give details for θ ≥ 0 as the case θ ≤ 0 is
symmetric. The following two observations are essential in the analysis:
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• Regardless of the value of θ, the segment OA is present1 in Γs. Besides, when
0 ≤ θ ≤ 4π

5 , the segment AB is also present in Γs, although only for the argument
0 ≤ θ ≤ 3π

5 , the saddle point t̄0 = ei
θ
3 is in AB. On the other hand, among the

two saddle points t0 = 0 and t̄0 = ei
π
3 , the most relevant one is the one for which

<[f(t)] is maximal, and this depends on θ: <[f(0)] = 0 and <[f(ei
θ
3 )] = 3

5 cos( 5θ
3 ).

Therefore, t0 = 0 is the relevant saddle point for |θ| > 3π
10 , t̄0 = ei

θ
3 is the relevant

saddle point for |θ| < 3π
10 , and both are equally relevant for θ = 3π

10 .
• For π

2 ≤ θ ≤ π we have that <[f(t)] is a decreasing function in [0,∞) and
<[f(t)] ≤ <[f(0)] = 0 for t ∈ [0,∞). For 0 ≤ θ < π

2 we have that the maximum of
<[f(t)] is located at t = (cos θ)1/3 and is a decreasing function in [(cos θ)1/3,∞).
But B ≥ C := cos( θ3 ) ≥ (cos θ)1/3, and then <[f(t)] is a decreasing function in
Γε = [B,∞). In any steepest descent path, <[f(t)] decreases as t runs away from
the saddle point, and then <[f(t)] ≤ <[f(B)] < <[f(ei

θ
3 )] for t ∈ Γε = [B,∞).

From the above first observation we conclude that we may consider that Γs = OA for
3π
10 < |θ| ≤ π and Γs = OA ∪ AB for 0 ≤ |θ| < 3π

5 . From the second observation we
conclude that the contribution of Γε is exponentially small compared to the contribution of Γs
for any θ. In summary,

(3.3) S(x, y, z) ∼


S0(x, y, z) if

3π

10
< |θ| ≤ π,

S0(x, y, z) + S̄(x, y, z) if |θ| < 3π

5
,

where
(3.4)

S0(x, y, z) :=

(
2|y|
5

)1/3∫ A

0

e|y|(
2|y|
5 )

2/3
f2(t)e|y|(

2|y|
5 )

2/3
[f(t)−f2(t)]+

2|y|
5 xt3+z( 2|y|

5 )
1/3

tdt

and
(3.5)

S̄(x, y, z) :=

(
2|y|
5

)1/3∫ B

A

e|y|(
2|y|
5 )

2/3
f2(t)e|y|(

2|y|
5 )

2/3
[f(t)−f2(t)]+

2|y|
5 xt3+z( 2|y|

5 )
1/3

tdt.

In (3.4) we have f2(t) = eiθt2 and in (3.5), f2(t) = 3
5e

5i θ3 − 3eiθ(t− ei θ3 )2. Figure 3.5a
displays the different asymptotic behavior of S(x, y, z) in the complex y-plane according
to (3.3).

In the red sector |θ| < 3π
10 , S(x, y, z) ∼ S0(x, y, z) + S̄(x, y, z), whereas in the blue

sector 3π
5 < |θ| ≤ π, S(x, y, z) ∼ S0(x, y, z). In the purple sector 3π

10 < |θ| ≤
3π
5 , either of

the two approximations is valid as S̄(x, y, z) is exponentially small compared with S0(x, y, z).
Inside the red sector |θ| < 3π

10 , S̄(x, y, z) dominates2 S0(x, y, z). The Stokes lines are the
lines arg(y) = ± 3π

10 , where both, S0(x, y, z) and S̄(x, y, z), are of the same order.

3.4. The approximate computation of S0(x, y, z) and S̄(x, y, z). The fourth point
of the analysis is the approximation of the integrals S0(x, y, z) and S̄(x, y, z). Again, we
only give details for positive θ as the analysis for negative θ is identical. After the change of

variable t→
(

5
2

) 1
3 ei

π−θ
2 |y|−5/6t in (3.4), we find

S0(x, y, z) =
1

(−y)1/2

∫ Ay

0

e−t
2

g(x, y, z, t)dt,

1Although when θ = 0 this segment is irrelevant because A = 0.
2Moreover, when θ = 0, A = 0 and thus S0(x, y, z) = 0.
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Re(y)

Im(y)

3π/10

−3π/10

3π/5

−3π/5

(a)

Im(y)

Re(y)

−2π/5

3π/10

−π/10

−3π/5

−9π/10

7π/10

(b)

FIG. 3.5. (a) The saddle point analysis of the integral (2.2) is different in the two regions of the complex y-plane
separated by the lines arg y = ± 3π

10
; (b) both, S0(xe−4iπ

5 , ye3i
π
10 , ze−3iπ

5 ) and S0(xe4i
π
5 , ye7i

π
10 , ze3i

π
5 )

contribute to the asymptotic behavior of the swallowtail integral in the whole complex y-plane (except for
arg y = − 3π

10
and arg y = − 7π

10
when they respectively vanish). But S̄(xe−4iπ

5 , ye3i
π
10 , ze−3iπ

5 ) and

S̄(xe4i
π
5 , ye7i

π
10 , ze3i

π
5 ) contribute differently in the four sectors depicted in the figure: both of them con-

tribute in the blue sector − 9π
10
≤ arg y ≤ − π

10
, none in the yellow sector 3π

10
< arg y < 7π

10
, only

S̄(xe−4iπ
5 , ye3i

π
10 , ze−3iπ

5 ) in the red sector − π
10

< arg y ≤ 3π
10

, and only S̄(xe4i
π
5 , ye7i

π
10 , ze3i

π
5 ) in

the green sector −π ≤ θ < − 9π
10

and 7π
10
≤ arg y ≤ π. The Stokes lines are the thick blue lines arg y = − 3π

5
,

− 2π
5

, 0, and π.

with Ay := |A|( 2
5 )1/3|y5/6| ≥ 0 and

g(x, y, z, t) := exp

{
− t5

(−y)5/2
+

xt3

(−y)3/2
+

zt

(−y)1/2

}
.

From here, the computation of the asymptotic expansion of this integral follows from Wat-
son’s Lemma [18, Chap. 1, Sec. 5], [11]. Replacing g(x, y, z, t) by its Taylor expansion at
t = 0, interchanging sum and integral, and neglecting exponentially small terms, we find that
S0(x, y, z) = 0 for θ = 0, and, for θ 6= 0,

(3.6) S0(x, y, z) ∼ 1

2

∞∑
n=0

Γ

(
n+ 1

2

)
Bn(x, z)

(−y)
(n+1)/2

as |y| → ∞,

with

Bn(x, z) :=
∑

5k+3j+l=n

(−1)kxjzl

k!j!l!
.

From the differential equation g′(x,−1, z, t) = (z + 3xt2 − 5t4)g(x,−1, z, t) in the variable
t, it is straightforward to see that the coefficients Bn(x, z) satisfy the recurrence relation

Bn(x, z) =
zBn−1(x, z) + 3xBn−3(x, z)− 5Bn−5(x, z)

n
,
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with

B0(x, z) = 1, B1(x, z) = z, B2(x, z) =
z2

2
,

B3(x, z) = x+
z3

6
, B4(x, z) = xz +

z4

24
.

On the other hand, after the change of variables t→ u defined by

t = ei
θ
3 + e−i

θ
2

(
5
2

)1/3
|y|5/6

√
3
u

in the integral (3.5), we find

(3.7) S̄(x, y, z) =
1√
3y
eh(x,y,z)

∫ By

Ay

e−u
2+uw(x,y,z)g(x, y, z, u)du,

with

Ay : = (
2

5
)1/3
√

3ei
θ
2 (A− ei θ3 )|y|5/6 < 0,

By : = (
2

5
)1/3
√

3ei
θ
2 (B − ei θ3 )|y|5/6 > 0,

h(x, y, z) :=
3

5

(
2

5

)2/3

y5/3 +
2xy

5
+ z

(
2y

5

)1/3

,

w(x, y, z) :=
√

3

(
2

5

)2/3

xy1/6 +
z√
3y
,

g(x, y, z, u) = exp

{
a2(x, y, z)

y5/9
u2 +

a3(x, y, z)

y5/6
u3 +

a4(x, y, z)

y10/9
u4 +

a5(x, y, z)

y25/18
u5

}
,

and

(3.8)
a2(x, y, z) :=

(
2
5

)1/3
x

y1/9
, a3(x, y, z) :=

1

3
√

3

[
−25/351/3 +

x

y2/3

]
,

a4(x, y, z) :=− 21/352/3

9y5/9
, a5(x, y, z) := − 1

35/2y10/9
.

Replacing the Taylor expansion of g(x, y, z, u) at u = 0 in (3.7), interchanging sum and
integral, and neglecting exponentially small terms, we find that

(3.9) S̄(x, y, z) ∼ 1√
3y
eh(x,y,z)+w2(x,y,z)/4

∞∑
n=0

Cn(x, y, z)An(x, y, z)

y5n/18
,

where, for n = 0, 1, 2, 3, . . ., Cn(x, y, z) are the Taylor coefficients of g(x, y, z, y5/18u) at
u = 0:
(3.10)

Cn(x, y, z) :=
∑

2n2+3n3+4n4+5n5=n

an2
2 (x, y, z)an3

3 (x, y, z)an4
4 (x, y, z)an5

5 (x, y, z)

n2!n3!n4!n5!
.
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It is obvious that C0(x, y, z) = 1 and C1(x, y, z) = 0. And, from the following differential
equation with respect to the variable u,

g′(x, y, z, y5/18u) = g(x, y, z, y5/18u)

5∑
k=2

kak(x, y, z)uk−1,

it is straightforward to see that, for n = 2, 3, 4, . . ., the coefficients Cn(x, y, z) satisfy the
recurrence relation

Cn(x, y, z) =
1

n

min{n,5}∑
k=2

k ak(x, y, z)Cn−k(x, y, z).

On the other hand, the functions An(x, y, z) are the integrals

An(x, y, z) :=

∫ ∞
−∞

une−(u−w(x,y,z)/2)2du =

∫ ∞
−∞

[
t+

w(x, y, z)

2

]n
e−t

2

dt

=

n∑
k=0

(
n
k

)(
w(x, y, z)

2

)n−k ∫ ∞
−∞

tke−t
2

dt

=

bn/2c∑
k=0

(
n
2k

)(
w(x, y, z)

2

)n−2k

Γ

(
k +

1

2

)
.

The two first functions An(x, y, z) are

A0(x, y, z) =
√
π, A1(x, y, z) =

√
π

2
w(x, y, z),

and, for n = 2, 3, 4, . . ., the remaining ones may be computed from the recurrence relation

(3.11) An(x, y, z) =
w(x, y, z)

2
An−1(x, y, z) +

n− 1

2
An−2(x, y, z).

This recurrence relation follows straightforwardly by integrating by parts in the integral
definition of An(x, y, z).

On the one hand, from (3.8) and (3.10) it is obvious that the coefficients satisfy
Cn = O(1) when |y| → ∞ with fixed x and z. From (3.11) it is straightforward to see
that An(x, y, z) = O(wn(x, y, z)) = O(yn/6). Thus, every term of the asymptotic expansion
of S̄(x, y, z) in (3.9) is of the order O(y−n/9) as |y| → ∞ for bounded x and z.

4. Summary of the discussion and numerical experiments. From (3.3), (3.6), and
(3.9) we see that, when |y| → ∞, S(x, y, z) is of the order O(y−1/2) if | arg y| > 3π

10 and of
the order O(y−1/2eh(x,y,z)+w2(x,y,z)/4) if | arg y| ≤ 3π

10 . Thus, S(x, y, z) has an exponential
behavior in the red region of Figure 3.5a and a power behavior in the blue and purple regions.
The Stokes lines for S(x, y, z) are the rays arg y = ± 3π

10 .
In order to determine the asymptotic behavior of the swallowtail integral Ψ(x, y, z), we

must use the relations (2.1) and (3.3). The first function S(x, y, z) on the right-hand side
of (2.1) is evaluated at ye3i π10 and the second one at ye7i π10 . Therefore, the complex y-plane is
divided into the four regions depicted in Figure 3.5b, according to the asymptotic behavior of
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Ψ(x, y, z):

Ψ(x, y, z) ∼ e−i π10S0(xe−4iπ5 , ye3i π10 , ze−3iπ5 )

+ei
π
10S0(xe4iπ5 , ye7i π10 , ze3iπ5 )

+e−i
π
10 S̄(xe−4iπ5 , ye3i π10 , ze−3iπ5 )χ[0, 3π5 )

(∣∣∣∣arg y +
3π

10

∣∣∣∣)
+ei

π
10 S̄(xe4iπ5 , ye7i π10 , ze3iπ5 )χ[0, 3π5 )

(∣∣∣∣arg y +
7π

10

∣∣∣∣) ,
(4.1)

where χ[a,b)(θ) is the characteristic function of the interval [a, b). The function S0(x, y, z)
is approximated by the right-hand side of (3.6) and S̄(x, y, z) by the right-hand side of (3.9).
The Stokes lines of the swallowtail integral are arg y = − 3π

5 , − 2π
5 , 0, and π, and separate the

complex y-plane into four different sectors:

−π < arg y < −3π

5
, −3π

5
< arg y < −2π

5
,

−2π

5
< arg y < 0, and 0 < arg y < π.

Table 4.1 displays the accuracy of the approximations summarized above. We evaluate
the swallowtail integral Ψ(x, y, z) by using formula (2.1), evaluating the function S(x, y, z)
defined in (2.2) with the NIntegrate command of Wolfram Mathematica 10.4 using 16 digits
for the numerical evaluation of the integral.

The asymptotic analysis of Ψ(x, y, z) for large |x| or large |y| has been possible through
the splitting (2.1) and the asymptotic approximation of the functions S(x, y, z). But the
analysis of the asymptotic behavior of Ψ(x, y, z) for large |z| and fixed x and y is more
cumbersome. In this case, the point t = 0 is not a saddle point of the phase function. This fact
translates into numerical instabilities in the asymptotic approximation of Ψ(x, y, z) by means
of the splitting (2.1) and the asymptotic approximation of the functions S(x, y, z). Therefore,
we plan to investigate the large z asymptotics of the swallowtail integral in a separate paper
avoiding the mentioned splitting.
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