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STEFANO CIPOLLA†, MICHELA REDIVO-ZAGLIA†, AND FRANCESCO TUDISCO‡

Abstract. This work is concerned with the computation of `p-eigenvalues and eigenvectors of square tensors
with d modes. In the first part we propose two possible shifted variants of the popular (higher-order) power method,
and, when the tensor is entry-wise nonnegative with a possibly reducible pattern and p is strictly larger than the number
of modes, we prove convergence of both schemes to the Perron `p-eigenvector and to the maximal corresponding
`p-eigenvalue of the tensor. Then, in the second part, motivated by the slow rate of convergence that the proposed
methods achieve for certain real-world tensors when p ≈ d, the number of modes, we introduce an extrapolation
framework based on the simplified topological ε-algorithm to efficiently accelerate the shifted power sequences.
Numerical results for synthetic and real world problems show the improvements gained by the introduction of the
shifting parameter and the efficiency of the acceleration technique.
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1. Introduction. A tensor, or hypermatrix, is a multi-dimensional array: a set of numbers
ti1,...,id indexed along d modes. When d = 1 the tensor is a vector, whereas for d = 2 it
reduces to a matrix.

Tensor eigenvalue problems have gained considerable attention in recent years, and a
number of contributions have addressed relevant issues both from the theoretical and the
numerical points of view. The multi-dimensional nature of tensors naturally gives rise to a
variety of eigenvalue problems. In fact, the classic eigenvalue and singular value problems for
a matrix can be generalized to the tensor setting following different constructions which lead
to different notions of eigenvalues and singular values for tensors, all of them reducing to the
standard matrix case when the tensor is assumed to have 2 modes. The best known methods for
computing eigenvalues and eigenvectors of real tensors are based on extensions of the power
method. To our knowledge, the first occurrence of a power method for tensors, often called
higher-order power method, is given in [32, 47], whereas shifted versions of this method,
such as the SS-HOPM and LZI, were considered, e.g., in [34, 41]. When the considered
tensor is real with nonnegative entries, a natural question arises whether and to what extent the
Perron-Frobenius theorem for matrices can be transferred to the multi-dimensional setting.
The answer turns out to be non-trivial and many authors have worked in this direction in
recent years; see, for instance, [14, 24, 25, 41, 42]. A summary of these results and a unifying
Perron–Frobenius theorem for tensors is presented in [28].

In this work we focus on the `p-eigenvector problem for square real tensors, being p any
real number larger than 1. In Section 2 we review the definition and relevant properties of such
eigenvalue problem. Then, in Section 3, we introduce two new shifted power methods for
this tensor eigenproblem that include as special cases the SS-HOPM and the LZI algorithms
mentioned above. In the case of real nonnegative tensors with possibly reducible patterns, we
prove that the proposed shifted power sequences converge to the unique Perron `p-eigenvector
and to the corresponding positive `p-eigenvalue, showing that in this setting the methods
inherit the desirable convergence guarantees of their matrix counterpart. In Section 4 we study
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experimentally the numerical behavior of the newly introduced schemes. In Section 5 we
discuss how the sequences produced by the new algorithms can be accelerated by means of
extrapolation methods that require only few additional computations. Finally, in Section 6, we
show via numerical experiments that the extrapolated sequences converge significantly faster
than the original power sequences for a number of different test problems from real world
applications.

2. Tensor `p-eigenvalues and eigenvectors. In this section we review the notion of
`p-eigenvalues for a square real tensor and discuss some of their properties.

Let T = (ti1,...,id) ∈ Rn×···×n be a real tensor with d modes, each of dimension n. Since
each mode of the tensor has the same dimension, we say that the tensor is square, and we
briefly write T ∈ R[d,n]. Furthermore, we say that T is symmetric if the entries ti1,...,id are
invariant with respect to any permutation of the indices i1, . . . , id, as introduced in [17]. To
any square tensor T ∈ R[d,n] and any vector x of size n, we can associate a new vector y by
“multiplying” T times x. This operation extends the matrix-vector product and is defined via
a polynomial map which we denote with the same capital letter denoting the corresponding
tensor, but in italic normal font, more precisely:

DEFINITION 2.1. Given a tensor T = (ti1,...,id) ∈ Rn×···×n, define the map

(2.1) T : Rn → Rn, x 7→ T (x)i1 =
∑

i2,...,id

ti1,i2,...,idxi2 · · ·xid

for i1 = 1, . . . , n.
For the sake of completeness, let us point out that the vector T (x) is sometimes denoted

by Txd−1; see, e.g., [34, 47]. This is because, when d = 2, that is, when T is a n× n matrix,
then T (x) coincides with the matrix-vector product Tx. However, in this work we prefer
to distinguish T and T explicitly. This choice is made for the sake of generality, having in
mind a future extension of the analysis here presented to tensor singular values and the case of
rectangular tensors.

REMARK 2.2. Clearly, other multiplicative maps can be associated to a square tensor
T ∈ R[d,n]. Indeed, for any 1 ≤ k ≤ d one can define a map Tk : Rn → Rn by replacing the
summation on the right-hand side of (2.1) with the sum over all the indices i1, . . . , id except
for ik. This defines d different operations T1, . . . , Td where T1 = T but Tk 6= T in general if
k 6= 1. Precisely, one easily realizes that all the mappings Tk coincide if and only if the tensor
T is symmetric. Note, in particular, that for the matrix case d = 2, the two maps T1 and T2
coincide with the matrix-vector products Tx and TTx, respectively.

As T maps Rn into itself, we can associate a concept of eigenvalues and eigenvectors to
T via the mapping T .

DEFINITION 2.3. Let 1 < p < +∞. A real number λ ∈ R is said to be an `p-eigenvalue
of T, corresponding to the `p-eigenvector x ∈ Rn, if the following holds

(2.2) T (x) = λΦp(x) , ‖x‖p = 1,

where ‖x‖p denotes the usual `p-norm ‖x‖p = (|x1|p + · · ·+ |xn|p)1/p and Φp : Rn → Rn
is the map entry-wise defined by Φp(x)i = |xi|p−2xi = sign(xi)|xi|p−1 for i = 1, . . . , n.

The notion of `p-eigenvalues was probably introduced by Lim in [40]. Note that, unlike
the matrix case, if p 6= d, then the system of equations T (x) = λΦp(x) is not homogeneous
and thus, in general, `p-eigenvectors are not defined up to scalar multiples. This is the reason
why we require the normalization ‖x‖p = 1.

The map Φp is also known as the duality map of `p with gauge function µ(α) = αp−1

(see, e.g., [35]) and enjoys several useful properties. We recall two of them below:
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• If q is the Hölder conjugate of p, i.e. p−1 + q−1 = 1, then Φq = Φ−1p is the inverse
of Φp, that is, we have Φp(Φq(x)) = Φq(Φp(x)) = x for any x.

• When p = 2 we have Φp(x) = Φq(x) = x, i.e., Φp is the identity map.
We say that a solution (λ,x) ∈ R × Rn of equation (2.2) is an `p-eigenpair of T. A

special name is usually reserved to the cases p = 2 and p = d, the former being known as
Z-eigenpairs and the latter as H-eigenpairs. Actually, when d is odd, the usual definition of
H-eigenvectors given in the literature slightly differs from (2.2). In fact, an H-eigenpair is
usually defined as the solution of the system T (x) = λxd−1 [45], which coincides with (2.2)
only if d is even or if x is entry-wise nonnegative. In this work we will call H-eigenvector any
vector x satisfying (2.2) with p = d. Of course one could define `p-eigenvalues by replacing
the duality map Φp with a standard entry-wise power of the vector. However, as we notice
below, using Φp has the advantage that, just like for symmetric matrices, `p-eigenvectors of
symmetric tensors T defined as in (2.2) have a variational characterization as critical points of
the Rayleigh quotient

(2.3) x 7→ fp(x) =
xTT (x)

‖x‖dp
, xTT (x) =

∑
i1,...,id

ti1,i2,...,idxi1 · · ·xid .

PROPOSITION 2.4. Let T be a symmetric square tensor, and let p > 1. Then x ∈ Rn is
an `p-eigenvector of T if and only if x is a critical point of fp and the associated `p-eigenvalue
coincides with xTT (x)/‖x‖pp.

Proof. As both p and d are larger than one, the Rayleigh quotient fp is differentiable and
thus x is a critical point of fp if an only if∇fp(x) = 0, where∇ denotes the gradient. By the
symmetry of T, the gradient of xTT (x) is given by

∇{xTT (x)} = T1(x) + T2(x) + · · ·+ Td(x) = d T (x),

where Tk : Rn → Rn are the maps considered in Remark 2.2. Similarly, we compute the
gradient of the p-norm: ∇‖x‖p = Φp(x)/‖x‖p−1p .

Therefore, by the chain rule, we get

∇fp(x) =
‖x‖dp∇{xTT (x)} − xTT (x)∇‖x‖dp

‖x‖2dp
=

d

‖x‖dp

{
T (x)−

(
xTT (x)

‖x‖pp

)
Φp(x)

}
,

which concludes the proof.
REMARK 2.5. Note that with y = x/‖x‖p, we get fp(x) = yTT (y). Hence, critical

points of fp coincide with critical points of xTT (x), constrained by ‖x‖p = 1. With this
constrained optimization formulation one can obtain an equally simple proof of Proposition 2.4
as a direct consequence of the Karush-Kuhn-Tucker conditions. This is the approach used for
example in [40] and [34, Theorem 3.2].

The notion of `p-eigenvectors and eigenvalues for nonnegative tensors arises in many
contexts and applications. The cases p = 2 and p = d are the natural generalization of
eigenvalues and eigenvectors for matrices, as in the case d = 2 these two notions coincide.
The case p = d has been used, for example, to characterize the positive definiteness of
homogeneous polynomial forms in [46] or to compute the importance of nodes in a network [2].
The case p = 2 is strictly related with the best rank-1 approximation of a tensor with respect
to the Frobenius norm [20, 23, 33]. It arises in certain constraint satisfaction problems [19], as
well as in problems involving higher-order statistics [50], signal processing [16, 44], quantum
geometry [31], and data analysis [15, 29, 43, 51].

If T is symmetric, then it has a finite set of Z-eigenvalues, one of which must be real if d
is odd [12]. However, computing a prescribed Z-eigenpair is in general NP-hard [30]. When
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T is entry-wise nonnegative, instead, conditions can be given on the nonzero pattern of T to
ensure that tensor versions of the power method converge globally to the largest Z-eigenvalue
[22, 26, 38]. These types of results belong to the developing Perron–Frobenius theory for
nonnegative tensors, which naturally involves `p-eigenvalues and eigenvectors, with p not
necessarily equal to 2 nor to d [14, 25, 27]. We review the relevant results below.

We say that T = (ti1,...,id) is nonnegative when ti1,...,id ≥ 0 for all ij = 1, . . . , n and
j = 1, . . . , d. We briefly write T ≥ 0 and, likewise, T > 0 when all the entries of T are
strictly positive. Several notions of spectral radius can be then employed to generalize this
concept from the matrix to the higher-order case; see, e.g., [27]. Here we adopt the following

rp(T) = sup{|λ| : λ is an `p-eigenvalue of T} .

Note that, when T is symmetric, using Proposition 2.4 and Remark 2.5, we have

rp(T) := max
‖x‖p=1

|xTT (x)|.

Unlike the matrix case, the Perron-Frobenius theorem for tensors relies on the choice of
p and the number of modes d. To the best of our knowledge, if the tensor is not entry-wise
positive or stochastic (settings that are studied for example in [26] and [22], respectively)
p ≥ d is the wider range of values p for which existence, uniqueness, and maximality of a
positive `p-eigenpair for T ≥ 0 has been proved; cf. [27], for instance. Within this range, a
distinction must be made: While the case p = d requires assumptions on the irreducibility
of T (e.g., strong and weak irreducibility or primitivity, see Definition 3.7 and [13, 24]),
it was observed in [27] that p > d is associated with a Lipschitz contractive map, and the
Perron-Frobenius theorem holds without any special requirement on the non-zero pattern of T.
In this work we shall mostly focus on this second case, thus we recall below the corresponding
Perron-Frobenius theorem. We refer to [27] for more details and for a thorough bibliography
review on the subject.

THEOREM 2.6 ([27]). Let T ∈ R[d,n] be such that T ≥ 0 and such that T (1) is entry-
wise positive, where 1 is the vector of all ones. If p > d, then rp(T) > 0, and there exists a
unique entry-wise positive u ∈ Rn such that ‖u‖p = 1 and T (u) = rp(T)Φp(u).

3. Shifted power method for `p-eigenvalues. The power method is arguably the best
known method to address the computation of the maximal `p-eigenpair of T. Shifted variants
of this method have been proposed for Z-eigenpairs and for H-eigenpairs in [33] and [41],
respectively. Here we propose two novel possible extensions of those techniques to the case
of a general `p-eigenvalue problem for nonnegative tensors. The pseudocode of these new
methods is shown in Algorithms 1 and 2. Note that the symbol ◦ at line 4 of Algorithm 1
and at line 4 of Algorithm 2 denotes the entry-wise product and is required in order to ensure
that, when T ≥ 0, both T (xk) and the shifting vectors xk and Φp(xk) have the same zero
pattern. In particular, when T is irreducible, x0 > 0 implies that T (xk) > 0 for all k, thus
sign(z) = 1 and we retrieve the shifted methods for both Z and H eigenpairs as special cases
of the new schemes.

The proposed shifted methods share several interesting convergence properties with
the original unshifted power method. In particular, for nonnegative tensors and under the
assumption p > d, we are guaranteed that if the initial x0 is chosen entry-wise positive, then
for large enough k the whole sequence of eigenvector approximations xk will stay within a
certain cone C+(T) and it will converge to the unique eigenvector of the tensor T in that
cone; at the same time, the sequence of eigenvalue approximations λk will converge to the
corresponding eigenvalue and, if T is symmetric, we are guaranteed that such eigenvalue
corresponds to the `p-spectral radius of T. We state this convergence result in our main
Theorem 3.3 below.
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Algorithm 1: Shifted Power Method 1.
Input: x0 > 0, σ ≥ 0, p > 1, tolerance ε > 0

1 q := p/(p− 1) (Conjugate exponent)
2 For k = 0, 1, 2, 3, . . . repeat
3 z = T (xk)
4 y = Φq(z) + σ sign(z)◦xk
5 xk+1 = y/‖y‖p
6 λk+1 = fp(xk+1)

7 until ‖xk+1 − xk‖p < ε

Algorithm 2: Shifted Power Method 2.
Input: x0 > 0, σ ≥ 0, p > 1, tolerance ε > 0

1 q := p/(p− 1) (Conjugate exponent)
2 For k = 0, 1, 2, 3, . . . repeat
3 z = T (xk)
4 y = Φq(z + σ sign(z)◦Φp(xk))
5 xk+1 = y/‖y‖p
6 λk+1 = fp(xk+1)

7 until ‖xk+1 − xk‖p < ε

3.1. Convergence analysis. Let Rn+ denote the nonnegative orthant in Rn, i.e., the cone
of vectors with nonnegative entries, and let Rn++ be its interior, i.e., the open cone of vectors
with strictly positive entries. Consider the cone of nonnegative vectors whose zero pattern is
preserved by T:

DEFINITION 3.1. For a nonzero tensor T ≥ 0 define C+(T) as the cone

C+(T) =
⋂
k≥k0

Ck+ with Ck+ =
{
x ≥ 0 : c1x ≤ T k(1) ≤ c2x, for some c1, c2 > 0

}
,

where T k denote k compositions of the map T and k0 = k0(T) is the smallest integer k0 ≥ 1
such that C+(T) is not empty.

Note that, for each k, the set Ck+ is the cone of nonnegative vectors having the same
zero pattern as T k(1). Since T k+1(1) = T (T k(1)) and 1 ≥ T (1) entry-wise, one easily
realizes that T k(1)i = 0 implies T k+1(1)i = 0. Thus, there exists a finite integer k0 such that⋂
k≥k0 C

k
+ is nonempty, i.e., C+(T) is well defined. Although C+(T) may contain only the

zero vector when T is too sparse, this situation rarely occurs in practice. Indeed, for example,
when T (1) > 0, then C+(T) = Rn++ is the whole cone of positive vectors.

From its definition we notice that C+(T) is the cone of nonnegative vectors with the least
number of zero entries that is preserved by T and that C+(T) is also preserved by the iterates
of the shifted power methods. Precisely, if xk+1 is computed from xk using the updating
formulas of either Algorithm 1 or Algorithm 2 and xk ∈ C+(T), then also xk+1 ∈ C+(T).
Moreover, we will show in the theorem below that T has a unique `p-eigenvector in C+(T)
and that the two algorithms converge to it.

At the same time, we do not need to compute the cone C+(T) beforehand, as we are
guaranteed to converge within C+(T) if we start with any positive vector x0 > 0. More
precisely, if x0 > 0 and (xk) is the sequence generated by either Algorithm 1 or Algorithm 2,
then all the vectors xk belong to C+(T) when k is large enough. Indeed, if we start with x0
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entry-wise positive, then x1 has the same zero pattern as T (1), x2 has the same zero pattern
as T 2(1), and so forth. Thus, xk ∈ C+(T) for all k ≥ k0.

In what follows, absolute values are intended entry-wise, that is, for x ∈ Rn, |x| denotes
the vector with entries |xi|, for i = 1, . . . , n.

LEMMA 3.2. Let T ∈ R[d,n] be entry-wise nonnegative, and let fp be defined as in (2.3).
Then the maximum of fp is attained at a nonnegative vector.

Proof. Let x ∈ Rn. Since T has nonnegative entries, we have T (x) ≤ T (|x|). Thus,
if x 6= 0, we have |fp(x)| = |xTT (x)|

‖x‖dp
≤ |x|

TT (|x|)
‖ |x| ‖dp

= fp(|x|). Hence, if y ∈ Rn \ {0} is a
global maximizer of fp, then also |y| is a global maximizer.

The following main result holds:
THEOREM 3.3. Let T ≥ 0, k0 = k0(T) be as in Definition 3.1, and let p > d. Then

there exists a unique solution to (2.2) in C+(T) that is a unique `p-eigenvector u ∈ C+(T).
We will define this as the Perron `p-eigenvector. In particular, for any σ ≥ 0 and any x0 > 0,
the sequences (λk) and (xk) defined by either Algorithm 1 or Algorithm 2 are such that:

1. xk ∈ C+(T) for all k ≥ k0;
2. (xk) converges to the Perron `p-eigenvector u of T in C+(T) with ‖u‖p = 1;
3. (λk) converges to the `p-eigenvalue λ > 0 of T corresponding to u.

Proof. Point 1 holds by definition of C+(T). So, for any k ≥ k0 all the points of the
sequence (xk) are in C+(T). We show below that the iterators are contractions on C+(T).

Given two vectors x,y ∈ C+(T), consider the following quantities

M(x/y) = inf{µ > 0 : x ≤ µy} m(x/y) = sup{µ > 0 : x ≥ µy} .

Since C+(T) is a simplicial cone (see, e.g., [37]), for x,y ∈ C+(T) it holds that
M(x/y) = maxyi 6=0 xi/yi and m(x/y) = minyi 6=0 xi/yi. For any x,y ∈ C+(T), by
definition we have m(x/y)y ≤ x ≤M(x/y)y, thus

m(x/y)d−1T (y) ≤ T (x) ≤M(x/y)d−1T (y) .

For σ ≥ 0 and p > 1, consider the following two mappings:

Hσ(x) = Φ−1p (T (x)) + σx and Kσ(x) = Φ−1p (T (x) + σΦp(x)) .

Note that both Hσ and Kσ preserve C+(T), that is, for any x ∈ C+(T) we have Hσ(x) ∈
C+(T) and Kσ(x) ∈ C+(T). Also note that when x ∈ C+(T) then z = T (x) ∈ C+(T).
Thus, sign(z) ◦ x = x and sign(z) ◦ Φp(x) = Φp(x). Hence, as q = p/(p − 1), we have
Φq = Φ−1p and Hσ(x), Kσ(x) are the iteration maps in Algorithms 1 and 2. Observe,
moreover, that for any two distinct points x and y on the `p-sphere Sp = {x : ‖x‖p = 1},
we have M(x/y) > 1 and m(x/y) < 1. In fact, M(x/y) ≤ 1 implies xi ≤ yi for any i and
xi < yi for at least one i (as x 6= y), which contradicts the fact that x and y have the same
`p-norm. An analogous contradiction follows by assuming m(x/y) ≥ 1.

Therefore, as p > d, for any two x,y ∈ C+(T) ∩ Sp, we have M(x/y)
d−1
p−1 < M(x/y),

m(x/y)
d−1
p−1 > m(x/y), and

Hσ(x) ≤M(x/y)
d−1
p−1 Φ−1p (T (y)) + σM(x/y)y < M(x/y)Hσ(y),(3.1)

Hσ(x) ≥ m(x/y)
d−1
p−1 Φ−1p (T (y)) + σm(x/y)y > m(x/y)Hσ(y),(3.2)

Kσ(x) ≤ Φ−1p (M(x/y)d−1T (y) + σM(x/y)p−1Φp(y)) < M(x/y)Kσ(y),(3.3)

Kσ(x) ≥ Φ−1p (m(x/y)d−1T (y) + σm(x/y)p−1Φp(y)) > m(x/y)Kσ(y) .(3.4)
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Let us now consider the normalized maps

H̃σ(x) = Hσ(x)/‖Hσ(x)‖p and K̃σ(x) = Kσ(x)/‖Kσ(x)‖p,

and the Hilbert projective distance between x and y in C+(T), defined by

(3.5) dH(x,y) = log

(
M(x/y)

m(x/y)

)
.

Note that both H̃σ and K̃σ preserve the set C+(T) ∩ Sp. Moreover, as dH is scale invariant,
combining inequalities (3.1)–(3.4) we see that both H̃σ and K̃σ are contractions onC+(T)∩Sp
with respect to dH . Indeed, we get

dH(H̃σ(x), H̃σ(y)) = log

(
M(Hσ(x)/Hσ(y))

m(Hσ(x)/Hσ(y))

)
< log

(
M(x/y)

m(x/y)

)
= dH(x,y)

and similarly for K̃σ .
As C+(T) ∩ Sp is complete (see, e.g., [26]), the Banach fixed point theorem (see [21])

implies that there exits a unique u ∈ C+(T) ∩ Sp such that, for any initial choice x0 > 0,
we have H̃σ(xk) → u = H̃σ(u) as k → ∞. Similarly, K̃p(xk) → v = K̃σ(v) for a
unique v ∈ C+(T) ∩ Sp. Thus Hσ(u) = λ1u and Kσ(v) = λ2v with λ1 = ‖Hσ(u)‖p and
λ2 = ‖Kσ(v)‖p. We now show that u and v coincide. Indeed, from Kσ(v) = λ2v, we have
Φ−1p (T (v)) = Φ−1p (Φp(λ2) − σ)v =: αv. Therefore Hσ(v) = (α + σ)v, that is, v is the
fixed point of H̃σ in C+(T) ∩ Sp, i.e., v = u.

Finally, note that u is an eigenvector of T with eigenvalue λ = Φp(λ2)−σ = Φp(λ1−σ)
and such λ is positive. In fact, as both Φp(u) and T (u) are nonnegative vectors in C+(T),
the identity T (u) = λΦp(u) implies that λ > 0.

COROLLARY 3.4. If T ≥ 0 is symmetric and p > d, then the sequence (λk) generated
by either Algorithm 1 or Algorithm 2 converges to rp(T).

Proof. Let w be any `p-eigenvector of T with ‖w‖p = 1 and eigenvalue µ. We have

|µ| = |wTT (w)| ≤ |w|TT (|w|) ≤ max
‖x‖p=1

fp(x) =: r̃ .

Let x∗ be a maximizer of fp, and let u∗ = x∗/‖x∗‖p. As fp(x∗) = fp(u
∗) we deduce that

u∗ is a maximizer, too, and by Lemma 3.2 we can assume u∗ ≥ 0. By Proposition 2.4 we
have that u∗ is an `p-eigenvector of T, that is, T (u∗) = r̃Φp(u

∗), with r̃ = rp(T) = fp(u
∗).

In particular, rp(T)
1

p−1u∗ = Φ−1p (T (u∗)) implies that for all k ≥ 1 there exists λk > 0 such
that λku∗ = (Φ−1p T )k(u∗). Thus, if T k(u∗)i = 0 for some integer k, then also (u∗)i = 0.
In other words, u∗ is zero at least in all the positions where the vectors of C+(T) are zero.

Now, let u be the unique eigenvector of T in C+(T) with eigenvalue λ > 0 and the limit
of the sequences generated by either Algorithm 1 or Algorithm 2 as in Theorem 3.3. Suppose
that λ < rp(T), and let α, β ∈ (0, 1) be such that αp + βp = 1. We have u 6= u∗ and if
y = αu∗ + βu, then y ∈ C+(T) and ‖y‖p = 1. Therefore,

fp(y) = yTT (y) ≥ (αu + βu∗)T
(
αd−1T (u) + βd−1T (u∗)

)
≥ αdfp(u) + βdfp(u

∗) .

As α = (1− βp)1/p and p > d, we have αd = (1− βp)d/p > (1− βp) > (1− βd), and thus,
we can choose α and β so that

fp(y) ≥ αdfp(u) + βdfp(u
∗) = αdλ+ βdrp(T) > λ.
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On the other hand, the uniqueness of u implies that λ = maxx∈C+(T) fp(x), which yields a
contradiction. Thus λ = rp(T), concluding the proof.

Before moving forward, let us briefly comment on Theorems 2.6 and 3.3. By considering
the general `p-eigenvalue problem, Theorem 3.3 completes the work of [41] and shows that
both Algorithms 1 and 2 converge for any square tensor T and any choice of p > d. Moreover,
by using the cone C+(T) rather than the whole positive orthant in Rn, we partially extend
the Perron-Frobenius theorem of [28] to the case of tensors with some zero unfolding. In fact,
Theorem 3.3 shows that Theorem 2.6 holds unchanged without the assumption T (1) > 0 and
replacing the positive orthant with C+(T). However, we point out that when C+(T) = Rn++

and σ = 0, Theorem 2.6 actually tells us more than the above Theorem 3.3. First of all
the proof of Theorem 2.6 shows that the power sequence in that case is associated with a
Lipschitz contractive map, which is a stronger property than the contractivity shown above in
Theorem 3.3. This allows us to show that the sequence for σ = 0 converges linearly, with an
explicit convergence ratio. Moreover, Theorem 2.6 ensures convergence of the power sequence
to rp(T), without assuming any symmetry on T. We believe that the discussed results of
Theorem 2.6 can be transferred to the case of shifted power sequences and to tensors with
some zero unfolding, but this analysis goes beyond the scope of this paper and is postponed to
future work.

3.2. Dependence on the parameter p. In this section we show that the Perron `p-
eigenvector depends continuously on the parameter p. To this end, let us first define the
following maps:

H(x, p) := Φ−1p (T (x)) and H̃(x, p) :=
H(x, p)

‖H(x, p)‖p
.

Note that H(x, p) = H0(x) = K0(x) (respectively, H̃(x, p) = H̃0(x) = K̃0(x)) being
H0, K0 (respectively, H̃0, K̃0) the maps introduced in the proof of Theorem 3.3 for the
choice σ = 0. With this notation and due to Theorem 3.3, we have that for any p > d, there
exists a unique x∗ in C+(T) such that H̃(x∗, p) = x∗ and such that x∗ is the unique Perron
`p-eigenvector of T. Thus, with a slight abuse of notation, consider the following mapping,

x∗ : (d,+∞)→ C+(T), p 7→ x∗(p) such that H̃(x∗(p), p) = x∗(p) ,

which to a given p ∈ (d,+∞) assigns the unique Perron `p-eigenvector of T.
In order to prove Theorem 3.6, which states the continuous dependence on the parameter

p, we need the following additional technical lemma.
LEMMA 3.5. Let T ≥ 0 and p > d ≥ 2. For x ∈ C+(T) it holds

Φ−1p+ε(x) = Φ−1p (x) + Ψ(x)ε+ o(ε) ,

where Ψ(x)i = − 1
(p−1)2 x

1
p−1

i ln(xi) if xi > 0 and Ψ(x)i = 0, otherwise.
Proof. Let qε = (p+ ε)/(p− 1 + ε) = 1 + 1/(p− 1 + ε) be the conjugate exponent of

p+ ε. For ε sufficiently small it holds that

qε − 1 =
1

p− 1 + ε
=

1

p− 1
− 1

(p− 1)2
ε+ o(ε),

and thus, for a sufficiently small ε we can write

(3.6) Φ−1p+ε(x) = Φqε(x) = x
1

p−1x
− 1

(p−1)2
ε+o(ε)

.
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Moreover, since for x > 0 it holds that xε = 1 + ε ln(x) + o(ε), we have

(3.7) x
− 1

(p−1)2
ε+o(ε)

i = 1− 1

(p− 1)2
ln(xi)ε+ o(ε),

and hence the thesis follows by combining (3.7) and (3.6).
THEOREM 3.6. If T ≥ 0 and p > d ≥ 2, then for any small enough ε > 0 we have

dH
(
x∗(p),x∗(p+ ε)

)
= O(ε) ,

where dH is the Hilbert distance defined in (3.5).
Proof. Using the triangle inequality and since the Hilbert metric is scale invariant, we

have

dH(x∗(p),x∗(p+ ε)) = dH(H̃(x∗(p), p), H̃(x∗(p+ ε), p+ ε))

≤ dH(H̃(x∗(p), p), H̃(x∗(p+ ε), p)) + dH(H̃(x∗(p+ ε), p+ ε), H̃(x∗(p+ ε), p))

= dH(H(x∗(p), p), H(x∗(p+ ε), p))︸ ︷︷ ︸
(a)

+ dH(H(x∗(p+ ε), p+ ε), H(x∗(p+ ε), p)).︸ ︷︷ ︸
(b)

(3.8)

We now upper bound both terms in (a) and in (b). Concerning part (a), note that using (3.1)
and (3.2) for σ = 0, for any two x,y ∈ C+(T) we have

dH(H(x), H(y)) = log

(
M(H(x)/H(y))

m(H(x)/H(y))

)
≤ log

({
M(x/y)

m(x/y)

} d−1
p−1

)
=
(d− 1

p− 1

)
dH(x,y).

Thus,

(3.9) dH(H(x∗(p), p), H(x∗(p+ ε), p)) ≤ γ dH(x∗(p),x∗(p+ ε))

with γ = (d− 1)/(p− 1). As for part (b), notice that, for any x ∈ C+(T) and ε sufficiently
small, using Lemma 3.5, we have

H(x, p+ ε) = Φ−1p+ε(T (x)) = Φ−1p (T (x)) + εΨ(T (x)) + o(ε)

= H(x, p) + εΨ(T (x)) + o(ε) .

Hence we have,

M(H(x, p+ ε)/H(x, p)) = max
i:xi 6=0

H(x, p)i + εΨ(T (x))i + o(ε)

H(x, p)i
≤ 1 + εC1 + o(ε)

and

m(H(x, p+ ε)/H(x, p)) = min
i:xi 6=0

H(x, p)i + εΨ(T (x))i + o(ε)

H(x, p)i
≥ 1 + εC2 + o(ε),

where

C1 := max
i:xi 6=0

Ψ(T (x))i
H(x, p)i

and C2 := min
i:xi 6=0

Ψ(T (x))i
H(x, p)i

.
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Eventually, we obtain

dH(H(x, p+ ε), H(x, p)) ≤ log
(1 + εC1 + o(ε)

1 + εC2 + o(ε)

)
= ε(C1 − C2) + o(ε).

Using the above inequality for x = x∗(p+ ε), together with (3.8) and (3.9) we obtain

dH(x∗(p),x∗(p+ ε)) ≤ ε (C1 − C2 + 1)

(1− γ)
,

which concludes the proof.
Theorem 3.6 shows that when p > d, the Perron `p-eigenvector of a nonnegative tensor

depends continuously on the parameter p. This theorem can be useful for example in the
context of H-eigenvectors because it allows us to argue that, in order to approximate an
H-eigenvector of T ≥ 0, we can use an `p-eigenvector with p ≈ d. Indeed, note that for
nonnegative eigenvectors the duality map Φp coincides with taking the entry-wise powers of
the vector, and thus, `d-eigenvectors coincide with H-eigenvectors. Note moreover that, if
the contractivity property (3.9) holds also for the case p = d (which does happen in practice,
as discussed in [22, 26]), then Theorem 3.6 would work also for p = d. This is particularly
interesting because this argument holds without any irreducibility requirement on T. Instead,
for the case of H-eigenvectors, the convergence of the power method requires the tensor to be
weakly irreducible (see Definition 3.7 and [28, Theorem 3.3] or [54, Theorem 3.1]), which is
an expensive property to verify, especially for large tensors. So, for example, if T (1) > 0 but
T ≥ 0 is not weakly irreducible, then we can use the positive Perron `p-eigenvector of T with
p ≈ d to compute an approximation of a positive H-eigenvector. To our knowledge, there
exists no other method with this type of guarantee to approximate a positive H-eigenvector of
a reducible tensor. We clarify this idea with an example in the remainder of this section.

3.2.1. Computing positive H-eigenvectors (case p = d). Given a nonnegative tensor
T ∈ R[d,n], consider the graph G(T) = (V,E) defined as follows: V = {1, . . . , n} and there
is an edge from node u to node v, i.e., uv ∈ E, if

tu,j2,...,jm−1,v,jm+1,...,jd > 0

for some m = 2, 3, . . . , d− 1.
DEFINITION 3.7 (Weakly irreducible tensor). The tensor T is said to be weakly irre-

ducible or, in the more general notation of [28], {1, . . . , n}-weakly irreducible if G(T) is
strongly connected.

In [28], points (iii) of Theorems 3.1 and 3.3, it is shown that if a tensor is weakly
irreducible then there exists a unique positive H-eigenvector and the power method converges
to such H-eigenvector. However, in general, if the tensor is not weakly irreducible, then we
have no guarantee of convergence for the power method to an H-eigenpair; see [28]. Instead,
using our Theorem 3.3, convergence is still ensured when p > d, and we can use values of p
slightly larger than d to efficiently compute good approximations to positive H-eigenvectors.

For example, consider the following 3× 3× 3 nonnegative tensor

(3.10) T(:, :, 1) =

0 0 1
0 0 1
0 0 0

 T(:, :, 2) =

0 1 0
0 0 0
0 0 0

 T(:, :, 3) =

0 1 0
0 0 0
0 0 1

 .
It is readily seen that this tensor is not weakly irreducible. Indeed, the graph of this tensor is
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FIG. 3.1. Left: The three entries of the unique positive Perron `p-eigenvector x∗(d+ ε), as ε decreases from
10−1 to 10−5. Right: LogLog plot of the Hilbert distance between x∗(d + ε) and the H-eigenvector ũ2, as ε
decreases. The plot confirms the behavior of Theorem 3.6.

3

1 2

G(T) =

which is not strongly connected. Thus, uniqueness of a nonnegative H-eigenvector and
convergence of the power method are not guaranteed. Indeed, for this particular tensor, the
eigenvector equation T (x) = λΦp(x) for p = d can be expressed as the system of equations x3x1 + x22 + x2x3 = λx1|x1|,

x3x1 = λx2|x2|,
x23 = λx3|x3|.

A few algebraic manipulations show that all the H-eigenpairs of T are (up to normalization)
of the form

λ = 1, u =

µ |µ|µ
1

 or λ = −1, v =

η |η|η
−1

 ,
where µ and η are real numbers such that

µ(µ3 − 2µ− 1)(−µ3 − 1) = 0, η(η3 − 1)(−η3 + 2η − 1) = 0 .

Therefore, the following nonnegative H-eigenvectors of (3.10) correspond to the positive
eigenvalue λ = 1

u1 =

0
0
1

 and u2 =
1

2

3 +
√

5

1 +
√

5
2


and any of their nonnegative multiples.

On the other hand, T (1) = [3, 1, 1]T > 0, and thus C+(T) = R3
++. Thus, Theorem 3.3

implies that for any p > d = 3, such a tensor has a unique Perron `p-eigenvector x∗(p)
which is entry-wise positive and which can be computed via either of Algorithms 1 and 2.
Moreover, Theorem 3.6 suggests that for p ≈ d we have x∗(p) ≈ ũ2 with ũ2 := u2/‖u2‖d,
i.e., the Perron `p-eigenvector approximates the (normalized) positive H-eigenvector. This
phenomenon is shown in Figure 3.1, which plots the values of the entries of x∗(d+ ε) and the
distance dH(x∗(d+ ε), ũ2) for the tensor in (3.10), as ε > 0 decreases to zero.
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4. Numerical experiments: part 1. In this section we investigate experimentally for
different test problems the power method in its two shifted variants described in Algorithms 1
and 2 for different values of p and of the shift σ. For the sake of clarity we use different
sections to describe the problem set and present the corresponding numerical results. All the
numerical experiments are performed on a laptop running Linux with 16Gb memory and CPU
Intel R© CoreTM i7-4510U with clock 2.00GHz. The code is written and executed in MATLAB
R2018b.

Let xk be the sequence of vectors generated by any of the methods when applied to
address the `p-eigenvector problem for the tensor T, and let λk = fp(xk) be defined by (2.3).
All the presented figures in the following sections show the behavior of the residual

(4.1) ‖T (xk)− λkΦp(xk)‖∞

up to iteration 30.

It is worth pointing out that often (e.g., in [29, 34]) the convergence plots of power se-
quences for tensors show the relative error between consecutive iterates ‖xk−xk+1‖/‖xk+1‖
or the behavior of the eigenvalue sequence λk, rather than the point-wise residual (4.1).
For the sake of brevity here we do not show plots of the relative error nor of the eigen-
value sequence. However we stress that: (a) the relative error between consecutive iterates
‖xk − xk+1‖p/‖xk+1‖p, as expected, always decreases at least as fast as the shown point-
wise residual (4.1), and (b) the eigenvalue sequence always stabilizes for the test problems
considered.

In the following numerical results, as pointed out in Section 3.2.1, we will use p ≈ d in
order to investigate the numerical properties of Algorithms 1 or 2 when used to approximateH-
eigenpairs. Let us add, moreover, that this is the only numerical relevant case since, as shown
in the proof of Theorem 3.6, the contractivity of our fixed point map increases accordingly to
d. Finally, let us point out that in all the following numerical results we use a random vector
x0 obtained using MATLAB’s function rand as initial guess.

In all the figures we denote by Alg1 and Alg2 the sequences computed by Algorithms 1
or 2, respectively, and by PM the power method sequence, i.e., the case where σ = 0.

4.1. Nonnegative tensors with different irreducibility pattern. As mentioned above,
a shifted version of the power method for H-eigenvalue problems for nonnegative tensors
has been introduced in [41]. It is simple to note that, in this case, i.e., when p = d, the latter
method coincides with Algorithm 2 proposed above. In what follows, we refer to that method
as the LZI algorithm, following the notation of [53]. The latter paper introduces the notion of
weakly positive tensor and proposes a convergence analysis of the LZI algorithm, proving the
linear convergence of the method for weakly positive tensors. However, due to Theorem 3.3,
this requirement on the structure of the tensor is unnecessary when p > d. In this section we
analyze the behavior of Algorithms 1 and 2 when applied to the three test problems A,B,
and C defined in (4.2) and considered in [53]. All these three tensors are square of size
n× n× n. A is irreducible, but not primitive nor weakly positive; B is primitive and weakly
positive, but not essentially positive; C is primitive but not weakly positive. This implies that
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FIG. 4.1. Experiments for the test problem A ∈ Rn×n×n, n = 100, considered in [53] and defined in (4.2).

C+(A) = C+(B) = C+(C) = Rn++.

A = (aijk) with aijk =


1 i = 1, j = k, 2 ≤ j ≤ n
1 j = k = 1, 2 ≤ i ≤ n
0 otherwise

B = (bijk) with bijk =

{
i+ j j = k, i 6= j, 1 ≤ i, j ≤ n
0 otherwise

C = (cijk) with cijk =


1 i = 1, j = k = n

1 j = k = 1, 2 ≤ i ≤ n
1 i = n, 1 ≤ j = k ≤ n− 1

0 otherwise.

(4.2)

For this data set, our experiments show that Algorithm 1 often outperforms the LZI algo-
rithm [41, 53] when computing approximated H-eigenpairs, i.e., for p ≈ d. Indeed, as Figures
4.1, 4.2, and 4.3 show, the point-wise residual of Algorithm 1 always converges to zero faster
than the one of Algorithm 2.

4.2. A real symmetric tensor: Kofidis and Regalia example. One of the first appear-
ances of the power method for tensor eigenvalues was related to Z-eigenvalues, that is, the
“Euclidean” case p = 2. The symmetric higher-order power method for Z-eigenpairs have
been introduced in [20]. Afterwards, Kofidis and Regalia [32] noted that the convergence of
that method is guaranteed only if certain not necessarily mild conditions are met. Moreover,
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FIG. 4.2. Experiments for the test problem B ∈ Rn×n×n, n = 100, considered in [53] and defined in (4.2).
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FIG. 4.3. Experiments for the test problem C ∈ Rn×n×n, n = 100, considered in [53] and defined in (4.2).
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FIG. 4.4. Experiments for the test problem K ∈ Rn×n×n×n.

they provide a particularly bad-behaving example tensor K for which the power iteration fails
to converge. We recall that example tensor below [32, Example 1]. Consider the tensor K̃
with nonzero entries defined by

K̃ =


κ1111 = 0.2883 κ1112 = −0.0031 κ1113 = 0.1973 κ1122 = −0.2485
κ1123 = −0.2939 κ1133 = 0.3847 κ1222 = 0.2972 κ1223 = 0.1862
κ1233 = 0.0919 κ1333 = −0.3619 κ2222 = 0.1241 κ2223 = −0.3420
κ2233 = 0.2127 κ2333 = 0.2727 κ3333 = −0.3054

 .

The tensor K is obtained from K̃ by symmetrizing it with respect to any permutation of the
indices i, j, k, `.

Later on, a shifted symmetric higher-order power method (SS-HOPM) for Z-eigenpairs
was proposed in [34, 47]. Clearly, when p = 2, the proposed Algorithms 1 and 2 both coincide
with the SS-HOPM. In the following Figure 4.4 we analyze the behavior of Algorithms 1 and
2 and of the power method for the element-wise absolute value of the Kofidis and Regalia
tensor, i.e., T := |K| = (|κijk`|) ∈ R3×3×3×3. In particular, plots in Figure 4.4 show the
residual ‖T (xk)− λkΦp(xk)‖∞ from the element-wise absolute value of the same starting
point x0 = (−0.2695, 0.1972, 0.3270) proposed in [32, 34].

4.3. Real world network data tensors. Higher-order network analysis is gaining an
increasing amount of attention since a large number of real-world complex networks show
higher-order features and a higher-organization [3]. In this context one often describes higher-
order network data via a nonnegative tensor and then carries out an analysis based on the
eigen- or singular vectors in order to compute, for example, importance scores for network
components; see, for example, [1, 2, 39, 51]. To test the performances of our methods in this
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FIG. 4.5. Experiments for T ∈ Rn×n×n, n = 62, generated using Dolphins.

context, here we consider a network modeled by the graph G = (V,E), with V = {1, . . . , n}
being the set of nodes and E the set of edges between the nodes. Then, we build the third
order three-cycle tensor T = (tijk) with entries

tijk =

{
1, if there is a three-cycle between nodes i, j, k,
0, otherwise,

where a three-cycle between i, j, k is any closed sequence of edges involving those three nodes.
While there is only one possible type of three-cycles in an undirected network, a triangle
between i, j, and k, in the directed case there are up to 7 different types of three-cycles as we
show in the illustration below.

i

j k

i

j k

i

j k

i

j k

i

j k

i

j k

i

j k

We then compute the Perron `p-eigenvector of T for different values of p ≈ d, in order to
quantify the hypergraph centrality of the network, following the eigenvector centrality model
discussed in [2]. In our tests we used four real-world directed and undirected network data
sets of different size coming from [18], as listed in Table 4.1. Results up to iteration 30 are
shown in Figures 4.5, 4.6, 4.7, and 4.8, where we plot the residual ‖T (xk)− λkΦp(xk)‖∞
for the four different three-cycle tensors obtained by the chosen data sets and for the three
sequences obtained with Algorithms 1 and 2, for the choices of σ = 0.5 and σ = 1, and the
unshifted power method.
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TABLE 4.1
Data set information: the column ‘size’ refers to the number of nodes in the network, whereas the two columns on

its right show the number of nonzeros in the adjacency matrix (i.e., twice the number of edges) and in the three-cycle
tensor, respectively. All the three-cycle tensors generated from these data sets are such that T (1) ≥ 0 except for
gre1107 for which strict inequality holds. Source [18].

Problem name Size nnz(adj(G)) nnz(T)
Dolphins (undirected) 62 318 570
yeast (undirected) 2361 13828 35965
gre1107 (directed) 1107 5664 11045
wb-cs-stanford (directed) 9914 36854 101992
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FIG. 4.6. Experiments for T ∈ Rn×n×n, n = 2361, generated using yeast.

While we observe that the residual decreases, as expected, unlike in previous example
tests, none of the three methods perform well for these data sets. In fact, over 50 iterations
are often not enough to achieve more than 2 digits of precision. For this reason, we introduce
in the next section an extrapolation strategy. With this technique we speed-up the original
sequence by using the Simplified Topological Shanks Transformations and the corresponding
algorithms (called in short STEA’s) [7, 8, 9], obtaining extrapolated methods that achieve
competitive performance for the considered network data.

5. Extrapolation for fixed-point iterations. The numerical experiments carried out
in Section 4 have shown that for some problems (Section 4.3) the rate of convergence of
Algorithms 1, 2 and of the power method can be quite slow. This can affect and limit the
applicability of such methods for real world problems. Motivated by this observation, in
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FIG. 4.7. Experiments for T ∈ Rn×n×n, n = 1107, generated using gre1107.

this section, we introduce extrapolation techniques for accelerating the convergence of the
sequence (xk) generated by Algorithm 1 or 2.

The theory of extrapolation methods has been developed and successfully applied to a
variety of problems, such as the solution of linear and nonlinear systems, matrix eigenvalue
problems, the computation of matrix functions, the solution of integral equations, and many
others [4, 6, 9, 15, 49]. These methods transform the original sequence (xk) into a new
sequence (yk) by means of a sequence transformation, which, under some assumptions,
converges faster to the limit. The idea behind such transformations is typically to assume that
the original sequence (xk) behaves like a model sequence whose limit x can be computed
exactly by a finite algebraic process. The set K of these model sequences is called the kernel
of the transformation. If the sequence (xk) belongs to the kernel K, then the transformed
sequence “converges in one step”, i.e., the sequence is transformed into the constant sequence,
where the constant is the limit of the original sequence. If the sequence (xk) does not belong
to the kernel but it is “close enough” to it, then there is a good chance that the transformed
sequence converges, to the same limit, faster than the original sequence.

Among the existing sequence transformations (also called extrapolation methods), the
Shanks transformation [10, 11, 48] is arguably the best all-purpose method for accelerating
the convergence of a sequence. The kernel of the vector Shanks transformation KS contains
the set of sequences (xk) for which there exists an integer h such that for all k we have

a0(xk − x) + · · ·+ ah(xk+h − x) = 0, k = 0, 1, . . . ,

for some real coefficients ai such that a0ah 6= 0 and a0 + · · ·+ah 6= 0. If we assume, without
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FIG. 4.8. Experiments for T ∈ Rn×n×n, n = 9914, generated using wb-cs-stanford.

loss of generalities, that a0 + · · ·+ ah = 1, then for each sequence of the kernel we have

x = a0xk + · · ·+ ahxk+h.

Of course, even if the given sequence (xk) does not belong to the Shanks kernel, we may
apply the transformation; However, in this case we obtain a set of sequences, usually denoted
(eh(xk)), depending on k and h, whose elements are given by

(5.1) eh(xk) = a
(k,h)
0 xk + · · ·+ a

(k,h)
h xk+h,

where the coefficients a(k,h)i are such that if (xk) ∈ KS , then eh(xk) = x for all k. For a
recent survey on Shanks transformations, see [11].

Some of these Shanks transformations can be implemented recursively, and, among these,
the Topological Shanks Transformations can be implemented by the Topological Epsilon
Algorithms, in short TEA’s [5]. Recently, simplified versions of these algorithms, called the
Simplified Topological Epsilon Algorithms (STEA’s), have been introduced. These simplified
algorithms have three main advantages with respect to the original ones: the numerical stability
can be significantly improved, the rules defining the extrapolated sequence are simpler and the
computational cost is reduced both in terms of memory allocation and in terms of operations
to be performed.

Finally, let us observe that Shanks transformations can be coupled with a restarting
technique which is particularly suited for fixed-point problems (see [9, 15]) and that roughly
goes as follows. Assume that we are interested in a fixed-point x of a mapping F : Rn → Rn.
We compute a certain number of basic iterates xk+1 = F(xk) from a given x0. Then we
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FIG. 5.1. Diagrammatic illustration of the “triangular” recursive rule (5.4) for the computation of the
extrapolated sequence (ẽh(xk)) = (z

(k)
2h ), for h = 1, 2, 3, 4. The arrows emphasize the dependence of z(i)2j+2 upon

only z
(i+2)
2j and z

(i+1)
2j .

apply the extrapolation algorithm to them, and we restart the basic iterates from the computed
extrapolated term and so on. The advantage of this approach is that, under suitable regularity
assumptions on F and if h is large enough, the sequence generated in this way converges
quadratically to the fixed point of F [36].

In Section 5.1, we briefly review the topological Shanks transformations and their simpli-
fied versions (in particular the STEA2 algorithm that is the less expensive in terms of memory
requirement). For further details, see [7, 9]. In Section 5.2 we discuss the details of the
restarted procedure and how this applies to the specific `p-eigenvector setting.

5.1. Topological Shanks transformations and the STEA2 algorithm. For p > d, let
(xk) be the sequence generated by either Algorithm 1 or 2, and let x be the Perron `p-
eigenvector limit of this sequence. The so-called second Topological Shanks Transformation
starts from the original sequence and, given an arbitrary nonzero y ∈ Rn and a fixed integer h,
produces a new sequence (ẽh(xk)) defined as

ẽh(xk) = a
(k,h)
0 xk+h + · · ·+ a

(k,h)
h xk+2h,(5.2)
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Algorithm 3: Restarted extrapolation method.
Input: Choose 2h, cycles ∈ N,x0 and y ∈ Rn

1 for i = 0, 1, . . . , cycles (outer iterations) do
2 Compute x0 = yTx0

3 for k = 1, . . . , 2h (inner iterations) do
4 Compute xk = F(xk−1)

5 Compute xk = yTxk
6 end
7 Apply STEA2 to x0, . . .x2h and x0, . . . x2h to compute z

(0)
2h = ẽh(x0)

8 Set x0 = z
(0)
2h

9 Choose y ∈ Rn
10 end

where the coefficients a(k,h)i are the solutions of the linear system

(5.3)


1 . . . 1
b0 . . . bh
...

...
bh−1 . . . b2h−1



a
(k,h)
0

...
a
(k,h)
h

 =


1
0
...
0


and bi := yT (xk+i+1 − xk+i), for i = 0, . . . , 2h − 1. Note that for this transformation it
holds that if (xk) ∈ KS , then ẽh(xk) = x for all k, i.e., all the transformed terms coincide
with the limit. However, we often do not know whether the original sequence satisfies (5.1)
and, if so, we do not know what is the correct value of h. So, in practice, we fix an arbitrary
integer h and transform the sequence via (5.2) using such an integer.

The second Simplified Topological ε-Algorithm (STEA2) [7] allows us to compute the
terms of the new sequence ẽh(xk) via four equivalent recursive formulas without solving
explicitly the linear system given by (5.3). Here we focus on the third one.

Define the vectors z(i)2j as follows: set z(k)0 = xk and, for i, j = 0, 1, . . . , compute

(5.4) z
(i)
2j+2 = z

(i+1)
2j +

ε
(i)
2j+2 − ε

(i+1)
2j

ε
(i+2)
2j − ε(i+1)

2j

(z
(i+2)
2j − z

(i+1)
2j ),

where the scalar quantities ε(i)j are given by Wynn’s scalar ε-algorithm [52] (an algorithm
implementing Shanks transformation for scalar sequences) applied to the sequence (yTx0),
(yTx1), (yTx2), . . . The link with the transformation is given by the fact that we have
z
(k)
2h = ẽh(xk) (see, e.g., [5]), and thus (5.4) allows us to compute the desired extrapolated

sequence (ẽh(xk)) with a few simple operations. Indeed, note that (5.4) contains only sums
and differences of vectors, and it relies only on two terms of a triangular scheme, as illustrated
in Figure 5.1. Of course, there are also the inner products for the initialization of Wynn’s
scalar ε-algorithm.

5.2. Restarted extrapolation method for `p-eigenpairs. When dealing with fixed-
point problems F(x) = x, as previously pointed out, it is often advisable to couple the
extrapolation method with a restarting technique [9]. If we consider the STEA2 scheme, the
general restarted method is presented in Algorithm 3.
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It is important to remark that, when h = n, where n is the dimension of the problem, the
sequence generated by Algorithm 3 converges quadratically to x, under suitable regularity
assumptions on F ; see [36].

Since all the algorithms we took into consideration in Section 3 are based on a fixed-
point iteration, for all of them we consider the restarted extrapolation method described in
Algorithm 3. In our case, F is either the iteration map of Algorithm 1 or that of Algorithm 2.
Concerning the computational complexity and the storage requirements, in our experimental
investigations, we used the public available software EPSfun MATLAB toolbox, na44 package
in Netlib [8] that contains optimized versions of the STEA algorithms. The 2h+ 1 vectors
x0, . . . ,x2h are computed together with the extrapolation scheme, and thus only h+ 2 vectors
of dimension n have to be stored in order to compute ẽh(x0); see [8, 9] for implementation
details. Observe that, in addition to applying the power method map F , each outer cycle also
requires the computation of 2h+ 1 scalar products.

The practical implementation and the performance of the outlined method rely on two
key parameter choices: the choice of h and the choice of y ∈ Rn. As described above, the
choice of h is connected to the memory requirement and influences the rate of convergence.
In general, also for relatively small problems, we choose a value of h smaller than n (the
dimension of the problem). This is the case, for instance, for the real-world examples of
Section 6. Concerning the choice of y ∈ Rn, this is a well-known critical point in the
topological Shanks transformations, and it is usually addressed by model-dependent heuristics.
Indeed, no general theoretical result has been obtained so far concerning the selection of an
optimal y ∈ Rn. In our examples, in each cycle we take a different y, chosen as y = ẽh(x0),
i.e., the last extrapolated term, except for in the first cycle, where it is set equal to x0. The
quality of this choice is supported by the performance we obtained, and by the fact that in all
our tests the resulting extrapolated vectors computed with such a choice of y belong to the
desired cone C+(T).

6. Numerical experiments: part 2. In this section we present several numerical ex-
periments to demonstrate the advantages of the extrapolation framework. We focus only on
problems from Section 4.3 that exhibit a slow convergence rate (even if we observe similar
acceleration performance on all the data sets). For the same reason we focus only on the
case p = d+ 10−5. As before, in all our experiments we consider the point-wise eigenvector
residual

‖T (xk)− λkΦp(xk)‖∞

evaluated at the current iteration step. Our numerical results are focused on the analysis of the
rate of convergence of the accelerated sequence when compared to the original one. To this
end, we run Algorithm 3 for a prescribed number of inner and outer iterations (i.e., we fix the
value of h and the number of cycles) without any other stopping criterion. Results are shown
in Figures 6.1, 6.2, 6.3, and 6.4, where we highlight with a circle each restart of the outer loop,
i.e., the residual generated by the iterate defined at Line 8 of Algorithm 3.

The linear functional y is updated at the end of each outer cycle by choosing y = ẽh(x0)
(for the first extrapolation step we choose y = x0). For the implementation of the simplified
topological ε-algorithm we used the public domain MATLAB toolbox EPSfun [8]. For all the
reported numerical results we choose a random starting point.

As Figures 6.1, 6.2, 6.3, and 6.4 show, the introduction of extrapolation techniques for the
computation of `p-eigenpairs greatly improves the rate of convergence of the original fixed
point Algorithms 1 and 2 at a cost of one extra scalar product per fixed point iteration; see
Section 5.
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FIG. 6.1. STEA2 on T ∈ Rn×n×n, n = 62, generated using dolphins. 2h = 28, cycles = 3,
p = d+ 10−5.
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FIG. 6.2. STEA2 on T∈Rn×n×n, n=2361, generated using yeast. 2h=12, cycles=6, p=d+10−5.
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FIG. 6.3. STEA2 on T ∈ Rn×n×n, n = 1107, generated using gre1107. 2h = 70, cycles = 5,
p = d+ 10−5.
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FIG. 6.4. STEA2 on T ∈ Rn×n×n, n = 9914, generated using stanford. 2h = 8, cycles = 4,
p = d+ 10−5.
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TABLE 6.1
Comparison of execution times to produce residuals smaller than 10−9, σ = 0.

Problem Time(s)
Extrapolated Not Extrapolated

Dolphins 0.2373 0.3062
yeast 0.4199 0.7193
gre1107 1.4225 1.8462
wb-cs-stanford 0.3817 0.6994

Finally, let us point out that even though the acceleration is quite evident for the shifted
versions of Algorithms 1 and 2, acceleration seems to happen more systematically on the
unshifted ones. We find this aspect particularly interesting, and we believe it deserves further
investigation.

In Table 6.1, we report the comparison of the execution times needed to produce a residual
smaller than 10−9 for the unshifted extrapolated scheme and the non-extrapolated one (the
execution times of the other extrapolated schemes are all very similar).

7. Conclusions. In this work we introduced two new shifted power methods for com-
puting `p-eigenpairs of tensors. We proved that the introduced algorithms are guaranteed to
converge for entry-wise nonnegative tensors with possibly reducible patterns and for p > d,
where d is the number of modes of the tensor. Moreover, we show that for nonnegative tensors
the Perron `p-eigenvector depends continuously on the parameter p. This result, together with
the global convergence guarantees of the shifted power methods, allows us to propose the first
method that can provably approximate the positive Perron H-eigenvector of a nonnegative
tensor by choosing p ≈ d. The methods may suffer from a slow rate of convergence, as
we observe in the numerical experiments proposed in Section 4. For this reason, we also
discuss the use of the simplified ε-algorithm to extrapolate the power sequence and accelerate
its convergence. The numerical experiments in Section 6 show that the application of the
proposed extrapolation method substantially improves the convergence rate of the power
methods for `p-eigenvectors at the price of a minor additional cost per step.
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